[llvm-commits] CVS: llvm/lib/VMCore/AsmWriter.cpp AutoUpgrade.cpp ConstantFolding.cpp ConstantFolding.h Constants.cpp Function.cpp Instruction.cpp Instructions.cpp IntrinsicInst.cpp Type.cpp Verifier.cpp
Reid Spencer
reid at x10sys.com
Sun Nov 26 17:06:26 PST 2006
Changes in directory llvm/lib/VMCore:
AsmWriter.cpp updated: 1.212 -> 1.213
AutoUpgrade.cpp updated: 1.20 -> 1.21
ConstantFolding.cpp updated: 1.99 -> 1.100
ConstantFolding.h updated: 1.48 -> 1.49
Constants.cpp updated: 1.171 -> 1.172
Function.cpp updated: 1.106 -> 1.107
Instruction.cpp updated: 1.58 -> 1.59
Instructions.cpp updated: 1.47 -> 1.48
IntrinsicInst.cpp updated: 1.10 -> 1.11
Type.cpp updated: 1.150 -> 1.151
Verifier.cpp updated: 1.166 -> 1.167
---
Log message:
For PR950: http://llvm.org/PR950 :
The long awaited CAST patch. This introduces 12 new instructions into LLVM
to replace the cast instruction. Corresponding changes throughout LLVM are
provided. This passes llvm-test, llvm/test, and SPEC CPUINT2000 with the
exception of 175.vpr which fails only on a slight floating point output
difference.
---
Diffs of the changes: (+1190 -189)
AsmWriter.cpp | 3
AutoUpgrade.cpp | 8
ConstantFolding.cpp | 296 ++++++++++++++++---------
ConstantFolding.h | 6
Constants.cpp | 215 +++++++++++++++---
Function.cpp | 4
Instruction.cpp | 33 +-
Instructions.cpp | 601 ++++++++++++++++++++++++++++++++++++++++++++++++++--
IntrinsicInst.cpp | 2
Type.cpp | 36 +--
Verifier.cpp | 175 +++++++++++++++
11 files changed, 1190 insertions(+), 189 deletions(-)
Index: llvm/lib/VMCore/AsmWriter.cpp
diff -u llvm/lib/VMCore/AsmWriter.cpp:1.212 llvm/lib/VMCore/AsmWriter.cpp:1.213
--- llvm/lib/VMCore/AsmWriter.cpp:1.212 Thu Nov 2 14:25:50 2006
+++ llvm/lib/VMCore/AsmWriter.cpp Sun Nov 26 19:05:10 2006
@@ -541,10 +541,11 @@
Out << ", ";
}
- if (CE->getOpcode() == Instruction::Cast) {
+ if (CE->isCast()) {
Out << " to ";
printTypeInt(Out, CE->getType(), TypeTable);
}
+
Out << ')';
} else {
Index: llvm/lib/VMCore/AutoUpgrade.cpp
diff -u llvm/lib/VMCore/AutoUpgrade.cpp:1.20 llvm/lib/VMCore/AutoUpgrade.cpp:1.21
--- llvm/lib/VMCore/AutoUpgrade.cpp:1.20 Tue May 30 11:34:59 2006
+++ llvm/lib/VMCore/AutoUpgrade.cpp Sun Nov 26 19:05:10 2006
@@ -206,8 +206,8 @@
if (Constant *C = dyn_cast<Constant>(Arg)) {
return ConstantExpr::getCast(C, Ty);
} else {
- Value *Cast = new CastInst(Arg, Ty, "autoupgrade_cast", InsertBefore);
- return Cast;
+ return CastInst::createInferredCast(Arg, Ty, "autoupgrade_cast",
+ InsertBefore);
}
}
@@ -261,8 +261,8 @@
Instruction *RetVal = NewCI;
if (F->getReturnType() != NewFn->getReturnType()) {
- RetVal = new CastInst(NewCI, F->getReturnType(),
- NewCI->getName(), CI);
+ RetVal =
+ new BitCastInst(NewCI, F->getReturnType(), NewCI->getName(), CI);
NewCI->moveBefore(RetVal);
}
Index: llvm/lib/VMCore/ConstantFolding.cpp
diff -u llvm/lib/VMCore/ConstantFolding.cpp:1.99 llvm/lib/VMCore/ConstantFolding.cpp:1.100
--- llvm/lib/VMCore/ConstantFolding.cpp:1.99 Wed Nov 8 13:16:44 2006
+++ llvm/lib/VMCore/ConstantFolding.cpp Sun Nov 26 19:05:10 2006
@@ -507,7 +507,7 @@
// Casting operators. ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
static Constant *CastTo##TYPE (const ConstantInt *V) { \
- return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getZExtValue()); \
+ return CLASS::get(Type::TYPE##Ty, (CTYPE)((BuiltinType)V->getZExtValue()));\
}
DEF_CAST(Bool , ConstantBool, bool)
@@ -721,15 +721,6 @@
//===----------------------------------------------------------------------===//
// ConstantFold*Instruction Implementations
//===----------------------------------------------------------------------===//
-//
-// These methods contain the special case hackery required to symbolically
-// evaluate some constant expression cases, and use the ConstantRules class to
-// evaluate normal constants.
-//
-static unsigned getSize(const Type *Ty) {
- unsigned S = Ty->getPrimitiveSize();
- return S ? S : 8; // Treat pointers at 8 bytes
-}
/// CastConstantPacked - Convert the specified ConstantPacked node to the
/// specified packed type. At this point, we know that the elements of the
@@ -746,17 +737,20 @@
if (SrcNumElts == DstNumElts) {
std::vector<Constant*> Result;
- // If the src and dest elements are both integers, just cast each one
- // which will do the appropriate bit-convert.
- if (SrcEltTy->isIntegral() && DstEltTy->isIntegral()) {
+ // If the src and dest elements are both integers, or both floats, we can
+ // just BitCast each element because the elements are the same size.
+ if ((SrcEltTy->isIntegral() && DstEltTy->isIntegral()) ||
+ (SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
for (unsigned i = 0; i != SrcNumElts; ++i)
- Result.push_back(ConstantExpr::getCast(CP->getOperand(i),
- DstEltTy));
+ Result.push_back(
+ ConstantExpr::getCast(Instruction::BitCast, CP->getOperand(1),
+ DstEltTy));
return ConstantPacked::get(Result);
}
+ // If this is an int-to-fp cast ..
if (SrcEltTy->isIntegral()) {
- // Otherwise, this is an int-to-fp cast.
+ // Ensure that it is int-to-fp cast
assert(DstEltTy->isFloatingPoint());
if (DstEltTy->getTypeID() == Type::DoubleTyID) {
for (unsigned i = 0; i != SrcNumElts; ++i) {
@@ -805,34 +799,50 @@
return 0;
}
+/// This function determines which opcode to use to fold two constant cast
+/// expressions together. It uses CastInst::isEliminableCastPair to determine
+/// the opcode. Consequently its just a wrapper around that function.
