[llvm-commits] CVS: llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp ScheduleDAG.cpp SelectionDAGISel.cpp

Evan Cheng evan.cheng at apple.com
Fri Jan 20 18:32:19 PST 2006



Changes in directory llvm/lib/CodeGen/SelectionDAG:

ScheduleDAGSimple.cpp added (r1.1)
ScheduleDAG.cpp updated: 1.55 -> 1.56
SelectionDAGISel.cpp updated: 1.129 -> 1.130
---
Log message:

Do some code refactoring on Jim's scheduler in preparation of the new list
scheduler.


---
Diffs of the changes:  (+933 -1131)

 ScheduleDAG.cpp       | 1151 +-------------------------------------------------
 ScheduleDAGSimple.cpp |  891 ++++++++++++++++++++++++++++++++++++++
 SelectionDAGISel.cpp  |   22 
 3 files changed, 933 insertions(+), 1131 deletions(-)


Index: llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp
diff -c /dev/null llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp:1.1
*** /dev/null	Fri Jan 20 20:32:16 2006
--- llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp	Fri Jan 20 20:32:06 2006
***************
*** 0 ****
--- 1,891 ----
+ //===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
+ //
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by James M. Laskey and is distributed under the
+ // University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This implements a simple two pass scheduler.  The first pass attempts to push
+ // backward any lengthy instructions and critical paths.  The second pass packs
+ // instructions into semi-optimal time slots.
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #define DEBUG_TYPE "sched"
+ #include "llvm/CodeGen/ScheduleDAG.h"
+ #include "llvm/CodeGen/SelectionDAG.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Target/TargetInstrInfo.h"
+ #include "llvm/Support/CommandLine.h"
+ #include "llvm/Support/Debug.h"
+ #include <iostream>
+ #include <ios>
+ #include <algorithm>
+ using namespace llvm;
+ 
+ namespace {
+   // Style of scheduling to use.
+   enum ScheduleChoices {
+     noScheduling,
+     simpleScheduling,
+     simpleNoItinScheduling
+   };
+ } // namespace
+ 
+ cl::opt<ScheduleChoices> ScheduleStyle("sched",
+   cl::desc("Choose scheduling style"),
+   cl::init(noScheduling),
+   cl::values(
+     clEnumValN(noScheduling, "none",
+               "Trivial emission with no analysis"),
+     clEnumValN(simpleScheduling, "simple",
+               "Minimize critical path and maximize processor utilization"),
+     clEnumValN(simpleNoItinScheduling, "simple-noitin",
+               "Same as simple except using generic latency"),
+    clEnumValEnd));
+ 
+ 
+ namespace {
+ //===----------------------------------------------------------------------===//
+ ///
+ /// BitsIterator - Provides iteration through individual bits in a bit vector.
+ ///
+ template<class T>
+ class BitsIterator {
+ private:
+   T Bits;                               // Bits left to iterate through
+ 
+ public:
+   /// Ctor.
+   BitsIterator(T Initial) : Bits(Initial) {}
+   
+   /// Next - Returns the next bit set or zero if exhausted.
+   inline T Next() {
+     // Get the rightmost bit set
+     T Result = Bits & -Bits;
+     // Remove from rest
+     Bits &= ~Result;
+     // Return single bit or zero
+     return Result;
+   }
+ };
+   
+ //===----------------------------------------------------------------------===//
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ ///
+ /// ResourceTally - Manages the use of resources over time intervals.  Each
+ /// item (slot) in the tally vector represents the resources used at a given
+ /// moment.  A bit set to 1 indicates that a resource is in use, otherwise
+ /// available.  An assumption is made that the tally is large enough to schedule 
+ /// all current instructions (asserts otherwise.)
+ ///
+ template<class T>
+ class ResourceTally {
+ private:
+   std::vector<T> Tally;                 // Resources used per slot
+   typedef typename std::vector<T>::iterator Iter;
+                                         // Tally iterator 
+   
+   /// SlotsAvailable - Returns true if all units are available.
+ 	///
+   bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
+                                               unsigned &Resource) {
+     assert(N && "Must check availability with N != 0");
+     // Determine end of interval
+     Iter End = Begin + N;
+     assert(End <= Tally.end() && "Tally is not large enough for schedule");
+     
+     // Iterate thru each resource
+     BitsIterator<T> Resources(ResourceSet & ~*Begin);
+     while (unsigned Res = Resources.Next()) {
+       // Check if resource is available for next N slots
+       Iter Interval = End;
+       do {
+         Interval--;
+         if (*Interval & Res) break;
+       } while (Interval != Begin);
+       
+       // If available for N
+       if (Interval == Begin) {
+         // Success
+         Resource = Res;
+         return true;
+       }
+     }
+     
+     // No luck
+     Resource = 0;
+     return false;
+   }
+ 	
+ 	/// RetrySlot - Finds a good candidate slot to retry search.
+   Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
+     assert(N && "Must check availability with N != 0");
+     // Determine end of interval
+     Iter End = Begin + N;
+     assert(End <= Tally.end() && "Tally is not large enough for schedule");
+ 		
+ 		while (Begin != End--) {
+ 			// Clear units in use
+ 			ResourceSet &= ~*End;
+ 			// If no units left then we should go no further 
+ 			if (!ResourceSet) return End + 1;
+ 		}
+ 		// Made it all the way through
+ 		return Begin;
+ 	}
+   
+   /// FindAndReserveStages - Return true if the stages can be completed. If
+   /// so mark as busy.
+   bool FindAndReserveStages(Iter Begin,
+                             InstrStage *Stage, InstrStage *StageEnd) {
+     // If at last stage then we're done
+     if (Stage == StageEnd) return true;
+     // Get number of cycles for current stage
+     unsigned N = Stage->Cycles;
+     // Check to see if N slots are available, if not fail
+     unsigned Resource;
+     if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
+     // Check to see if remaining stages are available, if not fail
+     if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
+     // Reserve resource
+     Reserve(Begin, N, Resource);
+     // Success
+     return true;
+   }
+ 
+   /// Reserve - Mark busy (set) the specified N slots.
+   void Reserve(Iter Begin, unsigned N, unsigned Resource) {
+     // Determine end of interval
+     Iter End = Begin + N;
+     assert(End <= Tally.end() && "Tally is not large enough for schedule");
+  
+     // Set resource bit in each slot
+     for (; Begin < End; Begin++)
+       *Begin |= Resource;
+   }
+ 
+   /// FindSlots - Starting from Begin, locate consecutive slots where all stages
+   /// can be completed.  Returns the address of first slot.
+   Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
+     // Track position      
+     Iter Cursor = Begin;
+     
+     // Try all possible slots forward
+     while (true) {
+       // Try at cursor, if successful return position.
+       if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
+       // Locate a better position
+ 			Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
+     }
+   }
+   
+ public:
+   /// Initialize - Resize and zero the tally to the specified number of time
+   /// slots.
+   inline void Initialize(unsigned N) {
+     Tally.assign(N, 0);   // Initialize tally to all zeros.
+   }
+ 
+   // FindAndReserve - Locate an ideal slot for the specified stages and mark
+   // as busy.
+   unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
+                                          InstrStage *StageEnd) {
+ 		// Where to begin 
+ 		Iter Begin = Tally.begin() + Slot;
+ 		// Find a free slot
+ 		Iter Where = FindSlots(Begin, StageBegin, StageEnd);
+ 		// Distance is slot number
+ 		unsigned Final = Where - Tally.begin();
+     return Final;
+   }
+ 
+ };
+ 
+ //===----------------------------------------------------------------------===//
+ ///
+ /// ScheduleDAGSimple - Simple two pass scheduler.
+ ///
+ class ScheduleDAGSimple : public ScheduleDAG {
+ private:
+   unsigned NodeCount;                   // Number of nodes in DAG
+   bool HasGroups;                       // True if there are any groups
+   NodeInfo *Info;                       // Info for nodes being scheduled
+   NIVector Ordering;                    // Emit ordering of nodes
+   ResourceTally<unsigned> Tally;        // Resource usage tally
+   unsigned NSlots;                      // Total latency
+   static const unsigned NotFound = ~0U; // Search marker
+   
+ public:
+ 
+   // Ctor.
+   ScheduleDAGSimple(SelectionDAG &dag, MachineBasicBlock *bb,
+                     const TargetMachine &tm)
+     : ScheduleDAG(dag, bb, tm),
+       NodeCount(0), HasGroups(false), Info(NULL), Tally(), NSlots(0) {
+     assert(&TII && "Target doesn't provide instr info?");
+     assert(&MRI && "Target doesn't provide register info?");
+   }
+ 
+   virtual ~ScheduleDAGSimple() {};
+ 
+ private:
+   static bool isFlagDefiner(SDNode *A);
+   static bool isFlagUser(SDNode *A);
+   static bool isDefiner(NodeInfo *A, NodeInfo *B);
+   static bool isPassiveNode(SDNode *Node);
+   void IncludeNode(NodeInfo *NI);
+   void VisitAll();
+   void Schedule();
+   void IdentifyGroups();
+   void GatherSchedulingInfo();
+   void FakeGroupDominators(); 
+   void PrepareNodeInfo();
+   bool isStrongDependency(NodeInfo *A, NodeInfo *B);
+   bool isWeakDependency(NodeInfo *A, NodeInfo *B);
+   void ScheduleBackward();
+   void ScheduleForward();
+   void EmitAll();
+ 
+   void printChanges(unsigned Index);
+   void printSI(std::ostream &O, NodeInfo *NI) const;
+   void print(std::ostream &O) const;
+ };
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ /// Special case itineraries.
+ ///
+ enum {
+   CallLatency = 40,          // To push calls back in time
+ 
+   RSInteger   = 0xC0000000,  // Two integer units
+   RSFloat     = 0x30000000,  // Two float units
