[llvm-commits] CVS: llvm/lib/Target/SparcV9/ModuloScheduling/DependenceAnalyzer.cpp MSSchedule.cpp MSSchedule.h ModuloScheduling.cpp ModuloScheduling.h ModuloSchedulingSuperBlock.cpp ModuloSchedulingSuperBlock.h

Tanya Brethour tbrethou at cs.uiuc.edu
Thu Jun 16 21:01:09 PDT 2005



Changes in directory llvm/lib/Target/SparcV9/ModuloScheduling:

DependenceAnalyzer.cpp updated: 1.6 -> 1.7
MSSchedule.cpp updated: 1.15 -> 1.16
MSSchedule.h updated: 1.6 -> 1.7
ModuloScheduling.cpp updated: 1.49 -> 1.50
ModuloScheduling.h updated: 1.30 -> 1.31
ModuloSchedulingSuperBlock.cpp updated: 1.1 -> 1.2
ModuloSchedulingSuperBlock.h updated: 1.1 -> 1.2
---
Log message:

Numerous bug fixes and the completed modschedSB algorithm (minor bugs still exist for course).


---
Diffs of the changes:  (+3305 -195)

 DependenceAnalyzer.cpp         |   25 
 MSSchedule.cpp                 |  203 +-
 MSSchedule.h                   |    8 
 ModuloScheduling.cpp           |  174 +-
 ModuloScheduling.h             |    3 
 ModuloSchedulingSuperBlock.cpp | 2968 ++++++++++++++++++++++++++++++++++++++++-
 ModuloSchedulingSuperBlock.h   |  119 +
 7 files changed, 3305 insertions(+), 195 deletions(-)


Index: llvm/lib/Target/SparcV9/ModuloScheduling/DependenceAnalyzer.cpp
diff -u llvm/lib/Target/SparcV9/ModuloScheduling/DependenceAnalyzer.cpp:1.6 llvm/lib/Target/SparcV9/ModuloScheduling/DependenceAnalyzer.cpp:1.7
--- llvm/lib/Target/SparcV9/ModuloScheduling/DependenceAnalyzer.cpp:1.6	Sat Apr 30 18:07:58 2005
+++ llvm/lib/Target/SparcV9/ModuloScheduling/DependenceAnalyzer.cpp	Thu Jun 16 23:00:57 2005
@@ -159,10 +159,10 @@
   SCEVHandle SV2 = SE->getSCEV(Gep2Idx);
 
   //Now handle special cases of dependence analysis
-  SV1->print(std::cerr);
-  std::cerr << "\n";
-  SV2->print(std::cerr);
-  std::cerr << "\n";
+  //SV1->print(std::cerr);
+  //std::cerr << "\n";
+  //SV2->print(std::cerr);
+  //std::cerr << "\n";
 
   //Check if we have an SCEVAddExpr, cause we can only handle those
   SCEVAddRecExpr *SVAdd1 = dyn_cast<SCEVAddRecExpr>(SV1);
@@ -217,7 +217,7 @@
   
   //Find constant index difference
   int diff = A1->getValue()->getRawValue() - A2->getValue()->getRawValue();
-  std::cerr << diff << "\n";
+  //std::cerr << diff << "\n";
   if(diff > 5)
     diff = 2;
 
@@ -240,14 +240,21 @@
 
   //If load/store pair
   if(valLoad && !val2Load) {
-    //Anti Dep
-    deps.push_back(Dependence(diff, Dependence::AntiDep));
+    if(srcBeforeDest) 
+      //Anti Dep
+      deps.push_back(Dependence(diff, Dependence::AntiDep));
+    else
+      deps.push_back(Dependence(diff, Dependence::TrueDep));
+
     ++NumDeps;
   }
   //If store/load pair
   else if(!valLoad && val2Load) {
-    //True Dep
-    deps.push_back(Dependence(diff, Dependence::TrueDep));
+    if(srcBeforeDest) 
+      //True Dep
+      deps.push_back(Dependence(diff, Dependence::TrueDep));
+    else
+      deps.push_back(Dependence(diff, Dependence::AntiDep));
     ++NumDeps;
   }
   //If store/store pair


Index: llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.cpp
diff -u llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.cpp:1.15 llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.cpp:1.16
--- llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.cpp:1.15	Thu Apr 21 18:29:16 2005
+++ llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.cpp	Thu Jun 16 23:00:57 2005
@@ -16,18 +16,23 @@
 #include "llvm/Support/Debug.h"
 #include "llvm/Target/TargetSchedInfo.h"
 #include "../SparcV9Internals.h"
+#include "llvm/CodeGen/MachineInstr.h"
 
 using namespace llvm;
 
+//Check if all resources are free
+bool resourcesFree(MSchedGraphNode*, int, 
+std::map<int, std::map<int, int> > &resourceNumPerCycle);
+
 //Returns a boolean indicating if the start cycle needs to be increased/decreased
-bool MSSchedule::insert(MSchedGraphNode *node, int cycle) {
+bool MSSchedule::insert(MSchedGraphNode *node, int cycle, int II) {
 
   //First, check if the cycle has a spot free to start
   if(schedule.find(cycle) != schedule.end()) {
     //Check if we have a free issue slot at this cycle
     if (schedule[cycle].size() < numIssue) {
       //Now check if all the resources in their respective cycles are available
-      if(resourcesFree(node, cycle)) {
+      if(resourcesFree(node, cycle, II)) {
 	//Insert to preserve dependencies
 	addToSchedule(cycle,node);
 	DEBUG(std::cerr << "Found spot in map, and there is an issue slot\n");
@@ -37,7 +42,7 @@
   }
   //Not in the map yet so put it in
   else {
-    if(resourcesFree(node,cycle)) {
+    if(resourcesFree(node,cycle,II)) {
       std::vector<MSchedGraphNode*> nodes;
       nodes.push_back(node);
       schedule[cycle] = nodes;
@@ -68,99 +73,113 @@
   schedule[cycle] =  nodes;
 }
 
+bool MSSchedule::resourceAvailable(int resourceNum, int cycle) {
+  bool isFree = true;
+
+  //Get Map for this cycle
+  if(resourceNumPerCycle.count(cycle)) {
+    if(resourceNumPerCycle[cycle].count(resourceNum)) {
+      int maxRes = CPUResource::getCPUResource(resourceNum)->maxNumUsers;
+      if(resourceNumPerCycle[cycle][resourceNum] >= maxRes)
+	isFree = false;
+    }
+  }
+  
+  return isFree;
+}
+
+void MSSchedule::useResource(int resourceNum, int cycle) {
+  
+  //Get Map for this cycle
+  if(resourceNumPerCycle.count(cycle)) {
+    if(resourceNumPerCycle[cycle].count(resourceNum)) {
+      resourceNumPerCycle[cycle][resourceNum]++;
+    }
+    else {
+      resourceNumPerCycle[cycle][resourceNum] = 1;
+    }
+  }
+  //If no map, create one!
+  else {
+    std::map<int, int> resourceUse;
+    resourceUse[resourceNum] = 1;
+    resourceNumPerCycle[cycle] = resourceUse;
+  }
+  
+}
 
