[llvm-commits] CVS: llvm/lib/Analysis/BasicAliasAnalysis.cpp ConstantRange.cpp LoopInfo.cpp ScalarEvolution.cpp ValueNumbering.cpp

Reid Spencer reid at x10sys.com
Fri Dec 22 22:07:00 PST 2006



Changes in directory llvm/lib/Analysis:

BasicAliasAnalysis.cpp updated: 1.94 -> 1.95
ConstantRange.cpp updated: 1.22 -> 1.23
LoopInfo.cpp updated: 1.81 -> 1.82
ScalarEvolution.cpp updated: 1.76 -> 1.77
ValueNumbering.cpp updated: 1.23 -> 1.24
---
Log message:

For PR950: http://llvm.org/PR950 :
This patch removes the SetCC instructions and replaces them with the ICmp
and FCmp instructions. The SetCondInst instruction has been removed and 
been replaced with ICmpInst and FCmpInst.


---
Diffs of the changes:  (+221 -202)

 BasicAliasAnalysis.cpp |    3 
 ConstantRange.cpp      |  199 +++++++++++++++++++++++++------------------------
 LoopInfo.cpp           |   18 ++--
 ScalarEvolution.cpp    |  198 +++++++++++++++++++++++++-----------------------
 ValueNumbering.cpp     |    5 +
 5 files changed, 221 insertions(+), 202 deletions(-)


Index: llvm/lib/Analysis/BasicAliasAnalysis.cpp
diff -u llvm/lib/Analysis/BasicAliasAnalysis.cpp:1.94 llvm/lib/Analysis/BasicAliasAnalysis.cpp:1.95
--- llvm/lib/Analysis/BasicAliasAnalysis.cpp:1.94	Tue Dec 12 17:36:14 2006
+++ llvm/lib/Analysis/BasicAliasAnalysis.cpp	Sat Dec 23 00:05:40 2006
@@ -590,7 +590,8 @@
             // Make sure they are comparable (ie, not constant expressions), and
             // make sure the GEP with the smaller leading constant is GEP1.
             if (G1OC) {
-              Constant *Compare = ConstantExpr::getSetGT(G1OC, G2OC);
+              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT, 
+                                                        G1OC, G2OC);
               if (ConstantBool *CV = dyn_cast<ConstantBool>(Compare)) {
                 if (CV->getValue())   // If they are comparable and G2 > G1
                   std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2


Index: llvm/lib/Analysis/ConstantRange.cpp
diff -u llvm/lib/Analysis/ConstantRange.cpp:1.22 llvm/lib/Analysis/ConstantRange.cpp:1.23
--- llvm/lib/Analysis/ConstantRange.cpp:1.22	Tue Dec 12 17:36:14 2006
+++ llvm/lib/Analysis/ConstantRange.cpp	Sat Dec 23 00:05:40 2006
@@ -24,56 +24,43 @@
 #include "llvm/Support/ConstantRange.h"
 #include "llvm/Constants.h"
 #include "llvm/Instruction.h"
+#include "llvm/Instructions.h"
 #include "llvm/Type.h"
 #include "llvm/Support/Streams.h"
 #include <ostream>
 using namespace llvm;
 
-static ConstantIntegral *getMaxValue(const Type *Ty) {
-  switch (Ty->getTypeID()) {
-  case Type::BoolTyID:   return ConstantBool::getTrue();
-  case Type::SByteTyID:
-  case Type::ShortTyID:
-  case Type::IntTyID:
-  case Type::LongTyID: {
-    // Calculate 011111111111111...
-    unsigned TypeBits = Ty->getPrimitiveSize()*8;
-    int64_t Val = INT64_MAX;             // All ones
-    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
-    return ConstantInt::get(Ty, Val);
-  }
-
-  case Type::UByteTyID:
-  case Type::UShortTyID:
-  case Type::UIntTyID:
-  case Type::ULongTyID:  return ConstantInt::getAllOnesValue(Ty);
-
-  default: return 0;
+static ConstantIntegral *getMaxValue(const Type *Ty, bool isSigned = false) {
+  if (Ty == Type::BoolTy)
+    return ConstantBool::getTrue();
+  if (Ty->isInteger()) {
+    if (isSigned) {
+      // Calculate 011111111111111...
+      unsigned TypeBits = Ty->getPrimitiveSize()*8;
+      int64_t Val = INT64_MAX;             // All ones
+      Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
+      return ConstantInt::get(Ty, Val);
+    }
+    return ConstantInt::getAllOnesValue(Ty);
   }
+  return 0;
 }
 
