[llvm-commits] CVS: llvm/lib/Analysis/BasicAliasAnalysis.cpp ConstantRange.cpp LoopInfo.cpp ScalarEvolution.cpp ValueNumbering.cpp
Reid Spencer
reid at x10sys.com
Fri Dec 22 22:07:00 PST 2006
Changes in directory llvm/lib/Analysis:
BasicAliasAnalysis.cpp updated: 1.94 -> 1.95
ConstantRange.cpp updated: 1.22 -> 1.23
LoopInfo.cpp updated: 1.81 -> 1.82
ScalarEvolution.cpp updated: 1.76 -> 1.77
ValueNumbering.cpp updated: 1.23 -> 1.24
---
Log message:
For PR950: http://llvm.org/PR950 :
This patch removes the SetCC instructions and replaces them with the ICmp
and FCmp instructions. The SetCondInst instruction has been removed and
been replaced with ICmpInst and FCmpInst.
---
Diffs of the changes: (+221 -202)
BasicAliasAnalysis.cpp | 3
ConstantRange.cpp | 199 +++++++++++++++++++++++++------------------------
LoopInfo.cpp | 18 ++--
ScalarEvolution.cpp | 198 +++++++++++++++++++++++++-----------------------
ValueNumbering.cpp | 5 +
5 files changed, 221 insertions(+), 202 deletions(-)
Index: llvm/lib/Analysis/BasicAliasAnalysis.cpp
diff -u llvm/lib/Analysis/BasicAliasAnalysis.cpp:1.94 llvm/lib/Analysis/BasicAliasAnalysis.cpp:1.95
--- llvm/lib/Analysis/BasicAliasAnalysis.cpp:1.94 Tue Dec 12 17:36:14 2006
+++ llvm/lib/Analysis/BasicAliasAnalysis.cpp Sat Dec 23 00:05:40 2006
@@ -590,7 +590,8 @@
// Make sure they are comparable (ie, not constant expressions), and
// make sure the GEP with the smaller leading constant is GEP1.
if (G1OC) {
- Constant *Compare = ConstantExpr::getSetGT(G1OC, G2OC);
+ Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
+ G1OC, G2OC);
if (ConstantBool *CV = dyn_cast<ConstantBool>(Compare)) {
if (CV->getValue()) // If they are comparable and G2 > G1
std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
Index: llvm/lib/Analysis/ConstantRange.cpp
diff -u llvm/lib/Analysis/ConstantRange.cpp:1.22 llvm/lib/Analysis/ConstantRange.cpp:1.23
--- llvm/lib/Analysis/ConstantRange.cpp:1.22 Tue Dec 12 17:36:14 2006
+++ llvm/lib/Analysis/ConstantRange.cpp Sat Dec 23 00:05:40 2006
@@ -24,56 +24,43 @@
#include "llvm/Support/ConstantRange.h"
#include "llvm/Constants.h"
#include "llvm/Instruction.h"
+#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Support/Streams.h"
#include <ostream>
using namespace llvm;
-static ConstantIntegral *getMaxValue(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::BoolTyID: return ConstantBool::getTrue();
- case Type::SByteTyID:
- case Type::ShortTyID:
- case Type::IntTyID:
- case Type::LongTyID: {
- // Calculate 011111111111111...
- unsigned TypeBits = Ty->getPrimitiveSize()*8;
- int64_t Val = INT64_MAX; // All ones
- Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
- return ConstantInt::get(Ty, Val);
- }
-
- case Type::UByteTyID:
- case Type::UShortTyID:
- case Type::UIntTyID:
- case Type::ULongTyID: return ConstantInt::getAllOnesValue(Ty);
-
- default: return 0;
+static ConstantIntegral *getMaxValue(const Type *Ty, bool isSigned = false) {
+ if (Ty == Type::BoolTy)
+ return ConstantBool::getTrue();
+ if (Ty->isInteger()) {
+ if (isSigned) {
+ // Calculate 011111111111111...