+   RSLoadStore = 0x0C000000,  // Two load store units
+   RSBranch    = 0x02000000   // One branch unit
+ };
+ static InstrStage CallStage  = { CallLatency, RSBranch };
+ static InstrStage LoadStage  = { 5, RSLoadStore };
+ static InstrStage StoreStage = { 2, RSLoadStore };
+ static InstrStage IntStage   = { 2, RSInteger };
+ static InstrStage FloatStage = { 3, RSFloat };
+ //===----------------------------------------------------------------------===//
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ 
+ } // namespace
+ 
+ //===----------------------------------------------------------------------===//
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ /// Add - Adds a definer and user pair to a node group.
+ ///
+ void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
+   // Get current groups
+   NodeGroup *DGroup = D->Group;
+   NodeGroup *UGroup = U->Group;
+   // If both are members of groups
+   if (DGroup && UGroup) {
+     // There may have been another edge connecting 
+     if (DGroup == UGroup) return;
+     // Add the pending users count
+     DGroup->addPending(UGroup->getPending());
+     // For each member of the users group
+     NodeGroupIterator UNGI(U);
+     while (NodeInfo *UNI = UNGI.next() ) {
+       // Change the group
+       UNI->Group = DGroup;
+       // For each member of the definers group
+       NodeGroupIterator DNGI(D);
+       while (NodeInfo *DNI = DNGI.next() ) {
+         // Remove internal edges
+         DGroup->addPending(-CountInternalUses(DNI, UNI));
+       }
+     }
+     // Merge the two lists
+     DGroup->group_insert(DGroup->group_end(),
+                          UGroup->group_begin(), UGroup->group_end());
+   } else if (DGroup) {
+     // Make user member of definers group
+     U->Group = DGroup;
+     // Add users uses to definers group pending
+     DGroup->addPending(U->Node->use_size());
+     // For each member of the definers group
+     NodeGroupIterator DNGI(D);
+     while (NodeInfo *DNI = DNGI.next() ) {
+       // Remove internal edges
+       DGroup->addPending(-CountInternalUses(DNI, U));
+     }
+     DGroup->group_push_back(U);
+   } else if (UGroup) {
+     // Make definer member of users group
+     D->Group = UGroup;
+     // Add definers uses to users group pending
+     UGroup->addPending(D->Node->use_size());
+     // For each member of the users group
+     NodeGroupIterator UNGI(U);
+     while (NodeInfo *UNI = UNGI.next() ) {
+       // Remove internal edges
+       UGroup->addPending(-CountInternalUses(D, UNI));
+     }
+     UGroup->group_insert(UGroup->group_begin(), D);
+   } else {
+     D->Group = U->Group = DGroup = new NodeGroup();
+     DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
+                        CountInternalUses(D, U));
+     DGroup->group_push_back(D);
+     DGroup->group_push_back(U);
+   }
+ }
+ 
+ /// CountInternalUses - Returns the number of edges between the two nodes.
+ ///
+ unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
+   unsigned N = 0;
+   for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
+     SDOperand Op = U->Node->getOperand(M);
+     if (Op.Val == D->Node) N++;
+   }
+ 
+   return N;
+ }
+ //===----------------------------------------------------------------------===//
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ /// isFlagDefiner - Returns true if the node defines a flag result.
+ bool ScheduleDAGSimple::isFlagDefiner(SDNode *A) {
+   unsigned N = A->getNumValues();
+   return N && A->getValueType(N - 1) == MVT::Flag;
+ }
+ 
+ /// isFlagUser - Returns true if the node uses a flag result.
+ ///
+ bool ScheduleDAGSimple::isFlagUser(SDNode *A) {
+   unsigned N = A->getNumOperands();
+   return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
+ }
+ 
+ /// isDefiner - Return true if node A is a definer for B.
+ ///
+ bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
+   // While there are A nodes
+   NodeGroupIterator NII(A);
+   while (NodeInfo *NI = NII.next()) {
+     // Extract node
+     SDNode *Node = NI->Node;
+     // While there operands in nodes of B
+     NodeGroupOpIterator NGOI(B);
+     while (!NGOI.isEnd()) {
+       SDOperand Op = NGOI.next();
+       // If node from A defines a node in B
+       if (Node == Op.Val) return true;
+     }
+   }
+   return false;
+ }
+ 
+ /// isPassiveNode - Return true if the node is a non-scheduled leaf.
+ ///
+ bool ScheduleDAGSimple::isPassiveNode(SDNode *Node) {
+   if (isa<ConstantSDNode>(Node))       return true;
+   if (isa<RegisterSDNode>(Node))       return true;
+   if (isa<GlobalAddressSDNode>(Node))  return true;
+   if (isa<BasicBlockSDNode>(Node))     return true;
+   if (isa<FrameIndexSDNode>(Node))     return true;
+   if (isa<ConstantPoolSDNode>(Node))   return true;
+   if (isa<ExternalSymbolSDNode>(Node)) return true;
+   return false;
+ }
+ 
+ /// IncludeNode - Add node to NodeInfo vector.
+ ///
+ void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
+   // Get node
+   SDNode *Node = NI->Node;
+   // Ignore entry node
+   if (Node->getOpcode() == ISD::EntryToken) return;
+   // Check current count for node
+   int Count = NI->getPending();
+   // If the node is already in list
+   if (Count < 0) return;
+   // Decrement count to indicate a visit
+   Count--;
+   // If count has gone to zero then add node to list
+   if (!Count) {
+     // Add node
+     if (NI->isInGroup()) {
+       Ordering.push_back(NI->Group->getDominator());
+     } else {
+       Ordering.push_back(NI);
+     }
+     // indicate node has been added
+     Count--;
+   }
+   // Mark as visited with new count 
+   NI->setPending(Count);
+ }
+ 
+ /// VisitAll - Visit each node breadth-wise to produce an initial ordering.
+ /// Note that the ordering in the Nodes vector is reversed.
+ void ScheduleDAGSimple::VisitAll() {
+   // Add first element to list
+   NodeInfo *NI = getNI(DAG.getRoot().Val);
+   if (NI->isInGroup()) {
+     Ordering.push_back(NI->Group->getDominator());
+   } else {
+     Ordering.push_back(NI);
+   }
+ 
+   // Iterate through all nodes that have been added
+   for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
+     // Visit all operands
+     NodeGroupOpIterator NGI(Ordering[i]);
+     while (!NGI.isEnd()) {
+       // Get next operand
+       SDOperand Op = NGI.next();
+       // Get node
+       SDNode *Node = Op.Val;
+       // Ignore passive nodes
+       if (isPassiveNode(Node)) continue;
+       // Check out node
+       IncludeNode(getNI(Node));
+     }
+   }
+ 
+   // Add entry node last (IncludeNode filters entry nodes)
+   if (DAG.getEntryNode().Val != DAG.getRoot().Val)
+     Ordering.push_back(getNI(DAG.getEntryNode().Val));
+     
+   // Reverse the order
+   std::reverse(Ordering.begin(), Ordering.end());
+ }
+ 
+ /// IdentifyGroups - Put flagged nodes into groups.
+ ///
+ void ScheduleDAGSimple::IdentifyGroups() {
+   for (unsigned i = 0, N = NodeCount; i < N; i++) {
+     NodeInfo* NI = &Info[i];
+     SDNode *Node = NI->Node;
+ 
+     // For each operand (in reverse to only look at flags)
+     for (unsigned N = Node->getNumOperands(); 0 < N--;) {
+       // Get operand
+       SDOperand Op = Node->getOperand(N);
+       // No more flags to walk
+       if (Op.getValueType() != MVT::Flag) break;
+       // Add to node group
+       NodeGroup::Add(getNI(Op.Val), NI);
+       // Let evryone else know
+       HasGroups = true;
+     }
+   }
+ }
+ 
+ /// GatherSchedulingInfo - Get latency and resource information about each node.
+ ///
+ void ScheduleDAGSimple::GatherSchedulingInfo() {
+   // Get instruction itineraries for the target
+   const InstrItineraryData InstrItins = TM.getInstrItineraryData();
+   
+   // For each node
+   for (unsigned i = 0, N = NodeCount; i < N; i++) {
+     // Get node info
+     NodeInfo* NI = &Info[i];
+     SDNode *Node = NI->Node;
+     
+     // If there are itineraries and it is a machine instruction
+     if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
+       // If machine opcode
+       if (Node->isTargetOpcode()) {
+         // Get return type to guess which processing unit 
+         MVT::ValueType VT = Node->getValueType(0);
+         // Get machine opcode
+         MachineOpCode TOpc = Node->getTargetOpcode();
+         NI->IsCall = TII->isCall(TOpc);
+         NI->IsLoad = TII->isLoad(TOpc);
+         NI->IsStore = TII->isStore(TOpc);
+ 
+         if (TII->isLoad(TOpc))             NI->StageBegin = &LoadStage;
+         else if (TII->isStore(TOpc))       NI->StageBegin = &StoreStage;
+         else if (MVT::isInteger(VT))       NI->StageBegin = &IntStage;
+         else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
+         if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
+       }
+     } else if (Node->isTargetOpcode()) {
+       // get machine opcode
+       MachineOpCode TOpc = Node->getTargetOpcode();
+       // Check to see if it is a call
+       NI->IsCall = TII->isCall(TOpc);
+       // Get itinerary stages for instruction
+       unsigned II = TII->getSchedClass(TOpc);
+       NI->StageBegin = InstrItins.begin(II);
+       NI->StageEnd = InstrItins.end(II);
+     }
+     
+     // One slot for the instruction itself
+     NI->Latency = 1;
+     
+     // Add long latency for a call to push it back in time
+     if (NI->IsCall) NI->Latency += CallLatency;
+     
+     // Sum up all the latencies
+     for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
+         Stage != E; Stage++) {
+       NI->Latency += Stage->Cycles;
+     }
+     
+     // Sum up all the latencies for max tally size
+     NSlots += NI->Latency;
+   }
+   
+   // Unify metrics if in a group
+   if (HasGroups) {
+     for (unsigned i = 0, N = NodeCount; i < N; i++) {
+       NodeInfo* NI = &Info[i];
+       
+       if (NI->isInGroup()) {
+         NodeGroup *Group = NI->Group;
+         
+         if (!Group->getDominator()) {
+           NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
+           NodeInfo *Dominator = *NGI;
+           unsigned Latency = 0;
