[llvm-commits] [SignlessTypes] CVS: llvm/lib/Transforms/Scalar/InstructionCombining.cpp

Reid Spencer reid at x10sys.com
Wed Oct 25 18:58:37 PDT 2006



Changes in directory llvm/lib/Transforms/Scalar:

InstructionCombining.cpp updated: 1.520.2.9 -> 1.520.2.10
---
Log message:

Round 2 of DIV updates. 


---
Diffs of the changes:  (+185 -165)

 InstructionCombining.cpp |  350 ++++++++++++++++++++++++-----------------------
 1 files changed, 185 insertions(+), 165 deletions(-)


Index: llvm/lib/Transforms/Scalar/InstructionCombining.cpp
diff -u llvm/lib/Transforms/Scalar/InstructionCombining.cpp:1.520.2.9 llvm/lib/Transforms/Scalar/InstructionCombining.cpp:1.520.2.10
--- llvm/lib/Transforms/Scalar/InstructionCombining.cpp:1.520.2.9	Mon Oct 23 13:13:27 2006
+++ llvm/lib/Transforms/Scalar/InstructionCombining.cpp	Wed Oct 25 20:58:05 2006
@@ -1987,7 +1987,7 @@
       // 0 - (X sdiv C)  -> (X sdiv -C)
       if (Op1I->getOpcode() == Instruction::SDiv)
         if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
-          if (CSI->getType()->isSigned() && CSI->isNullValue())
+          if (CSI->isNullValue())
             if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
               return BinaryOperator::createSDiv(Op1I->getOperand(0),
                                                ConstantExpr::getNeg(DivRHS));
@@ -2169,53 +2169,21 @@
 Instruction* InstCombiner::commonDivTransforms(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  if (isa<UndefValue>(Op0))              // undef / X -> 0
+  // undef / X -> 0
+  if (isa<UndefValue>(Op0))
     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-  if (isa<UndefValue>(Op1))
-    return ReplaceInstUsesWith(I, Op1);  // X / undef -> undef
-  return 0;
-}
-
-Instruction* InstCombiner::commonIDivTransforms(BinaryOperator &I) {
-  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
-  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
-    // div X, 1 == X
-    if (RHS->equalsInt(1))
-      return ReplaceInstUsesWith(I, Op0);
-
-    // div X, -1 == -X
-    if (RHS->isAllOnesValue())
-      return BinaryOperator::createNeg(Op0);
-
-    // (X / C1) / C2  -> X / (C1*C2)
-    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
-      if (LHS->getOpcode() == Instruction::SDiv || 
-          LHS->getOpcode()==Instruction::UDiv ||
-          LHS->getOpcode()==Instruction::FDiv)
-        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
-          return BinaryOperator::create(
-            Instruction::BinaryOps(LHS->getOpcode()), LHS->getOperand(0),
-                                          ConstantExpr::getMul(RHS, LHSRHS));
-        }
 
-    if (!RHS->isNullValue()) { // avoid X udiv 0
-      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
-        if (Instruction *R = FoldOpIntoSelect(I, SI, this))
-          return R;
-      if (isa<PHINode>(Op0))
-        if (Instruction *NV = FoldOpIntoPhi(I))
-          return NV;
-    }
-  }
+  // X / undef -> undef
+  if (isa<UndefValue>(Op1))
+    return ReplaceInstUsesWith(I, Op1);
 
-  // Handle div X, Cond?Y:Z
+  // Handle cases involving: div X, (select Cond, Y, Z)
   if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
     // div X, (Cond ? 0 : Y) -> div X, Y.  If the div and the select are in the
-    // same basic block, then we replace the select with Y, and the condition of
-    // the select with false (if the cond value is in the same BB).  If the
+    // same basic block, then we replace the select with Y, and the condition 
+    // of the select with false (if the cond value is in the same BB).  If the
     // select has uses other than the div, this allows them to be simplified
-    // also.
+    // also. Note that div X, Y is just as good as div X, 0 (undef)
     if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
       if (ST->isNullValue()) {
         Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
@@ -2227,6 +2195,7 @@
           UpdateValueUsesWith(SI, SI->getOperand(2));
         return &I;
       }
+
     // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
     if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
       if (ST->isNullValue()) {
@@ -2239,28 +2208,38 @@
           UpdateValueUsesWith(SI, SI->getOperand(1));
         return &I;
       }
+  }
 