+ unsigned TypeBits = Ty->getPrimitiveSize()*8;
+ int64_t Val = INT64_MAX; // All ones
+ Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
+ return ConstantInt::get(Ty, Val);
+ }
+ return ConstantInt::getAllOnesValue(Ty);
}
+ return 0;
}
// Static constructor to create the minimum constant for an integral type...
-static ConstantIntegral *getMinValue(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::BoolTyID: return ConstantBool::getFalse();
- case Type::SByteTyID:
- case Type::ShortTyID:
- case Type::IntTyID:
- case Type::LongTyID: {
- // Calculate 1111111111000000000000
- unsigned TypeBits = Ty->getPrimitiveSize()*8;
- int64_t Val = -1; // All ones
- Val <<= TypeBits-1; // Shift over to the right spot
- return ConstantInt::get(Ty, Val);
- }
-
- case Type::UByteTyID:
- case Type::UShortTyID:
- case Type::UIntTyID:
- case Type::ULongTyID: return ConstantInt::get(Ty, 0);
-
- default: return 0;
+static ConstantIntegral *getMinValue(const Type *Ty, bool isSigned = false) {
+ if (Ty == Type::BoolTy)
+ return ConstantBool::getFalse();
+ if (Ty->isInteger()) {
+ if (isSigned) {
+ // Calculate 1111111111000000000000
+ unsigned TypeBits = Ty->getPrimitiveSize()*8;
+ int64_t Val = -1; // All ones
+ Val <<= TypeBits-1; // Shift over to the right spot
+ return ConstantInt::get(Ty, Val);
+ }
+ return ConstantInt::get(Ty, 0);
}
+ return 0;
}
static ConstantIntegral *Next(ConstantIntegral *CI) {
if (ConstantBool *CB = dyn_cast<ConstantBool>(CI))
@@ -84,25 +71,30 @@
return cast<ConstantIntegral>(Result);
}
-static bool LT(ConstantIntegral *A, ConstantIntegral *B) {
- Constant *C = ConstantExpr::getSetLT(A, B);
+static bool LT(ConstantIntegral *A, ConstantIntegral *B, bool isSigned) {
+ Constant *C = ConstantExpr::getICmp(
+ (isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT), A, B);
assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
return cast<ConstantBool>(C)->getValue();
}
-static bool LTE(ConstantIntegral *A, ConstantIntegral *B) {
- Constant *C = ConstantExpr::getSetLE(A, B);
+static bool LTE(ConstantIntegral *A, ConstantIntegral *B, bool isSigned) {
+ Constant *C = ConstantExpr::getICmp(
+ (isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE), A, B);
assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
return cast<ConstantBool>(C)->getValue();
}
-static bool GT(ConstantIntegral *A, ConstantIntegral *B) { return LT(B, A); }
+static bool GT(ConstantIntegral *A, ConstantIntegral *B, bool isSigned) {
+ return LT(B, A, isSigned); }
-static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) {
- return LT(A, B) ? A : B;
-}
-static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) {
- return GT(A, B) ? A : B;
+static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B,
+ bool isSigned) {
+ return LT(A, B, isSigned) ? A : B;
+}
+static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B,
+ bool isSigned) {
+ return GT(A, B, isSigned) ? A : B;
}
/// Initialize a full (the default) or empty set for the specified type.
@@ -118,47 +110,62 @@
/// Initialize a range to hold the single specified value.
///
-ConstantRange::ConstantRange(Constant *V)
- : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) {
-}
+ConstantRange::ConstantRange(Constant *V)
+ : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) { }
/// Initialize a range of values explicitly... this will assert out if
/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
/// have different types)
///
-ConstantRange::ConstantRange(Constant *L, Constant *U)
+ConstantRange::ConstantRange(Constant *L, Constant *U)
: Lower(cast<ConstantIntegral>(L)), Upper(cast<ConstantIntegral>(U)) {
assert(Lower->getType() == Upper->getType() &&
"Incompatible types for ConstantRange!");
// Make sure that if L & U are equal that they are either Min or Max...
assert((L != U || (L == getMaxValue(L->getType()) ||
- L == getMinValue(L->getType()))) &&
- "Lower == Upper, but they aren't min or max for type!");
+ L == getMinValue(L->getType())))
+ && "Lower == Upper, but they aren't min or max for type!");
}
/// Initialize a set of values that all satisfy the condition with C.