+           
+           for (NGI++; NGI != NGE; NGI++) {
+             NodeInfo* NGNI = *NGI;
+             Latency += NGNI->Latency;
+             if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
+           }
+           
+           Dominator->Latency = Latency;
+           Group->setDominator(Dominator);
+         }
+       }
+     }
+   }
+ }
+ 
+ /// FakeGroupDominators - Set dominators for non-scheduling.
+ /// 
+ void ScheduleDAGSimple::FakeGroupDominators() {
+   for (unsigned i = 0, N = NodeCount; i < N; i++) {
+     NodeInfo* NI = &Info[i];
+     
+     if (NI->isInGroup()) {
+       NodeGroup *Group = NI->Group;
+       
+       if (!Group->getDominator()) {
+         Group->setDominator(NI);
+       }
+     }
+   }
+ }
+ 
+ /// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
+ /// 
+ void ScheduleDAGSimple::PrepareNodeInfo() {
+   // Allocate node information
+   Info = new NodeInfo[NodeCount];
+ 
+   unsigned i = 0;
+   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+        E = DAG.allnodes_end(); I != E; ++I, ++i) {
+     // Fast reference to node schedule info
+     NodeInfo* NI = &Info[i];
+     // Set up map
+     Map[I] = NI;
+     // Set node
+     NI->Node = I;
+     // Set pending visit count
+     NI->setPending(I->use_size());
+   }
+ }
+ 
+ /// isStrongDependency - Return true if node A has results used by node B. 
+ /// I.E., B must wait for latency of A.
+ bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
+   // If A defines for B then it's a strong dependency or
+   // if a load follows a store (may be dependent but why take a chance.)
+   return isDefiner(A, B) || (A->IsStore && B->IsLoad);
+ }
+ 
+ /// isWeakDependency Return true if node A produces a result that will
+ /// conflict with operands of B.  It is assumed that we have called
+ /// isStrongDependency prior.
+ bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
+   // TODO check for conflicting real registers and aliases
+ #if 0 // FIXME - Since we are in SSA form and not checking register aliasing
+   return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
+ #else
+   return A->Node->getOpcode() == ISD::EntryToken;
+ #endif
+ }
+ 
+ /// ScheduleBackward - Schedule instructions so that any long latency
+ /// instructions and the critical path get pushed back in time. Time is run in
+ /// reverse to allow code reuse of the Tally and eliminate the overhead of
+ /// biasing every slot indices against NSlots.
+ void ScheduleDAGSimple::ScheduleBackward() {
+   // Size and clear the resource tally
+   Tally.Initialize(NSlots);
+   // Get number of nodes to schedule
+   unsigned N = Ordering.size();
+   
+   // For each node being scheduled
+   for (unsigned i = N; 0 < i--;) {
+     NodeInfo *NI = Ordering[i];
+     // Track insertion
+     unsigned Slot = NotFound;
+     
+     // Compare against those previously scheduled nodes
+     unsigned j = i + 1;
+     for (; j < N; j++) {
+       // Get following instruction
+       NodeInfo *Other = Ordering[j];
+       
+       // Check dependency against previously inserted nodes
+       if (isStrongDependency(NI, Other)) {
+         Slot = Other->Slot + Other->Latency;
+         break;
+       } else if (isWeakDependency(NI, Other)) {
+         Slot = Other->Slot;
+         break;
+       }
+     }
+     
+     // If independent of others (or first entry)
+     if (Slot == NotFound) Slot = 0;
+     
+ #if 0 // FIXME - measure later
+     // Find a slot where the needed resources are available
+     if (NI->StageBegin != NI->StageEnd)
+       Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
+ #endif
+       
+     // Set node slot
+     NI->Slot = Slot;
+     
+     // Insert sort based on slot
+     j = i + 1;
+     for (; j < N; j++) {
+       // Get following instruction
+       NodeInfo *Other = Ordering[j];
+       // Should we look further (remember slots are in reverse time)
+       if (Slot >= Other->Slot) break;
+       // Shuffle other into ordering
+       Ordering[j - 1] = Other;
+     }
+     // Insert node in proper slot
+     if (j != i + 1) Ordering[j - 1] = NI;
+   }
+ }
+ 
+ /// ScheduleForward - Schedule instructions to maximize packing.
+ ///
+ void ScheduleDAGSimple::ScheduleForward() {
+   // Size and clear the resource tally
+   Tally.Initialize(NSlots);
+   // Get number of nodes to schedule
+   unsigned N = Ordering.size();
+   
+   // For each node being scheduled
+   for (unsigned i = 0; i < N; i++) {
+     NodeInfo *NI = Ordering[i];
+     // Track insertion
+     unsigned Slot = NotFound;
+     
+     // Compare against those previously scheduled nodes
+     unsigned j = i;
+     for (; 0 < j--;) {
+       // Get following instruction
+       NodeInfo *Other = Ordering[j];
+       
+       // Check dependency against previously inserted nodes
+       if (isStrongDependency(Other, NI)) {
+         Slot = Other->Slot + Other->Latency;
+         break;
+       } else if (Other->IsCall || isWeakDependency(Other, NI)) {
+         Slot = Other->Slot;
+         break;
+       }
+     }
+     
+     // If independent of others (or first entry)
+     if (Slot == NotFound) Slot = 0;
+     
+     // Find a slot where the needed resources are available
+     if (NI->StageBegin != NI->StageEnd)
+       Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
+       
+     // Set node slot
+     NI->Slot = Slot;
+     
+     // Insert sort based on slot
+     j = i;
+     for (; 0 < j--;) {
+       // Get prior instruction
+       NodeInfo *Other = Ordering[j];
+       // Should we look further
+       if (Slot >= Other->Slot) break;
+       // Shuffle other into ordering
+       Ordering[j + 1] = Other;
+     }
+     // Insert node in proper slot
+     if (j != i) Ordering[j + 1] = NI;
+   }
+ }
+ 
+ /// EmitAll - Emit all nodes in schedule sorted order.
+ ///
+ void ScheduleDAGSimple::EmitAll() {
+   // For each node in the ordering
+   for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+     // Get the scheduling info
+     NodeInfo *NI = Ordering[i];
+     if (NI->isInGroup()) {
+       NodeGroupIterator NGI(Ordering[i]);
+       while (NodeInfo *NI = NGI.next()) EmitNode(NI);
+     } else {
+       EmitNode(NI);
+     }
+   }
+ }
+ 
+ /// Schedule - Order nodes according to selected style.
+ ///
+ void ScheduleDAGSimple::Schedule() {
+   // Number the nodes
+   NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
+   // Test to see if scheduling should occur
+   bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling;
+   // Set up minimum info for scheduling
+   PrepareNodeInfo();
+   // Construct node groups for flagged nodes
+   IdentifyGroups();
+ 
+   // Don't waste time if is only entry and return
+   if (ShouldSchedule) {
+     // Get latency and resource requirements
+     GatherSchedulingInfo();
+   } else if (HasGroups) {
+     // Make sure all the groups have dominators
+     FakeGroupDominators();
+   }
+ 
+   // Breadth first walk of DAG
+   VisitAll();
+ 
+ #ifndef NDEBUG
+   static unsigned Count = 0;
+   Count++;
+   for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+     NodeInfo *NI = Ordering[i];
+     NI->Preorder = i;
+   }
+ #endif  
+   
+   // Don't waste time if is only entry and return
+   if (ShouldSchedule) {
+     // Push back long instructions and critical path
+     ScheduleBackward();
+     
+     // Pack instructions to maximize resource utilization
+     ScheduleForward();
+   }
+   
+   DEBUG(printChanges(Count));
+   
+   // Emit in scheduled order
+   EmitAll();
+ }
+ 
+ /// printChanges - Hilight changes in order caused by scheduling.
+ ///
+ void ScheduleDAGSimple::printChanges(unsigned Index) {
+ #ifndef NDEBUG
+   // Get the ordered node count
+   unsigned N = Ordering.size();
+   // Determine if any changes
+   unsigned i = 0;
+   for (; i < N; i++) {
+     NodeInfo *NI = Ordering[i];
+     if (NI->Preorder != i) break;
+   }
+   
+   if (i < N) {
+     std::cerr << Index << ". New Ordering\n";
+     
+     for (i = 0; i < N; i++) {
+       NodeInfo *NI = Ordering[i];
+       std::cerr << "  " << NI->Preorder << ". ";
+       printSI(std::cerr, NI);
+       std::cerr << "\n";
+       if (NI->isGroupDominator()) {
+         NodeGroup *Group = NI->Group;
+         for (NIIterator NII = Group->group_begin(), E = Group->group_end();
+              NII != E; NII++) {
+           std::cerr << "          ";
+           printSI(std::cerr, *NII);
+           std::cerr << "\n";
+         }
+       }
+     }
+   } else {
+     std::cerr << Index << ". No Changes\n";
+   }
+ #endif
+ }
+ 
+ /// printSI - Print schedule info.
+ ///
+ void ScheduleDAGSimple::printSI(std::ostream &O, NodeInfo *NI) const {
+ #ifndef NDEBUG
+   SDNode *Node = NI->Node;
+   O << " "
+     << std::hex << Node << std::dec
+     << ", Lat=" << NI->Latency
+     << ", Slot=" << NI->Slot
+     << ", ARITY=(" << Node->getNumOperands() << ","
+                    << Node->getNumValues() << ")"
+     << " " << Node->getOperationName(&DAG);
+   if (isFlagDefiner(Node)) O << "<#";
+   if (isFlagUser(Node)) O << ">#";
+ #endif
+ }
+ 
+ /// print - Print ordering to specified output stream.
+ ///
+ void ScheduleDAGSimple::print(std::ostream &O) const {
+ #ifndef NDEBUG
+   using namespace std;
+   O << "Ordering\n";
+   for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+     NodeInfo *NI = Ordering[i];
+     printSI(O, NI);
+     O << "\n";
+     if (NI->isGroupDominator()) {
+       NodeGroup *Group = NI->Group;
+       for (NIIterator NII = Group->group_begin(), E = Group->group_end();
+            NII != E; NII++) {
+         O << "    ";
+         printSI(O, *NII);
+         O << "\n";
+       }
+     }
+   }
+ #endif
+ }
+ 
+ /// createSimpleDAGScheduler - This creates a simple two pass instruction
+ /// scheduler.
+ llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SelectionDAG &DAG,
+                                                   MachineBasicBlock *BB) {
+   return new ScheduleDAGSimple(DAG, BB, DAG.getTarget());
+ }