-    // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
-    // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
-    if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
-      if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) 
-        if (STO->getType()->isUnsigned() && SFO->getType()->isUnsigned()) {
-          // STO == 0 and SFO == 0 handled above.
-          uint64_t TVA = STO->getZExtValue(), FVA = SFO->getZExtValue();
-          if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
-            unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
-            Constant *TC = ConstantInt::get(Type::UByteTy, TSA);
-            Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
-                                             TC, SI->getName()+".t");
-            TSI = InsertNewInstBefore(TSI, I);
-
-            Constant *FC = ConstantInt::get(Type::UByteTy, FSA);
-            Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
-                                             FC, SI->getName()+".f");
-            FSI = InsertNewInstBefore(FSI, I);
-            return new SelectInst(SI->getOperand(0), TSI, FSI);
-          }
+  return 0;
+}
+
+Instruction* InstCombiner::commonIDivTransforms(BinaryOperator &I) {
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  if (Instruction *Common = commonDivTransforms(I))
+    return Common;
+
+  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+    // div X, 1 == X
+    if (RHS->equalsInt(1))
+      return ReplaceInstUsesWith(I, Op0);
+
+    // (X / C1) / C2  -> X / (C1*C2)
+    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
+      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
+        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
+          return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
+                                        ConstantExpr::getMul(RHS, LHSRHS));
         }
+
+    if (!RHS->isNullValue()) { // avoid X udiv 0
+      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+        if (Instruction *R = FoldOpIntoSelect(I, SI, this))
+          return R;
+      if (isa<PHINode>(Op0))
+        if (Instruction *NV = FoldOpIntoPhi(I))
+          return NV;
+    }
   }
 
   // 0 / X == 0, we don't need to preserve faults!
@@ -2274,60 +2253,107 @@
 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  Instruction* common = commonDivTransforms(I);
-  if (common)
-    return common;
-
-  common = commonIDivTransforms(I);
-  if (common)
-    return common;
+  // Handle the integer div common cases
+  if (Instruction *Common = commonIDivTransforms(I))
+    return Common;
 
+  // X udiv C^2 -> X >> C
   // Check to see if this is an unsigned division with an exact power of 2,
   // if so, convert to a right shift.
-  // X udiv C^2 -> X >> C
   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
     if (uint64_t Val = C->getZExtValue())    // Don't break X / 0
       if (isPowerOf2_64(Val)) {
-        uint64_t C = Log2_64(Val);
-        return new ShiftInst(Instruction::Shr, Op0,
-                             ConstantInt::get(Type::UByteTy, C));
+        uint64_t ShiftAmt = Log2_64(Val);
+        Value* X = Op0;
+        const Type* XTy = X->getType();
+        bool isSigned = XTy->isSigned();
+        if (isSigned)
+          X = InsertNewInstBefore(
+            new CastInst(X, XTy->getUnsignedVersion(),"tmp"), I);
+        Instruction* Result = 
+          new ShiftInst(Instruction::Shr, X, 
+                        ConstantInt::get(Type::UByteTy, ShiftAmt));
+        if (!isSigned)
+          return Result;
+        InsertNewInstBefore(Result, I);
+        return new CastInst(Result, XTy->getSignedVersion(), I.getName());
       }
   }
 