+/// @Determine if it is valid to fold a cast of a cast
+static unsigned
+foldConstantCastPair(
+ unsigned opc, ///< opcode of the second cast constant expression
+ const ConstantExpr*Op, ///< the first cast constant expression
+ const Type *DstTy ///< desintation type of the first cast
+) {
+ assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
+ assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
+ assert(CastInst::isCast(opc) && "Invalid cast opcode");
+
+ // The the types and opcodes for the two Cast constant expressions
+ const Type *SrcTy = Op->getOperand(0)->getType();
+ const Type *MidTy = Op->getType();
+ Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
+ Instruction::CastOps secondOp = Instruction::CastOps(opc);
+
+ // Let CastInst::isEliminableCastPair do the heavy lifting.
+ return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
+ Type::ULongTy);
+}
-Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
+Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
const Type *DestTy) {
- if (V->getType() == DestTy) return (Constant*)V;
+ const Type *SrcTy = V->getType();
- // Cast of a global address to boolean is always true.
- if (isa<GlobalValue>(V)) {
- if (DestTy == Type::BoolTy)
- // FIXME: When we support 'external weak' references, we have to prevent
- // this transformation from happening. This code will need to be updated
- // to ignore external weak symbols when we support it.
- return ConstantBool::getTrue();
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::Cast) {
- Constant *Op = const_cast<Constant*>(CE->getOperand(0));
- // Try to not produce a cast of a cast, which is almost always redundant.
- if (!Op->getType()->isFloatingPoint() &&
- !CE->getType()->isFloatingPoint() &&
- !DestTy->isFloatingPoint()) {
- unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
- unsigned S3 = getSize(DestTy);
- if (Op->getType() == DestTy && S3 >= S2)
- return Op;
- if (S1 >= S2 && S2 >= S3)
- return ConstantExpr::getCast(Op, DestTy);
- if (S1 <= S2 && S2 >= S3 && S1 <= S3)
- return ConstantExpr::getCast(Op, DestTy);
- }
+ // Handle some simple cases
+ if (SrcTy == DestTy)
+ return (Constant*)V; // no-op cast
+
+ if (isa<UndefValue>(V))
+ return UndefValue::get(DestTy);
+
+ // If the cast operand is a constant expression, there's a few things we can
+ // do to try to simplify it.
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (CE->isCast()) {
+ // Try hard to fold cast of cast because they are almost always
+ // eliminable.
+ if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
+ return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
// If all of the indexes in the GEP are null values, there is no pointer
// adjustment going on. We might as well cast the source pointer.
@@ -845,69 +855,132 @@
if (isAllNull)
return ConstantExpr::getCast(CE->getOperand(0), DestTy);
}
- } else if (isa<UndefValue>(V)) {
- return UndefValue::get(DestTy);
}
- // Check to see if we are casting an pointer to an aggregate to a pointer to
- // the first element. If so, return the appropriate GEP instruction.
- if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
- if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
- std::vector<Value*> IdxList;
- IdxList.push_back(Constant::getNullValue(Type::IntTy));
- const Type *ElTy = PTy->getElementType();
- while (ElTy != DPTy->getElementType()) {
- if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
- if (STy->getNumElements() == 0) break;
- ElTy = STy->getElementType(0);
- IdxList.push_back(Constant::getNullValue(Type::UIntTy));
- } else if (const SequentialType *STy = dyn_cast<SequentialType>(ElTy)) {
- if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
- ElTy = STy->getElementType();
- IdxList.push_back(IdxList[0]);
- } else {
- break;
- }
- }
+ // We actually have to do a cast now, but first, we might need to fix up
+ // the value of the operand.
+ switch (opc) {
+ case Instruction::FPTrunc:
+ case Instruction::Trunc:
+ case Instruction::FPExt:
+ break; // floating point input & output, no fixup needed
+ case Instruction::FPToUI: {
+ ConstRules &Rules = ConstRules::get(V, V);
+ V = Rules.castToULong(V); // make sure we get an unsigned value first
+ break;
+ }
+ case Instruction::FPToSI: {
+ ConstRules &Rules = ConstRules::get(V, V);
+ V = Rules.castToLong(V); // make sure we get a signed value first
+ break;
+ }
+ case Instruction::IntToPtr: //always treated as unsigned
+ case Instruction::UIToFP:
+ case Instruction::ZExt:
+ // A ZExt always produces an unsigned value so we need to cast the value
+ // now before we try to cast it to the destination type
+ if (isa<ConstantInt>(V))
+ V = ConstantInt::get(SrcTy->getUnsignedVersion(),
+ cast<ConstantIntegral>(V)->getZExtValue());
+ break;
+ case Instruction::SIToFP:
+ case Instruction::SExt:
+ // A SExt always produces a signed value so we need to cast the value
+ // now before we try to cast it to the destiniation type.
+ if (isa<ConstantInt>(V))
+ V = ConstantInt::get(SrcTy->getSignedVersion(),
+ cast<ConstantIntegral>(V)->getSExtValue());
+ break;
- if (ElTy == DPTy->getElementType())
- return ConstantExpr::getGetElementPtr(const_cast<Constant*>(V),IdxList);
+ case Instruction::PtrToInt:
+ // Cast of a global address to boolean is always true.
+ if (isa<GlobalValue>(V)) {
+ if (DestTy == Type::BoolTy)
+ // FIXME: When we support 'external weak' references, we have to
+ // prevent this transformation from happening. This code will need
+ // to be updated to ignore external weak symbols when we support it.
+ return ConstantBool::getTrue();
}
-
- // Handle casts from one packed constant to another. We know that the src and
- // dest type have the same size.
- if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
- if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
- assert(DestPTy->getElementType()->getPrimitiveSizeInBits() *
- DestPTy->getNumElements() ==
- SrcTy->getElementType()->getPrimitiveSizeInBits() *
- SrcTy->getNumElements() && "Not cast between same sized vectors!");
- if (isa<ConstantAggregateZero>(V))
- return Constant::getNullValue(DestTy);
- if (isa<UndefValue>(V))
- return UndefValue::get(DestTy);
- if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
- // This is a cast from a ConstantPacked of one type to a ConstantPacked
- // of another type. Check to see if all elements of the input are
- // simple.
- bool AllSimpleConstants = true;
- for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
- if (!isa<ConstantInt>(CP->getOperand(i)) &&
- !isa<ConstantFP>(CP->getOperand(i))) {
- AllSimpleConstants = false;
+ break;
+ case Instruction::BitCast:
+ // Check to see if we are casting a pointer to an aggregate to a pointer to
+ // the first element. If so, return the appropriate GEP instruction.
+ if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
+ if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
+ std::vector<Value*> IdxList;
+ IdxList.push_back(Constant::getNullValue(Type::IntTy));
+ const Type *ElTy = PTy->getElementType();
+ while (ElTy != DPTy->getElementType()) {
+ if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
+ if (STy->getNumElements() == 0) break;
+ ElTy = STy->getElementType(0);
+ IdxList.push_back(Constant::getNullValue(Type::UIntTy));
+ } else if (const SequentialType *STy =
+ dyn_cast<SequentialType>(ElTy)) {
+ if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
+ ElTy = STy->getElementType();
+ IdxList.push_back(IdxList[0]);
+ } else {
break;
}
}
-
- // If all of the elements are simple constants, we can fold this.