Index: llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
diff -u llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.55 llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.56
--- llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.55	Wed Dec 28 23:59:19 2005
+++ llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp	Fri Jan 20 20:32:06 2006
@@ -1,4 +1,4 @@
-//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
+//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
@@ -16,1002 +16,21 @@
 #define DEBUG_TYPE "sched"
 #include "llvm/CodeGen/MachineConstantPool.h"
 #include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
 #include "llvm/CodeGen/SSARegMap.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetInstrItineraries.h"
 #include "llvm/Target/TargetLowering.h"
-#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include <iostream>
-#include <ios>
-#include <algorithm>
 using namespace llvm;
 
-namespace {
-  // Style of scheduling to use.
-  enum ScheduleChoices {
-    noScheduling,
-    simpleScheduling,
-    simpleNoItinScheduling
-  };
-} // namespace
-
-cl::opt<ScheduleChoices> ScheduleStyle("sched",
-  cl::desc("Choose scheduling style"),
-  cl::init(noScheduling),
-  cl::values(
-    clEnumValN(noScheduling, "none",
-              "Trivial emission with no analysis"),
-    clEnumValN(simpleScheduling, "simple",
-              "Minimize critical path and maximize processor utilization"),
-    clEnumValN(simpleNoItinScheduling, "simple-noitin",
-              "Same as simple except using generic latency"),
-   clEnumValEnd));
-
-
-#ifndef NDEBUG
-static cl::opt<bool>
-ViewDAGs("view-sched-dags", cl::Hidden,
-         cl::desc("Pop up a window to show sched dags as they are processed"));
-#else
-static const bool ViewDAGs = 0;
-#endif
-
-namespace {
-//===----------------------------------------------------------------------===//
-///
-/// BitsIterator - Provides iteration through individual bits in a bit vector.
-///
-template<class T>
-class BitsIterator {
-private:
-  T Bits;                               // Bits left to iterate through
-
-public:
-  /// Ctor.
-  BitsIterator(T Initial) : Bits(Initial) {}
-  
-  /// Next - Returns the next bit set or zero if exhausted.
-  inline T Next() {
-    // Get the rightmost bit set
-    T Result = Bits & -Bits;
-    // Remove from rest
-    Bits &= ~Result;
-    // Return single bit or zero
-    return Result;
-  }
-};
-  
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// ResourceTally - Manages the use of resources over time intervals.  Each
-/// item (slot) in the tally vector represents the resources used at a given
-/// moment.  A bit set to 1 indicates that a resource is in use, otherwise
-/// available.  An assumption is made that the tally is large enough to schedule 
-/// all current instructions (asserts otherwise.)
-///
-template<class T>
-class ResourceTally {
-private:
-  std::vector<T> Tally;                 // Resources used per slot
-  typedef typename std::vector<T>::iterator Iter;
-                                        // Tally iterator 
-  
-  /// SlotsAvailable - Returns true if all units are available.
-	///
-  bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
-                                              unsigned &Resource) {
-    assert(N && "Must check availability with N != 0");
-    // Determine end of interval
-    Iter End = Begin + N;
-    assert(End <= Tally.end() && "Tally is not large enough for schedule");
-    
-    // Iterate thru each resource
-    BitsIterator<T> Resources(ResourceSet & ~*Begin);
-    while (unsigned Res = Resources.Next()) {
-      // Check if resource is available for next N slots
-      Iter Interval = End;
-      do {
-        Interval--;
-        if (*Interval & Res) break;
-      } while (Interval != Begin);
-      
-      // If available for N
-      if (Interval == Begin) {
-        // Success
-        Resource = Res;
-        return true;
-      }
-    }
-    
-    // No luck
-    Resource = 0;
-    return false;
-  }
-	
-	/// RetrySlot - Finds a good candidate slot to retry search.
-  Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
-    assert(N && "Must check availability with N != 0");
-    // Determine end of interval
-    Iter End = Begin + N;
-    assert(End <= Tally.end() && "Tally is not large enough for schedule");
-		
-		while (Begin != End--) {
-			// Clear units in use
-			ResourceSet &= ~*End;
-			// If no units left then we should go no further 
-			if (!ResourceSet) return End + 1;
-		}
-		// Made it all the way through
-		return Begin;
-	}
-  
-  /// FindAndReserveStages - Return true if the stages can be completed. If
-  /// so mark as busy.
-  bool FindAndReserveStages(Iter Begin,
-                            InstrStage *Stage, InstrStage *StageEnd) {
-    // If at last stage then we're done
-    if (Stage == StageEnd) return true;
-    // Get number of cycles for current stage
-    unsigned N = Stage->Cycles;
-    // Check to see if N slots are available, if not fail
-    unsigned Resource;
-    if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
-    // Check to see if remaining stages are available, if not fail
-    if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
-    // Reserve resource
-    Reserve(Begin, N, Resource);
-    // Success
-    return true;
-  }
-
-  /// Reserve - Mark busy (set) the specified N slots.
-  void Reserve(Iter Begin, unsigned N, unsigned Resource) {
-    // Determine end of interval
-    Iter End = Begin + N;
-    assert(End <= Tally.end() && "Tally is not large enough for schedule");
- 
-    // Set resource bit in each slot
-    for (; Begin < End; Begin++)
-      *Begin |= Resource;
-  }
-
-  /// FindSlots - Starting from Begin, locate consecutive slots where all stages
-  /// can be completed.  Returns the address of first slot.
-  Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
-    // Track position      
-    Iter Cursor = Begin;
-    
-    // Try all possible slots forward
-    while (true) {
-      // Try at cursor, if successful return position.
-      if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
-      // Locate a better position
-			Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
-    }
-  }
-  
-public:
-  /// Initialize - Resize and zero the tally to the specified number of time
-  /// slots.
-  inline void Initialize(unsigned N) {
-    Tally.assign(N, 0);   // Initialize tally to all zeros.
-  }
-
-  // FindAndReserve - Locate an ideal slot for the specified stages and mark
-  // as busy.
-  unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
-                                         InstrStage *StageEnd) {
-		// Where to begin 
-		Iter Begin = Tally.begin() + Slot;
-		// Find a free slot
-		Iter Where = FindSlots(Begin, StageBegin, StageEnd);
-		// Distance is slot number
-		unsigned Final = Where - Tally.begin();
-    return Final;
-  }
-
-};
-//===----------------------------------------------------------------------===//
-
-// Forward
-class NodeInfo;
-typedef NodeInfo *NodeInfoPtr;
-typedef std::vector<NodeInfoPtr>           NIVector;
-typedef std::vector<NodeInfoPtr>::iterator NIIterator;
-
-//===----------------------------------------------------------------------===//
-///
-/// Node group -  This struct is used to manage flagged node groups.
-///
-class NodeGroup {
-private:
-  NIVector      Members;                // Group member nodes
-  NodeInfo      *Dominator;             // Node with highest latency
-  unsigned      Latency;                // Total latency of the group
-  int           Pending;                // Number of visits pending before
-                                        //    adding to order  
-
-public:
-  // Ctor.
-  NodeGroup() : Dominator(NULL), Pending(0) {}
-  
-  // Accessors
-  inline void setDominator(NodeInfo *D) { Dominator = D; }
-  inline NodeInfo *getDominator() { return Dominator; }
-  inline void setLatency(unsigned L) { Latency = L; }
-  inline unsigned getLatency() { return Latency; }
-  inline int getPending() const { return Pending; }
-  inline void setPending(int P)  { Pending = P; }
-  inline int addPending(int I)  { return Pending += I; }
-  
-  // Pass thru
-  inline bool group_empty() { return Members.empty(); }
-  inline NIIterator group_begin() { return Members.begin(); }
-  inline NIIterator group_end() { return Members.end(); }
-  inline void group_push_back(const NodeInfoPtr &NI) { Members.push_back(NI); }
-  inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
-    return Members.insert(Pos, NI);
-  }
-  inline void group_insert(NIIterator Pos, NIIterator First, NIIterator Last) {
-    Members.insert(Pos, First, Last);
-  }
-
-  static void Add(NodeInfo *D, NodeInfo *U);
-  static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U);
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeInfo - This struct tracks information used to schedule the a node.
-///
-class NodeInfo {
-private:
-  int           Pending;                // Number of visits pending before
-                                        //    adding to order
-public:
-  SDNode        *Node;                  // DAG node
-  InstrStage    *StageBegin;            // First stage in itinerary
-  InstrStage    *StageEnd;              // Last+1 stage in itinerary
-  unsigned      Latency;                // Total cycles to complete instruction
-  bool          IsCall : 1;             // Is function call
-  bool          IsLoad : 1;             // Is memory load
-  bool          IsStore : 1;            // Is memory store
-  unsigned      Slot;                   // Node's time slot
-  NodeGroup     *Group;                 // Grouping information
-  unsigned      VRBase;                 // Virtual register base
-#ifndef NDEBUG
-  unsigned      Preorder;               // Index before scheduling
-#endif
-
-  // Ctor.
-  NodeInfo(SDNode *N = NULL)
-  : Pending(0)
-  , Node(N)
-  , StageBegin(NULL)
-  , StageEnd(NULL)
-  , Latency(0)
-  , IsCall(false)
-  , Slot(0)
-  , Group(NULL)
-  , VRBase(0)
-#ifndef NDEBUG
-  , Preorder(0)
-#endif
-  {}
-  
-  // Accessors
-  inline bool isInGroup() const {
-    assert(!Group || !Group->group_empty() && "Group with no members");
-    return Group != NULL;
-  }
-  inline bool isGroupDominator() const {
-     return isInGroup() && Group->getDominator() == this;
-  }
-  inline int getPending() const {
-    return Group ? Group->getPending() : Pending;
-  }
-  inline void setPending(int P) {
-    if (Group) Group->setPending(P);
-    else       Pending = P;
-  }
-  inline int addPending(int I) {
-    if (Group) return Group->addPending(I);
-    else       return Pending += I;
-  }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeGroupIterator - Iterates over all the nodes indicated by the node info.