-  if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
-    // Turn A / (C1 << N), where C1 is "1<<C2" into A >> (N+C2) [udiv only].
+  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
+  if (ShiftInst *RHSI = dyn_cast<ShiftInst>(I.getOperand(1))) {
     if (RHSI->getOpcode() == Instruction::Shl &&
-        isa<ConstantInt>(RHSI->getOperand(0)) &&
-        RHSI->getOperand(0)->getType()->isUnsigned()) {
+        isa<ConstantInt>(RHSI->getOperand(0))) {
       uint64_t C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue();
       if (isPowerOf2_64(C1)) {
-        uint64_t C2 = Log2_64(C1);
-        Value *Add = RHSI->getOperand(1);
-        if (C2) {
-          Constant *C2V = ConstantInt::get(Add->getType(), C2);
-          Add = InsertNewInstBefore(BinaryOperator::createAdd(Add, C2V,
-                                                              "tmp"), I);
+        Value *N = RHSI->getOperand(1);
+        const Type* NTy = N->getType();
+        bool isSigned = NTy->isSigned();
+        if (uint64_t C2 = Log2_64(C1)) {
+          if (isSigned) {
+            NTy = NTy->getUnsignedVersion();
+            N = InsertNewInstBefore(new CastInst(N, NTy, "tmp"), I);
+          }
+          Constant *C2V = ConstantInt::get(NTy, C2);
+          N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
         }
-        return new ShiftInst(Instruction::Shr, Op0, Add);
+        Instruction* Result = new ShiftInst(Instruction::Shr, Op0, N);
+        if (!isSigned)
+          return Result;
+        InsertNewInstBefore(Result, I);
+        return new CastInst(Result, NTy->getSignedVersion(), I.getName());
       }
     }
   }
   
+  // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
+  // where C1&C2 are powers of two.
+  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
+    if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
+      if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) 
+        if (STO->getType()->isUnsigned() &&  SFO->getType()->isUnsigned())
+          if (!STO->isNullValue() && !STO->isNullValue()) {
+            uint64_t TVA = STO->getZExtValue(), FVA = SFO->getZExtValue();
+            if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
+              // Compute the shift amounts
+              unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
+              // Make sure we get the unsigned version of X
+              Value* X = Op0;
+              if (X->getType()->isSigned())
+                X = InsertNewInstBefore(
+                  new CastInst(X, X->getType()->getUnsignedVersion()), I);
+              // Construct the "on true" case of the select
+              Constant *TC = ConstantInt::get(Type::UByteTy, TSA);
+              Instruction *TSI = 
+                new ShiftInst(Instruction::Shr, X, TC, SI->getName()+".t");
+              TSI = InsertNewInstBefore(TSI, I);
+      
+              // Construct the "on false" case of the select
+              Constant *FC = ConstantInt::get(Type::UByteTy, FSA); 
+              Instruction *FSI = 
+                new ShiftInst(Instruction::Shr, X, FC, SI->getName()+".f");
+              FSI = InsertNewInstBefore(FSI, I);
+
+              // Finally, construct the select instruction and return it.
+              return new SelectInst(SI->getOperand(0), TSI, FSI);
+            }
+          }
+  }
   return 0;
 }
 
 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  Instruction* common = commonDivTransforms(I);
-  if (common)
-    return common;
-
-  common = commonIDivTransforms(I);
-  if (common)
-    return common;
+  // Handle the integer div common cases
+  if (Instruction *Common = commonIDivTransforms(I))
+    return Common;
 
   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+    // sdiv X, -1 == -X
+    if (RHS->isAllOnesValue())
+      return BinaryOperator::createNeg(Op0);
+
     // -X/C -> X/-C
     if (Value *LHSNeg = dyn_castNegVal(Op0))
       return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
@@ -2337,17 +2363,7 @@
   // unsigned inputs), turn this into a udiv.
   uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
   if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
-    const Type *NTy = Op0->getType()->getUnsignedVersion();
-    Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
-    InsertNewInstBefore(LHS, I);
-    Value *RHS;
-    if (Constant *R = dyn_cast<Constant>(Op1))
-      RHS = ConstantExpr::getCast(R, NTy);
-    else
-      RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
-    Instruction *Div = BinaryOperator::createUDiv(LHS, RHS, I.getName());
-    InsertNewInstBefore(Div, I);
-    return new CastInst(Div, I.getType());
+    return BinaryOperator::createUDiv(Op0, Op1, I.getName());
   }      
   