- if (AllSimpleConstants)
- return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
+
+ if (ElTy == DPTy->getElementType())
+ return ConstantExpr::getGetElementPtr(
+ const_cast<Constant*>(V),IdxList);
+ }
+
+ // Handle casts from one packed constant to another. We know that the src
+ // and dest type have the same size (otherwise its an illegal cast).
+ if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
+ if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
+ assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
+ "Not cast between same sized vectors!");
+ // First, check for null and undef
+ if (isa<ConstantAggregateZero>(V))
+ return Constant::getNullValue(DestTy);
+ if (isa<UndefValue>(V))
+ return UndefValue::get(DestTy);
+
+ if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
+ // This is a cast from a ConstantPacked of one type to a
+ // ConstantPacked of another type. Check to see if all elements of
+ // the input are simple.
+ bool AllSimpleConstants = true;
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
+ if (!isa<ConstantInt>(CP->getOperand(i)) &&
+ !isa<ConstantFP>(CP->getOperand(i))) {
+ AllSimpleConstants = false;
+ break;
+ }
+ }
+
+ // If all of the elements are simple constants, we can fold this.
+ if (AllSimpleConstants)
+ return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
+ }
}
}
+
+ // Handle sign conversion for integer no-op casts. We need to cast the
+ // value to the correct signedness before we try to cast it to the
+ // destination type. Be careful to do this only for integer types.
+ if (isa<ConstantIntegral>(V) && SrcTy->isInteger()) {
+ if (SrcTy->isSigned())
+ V = ConstantInt::get(SrcTy->getUnsignedVersion(),
+ cast<ConstantIntegral>(V)->getZExtValue());
+ else
+ V = ConstantInt::get(SrcTy->getSignedVersion(),
+ cast<ConstantIntegral>(V)->getSExtValue());
+ }
+ break;
+ default:
+ assert(!"Invalid CE CastInst opcode");
+ break;
}
+ // Okay, no more folding possible, time to cast
ConstRules &Rules = ConstRules::get(V, V);
-
switch (DestTy->getTypeID()) {
case Type::BoolTyID: return Rules.castToBool(V);
case Type::UByteTyID: return Rules.castToUByte(V);
@@ -922,6 +995,7 @@
case Type::DoubleTyID: return Rules.castToDouble(V);
case Type::PointerTyID:
return Rules.castToPointer(V, cast<PointerType>(DestTy));
+ // what about packed ?
default: return 0;
}
}
@@ -1049,15 +1123,22 @@
static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
if (C1 == C2) return 0;
- // Ok, we found a different index. Are either of the operands
- // ConstantExprs? If so, we can't do anything with them.
+ // Ok, we found a different index. Are either of the operands ConstantExprs?
+ // If so, we can't do anything with them.
if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
return -2; // don't know!
// Ok, we have two differing integer indices. Sign extend them to be the same
// type. Long is always big enough, so we use it.
- C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
- C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
+ if (C1->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
+ C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
+ else
+ C1 = ConstantExpr::getBitCast(C1, Type::LongTy);
+ if (C2->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
+ C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
+ else
+ C2 = ConstantExpr::getBitCast(C2, Type::LongTy);
+
if (C1 == C2) return 0; // Are they just differing types?
// If the type being indexed over is really just a zero sized type, there is
@@ -1141,7 +1222,19 @@
Constant *CE1Op0 = CE1->getOperand(0);
switch (CE1->getOpcode()) {
- case Instruction::Cast:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ break; // We don't do anything with floating point.
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
// If the cast is not actually changing bits, and the second operand is a
// null pointer, do the comparison with the pre-casted value.
if (V2->isNullValue() &&
@@ -1154,8 +1247,7 @@
// important for things like "seteq (cast 4 to int*), (cast 5 to int*)",
// which happens a lot in compilers with tagged integers.
if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
- if (isa<PointerType>(CE1->getType()) &&
- CE2->getOpcode() == Instruction::Cast &&
+ if (isa<PointerType>(CE1->getType()) && CE2->isCast() &&
CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
CE1->getOperand(0)->getType()->isIntegral()) {
return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0));
@@ -1423,8 +1515,7 @@
if (cast<ConstantIntegral>(V2)->isAllOnesValue())
return const_cast<Constant*>(V1); // X & -1 == X
if (V2->isNullValue()) return const_cast<Constant*>(V2); // X & 0 == 0
- if (CE1->getOpcode() == Instruction::Cast &&
- isa<GlobalValue>(CE1->getOperand(0))) {
+ if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
// Functions are at least 4-byte aligned. If and'ing the address of a
@@ -1566,8 +1657,7 @@
// long 0, long 0)
// To: int* getelementptr ([3 x int]* %X, long 0, long 0)
//
- if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
- Idx0->isNullValue())
+ if (CE->isCast() && IdxList.size() > 1 && Idx0->isNullValue())
if (const PointerType *SPT =
dyn_cast<PointerType>(CE->getOperand(0)->getType()))
if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
Index: llvm/lib/VMCore/ConstantFolding.h
diff -u llvm/lib/VMCore/ConstantFolding.h:1.48 llvm/lib/VMCore/ConstantFolding.h:1.49
--- llvm/lib/VMCore/ConstantFolding.h:1.48 Fri Apr 7 20:18:18 2006
+++ llvm/lib/VMCore/ConstantFolding.h Sun Nov 26 19:05:10 2006
@@ -27,7 +27,11 @@
class Type;
// Constant fold various types of instruction...
- Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy);
+ Constant *ConstantFoldCastInstruction(
+ unsigned opcode, ///< The opcode of the cast
+ const Constant *V, ///< The source constant
+ const Type *DestTy ///< The destination type
+ );
Constant *ConstantFoldSelectInstruction(const Constant *Cond,
const Constant *V1,
const Constant *V2);
Index: llvm/lib/VMCore/Constants.cpp
diff -u llvm/lib/VMCore/Constants.cpp:1.171 llvm/lib/VMCore/Constants.cpp:1.172
--- llvm/lib/VMCore/Constants.cpp:1.171 Fri Nov 17 02:03:48 2006
+++ llvm/lib/VMCore/Constants.cpp Sun Nov 26 19:05:10 2006
@@ -427,6 +427,14 @@
};
}
+
+// Utility function for determining if a ConstantExpr is a CastOp or not. This
+// can't be inline because we don't want to #include Instruction.h into
+// Constant.h
+bool ConstantExpr::isCast() const {
+ return Instruction::isCast(getOpcode());
+}
+
/// ConstantExpr::get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
@@ -507,8 +515,8 @@
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
-Constant *ConstantExpr::getWithOperandReplaced(unsigned OpNo,
- Constant *Op) const {
+Constant *
+ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
assert(OpNo < getNumOperands() && "Operand num is out of range!");
assert(Op->getType() == getOperand(OpNo)->getType() &&
"Replacing operand with value of different type!");
@@ -517,8 +525,19 @@
Constant *Op0, *Op1, *Op2;
switch (getOpcode()) {
- case Instruction::Cast:
- return ConstantExpr::getCast(Op, getType());
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ return ConstantExpr::getCast(getOpcode(), Op, getType());
case Instruction::Select:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
@@ -571,8 +590,19 @@
return const_cast<ConstantExpr*>(this);
switch (getOpcode()) {
- case Instruction::Cast:
- return ConstantExpr::getCast(Ops[0], getType());
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
@@ -1317,8 +1347,8 @@
template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
- if (V.first == Instruction::Cast)
- return new UnaryConstantExpr(Instruction::Cast, V.second[0], Ty);
+ if (Instruction::isCast(V.first))
+ return new UnaryConstantExpr(V.first, V.second[0], Ty);
if ((V.first >= Instruction::BinaryOpsBegin &&
V.first < Instruction::BinaryOpsEnd) ||
V.first == Instruction::Shl ||
@@ -1348,8 +1378,20 @@
static void convert(ConstantExpr *OldC, const Type *NewTy) {
Constant *New;
switch (OldC->getOpcode()) {
- case Instruction::Cast:
- New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ New = ConstantExpr::getCast(
+ OldC->getOpcode(), OldC->getOperand(0), NewTy);
break;
case Instruction::Select:
New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
@@ -1394,40 +1436,143 @@
static ManagedStatic<ValueMap<ExprMapKeyType, Type,
ConstantExpr> > ExprConstants;
-Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
+/// This is a utility function to handle folding of casts and lookup of the
+/// cast in the ExprConstants map. It is usedby the various get* methods below.