-/// If the node is in a group then iterate over the members of the group,
-/// otherwise just the node info.
-///
-class NodeGroupIterator {
-private:
-  NodeInfo   *NI;                       // Node info
-  NIIterator NGI;                       // Node group iterator
-  NIIterator NGE;                       // Node group iterator end
-  
-public:
-  // Ctor.
-  NodeGroupIterator(NodeInfo *N) : NI(N) {
-    // If the node is in a group then set up the group iterator.  Otherwise
-    // the group iterators will trip first time out.
-    if (N->isInGroup()) {
-      // get Group
-      NodeGroup *Group = NI->Group;
-      NGI = Group->group_begin();
-      NGE = Group->group_end();
-      // Prevent this node from being used (will be in members list
-      NI = NULL;
-    }
-  }
-  
-  /// next - Return the next node info, otherwise NULL.
-  ///
-  NodeInfo *next() {
-    // If members list
-    if (NGI != NGE) return *NGI++;
-    // Use node as the result (may be NULL)
-    NodeInfo *Result = NI;
-    // Only use once
-    NI = NULL;
-    // Return node or NULL
-    return Result;
-  }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeGroupOpIterator - Iterates over all the operands of a node.  If the node
-/// is a member of a group, this iterates over all the operands of all the
-/// members of the group.
-///
-class NodeGroupOpIterator {
-private:
-  NodeInfo            *NI;              // Node containing operands
-  NodeGroupIterator   GI;               // Node group iterator
-  SDNode::op_iterator OI;               // Operand iterator
-  SDNode::op_iterator OE;               // Operand iterator end
-  
-  /// CheckNode - Test if node has more operands.  If not get the next node
-  /// skipping over nodes that have no operands.
-  void CheckNode() {
-    // Only if operands are exhausted first
-    while (OI == OE) {
-      // Get next node info
-      NodeInfo *NI = GI.next();
-      // Exit if nodes are exhausted
-      if (!NI) return;
-      // Get node itself
-      SDNode *Node = NI->Node;
-      // Set up the operand iterators
-      OI = Node->op_begin();
-      OE = Node->op_end();
-    }
-  }
-  
-public:
-  // Ctor.
-  NodeGroupOpIterator(NodeInfo *N)
-    : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
-  
-  /// isEnd - Returns true when not more operands are available.
-  ///
-  inline bool isEnd() { CheckNode(); return OI == OE; }
-  
-  /// next - Returns the next available operand.
-  ///
-  inline SDOperand next() {
-    assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly");
-    return *OI++;
-  }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// SimpleSched - Simple two pass scheduler.
-///
-class SimpleSched {
-private:
-  MachineBasicBlock *BB;                // Current basic block
-  SelectionDAG &DAG;                    // DAG of the current basic block
-  const TargetMachine &TM;              // Target processor
-  const TargetInstrInfo &TII;           // Target instruction information
-  const MRegisterInfo &MRI;             // Target processor register information
-  SSARegMap *RegMap;                    // Virtual/real register map
-  MachineConstantPool *ConstPool;       // Target constant pool
-  unsigned NodeCount;                   // Number of nodes in DAG
-  bool HasGroups;                       // True if there are any groups
-  NodeInfo *Info;                       // Info for nodes being scheduled
-  std::map<SDNode *, NodeInfo *> Map;   // Map nodes to info
-  NIVector Ordering;                    // Emit ordering of nodes
-  ResourceTally<unsigned> Tally;        // Resource usage tally
-  unsigned NSlots;                      // Total latency
-  static const unsigned NotFound = ~0U; // Search marker
-  
-public:
-
-  // Ctor.
-  SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
-    : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
-      MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
-      ConstPool(BB->getParent()->getConstantPool()),
-      NodeCount(0), HasGroups(false), Info(NULL), Map(), Tally(), NSlots(0) {
-    assert(&TII && "Target doesn't provide instr info?");
-    assert(&MRI && "Target doesn't provide register info?");
-  }
-  
-  // Run - perform scheduling.
-  MachineBasicBlock *Run() {
-    Schedule();
-    return BB;
-  }
-  
-private:
-  /// getNI - Returns the node info for the specified node.
-  ///
-  inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
-  
-  /// getVR - Returns the virtual register number of the node.
-  ///
-  inline unsigned getVR(SDOperand Op) {
-    NodeInfo *NI = getNI(Op.Val);
-    assert(NI->VRBase != 0 && "Node emitted out of order - late");
-    return NI->VRBase + Op.ResNo;
-  }
-
-  static bool isFlagDefiner(SDNode *A);
-  static bool isFlagUser(SDNode *A);
-  static bool isDefiner(NodeInfo *A, NodeInfo *B);
-  static bool isPassiveNode(SDNode *Node);
-  void IncludeNode(NodeInfo *NI);
-  void VisitAll();
-  void Schedule();
-  void IdentifyGroups();
-  void GatherSchedulingInfo();
-  void FakeGroupDominators(); 
-  void PrepareNodeInfo();
-  bool isStrongDependency(NodeInfo *A, NodeInfo *B);
-  bool isWeakDependency(NodeInfo *A, NodeInfo *B);
-  void ScheduleBackward();
-  void ScheduleForward();
-  void EmitAll();
-  void EmitNode(NodeInfo *NI);
-  static unsigned CountResults(SDNode *Node);
-  static unsigned CountOperands(SDNode *Node);
-  unsigned CreateVirtualRegisters(MachineInstr *MI,
-                                  unsigned NumResults,
-                                  const TargetInstrDescriptor &II);
-
-  void printChanges(unsigned Index);
-  void printSI(std::ostream &O, NodeInfo *NI) const;
-  void print(std::ostream &O) const;
-  inline void dump(const char *tag) const { std::cerr << tag; dump(); }
-  void dump() const;
-};
-
-
-//===----------------------------------------------------------------------===//
-/// Special case itineraries.
-///
-enum {
-  CallLatency = 40,          // To push calls back in time
-
-  RSInteger   = 0xC0000000,  // Two integer units
-  RSFloat     = 0x30000000,  // Two float units
-  RSLoadStore = 0x0C000000,  // Two load store units
-  RSBranch    = 0x02000000   // One branch unit
-};
-static InstrStage CallStage  = { CallLatency, RSBranch };
-static InstrStage LoadStage  = { 5, RSLoadStore };
-static InstrStage StoreStage = { 2, RSLoadStore };
-static InstrStage IntStage   = { 2, RSInteger };
-static InstrStage FloatStage = { 3, RSFloat };
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-
-} // namespace
-
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-/// Add - Adds a definer and user pair to a node group.
-///
-void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
-  // Get current groups
-  NodeGroup *DGroup = D->Group;
-  NodeGroup *UGroup = U->Group;
-  // If both are members of groups
-  if (DGroup && UGroup) {
-    // There may have been another edge connecting 
-    if (DGroup == UGroup) return;
-    // Add the pending users count
-    DGroup->addPending(UGroup->getPending());
-    // For each member of the users group
-    NodeGroupIterator UNGI(U);
-    while (NodeInfo *UNI = UNGI.next() ) {
-      // Change the group
-      UNI->Group = DGroup;
-      // For each member of the definers group
-      NodeGroupIterator DNGI(D);
-      while (NodeInfo *DNI = DNGI.next() ) {
-        // Remove internal edges
-        DGroup->addPending(-CountInternalUses(DNI, UNI));
-      }
-    }
-    // Merge the two lists
-    DGroup->group_insert(DGroup->group_end(),
-                         UGroup->group_begin(), UGroup->group_end());
-  } else if (DGroup) {
-    // Make user member of definers group
-    U->Group = DGroup;
-    // Add users uses to definers group pending
-    DGroup->addPending(U->Node->use_size());
-    // For each member of the definers group
-    NodeGroupIterator DNGI(D);
-    while (NodeInfo *DNI = DNGI.next() ) {
-      // Remove internal edges
-      DGroup->addPending(-CountInternalUses(DNI, U));
-    }
-    DGroup->group_push_back(U);
-  } else if (UGroup) {
-    // Make definer member of users group
-    D->Group = UGroup;
-    // Add definers uses to users group pending
-    UGroup->addPending(D->Node->use_size());
-    // For each member of the users group
-    NodeGroupIterator UNGI(U);
-    while (NodeInfo *UNI = UNGI.next() ) {
-      // Remove internal edges
-      UGroup->addPending(-CountInternalUses(D, UNI));
-    }
-    UGroup->group_insert(UGroup->group_begin(), D);
-  } else {
-    D->Group = U->Group = DGroup = new NodeGroup();
-    DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
-                       CountInternalUses(D, U));
-    DGroup->group_push_back(D);
-    DGroup->group_push_back(U);
-  }
-}
-
-/// CountInternalUses - Returns the number of edges between the two nodes.
-///
-unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
-  unsigned N = 0;
-  for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
-    SDOperand Op = U->Node->getOperand(M);
-    if (Op.Val == D->Node) N++;
-  }
-
-  return N;
-}
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-/// isFlagDefiner - Returns true if the node defines a flag result.
-bool SimpleSched::isFlagDefiner(SDNode *A) {
-  unsigned N = A->getNumValues();
-  return N && A->getValueType(N - 1) == MVT::Flag;
-}
-
-/// isFlagUser - Returns true if the node uses a flag result.
-///
-bool SimpleSched::isFlagUser(SDNode *A) {
-  unsigned N = A->getNumOperands();
-  return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
-}
-
-/// isDefiner - Return true if node A is a definer for B.
-///
-bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) {
-  // While there are A nodes
-  NodeGroupIterator NII(A);
-  while (NodeInfo *NI = NII.next()) {
-    // Extract node
-    SDNode *Node = NI->Node;
-    // While there operands in nodes of B
-    NodeGroupOpIterator NGOI(B);
-    while (!NGOI.isEnd()) {
-      SDOperand Op = NGOI.next();
-      // If node from A defines a node in B
-      if (Node == Op.Val) return true;
-    }
-  }
-  return false;
-}
-
-/// isPassiveNode - Return true if the node is a non-scheduled leaf.
-///
-bool SimpleSched::isPassiveNode(SDNode *Node) {
-  if (isa<ConstantSDNode>(Node))       return true;
-  if (isa<RegisterSDNode>(Node))       return true;
-  if (isa<GlobalAddressSDNode>(Node))  return true;
-  if (isa<BasicBlockSDNode>(Node))     return true;
-  if (isa<FrameIndexSDNode>(Node))     return true;
-  if (isa<ConstantPoolSDNode>(Node))   return true;
-  if (isa<ExternalSymbolSDNode>(Node)) return true;
-  return false;
-}
-
-/// IncludeNode - Add node to NodeInfo vector.
-///
-void SimpleSched::IncludeNode(NodeInfo *NI) {
-  // Get node
-  SDNode *Node = NI->Node;
-  // Ignore entry node