   return 0;
@@ -2356,44 +2372,7 @@
 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 
-  Instruction* common = commonDivTransforms(I);
-  if (common)
-    return common;
-
-  // Handle div X, Cond?Y:Z
-  if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
-    // div X, (Cond ? 0 : Y) -> div X, Y.  If the div and the select are in the
-    // same basic block, then we replace the select with Y, and the condition of
-    // the select with false (if the cond value is in the same BB).  If the
-    // select has uses other than the div, this allows them to be simplified
-    // also.
-    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
-      if (ST->isNullValue()) {
-        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
-        if (CondI && CondI->getParent() == I.getParent())
-          UpdateValueUsesWith(CondI, ConstantBool::getFalse());
-        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
-          I.setOperand(1, SI->getOperand(2));
-        else
-          UpdateValueUsesWith(SI, SI->getOperand(2));
-        return &I;
-      }
-
-    // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
-    if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
-      if (ST->isNullValue()) {
-        Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
-        if (CondI && CondI->getParent() == I.getParent())
-          UpdateValueUsesWith(CondI, ConstantBool::getTrue());
-        else if (I.getParent() != SI->getParent() || SI->hasOneUse())
-          I.setOperand(1, SI->getOperand(1));
-        else
-          UpdateValueUsesWith(SI, SI->getOperand(1));
-        return &I;
-      }
-  }
-
-  return 0;
+  return commonDivTransforms(I);
 }
 
 /// GetFactor - If we can prove that the specified value is at least a multiple
@@ -3887,16 +3866,6 @@
   return Changed ? &I : 0;
 }
 
-/// MulWithOverflow - Compute Result = In1*In2, returning true if the result
-/// overflowed for this type.
-static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
-                            ConstantInt *In2) {
-  Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
-  return !In2->isNullValue() && (In2->getType()->isSigned() ? 
-     ConstantExpr::getSDiv(Result, In2) :
-     ConstantExpr::getUDiv(Result, In2)) != In1;
-}
-
 static bool isPositive(ConstantInt *C) {
   return C->getSExtValue() >= 0;
 }
@@ -4298,7 +4267,9 @@
       }
     }
           
-    
+    // Since the RHS is a constantInt (CI), if the left hand side is an 
+    // instruction, see if that instruction also has constants so that the 
+    // instruction can be folded into the setcc
     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
       switch (LHSI->getOpcode()) {
       case Instruction::And:
@@ -4553,26 +4524,57 @@
 
       case Instruction::SDiv:
       case Instruction::UDiv:
-        // Fold: (div X, C1) op C2 -> range check
+        // Fold: setcc ([us]div X, C1), C2 -> range test
+        // Fold this div into the comparison, producing a range check. 
+        // Determine, based on the divide type, what the range is being 
+        // checked.  If there is an overflow on the low or high side, remember 
+        // it, otherwise compute the range [low, hi) bounding the new value.
+        // See: InsertRangeTest above for the kinds of replacements possible.
         if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
-          // Fold this div into the comparison, producing a range check.
-          // Determine, based on the divide type, what the range is being
-          // checked.  If there is an overflow on the low or high side, remember
-          // it, otherwise compute the range [low, hi) bounding the new value.
-          bool LoOverflow = false, HiOverflow = 0;
+          // FIXME: If the operand types don't match the type of the divide 
+          // then don't attempt this transform. The code below doesn't have the
+          // logic to deal with a signed divide and an unsigned compare (and
+          // vice versa). This is because (x /s C1) <s C2  produces different 
+          // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
+          // (x /u C1) <u C2.  Simply casting the operands and result won't 
+          // work. :(  The if statement below tests that condition and bails 
+          // if it finds it. 
+          const Type* DivRHSTy = DivRHS->getType();
+          unsigned DivOpCode = LHSI->getOpcode();
+          if ((DivOpCode == Instruction::SDiv && DivRHSTy->isUnsigned()) ||
+              (DivOpCode == Instruction::UDiv && DivRHSTy->isSigned()))
+            break;
+
+          // Initialize the variables that will indicate the nature of the
+          // range check.
+          bool LoOverflow = false, HiOverflow = false;
           ConstantInt *LoBound = 0, *HiBound = 0;
 