-bool MSSchedule::resourcesFree(MSchedGraphNode *node, int cycle) {
+bool MSSchedule::resourcesFree(MSchedGraphNode *node, int cycle, int II) {
 
   //Get Resource usage for this instruction
   const TargetSchedInfo *msi = node->getParent()->getTarget()->getSchedInfo();
   int currentCycle = cycle;
   bool success = true;
 
-  //Get resource usage for this instruction
-  InstrRUsage rUsage = msi->getInstrRUsage(node->getInst()->getOpcode());
-  std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
-
-  //Loop over resources in each cycle and increments their usage count
-  for(unsigned i=0; i < resources.size(); ++i) {
-    for(unsigned j=0; j < resources[i].size(); ++j) {
-
-      //Get Resource to check its availability
-      int resourceNum = resources[i][j];
-
-      DEBUG(std::cerr << "Attempting to schedule Resource Num: " << resourceNum << " in cycle: " << currentCycle << "\n");
-
-	//Check if this resource is available for this cycle
-	std::map<int, std::map<int,int> >::iterator resourcesForCycle = resourceNumPerCycle.find(currentCycle);
-
-	//First check if map exists for this cycle
-	if(resourcesForCycle != resourceNumPerCycle.end()) {
-	  //A map exists for this cycle, so lets check for the resource
-	  std::map<int, int>::iterator resourceUse = resourcesForCycle->second.find(resourceNum);
-	  if(resourceUse != resourcesForCycle->second.end()) {
-	    //Check if there are enough of this resource and if so, increase count and move on
-	    if(resourceUse->second < CPUResource::getCPUResource(resourceNum)->maxNumUsers)
-	      ++resourceUse->second;
+  //Create vector of starting cycles
+  std::vector<int> cyclesMayConflict;
+  cyclesMayConflict.push_back(cycle);
+
+  if(resourceNumPerCycle.size() > 0) {
+    for(int i = cycle-II; i >= (resourceNumPerCycle.begin()->first); i-=II)
+      cyclesMayConflict.push_back(i);
+    for(int i = cycle+II; i <= resourceNumPerCycle.end()->first; i+=II)
+      cyclesMayConflict.push_back(i);
+  }
+
+  //Now check all cycles for conflicts
+  for(int index = 0; index < (int) cyclesMayConflict.size(); ++index) {
+    currentCycle = cyclesMayConflict[index];
+    
+    //Get resource usage for this instruction
+    InstrRUsage rUsage = msi->getInstrRUsage(node->getInst()->getOpcode());
+    std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
+    
+    //Loop over resources in each cycle and increments their usage count
+    for(unsigned i=0; i < resources.size(); ++i) {
+      for(unsigned j=0; j < resources[i].size(); ++j) {
 	
-	    else {
-	      DEBUG(std::cerr << "No resource num " << resourceNum << " available for cycle " << currentCycle << "\n");
-	      success = false;
-	    }
-	  }
-	  //Not in the map yet, so put it
-	  else
-	    resourcesForCycle->second[resourceNum] = 1;
+	//Get Resource to check its availability
+	int resourceNum = resources[i][j];
+	
+	DEBUG(std::cerr << "Attempting to schedule Resource Num: " << resourceNum << " in cycle: " << currentCycle << "\n");
+	
+	success = resourceAvailable(resourceNum, currentCycle); 
 	
-	}
-	else {
-	  //Create a new map and put in our resource
-	  std::map<int, int> resourceMap;
-	  resourceMap[resourceNum] = 1;
-	  resourceNumPerCycle[currentCycle] = resourceMap;
-	}
 	if(!success)
 	  break;
+	
       }
+      
       if(!success)
 	break;
-	
-
+      
       //Increase cycle
       currentCycle++;
+    }
+    
+    if(!success)
+      return false;
   }
 
-  if(!success) {
-    int oldCycle = cycle;
-    DEBUG(std::cerr << "Backtrack\n");
+  //Actually put resources into the map
+  if(success) {
+
+    int currentCycle = cycle;
     //Get resource usage for this instruction
     InstrRUsage rUsage = msi->getInstrRUsage(node->getInst()->getOpcode());
     std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
-
+    
     //Loop over resources in each cycle and increments their usage count
     for(unsigned i=0; i < resources.size(); ++i) {
-      if(oldCycle < currentCycle) {
-	
-	//Check if this resource is available for this cycle
-	std::map<int, std::map<int,int> >::iterator resourcesForCycle = resourceNumPerCycle.find(oldCycle);
-	if(resourcesForCycle != resourceNumPerCycle.end()) {
-	  for(unsigned j=0; j < resources[i].size(); ++j) {
-	    int resourceNum = resources[i][j];
-	    //remove from map
-	    std::map<int, int>::iterator resourceUse = resourcesForCycle->second.find(resourceNum);
-	    //assert if not in the map.. since it should be!
-	    //assert(resourceUse != resourcesForCycle.end() && "Resource should be in map!");
-	    DEBUG(std::cerr << "Removing resource num " << resourceNum << " from cycle " << oldCycle << "\n");
-	    --resourceUse->second;
-	  }
-	}
+      for(unsigned j=0; j < resources[i].size(); ++j) {
+	int resourceNum = resources[i][j];
+	useResource(resourceNum, currentCycle);
       }
-      else
-	break;
-      oldCycle++;
+      currentCycle++;
     }
-    return false;
-
   }
 
+
   return true;
 
 }
@@ -174,12 +193,9 @@
 
   DEBUG(std::cerr << "Offset: " << offset << "\n");
 
-  //Not sure what happens in this case, but assert if offset is > II
-  //assert(offset > -II && "Offset can not be more then II");
-
+  //Using the schedule, fold up into kernel and check resource conflicts as we go
   std::vector<std::pair<MSchedGraphNode*, int> > tempKernel;
-
-
+  
   int stageNum = ((schedule.rbegin()->first-offset)+1)/ II;
   int maxSN = 0;
 
@@ -192,21 +208,18 @@
 	for(std::vector<MSchedGraphNode*>::iterator I = schedule[i].begin(),
 	      E = schedule[i].end(); I != E; ++I) {
 	  //Check if its a branch
-	  if((*I)->isBranch()) {
-	    assert(count == 0 && "Branch can not be from a previous iteration");
-	    tempKernel.push_back(std::make_pair(*I, count));
-	  }
-	  else {
-	  //FIXME: Check if the instructions in the earlier stage conflict
-	    tempKernel.push_back(std::make_pair(*I, count));
-	    maxSN = std::max(maxSN, count);
-	  }
+	  assert(!(*I)->isBranch() && "Branch should not be schedule!");
+
+	  tempKernel.push_back(std::make_pair(*I, count));
+	  maxSN = std::max(maxSN, count);
+	  
 	}
       }
       ++count;
     }
   }
 