+static inline Constant *getFoldedCast(
+ Instruction::CastOps opc, Constant *C, const Type *Ty) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
-
- if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
- return FC; // Fold a few common cases...
+ // Fold a few common cases
+ if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
+ return FC;
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
- ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
+ ExprMapKeyType Key = std::make_pair(opc, argVec);
return ExprConstants->getOrCreate(Ty, Key);
}
-Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
- assert(C->getType()->isIntegral() && Ty->isIntegral() &&
- C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
- "This is an illegal sign extension!");
- if (C->getType() != Type::BoolTy) {
- C = ConstantExpr::getCast(C, C->getType()->getSignedVersion());
- return ConstantExpr::getCast(C, Ty);
- } else {
- if (C == ConstantBool::getTrue())
- return ConstantIntegral::getAllOnesValue(Ty);
- else
- return ConstantIntegral::getNullValue(Ty);
+Constant *ConstantExpr::getCast( Constant *C, const Type *Ty ) {
+ // Note: we can't inline this because it requires the Instructions.h header
+ return getCast(CastInst::getCastOpcode(C, Ty), C, Ty);
+}
+
+Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
+ Instruction::CastOps opc = Instruction::CastOps(oc);
+ assert(Instruction::isCast(opc) && "opcode out of range");
+ assert(C && Ty && "Null arguments to getCast");
+ assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
+
+ switch (opc) {
+ default:
+ assert(0 && "Invalid cast opcode");
+ break;
+ case Instruction::Trunc: return getTrunc(C, Ty);
+ case Instruction::ZExt: return getZeroExtend(C, Ty);
+ case Instruction::SExt: return getSignExtend(C, Ty);
+ case Instruction::FPTrunc: return getFPTrunc(C, Ty);
+ case Instruction::FPExt: return getFPExtend(C, Ty);
+ case Instruction::UIToFP: return getUIToFP(C, Ty);
+ case Instruction::SIToFP: return getSIToFP(C, Ty);
+ case Instruction::FPToUI: return getFPToUI(C, Ty);
+ case Instruction::FPToSI: return getFPToSI(C, Ty);
+ case Instruction::PtrToInt: return getPtrToInt(C, Ty);
+ case Instruction::IntToPtr: return getIntToPtr(C, Ty);
+ case Instruction::BitCast: return getBitCast(C, Ty);
}
+ return 0;
+}
+
+Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
+ assert(C->getType()->isInteger() && "Trunc operand must be integer");
+ assert(Ty->isIntegral() && "Trunc produces only integral");
+ assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be larger than DestTy for Trunc!");
+
+ return getFoldedCast(Instruction::Trunc, C, Ty);
+}
+
+Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
+ assert(C->getType()->isIntegral() && "SEXt operand must be integral");
+ assert(Ty->isInteger() && "SExt produces only integer");
+ assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be smaller than DestTy for SExt!");
+
+ return getFoldedCast(Instruction::SExt, C, Ty);
}
Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) {
- assert(C->getType()->isIntegral() && Ty->isIntegral() &&
- C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
- "This is an illegal zero extension!");
- if (C->getType() != Type::BoolTy)
- C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion());
- return ConstantExpr::getCast(C, Ty);
+ assert(C->getType()->isIntegral() && "ZEXt operand must be integral");
+ assert(Ty->isInteger() && "ZExt produces only integer");
+ assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "SrcTy must be smaller than DestTy for ZExt!");
+
+ return getFoldedCast(Instruction::ZExt, C, Ty);
+}
+
+Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
+ "This is an illegal floating point truncation!");
+ return getFoldedCast(Instruction::FPTrunc, C, Ty);
+}
+
+Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+ C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+ "This is an illegal floating point extension!");
+ return getFoldedCast(Instruction::FPExt, C, Ty);
+}
+
+Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
+ assert(C->getType()->isIntegral() && Ty->isFloatingPoint() &&
+ "This is an illegal uint to floating point cast!");
+ return getFoldedCast(Instruction::UIToFP, C, Ty);
+}
+
+Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
+ assert(C->getType()->isIntegral() && Ty->isFloatingPoint() &&
+ "This is an illegal sint to floating point cast!");
+ return getFoldedCast(Instruction::SIToFP, C, Ty);
+}
+
+Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isIntegral() &&
+ "This is an illegal floating point to uint cast!");
+ return getFoldedCast(Instruction::FPToUI, C, Ty);
+}
+
+Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
+ assert(C->getType()->isFloatingPoint() && Ty->isIntegral() &&
+ "This is an illegal floating point to sint cast!");
+ return getFoldedCast(Instruction::FPToSI, C, Ty);
+}
+
+Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
+ assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
+ assert(DstTy->isIntegral() && "PtrToInt destination must be integral");
+ return getFoldedCast(Instruction::PtrToInt, C, DstTy);
+}
+
+Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
+ assert(C->getType()->isIntegral() && "IntToPtr source must be integral");
+ assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
+ return getFoldedCast(Instruction::IntToPtr, C, DstTy);
+}
+
+Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
+ // BitCast implies a no-op cast of type only. No bits change. However, you
+ // can't cast pointers to anything but pointers.
+ const Type *SrcTy = C->getType();
+ assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
+ "Bitcast cannot cast pointer to non-pointer and vice versa");
+
+ // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
+ // or nonptr->ptr). For all the other types, the cast is okay if source and
+ // destination bit widths are identical.