///
-ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) {
- switch (SetCCOpcode) {
- default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!");
- case Instruction::SetEQ: Lower = C; Upper = Next(C); return;
- case Instruction::SetNE: Upper = C; Lower = Next(C); return;
- case Instruction::SetLT:
+ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantIntegral *C) {
+ switch (ICmpOpcode) {
+ default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
+ case ICmpInst::ICMP_EQ: Lower = C; Upper = Next(C); return;
+ case ICmpInst::ICMP_NE: Upper = C; Lower = Next(C); return;
+ case ICmpInst::ICMP_ULT:
Lower = getMinValue(C->getType());
Upper = C;
return;
- case Instruction::SetGT:
+ case ICmpInst::ICMP_SLT:
+ Lower = getMinValue(C->getType(), true);
+ Upper = C;
+ return;
+ case ICmpInst::ICMP_UGT:
+ Lower = Next(C);
+ Upper = getMinValue(C->getType()); // Min = Next(Max)
+ return;
+ case ICmpInst::ICMP_SGT:
Lower = Next(C);
- Upper = getMinValue(C->getType()); // Min = Next(Max)
+ Upper = getMinValue(C->getType(), true); // Min = Next(Max)
return;
- case Instruction::SetLE:
+ case ICmpInst::ICMP_ULE:
Lower = getMinValue(C->getType());
Upper = Next(C);
return;
- case Instruction::SetGE:
+ case ICmpInst::ICMP_SLE:
+ Lower = getMinValue(C->getType(), true);
+ Upper = Next(C);
+ return;
+ case ICmpInst::ICMP_UGE:
+ Lower = C;
+ Upper = getMinValue(C->getType()); // Min = Next(Max)
+ return;
+ case ICmpInst::ICMP_SGE:
Lower = C;
- Upper = getMinValue(C->getType()); // Min = Next(Max)
+ Upper = getMinValue(C->getType(), true); // Min = Next(Max)
return;
}
}
@@ -182,11 +189,10 @@
/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
-bool ConstantRange::isWrappedSet() const {
- return GT(Lower, Upper);
+bool ConstantRange::isWrappedSet(bool isSigned) const {
+ return GT(Lower, Upper, isSigned);
}
-
/// getSingleElement - If this set contains a single element, return it,
/// otherwise return null.
ConstantIntegral *ConstantRange::getSingleElement() const {
@@ -212,19 +218,17 @@
/// contains - Return true if the specified value is in the set.
///
-bool ConstantRange::contains(ConstantInt *Val) const {
+bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const {
if (Lower == Upper) {
if (isFullSet()) return true;
return false;
}
- if (!isWrappedSet())
- return LTE(Lower, Val) && LT(Val, Upper);
- return LTE(Lower, Val) || LT(Val, Upper);
+ if (!isWrappedSet(isSigned))
+ return LTE(Lower, Val, isSigned) && LT(Val, Upper, isSigned);
+ return LTE(Lower, Val, isSigned) || LT(Val, Upper, isSigned);
}
-
-
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
@@ -241,15 +245,16 @@
// it is known that LHS is wrapped and RHS isn't.
//
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
- const ConstantRange &RHS) {
- assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
+ const ConstantRange &RHS,
+ bool isSigned) {
+ assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
// Check to see if we overlap on the Left side of RHS...
//
- if (LT(RHS.getLower(), LHS.getUpper())) {
+ if (LT(RHS.getLower(), LHS.getUpper(), isSigned)) {
// We do overlap on the left side of RHS, see if we overlap on the right of
// RHS...
- if (GT(RHS.getUpper(), LHS.getLower())) {
+ if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
// Ok, the result overlaps on both the left and right sides. See if the
// resultant interval will be smaller if we wrap or not...