-  if (Node->getOpcode() == ISD::EntryToken) return;
-  // Check current count for node
-  int Count = NI->getPending();
-  // If the node is already in list
-  if (Count < 0) return;
-  // Decrement count to indicate a visit
-  Count--;
-  // If count has gone to zero then add node to list
-  if (!Count) {
-    // Add node
-    if (NI->isInGroup()) {
-      Ordering.push_back(NI->Group->getDominator());
-    } else {
-      Ordering.push_back(NI);
-    }
-    // indicate node has been added
-    Count--;
-  }
-  // Mark as visited with new count 
-  NI->setPending(Count);
-}
-
-/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
-/// Note that the ordering in the Nodes vector is reversed.
-void SimpleSched::VisitAll() {
-  // Add first element to list
-  NodeInfo *NI = getNI(DAG.getRoot().Val);
-  if (NI->isInGroup()) {
-    Ordering.push_back(NI->Group->getDominator());
-  } else {
-    Ordering.push_back(NI);
-  }
-
-  // Iterate through all nodes that have been added
-  for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
-    // Visit all operands
-    NodeGroupOpIterator NGI(Ordering[i]);
-    while (!NGI.isEnd()) {
-      // Get next operand
-      SDOperand Op = NGI.next();
-      // Get node
-      SDNode *Node = Op.Val;
-      // Ignore passive nodes
-      if (isPassiveNode(Node)) continue;
-      // Check out node
-      IncludeNode(getNI(Node));
-    }
-  }
-
-  // Add entry node last (IncludeNode filters entry nodes)
-  if (DAG.getEntryNode().Val != DAG.getRoot().Val)
-    Ordering.push_back(getNI(DAG.getEntryNode().Val));
-    
-  // Reverse the order
-  std::reverse(Ordering.begin(), Ordering.end());
-}
-
-/// IdentifyGroups - Put flagged nodes into groups.
-///
-void SimpleSched::IdentifyGroups() {
-  for (unsigned i = 0, N = NodeCount; i < N; i++) {
-    NodeInfo* NI = &Info[i];
-    SDNode *Node = NI->Node;
-
-    // For each operand (in reverse to only look at flags)
-    for (unsigned N = Node->getNumOperands(); 0 < N--;) {
-      // Get operand
-      SDOperand Op = Node->getOperand(N);
-      // No more flags to walk
-      if (Op.getValueType() != MVT::Flag) break;
-      // Add to node group
-      NodeGroup::Add(getNI(Op.Val), NI);
-      // Let evryone else know
-      HasGroups = true;
-    }
-  }
-}
-
-/// GatherSchedulingInfo - Get latency and resource information about each node.
-///
-void SimpleSched::GatherSchedulingInfo() {
-  // Get instruction itineraries for the target
-  const InstrItineraryData InstrItins = TM.getInstrItineraryData();
-  
-  // For each node
-  for (unsigned i = 0, N = NodeCount; i < N; i++) {
-    // Get node info
-    NodeInfo* NI = &Info[i];
-    SDNode *Node = NI->Node;
-    
-    // If there are itineraries and it is a machine instruction
-    if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
-      // If machine opcode
-      if (Node->isTargetOpcode()) {
-        // Get return type to guess which processing unit 
-        MVT::ValueType VT = Node->getValueType(0);
-        // Get machine opcode
-        MachineOpCode TOpc = Node->getTargetOpcode();
-        NI->IsCall = TII.isCall(TOpc);
-        NI->IsLoad = TII.isLoad(TOpc);
-        NI->IsStore = TII.isStore(TOpc);
-
-        if (TII.isLoad(TOpc))              NI->StageBegin = &LoadStage;
-        else if (TII.isStore(TOpc))        NI->StageBegin = &StoreStage;
-        else if (MVT::isInteger(VT))       NI->StageBegin = &IntStage;
-        else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
-        if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
-      }
-    } else if (Node->isTargetOpcode()) {
-      // get machine opcode
-      MachineOpCode TOpc = Node->getTargetOpcode();
-      // Check to see if it is a call
-      NI->IsCall = TII.isCall(TOpc);
-      // Get itinerary stages for instruction
-      unsigned II = TII.getSchedClass(TOpc);
-      NI->StageBegin = InstrItins.begin(II);
-      NI->StageEnd = InstrItins.end(II);
-    }
-    
-    // One slot for the instruction itself
-    NI->Latency = 1;
-    
-    // Add long latency for a call to push it back in time
-    if (NI->IsCall) NI->Latency += CallLatency;
-    
-    // Sum up all the latencies
-    for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
-        Stage != E; Stage++) {
-      NI->Latency += Stage->Cycles;
-    }
-    
-    // Sum up all the latencies for max tally size
-    NSlots += NI->Latency;
-  }
-  
-  // Unify metrics if in a group
-  if (HasGroups) {
-    for (unsigned i = 0, N = NodeCount; i < N; i++) {
-      NodeInfo* NI = &Info[i];
-      
-      if (NI->isInGroup()) {
-        NodeGroup *Group = NI->Group;
-        
-        if (!Group->getDominator()) {
-          NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
-          NodeInfo *Dominator = *NGI;
-          unsigned Latency = 0;
-          
-          for (NGI++; NGI != NGE; NGI++) {
-            NodeInfo* NGNI = *NGI;
-            Latency += NGNI->Latency;
-            if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
-          }
-          
-          Dominator->Latency = Latency;
-          Group->setDominator(Dominator);
-        }
-      }
-    }
-  }
-}
-
-/// FakeGroupDominators - Set dominators for non-scheduling.
-/// 
-void SimpleSched::FakeGroupDominators() {
-  for (unsigned i = 0, N = NodeCount; i < N; i++) {
-    NodeInfo* NI = &Info[i];
-    
-    if (NI->isInGroup()) {
-      NodeGroup *Group = NI->Group;
-      
-      if (!Group->getDominator()) {
-        Group->setDominator(NI);
-      }
-    }
-  }
-}
-
-/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
-/// 
-void SimpleSched::PrepareNodeInfo() {
-  // Allocate node information
-  Info = new NodeInfo[NodeCount];
-
-  unsigned i = 0;
-  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
-       E = DAG.allnodes_end(); I != E; ++I, ++i) {
-    // Fast reference to node schedule info
-    NodeInfo* NI = &Info[i];
-    // Set up map
-    Map[I] = NI;
-    // Set node
-    NI->Node = I;
-    // Set pending visit count
-    NI->setPending(I->use_size());
-  }
-}
-
-/// isStrongDependency - Return true if node A has results used by node B. 
-/// I.E., B must wait for latency of A.
-bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) {
-  // If A defines for B then it's a strong dependency or
-  // if a load follows a store (may be dependent but why take a chance.)
-  return isDefiner(A, B) || (A->IsStore && B->IsLoad);
-}
-
-/// isWeakDependency Return true if node A produces a result that will
-/// conflict with operands of B.  It is assumed that we have called
-/// isStrongDependency prior.
-bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) {
-  // TODO check for conflicting real registers and aliases
-#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
-  return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
-#else
-  return A->Node->getOpcode() == ISD::EntryToken;
-#endif
-}
-
-/// ScheduleBackward - Schedule instructions so that any long latency
-/// instructions and the critical path get pushed back in time. Time is run in
-/// reverse to allow code reuse of the Tally and eliminate the overhead of
-/// biasing every slot indices against NSlots.
-void SimpleSched::ScheduleBackward() {
-  // Size and clear the resource tally
-  Tally.Initialize(NSlots);
-  // Get number of nodes to schedule
-  unsigned N = Ordering.size();
-  
-  // For each node being scheduled
-  for (unsigned i = N; 0 < i--;) {
-    NodeInfo *NI = Ordering[i];
-    // Track insertion
-    unsigned Slot = NotFound;
-    
-    // Compare against those previously scheduled nodes
-    unsigned j = i + 1;
-    for (; j < N; j++) {
-      // Get following instruction
-      NodeInfo *Other = Ordering[j];
-      
-      // Check dependency against previously inserted nodes
-      if (isStrongDependency(NI, Other)) {
-        Slot = Other->Slot + Other->Latency;
-        break;
-      } else if (isWeakDependency(NI, Other)) {
-        Slot = Other->Slot;
-        break;
-      }
-    }
-    
-    // If independent of others (or first entry)
-    if (Slot == NotFound) Slot = 0;
-    
-#if 0 // FIXME - measure later
-    // Find a slot where the needed resources are available
-    if (NI->StageBegin != NI->StageEnd)
-      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
-#endif
-      
-    // Set node slot
-    NI->Slot = Slot;
-    
-    // Insert sort based on slot
-    j = i + 1;
-    for (; j < N; j++) {
-      // Get following instruction
-      NodeInfo *Other = Ordering[j];
-      // Should we look further (remember slots are in reverse time)
-      if (Slot >= Other->Slot) break;
-      // Shuffle other into ordering
-      Ordering[j - 1] = Other;
-    }
-    // Insert node in proper slot
-    if (j != i + 1) Ordering[j - 1] = NI;
-  }
-}
-
-/// ScheduleForward - Schedule instructions to maximize packing.
-///
-void SimpleSched::ScheduleForward() {
-  // Size and clear the resource tally
-  Tally.Initialize(NSlots);
-  // Get number of nodes to schedule
-  unsigned N = Ordering.size();
-  
-  // For each node being scheduled
-  for (unsigned i = 0; i < N; i++) {
-    NodeInfo *NI = Ordering[i];
-    // Track insertion
-    unsigned Slot = NotFound;
-    
-    // Compare against those previously scheduled nodes
-    unsigned j = i;
-    for (; 0 < j--;) {
-      // Get following instruction
-      NodeInfo *Other = Ordering[j];
-      
-      // Check dependency against previously inserted nodes
-      if (isStrongDependency(Other, NI)) {
-        Slot = Other->Slot + Other->Latency;
-        break;
-      } else if (Other->IsCall || isWeakDependency(Other, NI)) {
-        Slot = Other->Slot;
-        break;
-      }
-    }
-    
-    // If independent of others (or first entry)
-    if (Slot == NotFound) Slot = 0;
-    
-    // Find a slot where the needed resources are available
-    if (NI->StageBegin != NI->StageEnd)
-      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
-      
-    // Set node slot
-    NI->Slot = Slot;
-    
-    // Insert sort based on slot
-    j = i;
-    for (; 0 < j--;) {
-      // Get prior instruction
-      NodeInfo *Other = Ordering[j];
-      // Should we look further
-      if (Slot >= Other->Slot) break;
-      // Shuffle other into ordering
-      Ordering[j + 1] = Other;
-    }
-    // Insert node in proper slot
-    if (j != i) Ordering[j + 1] = NI;
-  }
-}
-
-/// EmitAll - Emit all nodes in schedule sorted order.
-///
-void SimpleSched::EmitAll() {
-  // For each node in the ordering
-  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
-    // Get the scheduling info
-    NodeInfo *NI = Ordering[i];
-    if (NI->isInGroup()) {
-      NodeGroupIterator NGI(Ordering[i]);
-      while (NodeInfo *NI = NGI.next()) EmitNode(NI);
-    } else {
-      EmitNode(NI);
-    }
-  }
-}
 