 // Static constructor to create the minimum constant for an integral type...
-static ConstantIntegral *getMinValue(const Type *Ty) {
-  switch (Ty->getTypeID()) {
-  case Type::BoolTyID:   return ConstantBool::getFalse();
-  case Type::SByteTyID:
-  case Type::ShortTyID:
-  case Type::IntTyID:
-  case Type::LongTyID: {
-     // Calculate 1111111111000000000000
-     unsigned TypeBits = Ty->getPrimitiveSize()*8;
-     int64_t Val = -1;                    // All ones
-     Val <<= TypeBits-1;                  // Shift over to the right spot
-     return ConstantInt::get(Ty, Val);
-  }
-
-  case Type::UByteTyID:
-  case Type::UShortTyID:
-  case Type::UIntTyID:
-  case Type::ULongTyID:  return ConstantInt::get(Ty, 0);
-
-  default: return 0;
+static ConstantIntegral *getMinValue(const Type *Ty, bool isSigned = false) {
+  if (Ty == Type::BoolTy)
+    return ConstantBool::getFalse();
+  if (Ty->isInteger()) {
+    if (isSigned) {
+      // Calculate 1111111111000000000000
+      unsigned TypeBits = Ty->getPrimitiveSize()*8;
+      int64_t Val = -1;                    // All ones
+      Val <<= TypeBits-1;                  // Shift over to the right spot
+      return ConstantInt::get(Ty, Val);
+    }
+    return ConstantInt::get(Ty, 0);
   }
+  return 0;
 }
 static ConstantIntegral *Next(ConstantIntegral *CI) {
   if (ConstantBool *CB = dyn_cast<ConstantBool>(CI))
@@ -84,25 +71,30 @@
   return cast<ConstantIntegral>(Result);
 }
 
-static bool LT(ConstantIntegral *A, ConstantIntegral *B) {
-  Constant *C = ConstantExpr::getSetLT(A, B);
+static bool LT(ConstantIntegral *A, ConstantIntegral *B, bool isSigned) {
+  Constant *C = ConstantExpr::getICmp(
+    (isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT), A, B);
   assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
   return cast<ConstantBool>(C)->getValue();
 }
 
-static bool LTE(ConstantIntegral *A, ConstantIntegral *B) {
-  Constant *C = ConstantExpr::getSetLE(A, B);
+static bool LTE(ConstantIntegral *A, ConstantIntegral *B, bool isSigned) {
+  Constant *C = ConstantExpr::getICmp(
+    (isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE), A, B);
   assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
   return cast<ConstantBool>(C)->getValue();
 }
 
-static bool GT(ConstantIntegral *A, ConstantIntegral *B) { return LT(B, A); }
+static bool GT(ConstantIntegral *A, ConstantIntegral *B, bool isSigned) { 
+  return LT(B, A, isSigned); }
 
-static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) {
-  return LT(A, B) ? A : B;
-}
-static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) {
-  return GT(A, B) ? A : B;
+static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B, 
+                             bool isSigned) {
+  return LT(A, B, isSigned) ? A : B;
+}
+static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B,
+                             bool isSigned) {
+  return GT(A, B, isSigned) ? A : B;
 }
 
 /// Initialize a full (the default) or empty set for the specified type.
@@ -118,47 +110,62 @@
 
 /// Initialize a range to hold the single specified value.
 ///
-ConstantRange::ConstantRange(Constant *V)
-  : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) {
-}
+ConstantRange::ConstantRange(Constant *V) 
+  : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) { }
 
 /// Initialize a range of values explicitly... this will assert out if
 /// Lower==Upper and Lower != Min or Max for its type (or if the two constants
 /// have different types)
 ///
-ConstantRange::ConstantRange(Constant *L, Constant *U)
+ConstantRange::ConstantRange(Constant *L, Constant *U) 
   : Lower(cast<ConstantIntegral>(L)), Upper(cast<ConstantIntegral>(U)) {
   assert(Lower->getType() == Upper->getType() &&
          "Incompatible types for ConstantRange!");
 