//
@@ -262,11 +267,10 @@
// No overlap on the right, just on the left.
return ConstantRange(RHS.getLower(), LHS.getUpper());
}
-
} else {
// We don't overlap on the left side of RHS, see if we overlap on the right
// of RHS...
- if (GT(RHS.getUpper(), LHS.getLower())) {
+ if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
// Simple overlap...
return ConstantRange(LHS.getLower(), RHS.getUpper());
} else {
@@ -279,30 +283,31 @@
/// intersect - Return the range that results from the intersection of this
/// range with another range.
///
-ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
+ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
+ bool isSigned) const {
assert(getType() == CR.getType() && "ConstantRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet()) return *this;
if (isFullSet() || CR.isEmptySet()) return CR;
- if (!isWrappedSet()) {
- if (!CR.isWrappedSet()) {
- ConstantIntegral *L = Max(Lower, CR.Lower);
- ConstantIntegral *U = Min(Upper, CR.Upper);
+ if (!isWrappedSet(isSigned)) {
+ if (!CR.isWrappedSet(isSigned)) {
+ ConstantIntegral *L = Max(Lower, CR.Lower, isSigned);
+ ConstantIntegral *U = Min(Upper, CR.Upper, isSigned);
- if (LT(L, U)) // If range isn't empty...
+ if (LT(L, U, isSigned)) // If range isn't empty...
return ConstantRange(L, U);
else
return ConstantRange(getType(), false); // Otherwise, return empty set
} else
- return intersect1Wrapped(CR, *this);
+ return intersect1Wrapped(CR, *this, isSigned);
} else { // We know "this" is wrapped...
- if (!CR.isWrappedSet())
- return intersect1Wrapped(*this, CR);
+ if (!CR.isWrappedSet(isSigned))
+ return intersect1Wrapped(*this, CR, isSigned);
else {
// Both ranges are wrapped...
- ConstantIntegral *L = Max(Lower, CR.Lower);
- ConstantIntegral *U = Min(Upper, CR.Upper);
+ ConstantIntegral *L = Max(Lower, CR.Lower, isSigned);
+ ConstantIntegral *U = Min(Upper, CR.Upper, isSigned);
return ConstantRange(L, U);
}
}
@@ -315,7 +320,8 @@
/// 15), which includes 9, 10, and 11, which were not included in either set
/// before.
///
-ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
+ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
+ bool isSigned) const {
assert(getType() == CR.getType() && "ConstantRange types don't agree!");
assert(0 && "Range union not implemented yet!");
@@ -325,7 +331,7 @@
/// zeroExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
-/// correspond to the possible range of values if the source range had been
+/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
assert(getLower()->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
@@ -346,7 +352,7 @@
/// truncate - Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
-/// correspond to the possible range of values if the source range had been
+/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantRange ConstantRange::truncate(const Type *Ty) const {
assert(getLower()->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
@@ -360,7 +366,6 @@
ConstantExpr::getTrunc(getUpper(), Ty));
}
-
/// print - Print out the bounds to a stream...
///
void ConstantRange::print(std::ostream &OS) const {
Index: llvm/lib/Analysis/LoopInfo.cpp
diff -u llvm/lib/Analysis/LoopInfo.cpp:1.81 llvm/lib/Analysis/LoopInfo.cpp:1.82
--- llvm/lib/Analysis/LoopInfo.cpp:1.81 Wed Dec 6 19:30:31 2006
+++ llvm/lib/Analysis/LoopInfo.cpp Sat Dec 23 00:05:40 2006
@@ -536,7 +536,7 @@
/// returns null.
///
Value *Loop::getTripCount() const {
- // Canonical loops will end with a 'setne I, V', where I is the incremented
+ // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
// canonical induction variable and V is the trip count of the loop.