+
   //Add in induction var code
   for(std::vector<std::pair<MSchedGraphNode*, int> >::iterator I = tempKernel.begin(), IE = tempKernel.end();
       I != IE; ++I) {
@@ -253,6 +266,30 @@
   return true;
 }
 
+bool MSSchedule::defPreviousStage(Value *def, int stage) {
+
+  //Loop over kernel and determine if value is being defined in previous stage
+  for(std::vector<std::pair<MachineInstr*, int> >::iterator P = kernel.begin(), PE = kernel.end(); P != PE; ++P) {
+    MachineInstr* inst = P->first;
+
+    //Loop over Machine Operands
+    for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+      //get machine operand
+     const MachineOperand &mOp = inst->getOperand(i);
+     if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+       if(def == mOp.getVRegValue()) {
+	 if(P->second >= stage)
+	   return false;
+	 else
+	   return true;
+       }
+     }
+    }
+  }
+  
+  assert(0 && "We should always have found the def in our kernel\n");
+}
+
 
 void MSSchedule::print(std::ostream &os) const {
   os << "Schedule:\n";


Index: llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.h
diff -u llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.h:1.6 llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.h:1.7
--- llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.h:1.6	Thu Apr 21 18:29:16 2005
+++ llvm/lib/Target/SparcV9/ModuloScheduling/MSSchedule.h	Thu Jun 16 23:00:57 2005
@@ -28,7 +28,9 @@
     std::map<int, std::map<int, int> > resourceNumPerCycle;
 
     //Check if all resources are free
-    bool resourcesFree(MSchedGraphNode*, int);
+    bool resourcesFree(MSchedGraphNode*, int, int II); 
+    bool resourceAvailable(int resourceNum, int cycle);
+    void useResource(int resourceNum, int cycle);
 
     //Resulting kernel
     std::vector<std::pair<MachineInstr*, int> > kernel;
@@ -42,13 +44,13 @@
   public:
     MSSchedule(int num) : numIssue(num) {}
     MSSchedule() : numIssue(4) {}
-    bool insert(MSchedGraphNode *node, int cycle);
+    bool insert(MSchedGraphNode *node, int cycle, int II);
     int getStartCycle(MSchedGraphNode *node);
     void clear() { schedule.clear(); resourceNumPerCycle.clear(); kernel.clear(); }
     std::vector<std::pair<MachineInstr*, int> >* getKernel() { return &kernel; }
     bool constructKernel(int II, std::vector<MSchedGraphNode*> &branches, std::map<const MachineInstr*, unsigned> &indVar);
     int getMaxStage() { return maxStage; }
-
+    bool defPreviousStage(Value *def, int stage);
 
     //iterators
     typedef std::map<int, std::vector<MSchedGraphNode*> >::iterator schedule_iterator;


Index: llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
diff -u llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp:1.49 llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp:1.50
--- llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp:1.49	Sat Apr 30 18:07:58 2005
+++ llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp	Thu Jun 16 23:00:57 2005
@@ -178,7 +178,7 @@
       }
       else
 	++JumboBB;
-      std::cerr << "BB Size: " << BI->size() << "\n";
+      
     }
 
   defaultInst = 0;
@@ -230,7 +230,6 @@
 
     II = std::max(RecMII, ResMII);
     int mII = II;
-    IISum += mII;
 
     //Print out II, RecMII, and ResMII
     DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
@@ -285,12 +284,15 @@
       reconstructLoop(*BI);
       ++MSLoops;
       Changed = true;
+      FinalIISum += II;
+      IISum += mII;
 
       if(schedule.getMaxStage() == 0)
 	++SameStage;
     }
-    else
+    else {
       ++NoSched;
+    }
 
     //Clear out our maps for the next basic block that is processed
     nodeToAttributesMap.clear();
@@ -323,7 +325,9 @@
       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 	//assert if this is the second def we have seen
 	//DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n");
-	assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
+	//assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
+	if(defMap.count(mOp.getVRegValue()))
+	  return false;
 
 	defMap[mOp.getVRegValue()] = &*I;
       }
@@ -397,7 +401,7 @@
        || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
        || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
        || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
-       || OC == V9::MOVFNEr || OC == V9::MOVFNEi) {
+       || OC == V9::MOVFNEr || OC == V9::MOVFNEi || OC == V9::MOVGr || OC == V9::MOVGi) {
       ++LoopsWithCondMov;
       return false;
     }
@@ -579,6 +583,8 @@
     //Divide the usage count by either the max number we can issue or the number of
     //resources (whichever is its upper bound)
     double finalUsageCount;
+    DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n");
+
     if( resourceNum <= issueSlots)
       finalUsageCount = ceil(1.0 * usageCount / resourceNum);
     else
@@ -1035,6 +1041,56 @@
 
 }
 
+void ModuloSchedulingPass::addSCC(std::vector<MSchedGraphNode*> &SCC, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
+
+  int totalDelay = 0;
+  int totalDistance = 0;
+  std::vector<MSchedGraphNode*> recc;
+  MSchedGraphNode *start = 0;
+  MSchedGraphNode *end = 0;
+
+  //Loop over recurrence, get delay and distance
+  for(std::vector<MSchedGraphNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) {
+    DEBUG(std::cerr << **N << "\n");
+    totalDelay += (*N)->getLatency();
+    
+    for(unsigned i = 0; i < (*N)->succ_size(); ++i) {
+      MSchedGraphEdge *edge = (*N)->getSuccessor(i);
+      if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) {
+	totalDistance += edge->getIteDiff();
+	if(edge->getIteDiff() > 0)
+	  if(!start && !end) {
+	    start = *N;
+	    end = edge->getDest();
+	  }
+	    
+      }
+    }
+
+
+    //Get the original node
+    recc.push_back(newNodes[*N]);
+
+
+  }
+
+  DEBUG(std::cerr << "End Recc\n");
+  CircCount++;
+
+  assert( (start && end) && "Must have start and end node to ignore edge for SCC");
+
+  if(start && end) {	
+    //Insert reccurrence into the list
+    DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
+    edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
+  }
+
+  int lastII = totalDelay / totalDistance;
+
+
+  recurrenceList.insert(std::make_pair(lastII, recc));
+
+}
 
 void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
 
@@ -1074,6 +1130,7 @@
     std::set<MSchedGraphNode*> Visited;
     std::vector<MSchedGraphNode*> Vk;
     MSchedGraphNode* s = 0;
+    int numEdges = 0;
 
     //Find scc with the least vertex
     for (MSchedGraph::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI)
@@ -1085,7 +1142,19 @@
 	  if (Visited.insert(nextSCC[0]).second) {
 	    Visited.insert(nextSCC.begin()+1, nextSCC.end());
 
-	    DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n");
+	    if(nextSCC.size() > 1) {
+	      std::cerr << "SCC size: " << nextSCC.size() << "\n";
+	      
+	      for(unsigned i = 0; i < nextSCC.size(); ++i) {
+		//Loop over successor and see if in scc, then count edge
+		MSchedGraphNode *node = nextSCC[i];
+		for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) {
+		  if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end())
+		    numEdges++;
+		}
+	      }
+	      std::cerr << "Num Edges: " << numEdges << "\n";
+	    }
 