   // Make sure that if L & U are equal that they are either Min or Max...
   assert((L != U || (L == getMaxValue(L->getType()) ||
-                     L == getMinValue(L->getType()))) &&
-         "Lower == Upper, but they aren't min or max for type!");
+                     L == getMinValue(L->getType())))
+          && "Lower == Upper, but they aren't min or max for type!");
 }
 
 /// Initialize a set of values that all satisfy the condition with C.
 ///
-ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) {
-  switch (SetCCOpcode) {
-  default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!");
-  case Instruction::SetEQ: Lower = C; Upper = Next(C); return;
-  case Instruction::SetNE: Upper = C; Lower = Next(C); return;
-  case Instruction::SetLT:
+ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantIntegral *C) {
+  switch (ICmpOpcode) {
+  default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
+  case ICmpInst::ICMP_EQ: Lower = C; Upper = Next(C); return;
+  case ICmpInst::ICMP_NE: Upper = C; Lower = Next(C); return;
+  case ICmpInst::ICMP_ULT:
     Lower = getMinValue(C->getType());
     Upper = C;
     return;
-  case Instruction::SetGT:
+  case ICmpInst::ICMP_SLT:
+    Lower = getMinValue(C->getType(), true);
+    Upper = C;
+    return;
+  case ICmpInst::ICMP_UGT:
+    Lower = Next(C);
+    Upper = getMinValue(C->getType());        // Min = Next(Max)
+    return;
+  case ICmpInst::ICMP_SGT:
     Lower = Next(C);
-    Upper = getMinValue(C->getType());  // Min = Next(Max)
+    Upper = getMinValue(C->getType(), true);  // Min = Next(Max)
     return;
-  case Instruction::SetLE:
+  case ICmpInst::ICMP_ULE:
     Lower = getMinValue(C->getType());
     Upper = Next(C);
     return;
-  case Instruction::SetGE:
+  case ICmpInst::ICMP_SLE:
+    Lower = getMinValue(C->getType(), true);
+    Upper = Next(C);
+    return;
+  case ICmpInst::ICMP_UGE:
+    Lower = C;
+    Upper = getMinValue(C->getType());        // Min = Next(Max)
+    return;
+  case ICmpInst::ICMP_SGE:
     Lower = C;
-    Upper = getMinValue(C->getType());  // Min = Next(Max)
+    Upper = getMinValue(C->getType(), true);  // Min = Next(Max)
     return;
   }
 }
@@ -182,11 +189,10 @@
 /// isWrappedSet - Return true if this set wraps around the top of the range,
 /// for example: [100, 8)
 ///
-bool ConstantRange::isWrappedSet() const {
-  return GT(Lower, Upper);
+bool ConstantRange::isWrappedSet(bool isSigned) const {
+  return GT(Lower, Upper, isSigned);
 }
 
-
 /// getSingleElement - If this set contains a single element, return it,
 /// otherwise return null.
 ConstantIntegral *ConstantRange::getSingleElement() const {
@@ -212,19 +218,17 @@
 
 /// contains - Return true if the specified value is in the set.
 ///
-bool ConstantRange::contains(ConstantInt *Val) const {
+bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const {
   if (Lower == Upper) {
     if (isFullSet()) return true;
     return false;
   }
 
-  if (!isWrappedSet())
-    return LTE(Lower, Val) && LT(Val, Upper);
-  return LTE(Lower, Val) || LT(Val, Upper);
+  if (!isWrappedSet(isSigned))
+    return LTE(Lower, Val, isSigned) && LT(Val, Upper, isSigned);
+  return LTE(Lower, Val, isSigned) || LT(Val, Upper, isSigned);
 }
 
-
-
 /// subtract - Subtract the specified constant from the endpoints of this
 /// constant range.
 ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
@@ -241,15 +245,16 @@
 // it is known that LHS is wrapped and RHS isn't.
 //
 static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
-                                       const ConstantRange &RHS) {
-  assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
+                                       const ConstantRange &RHS,
+                                       bool isSigned) {
+  assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
 