Instruction *Inc = getCanonicalInductionVariableIncrement();
if (Inc == 0) return 0;
@@ -546,15 +546,17 @@
IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
- if (BI->isConditional())
- if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
- if (SCI->getOperand(0) == Inc)
+ if (BI->isConditional()) {
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+ if (ICI->getOperand(0) == Inc)
if (BI->getSuccessor(0) == getHeader()) {
- if (SCI->getOpcode() == Instruction::SetNE)
- return SCI->getOperand(1);
- } else if (SCI->getOpcode() == Instruction::SetEQ) {
- return SCI->getOperand(1);
+ if (ICI->getPredicate() == ICmpInst::ICMP_NE)
+ return ICI->getOperand(1);
+ } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
+ return ICI->getOperand(1);
}
+ }
+ }
return 0;
}
Index: llvm/lib/Analysis/ScalarEvolution.cpp
diff -u llvm/lib/Analysis/ScalarEvolution.cpp:1.76 llvm/lib/Analysis/ScalarEvolution.cpp:1.77
--- llvm/lib/Analysis/ScalarEvolution.cpp:1.76 Thu Dec 21 12:59:16 2006
+++ llvm/lib/Analysis/ScalarEvolution.cpp Sat Dec 23 00:05:40 2006
@@ -177,8 +177,7 @@
// are signless. There won't be a need to bitcast then.
if (V->getType()->isSigned()) {
const Type *NewTy = V->getType()->getUnsignedVersion();
- V = cast<ConstantInt>(
- ConstantExpr::getBitCast(V, NewTy));
+ V = cast<ConstantInt>(ConstantExpr::getBitCast(V, NewTy));
}
SCEVConstant *&R = (*SCEVConstants)[V];
@@ -461,15 +460,8 @@
C = Constant::getNullValue(Ty);
else if (Ty->isFloatingPoint())
C = ConstantFP::get(Ty, Val);
- /// FIXME:Signless. when integer types are signless, just change this to:
- /// else
- /// C = ConstantInt::get(Ty, Val);
- else if (Ty->isSigned())
+ else
C = ConstantInt::get(Ty, Val);
- else {
- C = ConstantInt::get(Ty->getSignedVersion(), Val);
- C = ConstantExpr::getBitCast(C, Ty);
- }
return SCEVUnknown::get(C);
}
@@ -514,8 +506,7 @@
for (; NumSteps; --NumSteps)
Result *= Val-(NumSteps-1);
Constant *Res = ConstantInt::get(Type::ULongTy, Result);
- return SCEVUnknown::get(
- ConstantExpr::getTruncOrBitCast(Res, V->getType()));
+ return SCEVUnknown::get(ConstantExpr::getTruncOrBitCast(Res, V->getType()));
}
const Type *Ty = V->getType();
@@ -1162,7 +1153,7 @@
SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
Constant *RHS,
const Loop *L,
- unsigned SetCCOpcode);
+ ICmpInst::Predicate p);
/// ComputeIterationCountExhaustively - If the trip is known to execute a
/// constant number of times (the condition evolves only from constants),
@@ -1521,17 +1512,21 @@
BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
if (ExitBr == 0) return UnknownValue;
assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
- SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
- if (ExitCond == 0) // Not a setcc
+ ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
+
+ // If its not an integer comparison then compute it the hard way.
+ // Note that ICmpInst deals with pointer comparisons too so we must check
+ // the type of the operand.
+ if (ExitCond == 0 || !ExitCond->getOperand(0)->getType()->isIntegral())
return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
ExitBr->getSuccessor(0) == ExitBlock);
- // If the condition was exit on true, convert the condition to exit on false.
- Instruction::BinaryOps Cond;
+ // If the condition was exit on true, convert the condition to exit on false
+ ICmpInst::Predicate Cond;
if (ExitBr->getSuccessor(1) == ExitBlock)
- Cond = ExitCond->getOpcode();
+ Cond = ExitCond->getPredicate();
else
- Cond = ExitCond->getInverseCondition();
+ Cond = ExitCond->getInversePredicate();
// Handle common loops like: for (X = "string"; *X; ++X)
if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
@@ -1550,12 +1545,12 @@
Tmp = getSCEVAtScope(RHS, L);
if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
- // At this point, we would like to compute how many iterations of the loop the
- // predicate will return true for these inputs.