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
+ assert(SrcBitSize == DstBitSize && "Bitcast requies types of same width");
+ return getFoldedCast(Instruction::BitCast, C, DstTy);
}
Constant *ConstantExpr::getSizeOf(const Type *Ty) {
@@ -1858,9 +2003,9 @@
Indices.push_back(Val);
}
Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
- } else if (getOpcode() == Instruction::Cast) {
+ } else if (isCast()) {
assert(getOperand(0) == From && "Cast only has one use!");
- Replacement = ConstantExpr::getCast(To, getType());
+ Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
} else if (getOpcode() == Instruction::Select) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Index: llvm/lib/VMCore/Function.cpp
diff -u llvm/lib/VMCore/Function.cpp:1.106 llvm/lib/VMCore/Function.cpp:1.107
--- llvm/lib/VMCore/Function.cpp:1.106 Thu Nov 2 02:23:44 2006
+++ llvm/lib/VMCore/Function.cpp Sun Nov 26 19:05:10 2006
@@ -226,7 +226,7 @@
Value *IntrinsicInst::StripPointerCasts(Value *Ptr) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
- if (CE->getOpcode() == Instruction::Cast) {
+ if (CE->getOpcode() == Instruction::BitCast) {
if (isa<PointerType>(CE->getOperand(0)->getType()))
return StripPointerCasts(CE->getOperand(0));
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
@@ -238,7 +238,7 @@
return Ptr;
}
- if (CastInst *CI = dyn_cast<CastInst>(Ptr)) {
+ if (BitCastInst *CI = dyn_cast<BitCastInst>(Ptr)) {
if (isa<PointerType>(CI->getOperand(0)->getType()))
return StripPointerCasts(CI->getOperand(0));
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
Index: llvm/lib/VMCore/Instruction.cpp
diff -u llvm/lib/VMCore/Instruction.cpp:1.58 llvm/lib/VMCore/Instruction.cpp:1.59
--- llvm/lib/VMCore/Instruction.cpp:1.58 Sun Nov 19 19:22:35 2006
+++ llvm/lib/VMCore/Instruction.cpp Sun Nov 26 19:05:10 2006
@@ -122,18 +122,31 @@
case Store: return "store";
case GetElementPtr: return "getelementptr";
+ // Convert instructions...
+ case Trunc: return "trunc";
+ case ZExt: return "zext";
+ case SExt: return "sext";
+ case FPTrunc: return "fptrunc";
+ case FPExt: return "fpext";
+ case FPToUI: return "fptoui";
+ case FPToSI: return "fptosi";
+ case UIToFP: return "uitofp";
+ case SIToFP: return "sitofp";
+ case IntToPtr: return "inttoptr";
+ case PtrToInt: return "ptrtoint";
+ case BitCast: return "bitcast";
+
// Other instructions...
- case PHI: return "phi";
- case Cast: return "cast";
- case Select: return "select";
- case Call: return "call";
- case Shl: return "shl";
- case LShr: return "lshr";
- case AShr: return "ashr";
- case VAArg: return "va_arg";
+ case PHI: return "phi";
+ case Select: return "select";
+ case Call: return "call";
+ case Shl: return "shl";
+ case LShr: return "lshr";
+ case AShr: return "ashr";
+ case VAArg: return "va_arg";
case ExtractElement: return "extractelement";
- case InsertElement: return "insertelement";
- case ShuffleVector: return "shufflevector";
+ case InsertElement: return "insertelement";
+ case ShuffleVector: return "shufflevector";
default: return "<Invalid operator> ";
}
Index: llvm/lib/VMCore/Instructions.cpp
diff -u llvm/lib/VMCore/Instructions.cpp:1.47 llvm/lib/VMCore/Instructions.cpp:1.48
--- llvm/lib/VMCore/Instructions.cpp:1.47 Sun Nov 19 19:22:35 2006
+++ llvm/lib/VMCore/Instructions.cpp Sun Nov 26 19:05:10 2006
@@ -1226,18 +1226,571 @@
// CastInst Class
//===----------------------------------------------------------------------===//
-/// isTruncIntCast - Return true if this is a truncating integer cast
-/// instruction, e.g. a cast from long to uint.
-bool CastInst::isTruncIntCast() const {
- // The dest type has to be integral, the input has to be integer.
- if (!getType()->isIntegral() || !getOperand(0)->getType()->isInteger())
+// Just determine if this cast only deals with integral->integral conversion.
+bool CastInst::isIntegerCast() const {
+ switch (getOpcode()) {
+ default: return false;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::Trunc:
+ return true;
+ case Instruction::BitCast:
+ return getOperand(0)->getType()->isIntegral() && getType()->isIntegral();
+ }
+}
+
+bool CastInst::isLosslessCast() const {
+ // Only BitCast can be lossless, exit fast if we're not BitCast
+ if (getOpcode() != Instruction::BitCast)
return false;
- // Has to be large to smaller.
- return getOperand(0)->getType()->getPrimitiveSizeInBits() >
- getType()->getPrimitiveSizeInBits();
+ // Identity cast is always lossless
+ const Type* SrcTy = getOperand(0)->getType();
+ const Type* DstTy = getType();
+ if (SrcTy == DstTy)
+ return true;
+
+ // The remaining possibilities are lossless if the typeID of the source type
+ // matches the type ID of the destination in size and fundamental type. This
+ // prevents things like int -> ptr, int -> float, packed -> int, mismatched
+ // packed types of the same size, and etc.
+ switch (SrcTy->getTypeID()) {
+ case Type::UByteTyID: return DstTy == Type::SByteTy;
+ case Type::SByteTyID: return DstTy == Type::UByteTy;
+ case Type::UShortTyID: return DstTy == Type::ShortTy;
+ case Type::ShortTyID: return DstTy == Type::UShortTy;
+ case Type::UIntTyID: return DstTy == Type::IntTy;
+ case Type::IntTyID: return DstTy == Type::UIntTy;
+ case Type::ULongTyID: return DstTy == Type::LongTy;
+ case Type::LongTyID: return DstTy == Type::ULongTy;
+ case Type::PointerTyID: return isa<PointerType>(DstTy);
+ default:
+ break;
+ }
+ return false; // Other types have no identity values
+}
+
+/// This function determines if the CastInst does not require any bits to be
+/// changed in order to effect the cast. Essentially, it identifies cases where
+/// no code gen is necessary for the cast, hence the name no-op cast. For
+/// example, the following are all no-op casts:
+/// # bitcast uint %X, int
+/// # bitcast uint* %x, sbyte*
+/// # bitcast packed< 2 x int > %x, packed< 4 x short>
+/// # ptrtoint uint* %x, uint ; on 32-bit plaforms only
+/// @brief Determine if a cast is a no-op.
+bool CastInst::isNoopCast(const Type *IntPtrTy) const {
+ switch (getOpcode()) {
+ default:
+ assert(!"Invalid CastOp");
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ return false; // These always modify bits
+ case Instruction::BitCast:
+ return true; // BitCast never modifies bits.