   // Check to see if we overlap on the Left side of RHS...
   //
-  if (LT(RHS.getLower(), LHS.getUpper())) {
+  if (LT(RHS.getLower(), LHS.getUpper(), isSigned)) {
     // We do overlap on the left side of RHS, see if we overlap on the right of
     // RHS...
-    if (GT(RHS.getUpper(), LHS.getLower())) {
+    if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
       // Ok, the result overlaps on both the left and right sides.  See if the
       // resultant interval will be smaller if we wrap or not...
       //
@@ -262,11 +267,10 @@
       // No overlap on the right, just on the left.
       return ConstantRange(RHS.getLower(), LHS.getUpper());
     }
-
   } else {
     // We don't overlap on the left side of RHS, see if we overlap on the right
     // of RHS...
-    if (GT(RHS.getUpper(), LHS.getLower())) {
+    if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
       // Simple overlap...
       return ConstantRange(LHS.getLower(), RHS.getUpper());
     } else {
@@ -279,30 +283,31 @@
 /// intersect - Return the range that results from the intersection of this
 /// range with another range.
 ///
-ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
+ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
+                                           bool isSigned) const {
   assert(getType() == CR.getType() && "ConstantRange types don't agree!");
   // Handle common special cases
   if (isEmptySet() || CR.isFullSet())  return *this;
   if (isFullSet()  || CR.isEmptySet()) return CR;
 
-  if (!isWrappedSet()) {
-    if (!CR.isWrappedSet()) {
-      ConstantIntegral *L = Max(Lower, CR.Lower);
-      ConstantIntegral *U = Min(Upper, CR.Upper);
+  if (!isWrappedSet(isSigned)) {
+    if (!CR.isWrappedSet(isSigned)) {
+      ConstantIntegral *L = Max(Lower, CR.Lower, isSigned);
+      ConstantIntegral *U = Min(Upper, CR.Upper, isSigned);
 
-      if (LT(L, U))  // If range isn't empty...
+      if (LT(L, U, isSigned))  // If range isn't empty...
         return ConstantRange(L, U);
       else
         return ConstantRange(getType(), false);  // Otherwise, return empty set
     } else
-      return intersect1Wrapped(CR, *this);
+      return intersect1Wrapped(CR, *this, isSigned);
   } else {   // We know "this" is wrapped...
-    if (!CR.isWrappedSet())
-      return intersect1Wrapped(*this, CR);
+    if (!CR.isWrappedSet(isSigned))
+      return intersect1Wrapped(*this, CR, isSigned);
     else {
       // Both ranges are wrapped...
-      ConstantIntegral *L = Max(Lower, CR.Lower);
-      ConstantIntegral *U = Min(Upper, CR.Upper);
+      ConstantIntegral *L = Max(Lower, CR.Lower, isSigned);
+      ConstantIntegral *U = Min(Upper, CR.Upper, isSigned);
       return ConstantRange(L, U);
     }
   }
@@ -315,7 +320,8 @@
 /// 15), which includes 9, 10, and 11, which were not included in either set
 /// before.
 ///
-ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
+ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
+                                       bool isSigned) const {
   assert(getType() == CR.getType() && "ConstantRange types don't agree!");
 
   assert(0 && "Range union not implemented yet!");
@@ -325,7 +331,7 @@
 
 /// zeroExtend - Return a new range in the specified integer type, which must
 /// be strictly larger than the current type.  The returned range will
-/// correspond to the possible range of values if the source range had been
+/// correspond to the possible range of values as if the source range had been
 /// zero extended.
 ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
   assert(getLower()->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
@@ -346,7 +352,7 @@
 
 /// truncate - Return a new range in the specified integer type, which must be
 /// strictly smaller than the current type.  The returned range will
-/// correspond to the possible range of values if the source range had been
+/// correspond to the possible range of values as if the source range had been
 /// truncated to the specified type.
 ConstantRange ConstantRange::truncate(const Type *Ty) const {
   assert(getLower()->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
@@ -360,7 +366,6 @@
       ConstantExpr::getTrunc(getUpper(), Ty));
 }
 
-
 /// print - Print out the bounds to a stream...
 ///
 void ConstantRange::print(std::ostream &OS) const {