+ // At this point, we would like to compute how many iterations of the
+ // loop the predicate will return true for these inputs.
if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
// If there is a constant, force it into the RHS.
std::swap(LHS, RHS);
- Cond = SetCondInst::getSwappedCondition(Cond);
+ Cond = ICmpInst::getSwappedPredicate(Cond);
}
// FIXME: think about handling pointer comparisons! i.e.:
@@ -1590,53 +1585,48 @@
CompRange = ConstantRange(NewL, NewU);
}
- SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
+ SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
+ ICmpInst::isSignedPredicate(Cond));
if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
}
}
switch (Cond) {
- case Instruction::SetNE: // while (X != Y)
+ case ICmpInst::ICMP_NE: { // while (X != Y)
// Convert to: while (X-Y != 0)
- if (LHS->getType()->isInteger()) {
- SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
- if (!isa<SCEVCouldNotCompute>(TC)) return TC;
- }
+ SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
+ if (!isa<SCEVCouldNotCompute>(TC)) return TC;
break;
- case Instruction::SetEQ:
+ }
+ case ICmpInst::ICMP_EQ: {
// Convert to: while (X-Y == 0) // while (X == Y)
- if (LHS->getType()->isInteger()) {
- SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
- if (!isa<SCEVCouldNotCompute>(TC)) return TC;
- }
+ SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
+ if (!isa<SCEVCouldNotCompute>(TC)) return TC;
break;
- case Instruction::SetLT:
- if (LHS->getType()->isInteger() &&
- ExitCond->getOperand(0)->getType()->isSigned()) {
- SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
- if (!isa<SCEVCouldNotCompute>(TC)) return TC;
- }
+ }
+ case ICmpInst::ICMP_SLT: {
+ SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
+ if (!isa<SCEVCouldNotCompute>(TC)) return TC;
break;
- case Instruction::SetGT:
- if (LHS->getType()->isInteger() &&
- ExitCond->getOperand(0)->getType()->isSigned()) {
- SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
- if (!isa<SCEVCouldNotCompute>(TC)) return TC;
- }
+ }
+ case ICmpInst::ICMP_SGT: {
+ SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
+ if (!isa<SCEVCouldNotCompute>(TC)) return TC;
break;
+ }
default:
#if 0
cerr << "ComputeIterationCount ";
if (ExitCond->getOperand(0)->getType()->isUnsigned())
cerr << "[unsigned] ";
cerr << *LHS << " "
- << Instruction::getOpcodeName(Cond) << " " << *RHS << "\n";
+ << Instruction::getOpcodeName(Instruction::ICmp)
+ << " " << *RHS << "\n";
#endif
break;
}
-
return ComputeIterationCountExhaustively(L, ExitCond,
- ExitBr->getSuccessor(0) == ExitBlock);
+ ExitBr->getSuccessor(0) == ExitBlock);
}
static ConstantInt *
@@ -1686,7 +1676,8 @@
/// 'setcc load X, cst', try to se if we can compute the trip count.
SCEVHandle ScalarEvolutionsImpl::
ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
- const Loop *L, unsigned SetCCOpcode) {
+ const Loop *L,
+ ICmpInst::Predicate predicate) {
if (LI->isVolatile()) return UnknownValue;
// Check to see if the loaded pointer is a getelementptr of a global.
@@ -1742,7 +1733,7 @@
if (Result == 0) break; // Cannot compute!
// Evaluate the condition for this iteration.
- Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
+ Result = ConstantExpr::getICmp(predicate, Result, RHS);
if (!isa<ConstantBool>(Result)) break; // Couldn't decide for sure
if (cast<ConstantBool>(Result)->getValue() == false) {
#if 0
@@ -1761,7 +1752,7 @@
/// CanConstantFold - Return true if we can constant fold an instruction of the
/// specified type, assuming that all operands were constants.