+ case Instruction::PtrToInt:
+ return IntPtrTy->getPrimitiveSizeInBits() ==
+ getType()->getPrimitiveSizeInBits();
+ case Instruction::IntToPtr:
+ return IntPtrTy->getPrimitiveSizeInBits() ==
+ getOperand(0)->getType()->getPrimitiveSizeInBits();
+ }
+}
+
+/// This function determines if a pair of casts can be eliminated and what
+/// opcode should be used in the elimination. This assumes that there are two
+/// instructions like this:
+/// * %F = firstOpcode SrcTy %x to MidTy
+/// * %S = secondOpcode MidTy %F to DstTy
+/// The function returns a resultOpcode so these two casts can be replaced with:
+/// * %Replacement = resultOpcode %SrcTy %x to DstTy
+/// If no such cast is permited, the function returns 0.
+unsigned CastInst::isEliminableCastPair(
+ Instruction::CastOps firstOp, Instruction::CastOps secondOp,
+ const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
+{
+ // Define the 144 possibilities for these two cast instructions. The values
+ // in this matrix determine what to do in a given situation and select the
+ // case in the switch below. The rows correspond to firstOp, the columns
+ // correspond to secondOp. In looking at the table below, keep in mind
+ // the following cast properties:
+ //
+ // Size Compare Source Destination
+ // Operator Src ? Size Type Sign Type Sign
+ // -------- ------------ ------------------- ---------------------
+ // TRUNC > Integer Any Integral Any
+ // ZEXT < Integral Unsigned Integer Any
+ // SEXT < Integral Signed Integer Any
+ // FPTOUI n/a FloatPt n/a Integral Unsigned
+ // FPTOSI n/a FloatPt n/a Integral Signed
+ // UITOFP n/a Integral Unsigned FloatPt n/a
+ // SITOFP n/a Integral Signed FloatPt n/a
+ // FPTRUNC > FloatPt n/a FloatPt n/a
+ // FPEXT < FloatPt n/a FloatPt n/a
+ // PTRTOINT n/a Pointer n/a Integral Unsigned
+ // INTTOPTR n/a Integral Unsigned Pointer n/a
+ // BITCONVERT = FirstClass n/a FirstClass n/a
+ //
+ const unsigned numCastOps =
+ Instruction::CastOpsEnd - Instruction::CastOpsBegin;
+ static const uint8_t CastResults[numCastOps][numCastOps] = {
+ // T F F U S F F P I B -+
+ // R Z S P P I I T P 2 N T |
+ // U E E 2 2 2 2 R E I T C +- secondOp
+ // N X X U S F F N X N 2 V |
+ // C T T I I P P C T T P T -+
+ { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
+ { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
+ { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
+ { 0, 1, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
+ { 0, 0, 1,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
+ { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
+ { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
+ { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
+ { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
+ { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
+ { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
+ { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
+ };
+
+ int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
+ [secondOp-Instruction::CastOpsBegin];
+ switch (ElimCase) {
+ case 0:
+ // categorically disallowed
+ return 0;
+ case 1:
+ // allowed, use first cast's opcode
+ return firstOp;
+ case 2:
+ // allowed, use second cast's opcode
+ return secondOp;
+ case 3:
+ // no-op cast in second op implies firstOp as long as the DestTy
+ // is integer
+ if (DstTy->isInteger())
+ return firstOp;
+ return 0;
+ case 4:
+ // no-op cast in second op implies firstOp as long as the DestTy
+ // is floating point
+ if (DstTy->isFloatingPoint())
+ return firstOp;
+ return 0;
+ case 5:
+ // no-op cast in first op implies secondOp as long as the SrcTy
+ // is an integer
+ if (SrcTy->isInteger())
+ return secondOp;
+ return 0;
+ case 6:
+ // no-op cast in first op implies secondOp as long as the SrcTy
+ // is a floating point
+ if (SrcTy->isFloatingPoint())
+ return secondOp;
+ return 0;
+ case 7: {
+ // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
+ unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
+ unsigned MidSize = MidTy->getPrimitiveSizeInBits();
+ if (MidSize >= PtrSize)
+ return Instruction::BitCast;
+ return 0;
+ }
+ case 8: {
+ // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
+ // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
+ // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
+ unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstSize = DstTy->getPrimitiveSizeInBits();
+ if (SrcSize == DstSize)
+ return Instruction::BitCast;
+ else if (SrcSize < DstSize)
+ return firstOp;
+ return secondOp;
+ }
+ case 9: // zext, sext -> zext, because sext can't sign extend after zext
+ return Instruction::ZExt;
+ case 10:
+ // fpext followed by ftrunc is allowed if the bit size returned to is
+ // the same as the original, in which case its just a bitcast
+ if (SrcTy == DstTy)
+ return Instruction::BitCast;
+ return 0; // If the types are not the same we can't eliminate it.
+ case 11:
+ // bitcast followed by ptrtoint is allowed as long as the bitcast
+ // is a pointer to pointer cast.
+ if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
+ return secondOp;
+ return 0;
+ case 12:
+ // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
+ if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
+ return firstOp;
+ return 0;
+ case 13: {
+ // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
+ unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
+ unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstSize = DstTy->getPrimitiveSizeInBits();
+ if (SrcSize <= PtrSize && SrcSize == DstSize)
+ return Instruction::BitCast;
+ return 0;
+ }
+ case 99:
+ // cast combination can't happen (error in input). This is for all cases
+ // where the MidTy is not the same for the two cast instructions.
+ assert(!"Invalid Cast Combination");
+ return 0;
+ default:
+ assert(!"Error in CastResults table!!!");
+ return 0;
+ }
+ return 0;
}
+CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
+ const std::string &Name, Instruction *InsertBefore) {
+ // Construct and return the appropriate CastInst subclass
+ switch (op) {
+ case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
+ case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
+ case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
+ case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
+ case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
+ case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
+ case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
+ case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
+ case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
+ case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
+ case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
+ case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
+ default:
+ assert(!"Invalid opcode provided");
+ }
+ return 0;
+}
+
+CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
+ const std::string &Name, BasicBlock *InsertAtEnd) {
+ // Construct and return the appropriate CastInst subclass
+ switch (op) {
+ case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
+ case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
+ case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
+ case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
+ case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
+ case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
+ case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
+ case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
+ case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
+ case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
+ case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
+ case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
+ default:
+ assert(!"Invalid opcode provided");
+ }
+ return 0;
+}
+
+// Provide a way to get a "cast" where the cast opcode is inferred from the
+// types and size of the operand. This, basically, is a parallel of the
+// logic in the checkCast function below. This axiom should hold:
+// checkCast( getCastOpcode(Val, Ty), Val, Ty)
+// should not assert in checkCast. In other words, this produces a "correct"
+// casting opcode for the arguments passed to it.
+Instruction::CastOps
+CastInst::getCastOpcode(const Value *Src, const Type *DestTy) {
+ // Get the bit sizes, we'll need these
+ const Type *SrcTy = Src->getType();
+ unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr/packed
+ unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/packed
+
+ // Run through the possibilities ...