Index: llvm/lib/Analysis/LoopInfo.cpp
diff -u llvm/lib/Analysis/LoopInfo.cpp:1.81 llvm/lib/Analysis/LoopInfo.cpp:1.82
--- llvm/lib/Analysis/LoopInfo.cpp:1.81	Wed Dec  6 19:30:31 2006
+++ llvm/lib/Analysis/LoopInfo.cpp	Sat Dec 23 00:05:40 2006
@@ -536,7 +536,7 @@
 /// returns null.
 ///
 Value *Loop::getTripCount() const {
-  // Canonical loops will end with a 'setne I, V', where I is the incremented
+  // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
   // canonical induction variable and V is the trip count of the loop.
   Instruction *Inc = getCanonicalInductionVariableIncrement();
   if (Inc == 0) return 0;
@@ -546,15 +546,17 @@
     IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
 
   if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
-    if (BI->isConditional())
-      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
-        if (SCI->getOperand(0) == Inc)
+    if (BI->isConditional()) {
+      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+        if (ICI->getOperand(0) == Inc)
           if (BI->getSuccessor(0) == getHeader()) {
-            if (SCI->getOpcode() == Instruction::SetNE)
-              return SCI->getOperand(1);
-          } else if (SCI->getOpcode() == Instruction::SetEQ) {
-            return SCI->getOperand(1);
+            if (ICI->getPredicate() == ICmpInst::ICMP_NE)
+              return ICI->getOperand(1);
+          } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
+            return ICI->getOperand(1);
           }
+      }
+    }
 
   return 0;
 }


Index: llvm/lib/Analysis/ScalarEvolution.cpp
diff -u llvm/lib/Analysis/ScalarEvolution.cpp:1.76 llvm/lib/Analysis/ScalarEvolution.cpp:1.77
--- llvm/lib/Analysis/ScalarEvolution.cpp:1.76	Thu Dec 21 12:59:16 2006
+++ llvm/lib/Analysis/ScalarEvolution.cpp	Sat Dec 23 00:05:40 2006
@@ -177,8 +177,7 @@
   // are signless. There won't be a need to bitcast then.
   if (V->getType()->isSigned()) {
     const Type *NewTy = V->getType()->getUnsignedVersion();
-    V = cast<ConstantInt>(
-        ConstantExpr::getBitCast(V, NewTy));
+    V = cast<ConstantInt>(ConstantExpr::getBitCast(V, NewTy));
   }
 
   SCEVConstant *&R = (*SCEVConstants)[V];
@@ -461,15 +460,8 @@
     C = Constant::getNullValue(Ty);
   else if (Ty->isFloatingPoint())
     C = ConstantFP::get(Ty, Val);
-  /// FIXME:Signless. when integer types are signless, just change this to:
-  /// else
-  ///   C = ConstantInt::get(Ty, Val);
-  else if (Ty->isSigned())        
+  else 
     C = ConstantInt::get(Ty, Val);
-  else {
-    C = ConstantInt::get(Ty->getSignedVersion(), Val);
-    C = ConstantExpr::getBitCast(C, Ty);
-  }
   return SCEVUnknown::get(C);
 }
 
@@ -514,8 +506,7 @@
     for (; NumSteps; --NumSteps)
       Result *= Val-(NumSteps-1);
     Constant *Res = ConstantInt::get(Type::ULongTy, Result);
-    return SCEVUnknown::get(
-        ConstantExpr::getTruncOrBitCast(Res, V->getType()));
+    return SCEVUnknown::get(ConstantExpr::getTruncOrBitCast(Res, V->getType()));
   }
 
   const Type *Ty = V->getType();
@@ -1162,7 +1153,7 @@
     SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
                                                         Constant *RHS,
                                                         const Loop *L,
-                                                        unsigned SetCCOpcode);
+                                                        ICmpInst::Predicate p);
 
     /// ComputeIterationCountExhaustively - If the trip is known to execute a
     /// constant number of times (the condition evolves only from constants),
@@ -1521,17 +1512,21 @@
   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   if (ExitBr == 0) return UnknownValue;
   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
-  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
-  if (ExitCond == 0)  // Not a setcc
+  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
+
+  // If its not an integer comparison then compute it the hard way. 
+  // Note that ICmpInst deals with pointer comparisons too so we must check
+  // the type of the operand.
+  if (ExitCond == 0 || !ExitCond->getOperand(0)->getType()->isIntegral()) 
     return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
                                           ExitBr->getSuccessor(0) == ExitBlock);
 
-  // If the condition was exit on true, convert the condition to exit on false.
-  Instruction::BinaryOps Cond;
+  // If the condition was exit on true, convert the condition to exit on false
+  ICmpInst::Predicate Cond;
   if (ExitBr->getSuccessor(1) == ExitBlock)
-    Cond = ExitCond->getOpcode();
+    Cond = ExitCond->getPredicate();
   else
-    Cond = ExitCond->getInverseCondition();
+    Cond = ExitCond->getInversePredicate();
 