 	    //Ignore self loops
 	    if(nextSCC.size() > 1) {
@@ -1120,7 +1189,10 @@
       B[*N].clear();
     }
     if(Vk.size() > 1) {
-      circuit(s, stack, blocked, Vk, s, B, II, newNodes);
+      if(numEdges < 98)
+	circuit(s, stack, blocked, Vk, s, B, II, newNodes);
+      else
+	addSCC(Vk, newNodes);
 
       //Delete nodes from the graph
       //Find all nodes up to s and delete them
@@ -1860,8 +1932,8 @@
 	schedule.clear();
       }
       DEBUG(std::cerr << "Final II: " << II << "\n");
-      FinalIISum += II;
     }
+   
 
     if(II >= capII) {
       DEBUG(std::cerr << "Maximum II reached, giving up\n");
@@ -1900,7 +1972,7 @@
 
     increaseSC = false;
 
-    increaseSC = schedule.insert(node, cycle);
+    increaseSC = schedule.insert(node, cycle, II);
 
     if(!increaseSC)
       return true;
@@ -2034,18 +2106,11 @@
       }
     }
 
-
-    /*for(std::vector<MSchedGraphNode*>::iterator BR = branches.begin(), BE = branches.end(); BR != BE; ++BR) {
-
-      //Stick in branch at the end
-      machineBB->push_back((*BR)->getInst()->clone());
-
-      //Add nop
-      BuildMI(machineBB, V9::NOP, 0);
-      }*/
-
-
-  (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
+    MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent());
+    MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+    MachineFunction::BasicBlockListType::iterator BLI = origBB;
+    assert(BLI != BL.end() && "Must find original BB in machine function\n");
+    BL.insert(BLI,machineBB);
     prologues.push_back(machineBB);
     llvm_prologues.push_back(llvmBB);
   }
@@ -2143,12 +2208,16 @@
       }
      }
 
-    (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
-    epilogues.push_back(machineBB);
-    llvm_epilogues.push_back(llvmBB);
-
-    DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
-    DEBUG(machineBB->print(std::cerr));
+     MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent());
+     MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+     MachineFunction::BasicBlockListType::iterator BLI = (MachineBasicBlock*) origBB;
+     assert(BLI != BL.end() && "Must find original BB in machine function\n");
+     BL.insert(BLI,machineBB);
+     epilogues.push_back(machineBB);
+     llvm_epilogues.push_back(llvmBB);
+     
+     DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
+     DEBUG(machineBB->print(std::cerr));
   }
 }
 
@@ -2170,14 +2239,6 @@
 
    DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";);
 
-   /*if(I->first->isBranch()) {
-     //Clone instruction
-     const MachineInstr *inst = I->first->getInst();
-     MachineInstr *instClone = inst->clone();
-     branches.push_back(instClone);
-     continue;
-     }*/
-
    //Clone instruction
    const MachineInstr *inst = I->first;
    MachineInstr *instClone = inst->clone();
@@ -2208,6 +2269,8 @@
 
 	   //Check if we already have a final PHI value for this
 	   if(!finalPHIValue.count(mOp.getVRegValue())) {
+	     //Only create phi if the operand def is from a stage before this one
+	     if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) {
 	     TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 	
 	     //Get machine code for this instruction
@@ -2220,6 +2283,7 @@
 	     //save this as our final phi
 	     finalPHIValue[mOp.getVRegValue()] = tmp;
 	     newValLocation[tmp] = machineBB;
+	     }
 	   }
 	   else {
 	     //Use the previous final phi value
@@ -2538,6 +2602,7 @@
   //Keep track of instructions we have already seen and their stage because
   //we don't want to "save" values if they are used in the kernel immediately
   std::map<const MachineInstr*, int> lastInstrs;
+  std::map<const Value*, int> phiUses;
 
   //Loop over kernel and only look at instructions from a stage > 0
   //Look at its operands and save values *'s that are read
@@ -2557,7 +2622,7 @@
 	  //find the value in the map
 	  if (const Value* srcI = mOp.getVRegValue()) {
 
-	    if(isa<Constant>(srcI) || isa<Argument>(srcI) || isa<PHINode>(srcI))
+	    if(isa<Constant>(srcI) || isa<Argument>(srcI))
 	      continue;
 
 	    //Before we declare this Value* one that we should save
@@ -2582,9 +2647,27 @@
 	      }
 	    }
 	
-	    if(save)
+	    if(save) {
+	      assert(!phiUses.count(srcI) && "Did not expect to see phi use twice");
+	      if(isa<PHINode>(srcI))
+		phiUses[srcI] = I->second;
+	      
 	      valuesToSave[srcI] = std::make_pair(I->first, i);
-	  }	
+
+	    }
+	  }
+	}
+	else if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+	  if (const Value* destI = mOp.getVRegValue()) {
+	    if(!isa<PHINode>(destI))
+	      continue;
+	    if(phiUses.count(destI)) {
+	      if(phiUses[destI] == I->second) {
+		//remove from save list
+		valuesToSave.erase(destI);
+	      }
+	    }
+	  }
 	}
 	
 	if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
@@ -2623,7 +2706,14 @@
 
   BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
   MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
-  (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
+ 
+  MachineFunction *F = (((MachineBasicBlock*)BB)->getParent());
+  MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+  MachineFunction::BasicBlockListType::iterator BLI = BB;
+  assert(BLI != BL.end() && "Must find original BB in machine function\n");
+  BL.insert(BLI,machineKernelBB);
+
+  //(((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
   writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs);
 
 
@@ -2833,7 +2923,8 @@
 		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 		   MachineOperand &mOp = temp->getOperand(opNum);
 		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
-		     mOp.setValueReg(llvm_prologues[0]);
+		     if(mOp.getVRegValue() == llvmBB)
+		       mOp.setValueReg(llvm_prologues[0]);
 		   }
 		 }
 	       }
@@ -2853,7 +2944,8 @@
 		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 		   MachineOperand &mOp = temp->getOperand(opNum);
 		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
-		     mOp.setValueReg(llvmKernelBB);
+		     if(mOp.getVRegValue() == llvmBB)
+		       mOp.setValueReg(llvmKernelBB);
 		   }
 		 }
 	       }


Index: llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.h
diff -u llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.h:1.30 llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.h:1.31
--- llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.h:1.30	Sat Apr 30 18:07:59 2005
+++ llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.h	Thu Jun 16 23:00:57 2005
@@ -98,6 +98,7 @@
     void findAllReccurrences(MSchedGraphNode *node,
 			     std::vector<MSchedGraphNode*> &visitedNodes, int II);
     void addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode*, MSchedGraphNode*);
+    void addSCC(std::vector<MSchedGraphNode*> &SCC, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes);
 
     void findAllCircuits(MSchedGraph *MSG, int II);
     bool circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack,
@@ -142,7 +143,7 @@
 
     void writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs);
 