+ if (DestTy->isIntegral()) { // Casting to integral
+ if (SrcTy->isIntegral()) { // Casting from integral
+ if (DestBits < SrcBits)
+ return Trunc; // int -> smaller int
+ else if (DestBits > SrcBits) { // its an extension
+ if (SrcTy->isSigned())
+ return SExt; // signed -> SEXT
+ else
+ return ZExt; // unsigned -> ZEXT
+ } else {
+ return BitCast; // Same size, No-op cast
+ }
+ } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
+ if (DestTy->isSigned())
+ return FPToSI; // FP -> sint
+ else
+ return FPToUI; // FP -> uint
+ } else if (const PackedType *PTy = dyn_cast<PackedType>(SrcTy)) {
+ assert(DestBits == PTy->getBitWidth() &&
+ "Casting packed to integer of different width");
+ return BitCast; // Same size, no-op cast
+ } else {
+ assert(isa<PointerType>(SrcTy) &&
+ "Casting from a value that is not first-class type");
+ return PtrToInt; // ptr -> int
+ }
+ } else if (DestTy->isFloatingPoint()) { // Casting to floating pt
+ if (SrcTy->isIntegral()) { // Casting from integral
+ if (SrcTy->isSigned())
+ return SIToFP; // sint -> FP
+ else
+ return UIToFP; // uint -> FP
+ } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
+ if (DestBits < SrcBits) {
+ return FPTrunc; // FP -> smaller FP
+ } else if (DestBits > SrcBits) {
+ return FPExt; // FP -> larger FP
+ } else {
+ return BitCast; // same size, no-op cast
+ }
+ } else if (const PackedType *PTy = dyn_cast<PackedType>(SrcTy)) {
+ assert(DestBits == PTy->getBitWidth() &&
+ "Casting packed to floating point of different width");
+ return BitCast; // same size, no-op cast
+ } else {
+ assert(0 && "Casting pointer or non-first class to float");
+ }
+ } else if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
+ if (const PackedType *SrcPTy = dyn_cast<PackedType>(SrcTy)) {
+ assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
+ "Casting packed to packed of different widths");
+ return BitCast; // packed -> packed
+ } else if (DestPTy->getBitWidth() == SrcBits) {
+ return BitCast; // float/int -> packed
+ } else {
+ assert(!"Illegal cast to packed (wrong type or size)");
+ }
+ } else if (isa<PointerType>(DestTy)) {
+ if (isa<PointerType>(SrcTy)) {
+ return BitCast; // ptr -> ptr
+ } else if (SrcTy->isIntegral()) {
+ return IntToPtr; // int -> ptr
+ } else {
+ assert(!"Casting pointer to other than pointer or int");
+ }
+ } else {
+ assert(!"Casting to type that is not first-class");
+ }
+
+ // If we fall through to here we probably hit an assertion cast above
+ // and assertions are not turned on. Anything we return is an error, so
+ // BitCast is as good a choice as any.
+ return BitCast;
+}
+
+//===----------------------------------------------------------------------===//
+// CastInst SubClass Constructors
+//===----------------------------------------------------------------------===//
+
+/// Check that the construction parameters for a CastInst are correct. This
+/// could be broken out into the separate constructors but it is useful to have
+/// it in one place and to eliminate the redundant code for getting the sizes
+/// of the types involved.
+static bool
+checkCast(Instruction::CastOps op, Value *S, const Type *DstTy) {
+
+ // Check for type sanity on the arguments
+ const Type *SrcTy = S->getType();
+ if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
+ return false;
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
+
+ // Switch on the opcode provided
+ switch (op) {
+ default: return false; // This is an input error
+ case Instruction::Trunc:
+ return SrcTy->isInteger() && DstTy->isIntegral() && SrcBitSize > DstBitSize;
+ case Instruction::ZExt:
+ return SrcTy->isIntegral() && DstTy->isInteger() && SrcBitSize < DstBitSize;
+ case Instruction::SExt:
+ return SrcTy->isIntegral() && DstTy->isInteger() && SrcBitSize < DstBitSize;
+ case Instruction::FPTrunc:
+ return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() &&
+ SrcBitSize > DstBitSize;
+ case Instruction::FPExt:
+ return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() &&
+ SrcBitSize < DstBitSize;
+ case Instruction::UIToFP:
+ return SrcTy->isIntegral() && DstTy->isFloatingPoint();
+ case Instruction::SIToFP:
+ return SrcTy->isIntegral() && DstTy->isFloatingPoint();
+ case Instruction::FPToUI:
+ return SrcTy->isFloatingPoint() && DstTy->isIntegral();
+ case Instruction::FPToSI:
+ return SrcTy->isFloatingPoint() && DstTy->isIntegral();
+ case Instruction::PtrToInt:
+ return isa<PointerType>(SrcTy) && DstTy->isIntegral();
+ case Instruction::IntToPtr:
+ return SrcTy->isIntegral() && isa<PointerType>(DstTy);
+ case Instruction::BitCast:
+ // BitCast implies a no-op cast of type only. No bits change.
+ // However, you can't cast pointers to anything but pointers.
+ if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
+ return false;
+
+ // Now we know we're not dealing with a pointer/non-poiner mismatch. In all
+ // these cases, the cast is okay if the source and destination bit widths
+ // are identical.
+ return SrcBitSize == DstBitSize;
+ }
+}
+
+TruncInst::TruncInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+TruncInst::TruncInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+ZExtInst::ZExtInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+
+ZExtInst::ZExtInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+SExtInst::SExtInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, SExt, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+SExtInst::SExtInst::SExtInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+FPTruncInst::FPTruncInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPTruncInst::FPTruncInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPExtInst::FPExtInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+FPExtInst::FPExtInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+UIToFPInst::UIToFPInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+UIToFPInst::UIToFPInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+FPToUIInst::FPToUIInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToUIInst::FPToUIInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToSIInst::FPToSIInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+FPToSIInst::FPToSIInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+PtrToIntInst::PtrToIntInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+PtrToIntInst::PtrToIntInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+IntToPtrInst::IntToPtrInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+IntToPtrInst::IntToPtrInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+BitCastInst::BitCastInst(
+ Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal BitCast");
+}
+
+BitCastInst::BitCastInst(
+ Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
+ assert(checkCast(getOpcode(), S, Ty) && "Illegal BitCast");
+}
//===----------------------------------------------------------------------===//
// SetCondInst Class
@@ -1608,16 +2161,28 @@
Ops[0], Ops[1]);
}
-MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
-AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
-FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
-LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
-StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
-CastInst *CastInst::clone() const { return new CastInst(*this); }
-CallInst *CallInst::clone() const { return new CallInst(*this); }
-ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); }
-SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
-VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
+MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
+AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
+FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
+LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
+StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
+CastInst *TruncInst::clone() const { return new TruncInst(*this); }
+CastInst *ZExtInst::clone() const { return new ZExtInst(*this); }
+CastInst *SExtInst::clone() const { return new SExtInst(*this); }
+CastInst *FPTruncInst::clone() const { return new FPTruncInst(*this); }
+CastInst *FPExtInst::clone() const { return new FPExtInst(*this); }
+CastInst *UIToFPInst::clone() const { return new UIToFPInst(*this); }
+CastInst *SIToFPInst::clone() const { return new SIToFPInst(*this); }
+CastInst *FPToUIInst::clone() const { return new FPToUIInst(*this); }
+CastInst *FPToSIInst::clone() const { return new FPToSIInst(*this); }
+CastInst *PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
+CastInst *IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
+CastInst *BitCastInst::clone() const { return new BitCastInst(*this); }
+CallInst *CallInst::clone() const { return new CallInst(*this); }
+ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); }
+SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
+VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
+
ExtractElementInst *ExtractElementInst::clone() const {
return new ExtractElementInst(*this);
}
Index: llvm/lib/VMCore/IntrinsicInst.cpp
diff -u llvm/lib/VMCore/IntrinsicInst.cpp:1.10 llvm/lib/VMCore/IntrinsicInst.cpp:1.11
--- llvm/lib/VMCore/IntrinsicInst.cpp:1.10 Wed Oct 4 18:06:26 2006
+++ llvm/lib/VMCore/IntrinsicInst.cpp Sun Nov 26 19:05:10 2006
@@ -37,7 +37,7 @@
static Value *CastOperand(Value *C) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (CE->getOpcode() == Instruction::Cast)
+ if (CE->isCast())
return CE->getOperand(0);
return NULL;
}
Index: llvm/lib/VMCore/Type.cpp
diff -u llvm/lib/VMCore/Type.cpp:1.150 llvm/lib/VMCore/Type.cpp:1.151
--- llvm/lib/VMCore/Type.cpp:1.150 Fri Nov 17 02:03:48 2006
+++ llvm/lib/VMCore/Type.cpp Sun Nov 26 19:05:10 2006
@@ -98,24 +98,27 @@
return cast<PackedType>(this)->getElementType()->isFloatingPoint();
}
-
-// isLosslesslyConvertibleTo - Return true if this type can be converted to
+// canLosslesllyBitCastTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, uint to int.