   // Handle common loops like: for (X = "string"; *X; ++X)
   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
@@ -1550,12 +1545,12 @@
   Tmp = getSCEVAtScope(RHS, L);
   if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
 
-  // At this point, we would like to compute how many iterations of the loop the
-  // predicate will return true for these inputs.
+  // At this point, we would like to compute how many iterations of the 
+  // loop the predicate will return true for these inputs.
   if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
     // If there is a constant, force it into the RHS.
     std::swap(LHS, RHS);
-    Cond = SetCondInst::getSwappedCondition(Cond);
+    Cond = ICmpInst::getSwappedPredicate(Cond);
   }
 
   // FIXME: think about handling pointer comparisons!  i.e.:
@@ -1590,53 +1585,48 @@
             CompRange = ConstantRange(NewL, NewU);
           }
 
-          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
+          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, 
+              ICmpInst::isSignedPredicate(Cond));
           if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
         }
       }
 
   switch (Cond) {
-  case Instruction::SetNE:                     // while (X != Y)
+  case ICmpInst::ICMP_NE: {                     // while (X != Y)
     // Convert to: while (X-Y != 0)
-    if (LHS->getType()->isInteger()) {
-      SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
-      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
-    }
+    SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
     break;
-  case Instruction::SetEQ:
+  }
+  case ICmpInst::ICMP_EQ: {
     // Convert to: while (X-Y == 0)           // while (X == Y)
-    if (LHS->getType()->isInteger()) {
-      SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
-      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
-    }
+    SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
     break;
-  case Instruction::SetLT:
-    if (LHS->getType()->isInteger() && 
-        ExitCond->getOperand(0)->getType()->isSigned()) {
-      SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
-      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
-    }
+  }
+  case ICmpInst::ICMP_SLT: {
+    SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
     break;
-  case Instruction::SetGT:
-    if (LHS->getType()->isInteger() &&
-        ExitCond->getOperand(0)->getType()->isSigned()) {
-      SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
-      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
-    }
+  }
+  case ICmpInst::ICMP_SGT: {
+    SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
+    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
     break;
+  }
   default:
 #if 0
     cerr << "ComputeIterationCount ";
     if (ExitCond->getOperand(0)->getType()->isUnsigned())
       cerr << "[unsigned] ";
     cerr << *LHS << "   "
-         << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
+         << Instruction::getOpcodeName(Instruction::ICmp) 
+         << "   " << *RHS << "\n";
 #endif
     break;
   }
-
   return ComputeIterationCountExhaustively(L, ExitCond,
-                                         ExitBr->getSuccessor(0) == ExitBlock);
+                                       ExitBr->getSuccessor(0) == ExitBlock);
 }
 
 static ConstantInt *
@@ -1686,7 +1676,8 @@
 /// 'setcc load X, cst', try to se if we can compute the trip count.
 SCEVHandle ScalarEvolutionsImpl::
 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
-                                         const Loop *L, unsigned SetCCOpcode) {
+                                         const Loop *L, 
+                                         ICmpInst::Predicate predicate) {
   if (LI->isVolatile()) return UnknownValue;
 
   // Check to see if the loaded pointer is a getelementptr of a global.
@@ -1742,7 +1733,7 @@
     if (Result == 0) break;  // Cannot compute!
 
     // Evaluate the condition for this iteration.
-    Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
+    Result = ConstantExpr::getICmp(predicate, Result, RHS);
     if (!isa<ConstantBool>(Result)) break;  // Couldn't decide for sure
     if (cast<ConstantBool>(Result)->getValue() == false) {
 #if 0
@@ -1761,7 +1752,7 @@
 /// CanConstantFold - Return true if we can constant fold an instruction of the
 /// specified type, assuming that all operands were constants.
 static bool CanConstantFold(const Instruction *I) {
-  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
+  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CmpInst>(I) ||
       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
     return true;
 