-    void removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation);
+    void removePHIs(const MachineBasicBlock* SB, std::vector<MachineBasicBlock*> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation);
 
     void connectedComponentSet(MSchedGraphNode *node, std::set<MSchedGraphNode*> &ccSet, std::set<MSchedGraphNode*> &lastNodes);
 


Index: llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp
diff -u llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp:1.1 llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp:1.2
--- llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp:1.1	Sat Apr 30 20:27:47 2005
+++ llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp	Thu Jun 16 23:00:57 2005
@@ -17,12 +17,16 @@
 
 #include "DependenceAnalyzer.h"
 #include "ModuloSchedulingSuperBlock.h"
+#include "llvm/Constants.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/CodeGen/MachineFunction.h"
 #include "llvm/CodeGen/Passes.h"
 #include "llvm/Support/CFG.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/SCCIterator.h"
 #include "llvm/Instructions.h"
 #include "../MachineCodeForInstruction.h"
 #include "../SparcV9RegisterInfo.h"
@@ -30,6 +34,8 @@
 #include "../SparcV9TmpInstr.h"
 #include <fstream>
 #include <sstream>
+#include <cmath>
+#include <utility>
 
 using namespace llvm;
 /// Create ModuloSchedulingSBPass
@@ -39,9 +45,18 @@
   return new ModuloSchedulingSBPass(targ);
 }
 
+
+#if 1
+#define TIME_REGION(VARNAME, DESC) \
+   NamedRegionTimer VARNAME(DESC)
+#else
+#define TIME_REGION(VARNAME, DESC)
+#endif
+
+
 //Graph Traits for printing out the dependence graph
 template<typename GraphType>
-static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
+static void WriteGraphToFileSB(std::ostream &O, const std::string &GraphName,
                              const GraphType &GT) {
   std::string Filename = GraphName + ".dot";
   O << "Writing '" << Filename << "'...";
@@ -58,8 +73,82 @@
   Statistic<> NumLoops("moduloschedSB-numLoops", "Total Number of Loops");
   Statistic<> NumSB("moduloschedSB-numSuperBlocks", "Total Number of SuperBlocks");
   Statistic<> BBWithCalls("modulosched-BBCalls", "Basic Blocks rejected due to calls");
-  Statistic<> BBWithCondMov("modulosched-loopCondMov", "Basic Blocks rejected due to conditional moves");
+  Statistic<> BBWithCondMov("modulosched-loopCondMov", 
+			    "Basic Blocks rejected due to conditional moves");
+  Statistic<> SBResourceConstraint("modulosched-resourceConstraint", 
+				 "Loops constrained by resources");
+  Statistic<> SBRecurrenceConstraint("modulosched-recurrenceConstraint", 
+				   "Loops constrained by recurrences");
+  Statistic<> SBFinalIISum("modulosched-finalIISum", "Sum of all final II");
+  Statistic<> SBIISum("modulosched-IISum", "Sum of all theoretical II");
+  Statistic<> SBMSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
+  Statistic<> SBNoSched("modulosched-noSched", "No schedule");
+  Statistic<> SBSameStage("modulosched-sameStage", "Max stage is 0");
+  Statistic<> SBBLoops("modulosched-SBBLoops", "Number single basic block loops");
+  Statistic<> SBInvalid("modulosched-SBInvalid", "Number invalid superblock loops");
+  Statistic<> SBValid("modulosched-SBValid", "Number valid superblock loops");
+ Statistic<> SBSize("modulosched-SBSize", "Total size of all valid superblocks");
+
+  template<>
+  struct DOTGraphTraits<MSchedGraphSB*> : public DefaultDOTGraphTraits {
+    static std::string getGraphName(MSchedGraphSB *F) {
+      return "Dependence Graph";
+    }
+
+    static std::string getNodeLabel(MSchedGraphSBNode *Node, MSchedGraphSB *Graph) {
+      if(!Node->isPredicate()) {
+	if (Node->getInst()) {
+	  std::stringstream ss;
+	  ss << *(Node->getInst());
+	  return ss.str(); //((MachineInstr*)Node->getInst());
+	}
+	else
+	  return "No Inst";
+      }
+      else
+	return "Pred Node";
+    }
+    static std::string getEdgeSourceLabel(MSchedGraphSBNode *Node,
+					  MSchedGraphSBNode::succ_iterator I) {
+      //Label each edge with the type of dependence
+      std::string edgelabel = "";
+      switch (I.getEdge().getDepOrderType()) {
+	
+      case MSchedGraphSBEdge::TrueDep:
+	edgelabel = "True";
+	break;
+
+      case MSchedGraphSBEdge::AntiDep:
+	edgelabel =  "Anti";
+	break;
+	
+      case MSchedGraphSBEdge::OutputDep:
+	edgelabel = "Output";
+	break;
+	
+      case MSchedGraphSBEdge::NonDataDep:
+	edgelabel = "Pred";
+	break;
+
+      default:
+	edgelabel = "Unknown";
+	break;
+      }
+
+      //FIXME
+      int iteDiff = I.getEdge().getIteDiff();
+      std::string intStr = "(IteDiff: ";
+      intStr += itostr(iteDiff);
+
+      intStr += ")";
+      edgelabel += intStr;
+
+      return edgelabel;
+    }
+  };
+
   bool ModuloSchedulingSBPass::runOnFunction(Function &F) {
+    alarm(100);
     bool Changed = false;
     
     //Get MachineFunction
@@ -91,14 +180,97 @@
 	continue;
       }
 
-      MSchedGraph *MSG = new MSchedGraph(*SB, target, indVarInstrs[*SB], DA, 
+      MSchedGraphSB *MSG = new MSchedGraphSB(*SB, target, indVarInstrs[*SB], DA, 
 					 machineTollvm[*SB]);
 
       //Write Graph out to file
-      DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
-      DEBUG(MSG->print(std::cerr));
+      DEBUG(WriteGraphToFileSB(std::cerr, F.getName(), MSG));
+      
+      //Calculate Resource II
+      int ResMII = calculateResMII(*SB);
+
+      //Calculate Recurrence II
+      int RecMII = calculateRecMII(MSG, ResMII);
+      
+      DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
+      
+      //Our starting initiation interval is the maximum of RecMII and ResMII
+      if(RecMII < ResMII)
+	++SBRecurrenceConstraint;
+      else
+	++SBResourceConstraint;
+      
+      II = std::max(RecMII, ResMII);
+      int mII = II;
+    
+      
+      //Print out II, RecMII, and ResMII
+      DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
+     
+      //Calculate Node Properties
+      calculateNodeAttributes(MSG, ResMII);
+      
+      //Dump node properties if in debug mode
+      DEBUG(for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I =  nodeToAttributesMap.begin(),
+		  E = nodeToAttributesMap.end(); I !=E; ++I) {
+	      std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
+			<< I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
+			<< " Height: " << I->second.height << "\n";
+	    });
+      
+
+      //Put nodes in order to schedule them
+      computePartialOrder();
+ 
+      //Dump out partial order
+      DEBUG(for(std::vector<std::set<MSchedGraphSBNode*> >::iterator I = partialOrder.begin(),
+		  E = partialOrder.end(); I !=E; ++I) {
+	      std::cerr << "Start set in PO\n";
+	      for(std::set<MSchedGraphSBNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
+		std::cerr << "PO:" << **J << "\n";
+	    });
 