 /// CountResults - The results of target nodes have register or immediate
 /// operands first, then an optional chain, and optional flag operands (which do
 /// not go into the machine instrs.)
-unsigned SimpleSched::CountResults(SDNode *Node) {
+static unsigned CountResults(SDNode *Node) {
   unsigned N = Node->getNumValues();
   while (N && Node->getValueType(N - 1) == MVT::Flag)
     --N;
@@ -1023,7 +42,7 @@
 /// CountOperands  The inputs to target nodes have any actual inputs first,
 /// followed by an optional chain operand, then flag operands.  Compute the
 /// number of actual operands that  will go into the machine instr.
-unsigned SimpleSched::CountOperands(SDNode *Node) {
+static unsigned CountOperands(SDNode *Node) {
   unsigned N = Node->getNumOperands();
   while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
     --N;
@@ -1034,7 +53,7 @@
 
 /// CreateVirtualRegisters - Add result register values for things that are
 /// defined by this instruction.
-unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI,
+unsigned ScheduleDAG::CreateVirtualRegisters(MachineInstr *MI,
                                              unsigned NumResults,
                                              const TargetInstrDescriptor &II) {
   // Create the result registers for this node and add the result regs to
@@ -1052,14 +71,14 @@
 
 /// EmitNode - Generate machine code for an node and needed dependencies.
 ///
-void SimpleSched::EmitNode(NodeInfo *NI) {
+void ScheduleDAG::EmitNode(NodeInfo *NI) {
   unsigned VRBase = 0;                 // First virtual register for node
   SDNode *Node = NI->Node;
   