@@ -1790,11 +1781,18 @@
       return ConstantFoldCall(cast<Function>(GV), Operands);
     }
     return 0;
-  case Instruction::GetElementPtr:
+  case Instruction::GetElementPtr: {
     Constant *Base = Operands[0];
     Operands.erase(Operands.begin());
     return ConstantExpr::getGetElementPtr(Base, Operands);
   }
+  case Instruction::ICmp:
+    return ConstantExpr::getICmp(
+        cast<ICmpInst>(I)->getPredicate(), Operands[0], Operands[1]);
+  case Instruction::FCmp:
+    return ConstantExpr::getFCmp(
+        cast<FCmpInst>(I)->getPredicate(), Operands[0], Operands[1]);
+  }
   return 0;
 }
 
@@ -2226,8 +2224,8 @@
       // Pick the smallest positive root value.
       assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
       if (ConstantBool *CB =
-          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
-                                                        R2->getValue()))) {
+          dyn_cast<ConstantBool>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 
+                                   R1->getValue(), R2->getValue()))) {
         if (CB->getValue() == false)
           std::swap(R1, R2);   // R1 is the minimum root now.
 
@@ -2257,7 +2255,8 @@
   // already.  If so, the backedge will execute zero times.
   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
     Constant *Zero = Constant::getNullValue(C->getValue()->getType());
-    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
+    Constant *NonZero = 
+      ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
     if (NonZero == ConstantBool::getTrue())
       return getSCEV(Zero);
     return UnknownValue;  // Otherwise it will loop infinitely.
@@ -2318,40 +2317,46 @@
 
     // Now that we found a conditional branch that dominates the loop, check to
     // see if it is the comparison we are looking for.
-    SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
-    if (!SCI) return UnknownValue;
-    Value *PreCondLHS = SCI->getOperand(0);
-    Value *PreCondRHS = SCI->getOperand(1);
-    Instruction::BinaryOps Cond;
-    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
-      Cond = SCI->getOpcode();
-    else
-      Cond = SCI->getInverseCondition();
+    if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
+      Value *PreCondLHS = ICI->getOperand(0);
+      Value *PreCondRHS = ICI->getOperand(1);
+      ICmpInst::Predicate Cond;
+      if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
+        Cond = ICI->getPredicate();
+      else
+        Cond = ICI->getInversePredicate();
     
-    switch (Cond) {
-    case Instruction::SetGT:
-      std::swap(PreCondLHS, PreCondRHS);
-      Cond = Instruction::SetLT;
-      // Fall Through.
-    case Instruction::SetLT:
-      if (PreCondLHS->getType()->isInteger() &&
-          PreCondLHS->getType()->isSigned()) { 
-        if (RHS != getSCEV(PreCondRHS))
-          return UnknownValue;  // Not a comparison against 'm'.
-
-        if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
-                    != getSCEV(PreCondLHS))
-          return UnknownValue;  // Not a comparison against 'n-1'.
+      switch (Cond) {
+      case ICmpInst::ICMP_UGT:
+        std::swap(PreCondLHS, PreCondRHS);
+        Cond = ICmpInst::ICMP_ULT;
         break;
-      } else {
-        return UnknownValue;
+      case ICmpInst::ICMP_SGT:
+        std::swap(PreCondLHS, PreCondRHS);
+        Cond = ICmpInst::ICMP_SLT;
+        break;
+      default: break;
       }
-    default: break;
-    }
 
-    //cerr << "Computed Loop Trip Count as: "
-    //     << *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
-    return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
+      if (Cond == ICmpInst::ICMP_SLT) {
+        if (PreCondLHS->getType()->isInteger()) {
+          if (RHS != getSCEV(PreCondRHS))
+            return UnknownValue;  // Not a comparison against 'm'.
+
+          if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
+                      != getSCEV(PreCondLHS))
+            return UnknownValue;  // Not a comparison against 'n-1'.
+        }
+        else return UnknownValue;
+      } else if (Cond == ICmpInst::ICMP_ULT)
+        return UnknownValue;
+
+      // cerr << "Computed Loop Trip Count as: " 
+      //      << //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
+      return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
+    }
+    else 
+      return UnknownValue;
   }
 
   return UnknownValue;
@@ -2362,7 +2367,8 @@
 /// this is that it returns the first iteration number where the value is not in
 /// the condition, thus computing the exit count. If the iteration count can't
 /// be computed, an instance of SCEVCouldNotCompute is returned.
-SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
+SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 
+                                                   bool isSigned) const {
   if (Range.isFullSet())  // Infinite loop.
     return new SCEVCouldNotCompute();
 