+      //Place nodes in final order
+      orderNodes();
+      
+      //Dump out order of nodes
+      DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
+	      std::cerr << "FO:" << **I << "\n";
+	    });
+      
+
+      //Finally schedule nodes
+      bool haveSched = computeSchedule(*SB, MSG);
+      
+      //Print out final schedule
+      DEBUG(schedule.print(std::cerr));
+      
+      //Final scheduling step is to reconstruct the loop only if we actual have
+      //stage > 0
+      if(haveSched) {
+	//schedule.printSchedule(std::cerr);
+	reconstructLoop(*SB);
+	++SBMSLoops;
+	//Changed = true;
+	SBIISum += mII;
+	SBFinalIISum += II;
+	
+      if(schedule.getMaxStage() == 0)
+	++SBSameStage;
+      }
+      else
+	++SBNoSched;
+      
+      //Clear out our maps for the next basic block that is processed
+      nodeToAttributesMap.clear();
+      partialOrder.clear();
+      recurrenceList.clear();
+      FinalNodeOrder.clear();
+      schedule.clear();
+      defMap.clear();
+      
     }
+    alarm(0);
     return Changed;
     
   }
@@ -145,63 +317,211 @@
 	MachineBasicBlock *currentMBB = bbMap[header];
 	bool done = false;
 	bool success = true;
+	unsigned offset = 0;
+	std::map<const MachineInstr*, unsigned> indexMap;
 
 	while(!done) {
-	  
-	  if(MachineBBisValid(currentMBB)) {
-
-	    //Loop over successors of this BB, they should be in the loop block
-	    //and be valid
-	    BasicBlock *next = 0;
-	    for(succ_iterator I = succ_begin(current), E = succ_end(current);
-		I != E; ++I) {
-	      if(L->contains(*I)) {
-		if(!next) 
-		  next = *I;
-		else {
-		  done = true;
-		  success = false;
-		  break;
-		}
-	      }
-	    }
-	    if(success) {
-	      superBlock.push_back(currentMBB);
-	      if(next == header)
-		done = true;
-	      else if(!next->getSinglePredecessor()) {
+	  //Loop over successors of this BB, they should be in the
+	  //loop block and be valid
+	  BasicBlock *next = 0;
+	  for(succ_iterator I = succ_begin(current), E = succ_end(current);
+	      I != E; ++I) {
+	    if(L->contains(*I)) {
+	      if(!next) 
+		next = *I;
+	      else {
 		done = true;
 		success = false;
-	      }
-	      else {
-		//Check that the next BB only has one entry
-		current = next;
-		assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB");
-		currentMBB = bbMap[current];
+		break;
 	      }
 	    }
 	  }
-	  else {
-	    done = true;
-	    success = false;
+	   
+	  if(success) {
+	    superBlock.push_back(currentMBB);
+	    if(next == header)
+	      done = true;
+	    else if(!next->getSinglePredecessor()) {
+	      done = true;
+	      success = false;
+	    }
+	    else {
+	      //Check that the next BB only has one entry
+	      current = next;
+	      assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB");
+	      currentMBB = bbMap[current];
+	    }
 	  }
 	}
 
+
+	  
+
+
 	if(success) {
 	  ++NumSB;
-	  Worklist.push_back(superBlock);
+
+	  //Loop over all the blocks in the superblock
+	  for(std::vector<const MachineBasicBlock*>::iterator currentMBB = superBlock.begin(), MBBEnd = superBlock.end(); currentMBB != MBBEnd; ++currentMBB) {
+	    if(!MachineBBisValid(*currentMBB, indexMap, offset)) {
+	      success = false;
+	      break;
+	    }
+	  }
+	}
+	
+	if(success) {
+	  if(getIndVar(superBlock, bbMap, indexMap)) {
+	    ++SBValid;
+	    Worklist.push_back(superBlock);
+	    SBSize += superBlock.size();
+	  }
+	  else
+	    ++SBInvalid;
+	}
+      }
+    }
+  }
+  
+  
+  bool ModuloSchedulingSBPass::getIndVar(std::vector<const MachineBasicBlock*> &superBlock, std::map<BasicBlock*, MachineBasicBlock*> &bbMap, 
+				  std::map<const MachineInstr*, unsigned> &indexMap) {
+    //See if we can get induction var instructions
+    std::set<const BasicBlock*> llvmSuperBlock;
+
+    for(unsigned i =0; i < superBlock.size(); ++i)
+      llvmSuperBlock.insert(superBlock[i]->getBasicBlock());
+
+    //Get Target machine instruction info
+    const TargetInstrInfo *TMI = target.getInstrInfo();
+    
+    //Get the loop back branch
+    BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) (superBlock[superBlock.size()-1])->getBasicBlock())->getTerminator());
+     std::set<Instruction*> indVar;
+
+    if(b->isConditional()) {
+      //Get the condition for the branch 
+      Value *cond = b->getCondition();
+    
+      DEBUG(std::cerr << "Condition: " << *cond << "\n");
+    
+      //List of instructions associated with induction variable
+      std::vector<Instruction*> stack;
+    
+      //Add branch
+      indVar.insert(b);
+    
+      if(Instruction *I = dyn_cast<Instruction>(cond))
+	if(bbMap.count(I->getParent())) {
+	  if (!assocIndVar(I, indVar, stack, bbMap, superBlock[(superBlock.size()-1)]->getBasicBlock(), llvmSuperBlock))
+	    return false;
+	}
+	else
+	  return false;
+      else
+	return false;
+    }
+    else {
+      indVar.insert(b);
+    }
+
+    //Dump out instructions associate with indvar for debug reasons
+    DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); 
+	      N != NE; ++N) {
+	    std::cerr << **N << "\n";
+	  });
+    
+    //Create map of machine instr to llvm instr
+    std::map<MachineInstr*, Instruction*> mllvm;
+    for(std::vector<const MachineBasicBlock*>::iterator MBB = superBlock.begin(), MBE = superBlock.end(); MBB != MBE; ++MBB) {
+      BasicBlock *BB = (BasicBlock*) (*MBB)->getBasicBlock();
+      for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+	MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I);
+	for (unsigned j = 0; j < tempMvec.size(); j++) {
+	  mllvm[tempMvec[j]] = I;
 	}
+      }
+    }
 