-          ConstantInt *Prod;
-          bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
+          // Compute Prod = CI * DivRHS. We are essentially solving an equation
+          // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 
+          // C2 (CI). By solving for X we can turn this into a range check 
+          // instead of computing a divide. 
+          ConstantInt *Prod = 
+            cast<ConstantInt>(ConstantExpr::getMul(CI, DivRHS));
+
+          // Determine if the product overflows by seeing if the product is
+          // not equal to the divide. Make sure we do the same kind of divide
+          // as in the LHS instruction that we're folding. 
+          bool ProdOV = !DivRHS->isNullValue() && 
+            (DivOpCode == Instruction::SDiv ?  
+             ConstantExpr::getSDiv(Prod, DivRHS) :
+              ConstantExpr::getUDiv(Prod, DivRHS)) != CI;
 
+          // Get the SetCC opcode
           Instruction::BinaryOps Opcode = I.getOpcode();
 
-          if (DivRHS->isNullValue()) {  // Don't hack on divide by zeros.
-          } else if (LHSI->getType()->isUnsigned()) {  // udiv
+          if (DivRHS->isNullValue()) {  
+            // Don't hack on divide by zeros!
+          } else if (DivOpCode == Instruction::UDiv) {  // udiv
             LoBound = Prod;
             LoOverflow = ProdOV;
             HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
-          } else if (isPositive(DivRHS)) {             // Divisor is > 0.
+          } else if (isPositive(DivRHS)) { // Divisor is > 0.
             if (CI->isNullValue()) {       // (X / pos) op 0
               // Can't overflow.
               LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
@@ -4588,12 +4590,12 @@
               HiBound = Prod;
               HiOverflow = ProdOV;
             }
-          } else {                                     // Divisor is < 0.
+          } else {                         // Divisor is < 0.
             if (CI->isNullValue()) {       // (X / neg) op 0
               LoBound = AddOne(DivRHS);
               HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
               if (HiBound == DivRHS)
-                LoBound = 0;  // - INTMIN = INTMIN
+                LoBound = 0;               // - INTMIN = INTMIN
             } else if (isPositive(CI)) {   // (X / neg) op pos
               HiOverflow = LoOverflow = ProdOV;
               if (!LoOverflow)
@@ -5790,7 +5792,8 @@
             unsigned SrcBitSize = Src->getType()->getPrimitiveSizeInBits();
             unsigned DestBitSize = CI.getType()->getPrimitiveSizeInBits();
             assert(SrcBitSize < DestBitSize && "Not a zext?");
-            Constant *C = ConstantInt::get(Type::ULongTy, (1 << SrcBitSize)-1);
+            Constant *C = 
+              ConstantInt::get(Type::ULongTy, (1ULL << SrcBitSize)-1);
             C = ConstantExpr::getCast(C, CI.getType());
             return BinaryOperator::createAnd(Res, C);
           }
@@ -5838,6 +5841,23 @@
                                            ConstantInt::get(CI.getType(), 1));
         }
         break;
+      case Instruction::SDiv:
+      case Instruction::UDiv:
+        // If we are just changing the sign, rewrite.
+        if (DestBitSize == SrcBitSize) {
+          // Don't insert two casts if they cannot be eliminated.  We allow two
+          // casts to be inserted if the sizes are the same.  This could only be
+          // converting signedness, which is a noop.
+          if (!ValueRequiresCast(Op1, DestTy,TD) || 
+              !ValueRequiresCast(Op0, DestTy, TD)) {
+            Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
+            Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
+            return BinaryOperator::create(
+              cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
+          }
+        }
+        break;
+
       case Instruction::Shl:
         // Allow changing the sign of the source operand.  Do not allow changing
         // the size of the shift, UNLESS the shift amount is a constant.  We






More information about the llvm-commits mailing list