static bool CanConstantFold(const Instruction *I) {
- if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
+ if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CmpInst>(I) ||
isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
return true;
@@ -1790,11 +1781,18 @@
return ConstantFoldCall(cast<Function>(GV), Operands);
}
return 0;
- case Instruction::GetElementPtr:
+ case Instruction::GetElementPtr: {
Constant *Base = Operands[0];
Operands.erase(Operands.begin());
return ConstantExpr::getGetElementPtr(Base, Operands);
}
+ case Instruction::ICmp:
+ return ConstantExpr::getICmp(
+ cast<ICmpInst>(I)->getPredicate(), Operands[0], Operands[1]);
+ case Instruction::FCmp:
+ return ConstantExpr::getFCmp(
+ cast<FCmpInst>(I)->getPredicate(), Operands[0], Operands[1]);
+ }
return 0;
}
@@ -2226,8 +2224,8 @@
// Pick the smallest positive root value.
assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
if (ConstantBool *CB =
- dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
- R2->getValue()))) {
+ dyn_cast<ConstantBool>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
+ R1->getValue(), R2->getValue()))) {
if (CB->getValue() == false)
std::swap(R1, R2); // R1 is the minimum root now.
@@ -2257,7 +2255,8 @@
// already. If so, the backedge will execute zero times.
if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Constant *Zero = Constant::getNullValue(C->getValue()->getType());
- Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
+ Constant *NonZero =
+ ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
if (NonZero == ConstantBool::getTrue())
return getSCEV(Zero);
return UnknownValue; // Otherwise it will loop infinitely.
@@ -2318,40 +2317,46 @@
// Now that we found a conditional branch that dominates the loop, check to
// see if it is the comparison we are looking for.
- SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
- if (!SCI) return UnknownValue;
- Value *PreCondLHS = SCI->getOperand(0);
- Value *PreCondRHS = SCI->getOperand(1);
- Instruction::BinaryOps Cond;
- if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
- Cond = SCI->getOpcode();
- else
- Cond = SCI->getInverseCondition();
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
+ Value *PreCondLHS = ICI->getOperand(0);
+ Value *PreCondRHS = ICI->getOperand(1);
+ ICmpInst::Predicate Cond;
+ if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
+ Cond = ICI->getPredicate();
+ else
+ Cond = ICI->getInversePredicate();
- switch (Cond) {
- case Instruction::SetGT:
- std::swap(PreCondLHS, PreCondRHS);
- Cond = Instruction::SetLT;
- // Fall Through.
- case Instruction::SetLT:
- if (PreCondLHS->getType()->isInteger() &&
- PreCondLHS->getType()->isSigned()) {
- if (RHS != getSCEV(PreCondRHS))
- return UnknownValue; // Not a comparison against 'm'.
-
- if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
- != getSCEV(PreCondLHS))
- return UnknownValue; // Not a comparison against 'n-1'.
+ switch (Cond) {
+ case ICmpInst::ICMP_UGT:
+ std::swap(PreCondLHS, PreCondRHS);
+ Cond = ICmpInst::ICMP_ULT;
break;
- } else {
- return UnknownValue;
+ case ICmpInst::ICMP_SGT:
+ std::swap(PreCondLHS, PreCondRHS);
+ Cond = ICmpInst::ICMP_SLT;
+ break;
+ default: break;
}
- default: break;
- }
- //cerr << "Computed Loop Trip Count as: "
- // << *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
- return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
+ if (Cond == ICmpInst::ICMP_SLT) {
+ if (PreCondLHS->getType()->isInteger()) {
+ if (RHS != getSCEV(PreCondRHS))
+ return UnknownValue; // Not a comparison against 'm'.
+
+ if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
+ != getSCEV(PreCondLHS))
+ return UnknownValue; // Not a comparison against 'n-1'.
+ }
+ else return UnknownValue;
+ } else if (Cond == ICmpInst::ICMP_ULT)
+ return UnknownValue;
+
+ // cerr << "Computed Loop Trip Count as: "
+ // << // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
+ return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
+ }
+ else
+ return UnknownValue;
}
return UnknownValue;
@@ -2362,7 +2367,8 @@
/// this is that it returns the first iteration number where the value is not in
/// the condition, thus computing the exit count. If the iteration count can't
/// be computed, an instance of SCEVCouldNotCompute is returned.
-SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
+SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
+ bool isSigned) const {
if (Range.isFullSet()) // Infinite loop.
return new SCEVCouldNotCompute();
@@ -2374,7 +2380,7 @@
SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
return ShiftedAddRec->getNumIterationsInRange(
- Range.subtract(SC->getValue()));
+ Range.subtract(SC->getValue()),isSigned);
// This is strange and shouldn't happen.
return new SCEVCouldNotCompute();
}
@@ -2392,7 +2398,7 @@
// First check to see if the range contains zero. If not, the first
// iteration exits.
ConstantInt *Zero = ConstantInt::get(getType(), 0);
- if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
+ if (!Range.contains(Zero, isSigned)) return SCEVConstant::get(Zero);
if (isAffine()) {
// If this is an affine expression then we have this situation:
@@ -2418,12 +2424,12 @@
// range, then we computed our trip count, otherwise wrap around or other
// things must have happened.
ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
- if (Range.contains(Val))
+ if (Range.contains(Val, isSigned))
return new SCEVCouldNotCompute(); // Something strange happened
// Ensure that the previous value is in the range. This is a sanity check.
assert(Range.contains(EvaluateConstantChrecAtConstant(this,
- ConstantExpr::getSub(ExitValue, One))) &&
+ ConstantExpr::getSub(ExitValue, One)), isSigned) &&
"Linear scev computation is off in a bad way!");
return SCEVConstant::get(cast<ConstantInt>(ExitValue));
} else if (isQuadratic()) {
@@ -2444,8 +2450,8 @@
// Pick the smallest positive root value.
assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
if (ConstantBool *CB =
- dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
- R2->getValue()))) {
+ dyn_cast<ConstantBool>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
+ R1->getValue(), R2->getValue()))) {
if (CB->getValue() == false)
std::swap(R1, R2); // R1 is the minimum root now.
@@ -2454,14 +2460,14 @@
// for "X*X < 5", for example, we should not return a root of 2.
ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
R1->getValue());
- if (Range.contains(R1Val)) {
+ if (Range.contains(R1Val, isSigned)) {
// The next iteration must be out of the range...
Constant *NextVal =
ConstantExpr::getAdd(R1->getValue(),
ConstantInt::get(R1->getType(), 1));
R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
- if (!Range.contains(R1Val))
+ if (!Range.contains(R1Val, isSigned))
return SCEVUnknown::get(NextVal);
return new SCEVCouldNotCompute(); // Something strange happened
}
@@ -2472,7 +2478,7 @@
ConstantExpr::getSub(R1->getValue(),
ConstantInt::get(R1->getType(), 1));
R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
- if (Range.contains(R1Val))
+ if (Range.contains(R1Val, isSigned))
return R1;
return new SCEVCouldNotCompute(); // Something strange happened
}
@@ -2494,7 +2500,7 @@
return new SCEVCouldNotCompute();
// Check to see if we found the value!
- if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
+ if (!Range.contains(cast<SCEVConstant>(Val)->getValue(), isSigned))
return SCEVConstant::get(TestVal);
// Increment to test the next index.
Index: llvm/lib/Analysis/ValueNumbering.cpp
diff -u llvm/lib/Analysis/ValueNumbering.cpp:1.23 llvm/lib/Analysis/ValueNumbering.cpp:1.24
--- llvm/lib/Analysis/ValueNumbering.cpp:1.23 Sun Nov 26 19:05:09 2006
+++ llvm/lib/Analysis/ValueNumbering.cpp Sat Dec 23 00:05:40 2006
@@ -161,6 +161,11 @@
I1.getParent()->getParent() != I2->getParent()->getParent())
return false;
+ // If they are CmpInst instructions, check their predicates
+ if (CmpInst *CI1 = dyn_cast<CmpInst>(&const_cast<Instruction&>(I1)))
+ if (CI1->getPredicate() != cast<CmpInst>(I2)->getPredicate())
+ return false;
+
// They are identical if both operands are the same!
if (I1.getOperand(0) == I2->getOperand(0) &&
I1.getOperand(1) == I2->getOperand(1))
More information about the llvm-commits
mailing list