   // If machine instruction
   if (Node->isTargetOpcode()) {
     unsigned Opc = Node->getTargetOpcode();
-    const TargetInstrDescriptor &II = TII.get(Opc);
+    const TargetInstrDescriptor &II = TII->get(Opc);
 
     unsigned NumResults = CountResults(Node);
     unsigned NodeOperands = CountOperands(Node);
@@ -1176,8 +195,8 @@
       unsigned InReg = getVR(Node->getOperand(2));
       unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
       if (InReg != DestReg)   // Coallesced away the copy?
-        MRI.copyRegToReg(*BB, BB->end(), DestReg, InReg,
-                         RegMap->getRegClass(InReg));
+        MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg,
+                          RegMap->getRegClass(InReg));
       break;
     }
     case ISD::CopyFromReg: {
@@ -1209,8 +228,8 @@
       } else {
 
         // Pick the register class of the right type that contains this physreg.
-        for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
-             E = MRI.regclass_end(); I != E; ++I)
+        for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
+             E = MRI->regclass_end(); I != E; ++I)
           if ((*I)->hasType(Node->getValueType(0)) &&
               (*I)->contains(SrcReg)) {
             TRC = *I;
@@ -1221,7 +240,7 @@
         // Create the reg, emit the copy.
         VRBase = RegMap->createVirtualRegister(TRC);
       }
-      MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
+      MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
       break;
     }
     }
@@ -1231,143 +250,21 @@
   NI->VRBase = VRBase;
 }
 
-/// Schedule - Order nodes according to selected style.
-///
-void SimpleSched::Schedule() {
-  // Number the nodes
-  NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
-  // Test to see if scheduling should occur
-  bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling;
-  // Set up minimum info for scheduling
-  PrepareNodeInfo();
-  // Construct node groups for flagged nodes
-  IdentifyGroups();
-
-  // Don't waste time if is only entry and return
-  if (ShouldSchedule) {
-    // Get latency and resource requirements
-    GatherSchedulingInfo();
-  } else if (HasGroups) {
-    // Make sure all the groups have dominators
-    FakeGroupDominators();
-  }
-
-  // Breadth first walk of DAG
-  VisitAll();
-
-#ifndef NDEBUG
-  static unsigned Count = 0;
-  Count++;
-  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
-    NodeInfo *NI = Ordering[i];
-    NI->Preorder = i;
-  }
-#endif  
-  
-  // Don't waste time if is only entry and return
-  if (ShouldSchedule) {
-    // Push back long instructions and critical path
-    ScheduleBackward();
-    
-    // Pack instructions to maximize resource utilization
-    ScheduleForward();
-  }
-  
-  DEBUG(printChanges(Count));
-  
-  // Emit in scheduled order
-  EmitAll();
-}
-
-/// printChanges - Hilight changes in order caused by scheduling.
-///
-void SimpleSched::printChanges(unsigned Index) {
-#ifndef NDEBUG
-  // Get the ordered node count
-  unsigned N = Ordering.size();
-  // Determine if any changes
-  unsigned i = 0;
-  for (; i < N; i++) {
-    NodeInfo *NI = Ordering[i];
-    if (NI->Preorder != i) break;
-  }
-  
-  if (i < N) {
-    std::cerr << Index << ". New Ordering\n";
-    
-    for (i = 0; i < N; i++) {
-      NodeInfo *NI = Ordering[i];
-      std::cerr << "  " << NI->Preorder << ". ";
-      printSI(std::cerr, NI);
-      std::cerr << "\n";
-      if (NI->isGroupDominator()) {
-        NodeGroup *Group = NI->Group;
-        for (NIIterator NII = Group->group_begin(), E = Group->group_end();
-             NII != E; NII++) {
-          std::cerr << "          ";
-          printSI(std::cerr, *NII);
-          std::cerr << "\n";
-        }
-      }
-    }
-  } else {
-    std::cerr << Index << ". No Changes\n";
-  }
-#endif
-}
-
-/// printSI - Print schedule info.
-///
-void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const {
-#ifndef NDEBUG
-  SDNode *Node = NI->Node;
-  O << " "
-    << std::hex << Node << std::dec
-    << ", Lat=" << NI->Latency
-    << ", Slot=" << NI->Slot
-    << ", ARITY=(" << Node->getNumOperands() << ","
-                   << Node->getNumValues() << ")"
-    << " " << Node->getOperationName(&DAG);
-  if (isFlagDefiner(Node)) O << "<#";
-  if (isFlagUser(Node)) O << ">#";
-#endif
-}
-
-/// print - Print ordering to specified output stream.
-///
-void SimpleSched::print(std::ostream &O) const {
-#ifndef NDEBUG
-  using namespace std;
-  O << "Ordering\n";
-  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
-    NodeInfo *NI = Ordering[i];
-    printSI(O, NI);
-    O << "\n";
-    if (NI->isGroupDominator()) {
-      NodeGroup *Group = NI->Group;
-      for (NIIterator NII = Group->group_begin(), E = Group->group_end();
-           NII != E; NII++) {
-        O << "    ";
-        printSI(O, *NII);
-        O << "\n";
-      }
-    }
-  }
-#endif
+void ScheduleDAG::dump(const char *tag) const {
+  std::cerr << tag; dump();
 }
 
-/// dump - Print ordering to std::cerr.
-///
-void SimpleSched::dump() const {
+void ScheduleDAG::dump() const {
   print(std::cerr);
 }
-//===----------------------------------------------------------------------===//
-
 
-//===----------------------------------------------------------------------===//
-/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
-/// target node in the graph.
-void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
-  if (ViewDAGs) SD.viewGraph();
-  BB = SimpleSched(SD, BB).Run();  
+/// Run - perform scheduling.
+///
+MachineBasicBlock *ScheduleDAG::Run() {
+  TII = TM.getInstrInfo();
+  MRI = TM.getRegisterInfo();
+  RegMap = BB->getParent()->getSSARegMap();
+  ConstPool = BB->getParent()->getConstantPool();
+  Schedule();
+  return BB;
 }


Index: llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
diff -u llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1.129 llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1.130
--- llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1.129	Fri Jan 20 12:38:32 2006
+++ llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp	Fri Jan 20 20:32:06 2006
@@ -13,6 +13,7 @@
 
 #define DEBUG_TYPE "isel"
 #include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
 #include "llvm/CallingConv.h"
 #include "llvm/Constants.h"
 #include "llvm/DerivedTypes.h"
@@ -43,10 +44,14 @@
 
 #ifndef NDEBUG
 static cl::opt<bool>
-ViewDAGs("view-isel-dags", cl::Hidden,
-         cl::desc("Pop up a window to show isel dags as they are selected"));
+ViewISelDAGs("view-isel-dags", cl::Hidden,
+          cl::desc("Pop up a window to show isel dags as they are selected"));
+static cl::opt<bool>
+ViewSchedDAGs("view-sched-dags", cl::Hidden,
+          cl::desc("Pop up a window to show sched dags as they are processed"));
 #else
-static const bool ViewDAGs = 0;
+static const bool ViewISelDAGs = 0;
+static const bool ViewSchedDAGs = 0;
 #endif
 
 namespace llvm {
@@ -1708,7 +1713,7 @@
   // Run the DAG combiner in post-legalize mode.
   DAG.Combine(true);
   
-  if (ViewDAGs) DAG.viewGraph();
+  if (ViewISelDAGs) DAG.viewGraph();
   
   // Third, instruction select all of the operations to machine code, adding the
   // code to the MachineBasicBlock.
@@ -1735,3 +1740,12 @@
     BB->addSuccessor(Succ0MBB);
   }
 }
+
+//===----------------------------------------------------------------------===//
+/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
+/// target node in the graph.
+void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
+  if (ViewSchedDAGs) DAG.viewGraph();
+  ScheduleDAG *SL = createSimpleDAGScheduler(DAG, BB);
+  SL->Run();
+}






More information about the llvm-commits mailing list