@@ -2374,7 +2380,7 @@
       SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
       if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
         return ShiftedAddRec->getNumIterationsInRange(
-                                              Range.subtract(SC->getValue()));
+                                      Range.subtract(SC->getValue()),isSigned);
       // This is strange and shouldn't happen.
       return new SCEVCouldNotCompute();
     }
@@ -2392,7 +2398,7 @@
   // First check to see if the range contains zero.  If not, the first
   // iteration exits.
   ConstantInt *Zero = ConstantInt::get(getType(), 0);
-  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
+  if (!Range.contains(Zero, isSigned)) return SCEVConstant::get(Zero);
 
   if (isAffine()) {
     // If this is an affine expression then we have this situation:
@@ -2418,12 +2424,12 @@
     // range, then we computed our trip count, otherwise wrap around or other
     // things must have happened.
     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
-    if (Range.contains(Val))
+    if (Range.contains(Val, isSigned))
       return new SCEVCouldNotCompute();  // Something strange happened
 
     // Ensure that the previous value is in the range.  This is a sanity check.
     assert(Range.contains(EvaluateConstantChrecAtConstant(this,
-                              ConstantExpr::getSub(ExitValue, One))) &&
+                          ConstantExpr::getSub(ExitValue, One)), isSigned) &&
            "Linear scev computation is off in a bad way!");
     return SCEVConstant::get(cast<ConstantInt>(ExitValue));
   } else if (isQuadratic()) {
@@ -2444,8 +2450,8 @@
       // Pick the smallest positive root value.
       assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
       if (ConstantBool *CB =
-          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
-                                                        R2->getValue()))) {
+          dyn_cast<ConstantBool>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 
+                                   R1->getValue(), R2->getValue()))) {
         if (CB->getValue() == false)
           std::swap(R1, R2);   // R1 is the minimum root now.
 
@@ -2454,14 +2460,14 @@
         // for "X*X < 5", for example, we should not return a root of 2.
         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
                                                              R1->getValue());
-        if (Range.contains(R1Val)) {
+        if (Range.contains(R1Val, isSigned)) {
           // The next iteration must be out of the range...
           Constant *NextVal =
             ConstantExpr::getAdd(R1->getValue(),
                                  ConstantInt::get(R1->getType(), 1));
 
           R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
-          if (!Range.contains(R1Val))
+          if (!Range.contains(R1Val, isSigned))
             return SCEVUnknown::get(NextVal);
           return new SCEVCouldNotCompute();  // Something strange happened
         }
@@ -2472,7 +2478,7 @@
           ConstantExpr::getSub(R1->getValue(),
                                ConstantInt::get(R1->getType(), 1));
         R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
-        if (Range.contains(R1Val))
+        if (Range.contains(R1Val, isSigned))
           return R1;
         return new SCEVCouldNotCompute();  // Something strange happened
       }
@@ -2494,7 +2500,7 @@
       return new SCEVCouldNotCompute();
 
     // Check to see if we found the value!
-    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
+    if (!Range.contains(cast<SCEVConstant>(Val)->getValue(), isSigned))
       return SCEVConstant::get(TestVal);
 
     // Increment to test the next index.


Index: llvm/lib/Analysis/ValueNumbering.cpp
diff -u llvm/lib/Analysis/ValueNumbering.cpp:1.23 llvm/lib/Analysis/ValueNumbering.cpp:1.24
--- llvm/lib/Analysis/ValueNumbering.cpp:1.23	Sun Nov 26 19:05:09 2006
+++ llvm/lib/Analysis/ValueNumbering.cpp	Sat Dec 23 00:05:40 2006
@@ -161,6 +161,11 @@
       I1.getParent()->getParent() != I2->getParent()->getParent())
     return false;
 
+  // If they are CmpInst instructions, check their predicates
+  if (CmpInst *CI1 = dyn_cast<CmpInst>(&const_cast<Instruction&>(I1)))
+    if (CI1->getPredicate() != cast<CmpInst>(I2)->getPredicate())
+      return false;
+
   // They are identical if both operands are the same!
   if (I1.getOperand(0) == I2->getOperand(0) &&
       I1.getOperand(1) == I2->getOperand(1))






More information about the llvm-commits mailing list