+      //Convert list of LLVM Instructions to list of Machine instructions
+      std::map<const MachineInstr*, unsigned> mIndVar;
+      for(std::set<Instruction*>::iterator N = indVar.begin(), 
+	    NE = indVar.end(); N != NE; ++N) {
+	      
+	//If we have a load, we can't handle this loop because
+	//there is no way to preserve dependences between loads
+	//and stores
+	if(isa<LoadInst>(*N))
+	  return false;
+
+	MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N);
+	for (unsigned j = 0; j < tempMvec.size(); j++) {
+	  MachineOpCode OC = (tempMvec[j])->getOpcode();
+	  if(TMI->isNop(OC))
+	    continue;
+	  if(!indexMap.count(tempMvec[j]))
+	    continue;
+	  mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]];
+	  DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n");
+	}
       }
+      
+      //Put into a map for future access
+      indVarInstrs[superBlock] = mIndVar;
+      machineTollvm[superBlock] = mllvm;
+      
+      return true;
+      
+  }
 
+  bool ModuloSchedulingSBPass::assocIndVar(Instruction *I, 
+					   std::set<Instruction*> &indVar,
+					   std::vector<Instruction*> &stack, 
+				       std::map<BasicBlock*, MachineBasicBlock*> &bbMap, 
+					   const BasicBlock *last, std::set<const BasicBlock*> &llvmSuperBlock) {
+
+    stack.push_back(I);
+    
+    //If this is a phi node, check if its the canonical indvar
+    if(PHINode *PN = dyn_cast<PHINode>(I)) {
+      if(llvmSuperBlock.count(PN->getParent())) {
+	if (Instruction *Inc =
+	    dyn_cast<Instruction>(PN->getIncomingValueForBlock(last)))
+	  if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
+	    if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
+	      if (CI->equalsInt(1)) {
+		//We have found the indvar, so add the stack, and inc instruction to the set
+		indVar.insert(stack.begin(), stack.end());
+		indVar.insert(Inc);
+		stack.pop_back();
+		return true;
+	      }
+	return false;
+      }
+    }
+    else {
+      //Loop over each of the instructions operands, check if they are an instruction and in this BB
+      for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+	if(Instruction *N =  dyn_cast<Instruction>(I->getOperand(i))) {
+	  if(bbMap.count(N->getParent()))
+	    if(!assocIndVar(N, indVar, stack, bbMap, last, llvmSuperBlock))
+	      return false;
+	}
+      }
     }
+    
+    stack.pop_back();
+    return true;
   }
   
+
   /// This function checks if a Machine Basic Block is valid for modulo
   /// scheduling. This means that it has no control flow (if/else or
   /// calls) in the block.  Currently ModuloScheduling only works on
   /// single basic block loops.
-  bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI) {
+  bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI,     
+			std::map<const MachineInstr*, unsigned> &indexMap, 
+						unsigned &offset) {
     
     //Check size of our basic block.. make sure we have more then just the terminator in it
     if(BI->getBasicBlock()->size() == 1)
@@ -210,9 +530,6 @@
     //Get Target machine instruction info
     const TargetInstrInfo *TMI = target.getInstrInfo();
 
-    //Check each instruction and look for calls, keep map to get index later
-    std::map<const MachineInstr*, unsigned> indexMap;
-
     unsigned count = 0;
     for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
       //Get opcode to check instruction type
@@ -236,7 +553,7 @@
 	return false;
       }
 
-      indexMap[I] = count;
+      indexMap[I] = count + offset;
 
       if(TMI->isNop(OC))
 	continue;
@@ -244,6 +561,8 @@
       ++count;
     }
 
+    offset += count;
+
     return true;
   }
 }
@@ -258,10 +577,16 @@
       for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) {
 	const MachineOperand &mOp = I->getOperand(opNum);
 	if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
-	  
+	  Value *V = mOp.getVRegValue();
 	  //assert if this is the second def we have seen
-	  assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
-	  defMap[mOp.getVRegValue()] = (MachineInstr*) &*I;
+	  if(defMap.count(V) && isa<PHINode>(V))
+	    DEBUG(std::cerr << "FIXME: Dup def for phi!\n");
+	  else {
+	    //assert(!defMap.count(V) && "Def already in the map");
+	    if(defMap.count(V))
+	      return false;
+	    defMap[V] = (MachineInstr*) &*I;
+	  }
 	}
 	
 	//See if we can use this Value* as our defaultInst
@@ -280,3 +605,2554 @@
   return true;
 