//
-bool Type::isLosslesslyConvertibleTo(const Type *Ty) const {
- if (this == Ty) return true;
-
- // Packed type conversions are always bitwise.
- if (isa<PackedType>(this) && isa<PackedType>(Ty))
+bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
+ // Identity cast means no change so return true
+ if (this == Ty)
return true;
- if ((!isPrimitiveType() && !isa<PointerType>(this)) ||
- (!isa<PointerType>(Ty) && !Ty->isPrimitiveType())) return false;
-
- if (getTypeID() == Ty->getTypeID())
- return true; // Handles identity cast, and cast of differing pointer types
+ // They are not convertible unless they are at least first class types
+ if (!this->isFirstClassType() || !Ty->isFirstClassType())
+ return false;
- // Now we know that they are two differing primitive or pointer types
+ // Packed -> Packed conversions are always lossless if the two packed types
+ // have the same size, otherwise not.
+ if (const PackedType *thisPTy = dyn_cast<PackedType>(this))
+ if (const PackedType *thatPTy = dyn_cast<PackedType>(Ty))
+ return thisPTy->getBitWidth() == thatPTy->getBitWidth();
+
+ // At this point we have only various mismatches of the first class types
+ // remaining and ptr->ptr. Just select the lossless conversions. Everything
+ // else is not lossless.
switch (getTypeID()) {
case Type::UByteTyID: return Ty == Type::SByteTy;
case Type::SByteTyID: return Ty == Type::UByteTy;
@@ -127,8 +130,9 @@
case Type::LongTyID: return Ty == Type::ULongTy;
case Type::PointerTyID: return isa<PointerType>(Ty);
default:
- return false; // Other types have no identity values
+ break;
}
+ return false; // Other types have no identity values
}
/// getUnsignedVersion - If this is an integer type, return the unsigned
@@ -200,6 +204,10 @@
case Type::LongTyID:
case Type::ULongTyID:
case Type::DoubleTyID: return 64;
+ case Type::PackedTyID: {
+ const PackedType *PTy = cast<PackedType>(this);
+ return PTy->getBitWidth();
+ }
default: return 0;
}
}
Index: llvm/lib/VMCore/Verifier.cpp
diff -u llvm/lib/VMCore/Verifier.cpp:1.166 llvm/lib/VMCore/Verifier.cpp:1.167
--- llvm/lib/VMCore/Verifier.cpp:1.166 Sun Nov 19 19:22:35 2006
+++ llvm/lib/VMCore/Verifier.cpp Sun Nov 26 19:05:10 2006
@@ -177,6 +177,18 @@
void visitGlobalVariable(GlobalVariable &GV);
void visitFunction(Function &F);
void visitBasicBlock(BasicBlock &BB);
+ void visitTruncInst(TruncInst &I);
+ void visitZExtInst(ZExtInst &I);
+ void visitSExtInst(SExtInst &I);
+ void visitFPTruncInst(FPTruncInst &I);
+ void visitFPExtInst(FPExtInst &I);
+ void visitFPToUIInst(FPToUIInst &I);
+ void visitFPToSIInst(FPToSIInst &I);
+ void visitUIToFPInst(UIToFPInst &I);
+ void visitSIToFPInst(SIToFPInst &I);
+ void visitIntToPtrInst(IntToPtrInst &I);
+ void visitPtrToIntInst(PtrToIntInst &I);
+ void visitBitCastInst(BitCastInst &I);
void visitPHINode(PHINode &PN);
void visitBinaryOperator(BinaryOperator &B);
void visitICmpInst(ICmpInst &IC);
@@ -467,6 +479,169 @@
Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}
+void Verifier::visitTruncInst(TruncInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isIntegral(), "Trunc only operates on integer", &I);
+ Assert1(DestTy->isIntegral(),"Trunc only produces integral", &I);
+ Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitZExtInst(ZExtInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isIntegral(),"ZExt only operates on integral", &I);
+ Assert1(DestTy->isInteger(),"ZExt only produces an integer", &I);
+ Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitSExtInst(SExtInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isIntegral(),"SExt only operates on integral", &I);
+ Assert1(DestTy->isInteger(),"SExt only produces an integer", &I);
+ Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPTruncInst(FPTruncInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
+ Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
+ Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPExtInst(FPExtInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
+ Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
+ Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitUIToFPInst(UIToFPInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ Assert1(SrcTy->isIntegral(),"UInt2FP source must be integral", &I);
+ Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitSIToFPInst(SIToFPInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ Assert1(SrcTy->isIntegral(),"SInt2FP source must be integral", &I);
+ Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPToUIInst(FPToUIInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I);
+ Assert1(DestTy->isIntegral(),"FP2UInt result must be integral", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPToSIInst(FPToSIInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I);
+ Assert1(DestTy->isIntegral(),"FP2ToI result must be integral", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
+ Assert1(DestTy->isIntegral(), "PtrToInt result must be integral", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ Assert1(SrcTy->isIntegral(), "IntToPtr source must be an integral", &I);
+ Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitBitCastInst(BitCastInst &I) {
+ // Get the source and destination types
+ const Type *SrcTy = I.getOperand(0)->getType();
+ const Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+ // BitCast implies a no-op cast of type only. No bits change.
+ // However, you can't cast pointers to anything but pointers.
+ Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
+ "Bitcast requires both operands to be pointer or neither", &I);
+ Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
+
+ visitInstruction(I);
+}
+
/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
More information about the llvm-commits
mailing list