 }
+
+
+//ResMII is calculated by determining the usage count for each resource
+//and using the maximum.
+//FIXME: In future there should be a way to get alternative resources
+//for each instruction
+int ModuloSchedulingSBPass::calculateResMII(std::vector<const MachineBasicBlock*> &superBlock) {
+
+  TIME_REGION(X, "calculateResMII");
+
+  const TargetInstrInfo *mii = target.getInstrInfo();
+  const TargetSchedInfo *msi = target.getSchedInfo();
+
+  int ResMII = 0;
+
+  //Map to keep track of usage count of each resource
+  std::map<unsigned, unsigned> resourceUsageCount;
+
+  for(std::vector<const MachineBasicBlock*>::iterator BI = superBlock.begin(), BE = superBlock.end(); BI != BE; ++BI) {
+    for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
+
+      //Get resource usage for this instruction
+      InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
+      std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
+
+      //Loop over resources in each cycle and increments their usage count
+      for(unsigned i=0; i < resources.size(); ++i)
+	for(unsigned j=0; j < resources[i].size(); ++j) {
+	  if(!resourceUsageCount.count(resources[i][j])) {
+	    resourceUsageCount[resources[i][j]] = 1;
+	  }
+	  else {
+	    resourceUsageCount[resources[i][j]] =  resourceUsageCount[resources[i][j]] + 1;
+	  }
+	}
+    }
+  }
+
+  //Find maximum usage count
+
+  //Get max number of instructions that can be issued at once. (FIXME)
+  int issueSlots = msi->maxNumIssueTotal;
+
+  for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
+
+    //Get the total number of the resources in our cpu
+    int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
+
+    //Get total usage count for this resources
+    unsigned usageCount = RB->second;
+
+    //Divide the usage count by either the max number we can issue or the number of
+    //resources (whichever is its upper bound)
+    double finalUsageCount;
+    DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n");
+
+    if( resourceNum <= issueSlots)
+      finalUsageCount = ceil(1.0 * usageCount / resourceNum);
+    else
+      finalUsageCount = ceil(1.0 * usageCount / issueSlots);
+
+
+    //Only keep track of the max
+    ResMII = std::max( (int) finalUsageCount, ResMII);
+
+  }
+
+  return ResMII;
+  
+}
+
+/// calculateRecMII - Calculates the value of the highest recurrence
+/// By value we mean the total latency/distance
+int ModuloSchedulingSBPass::calculateRecMII(MSchedGraphSB *graph, int MII) {
+  
+  TIME_REGION(X, "calculateRecMII");
+  
+  findAllCircuits(graph, MII);
+  int RecMII = 0;
+  
+  for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
+    RecMII = std::max(RecMII, I->first);
+  }
+  
+  return MII;
+}
+
+int CircCountSB;
+
+void ModuloSchedulingSBPass::unblock(MSchedGraphSBNode *u, std::set<MSchedGraphSBNode*> &blocked,
+	     std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B) {
+
+  //Unblock u
+  DEBUG(std::cerr << "Unblocking: " << *u << "\n");
+  blocked.erase(u);
+
+  //std::set<MSchedGraphSBNode*> toErase;
+  while (!B[u].empty()) {
+    MSchedGraphSBNode *W = *B[u].begin();
+    B[u].erase(W);
+    //toErase.insert(*W);
+    DEBUG(std::cerr << "Removed: " << *W << "from B-List\n");
+    if(blocked.count(W))
+      unblock(W, blocked, B);
+  }
+
+}
+
+void ModuloSchedulingSBPass::addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
+
+  int totalDelay = 0;
+  int totalDistance = 0;
+  std::vector<MSchedGraphSBNode*> recc;
+  MSchedGraphSBNode *start = 0;
+  MSchedGraphSBNode *end = 0;
+
+  //Loop over recurrence, get delay and distance
+  for(std::vector<MSchedGraphSBNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) {
+    DEBUG(std::cerr << **N << "\n");
+    totalDelay += (*N)->getLatency();
+    
+    for(unsigned i = 0; i < (*N)->succ_size(); ++i) {
+      MSchedGraphSBEdge *edge = (*N)->getSuccessor(i);
+      if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) {
+	totalDistance += edge->getIteDiff();
+	if(edge->getIteDiff() > 0)
+	  if(!start && !end) {
+	    start = *N;
+	    end = edge->getDest();
+	  }
+	    
+      }
+    }
+
+
+    //Get the original node
+    recc.push_back(newNodes[*N]);
+
+
+  }
+
+  DEBUG(std::cerr << "End Recc\n");
+  
+
+  assert( (start && end) && "Must have start and end node to ignore edge for SCC");
+
+  if(start && end) {	
+    //Insert reccurrence into the list
+    DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
+    edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
+  }
+
+  int lastII = totalDelay / totalDistance;
+
+
+  recurrenceList.insert(std::make_pair(lastII, recc));
+
+}
+
+bool ModuloSchedulingSBPass::circuit(MSchedGraphSBNode *v, std::vector<MSchedGraphSBNode*> &stack,
+	     std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC,
+	     MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B,
+				   int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
+  bool f = false;
+
+  DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n");
+
+  //Push node onto the stack
+  stack.push_back(v);
+
+  //block this node
+  blocked.insert(v);
+
+  //Loop over all successors of node v that are in the scc, create Adjaceny list
+  std::set<MSchedGraphSBNode*> AkV;
+  for(MSchedGraphSBNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) {
+    if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) {
+      AkV.insert(*I);
+    }
+  }
+
+  for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
+    if(*I == s) {
+      //We have a circuit, so add it to our list
+      addRecc(stack, newNodes);
+      f = true;
+    }
+    else if(!blocked.count(*I)) {
+      if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes))
+	f = true;
+    }
+    else
+      DEBUG(std::cerr << "Blocked: " << **I << "\n");
+  }
+
+
+  if(f) {
+    unblock(v, blocked, B);
+  }
+  else {
+    for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I)
+      B[*I].insert(v);
+
+  }
+
+  //Pop v
+  stack.pop_back();
+
+  return f;
+
+}
+
+void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
+  std::vector<MSchedGraphSBNode*> recc;
+  //Dump recurrence for now
+  DEBUG(std::cerr << "Starting Recc\n");
+	
+  int totalDelay = 0;
+  int totalDistance = 0;
+  MSchedGraphSBNode *lastN = 0;
+  MSchedGraphSBNode *start = 0;
+  MSchedGraphSBNode *end = 0;
+
+  //Loop over recurrence, get delay and distance
+  for(std::vector<MSchedGraphSBNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
+    DEBUG(std::cerr << **N << "\n");
+    totalDelay += (*N)->getLatency();
+    if(lastN) {
+      int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
+      totalDistance += iteDiff;
+
+      if(iteDiff > 0) {
+	start = lastN;
+	end = *N;
+      }
+    }
+    //Get the original node
+    lastN = *N;
+    recc.push_back(newNodes[*N]);
+
+
+  }
+
+  //Get the loop edge
+  totalDistance += lastN->getIteDiff(*stack.begin());
+
+  DEBUG(std::cerr << "End Recc\n");
+  CircCountSB++;
+
+  if(start && end) {	
+    //Insert reccurrence into the list
+    DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
+    edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
+  }
+  else {
+    //Insert reccurrence into the list
+    DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
+    edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
+
+  }
+  //Adjust II until we get close to the inequality delay - II*distance <= 0
+  int RecMII = II; //Starting value
+  int value = totalDelay-(RecMII * totalDistance);
+  int lastII = II;
+  while(value < 0) {
+	  
+    lastII = RecMII;
+    RecMII--;
+    value = totalDelay-(RecMII * totalDistance);
+  }
+
+  recurrenceList.insert(std::make_pair(lastII, recc));
+
+}
+
+
+void ModuloSchedulingSBPass::findAllCircuits(MSchedGraphSB *g, int II) {
+
+  CircCountSB = 0;
+
+  //Keep old to new node mapping information
+  std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> newNodes;
+
+  //copy the graph
+  MSchedGraphSB *MSG = new MSchedGraphSB(*g, newNodes);
+
+  DEBUG(std::cerr << "Finding All Circuits\n");
+
+  //Set of blocked nodes
+  std::set<MSchedGraphSBNode*> blocked;
+
+  //Stack holding current circuit
+  std::vector<MSchedGraphSBNode*> stack;
+
+  //Map for B Lists
+  std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > B;
+
+  //current node
+  MSchedGraphSBNode *s;
+
+
+  //Iterate over the graph until its down to one node or empty
+  while(MSG->size() > 1) {
+
+    //Write Graph out to file
+    //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG);
+
+    DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n");
+    DEBUG(std::cerr << "Finding strong component Vk with least vertex\n");
+
+    //Iterate over all the SCCs in the graph
+    std::set<MSchedGraphSBNode*> Visited;
+    std::vector<MSchedGraphSBNode*> Vk;
+    MSchedGraphSBNode* s = 0;
+    int numEdges = 0;
+
+    //Find scc with the least vertex
+    for (MSchedGraphSB::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI)
+      if (Visited.insert(GI->second).second) {
+	for (scc_iterator<MSchedGraphSBNode*> SCCI = scc_begin(GI->second),
+	       E = scc_end(GI->second); SCCI != E; ++SCCI) {
+	  std::vector<MSchedGraphSBNode*> &nextSCC = *SCCI;
+
+	  if (Visited.insert(nextSCC[0]).second) {
+	    Visited.insert(nextSCC.begin()+1, nextSCC.end());
+
+	    if(nextSCC.size() > 1) {
+	      DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n");
+	      
+	      for(unsigned i = 0; i < nextSCC.size(); ++i) {
+		//Loop over successor and see if in scc, then count edge
+		MSchedGraphSBNode *node = nextSCC[i];
+		for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) {
+		  if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end())
+		    numEdges++;
+		}
+	      }
+	      DEBUG(std::cerr << "Num Edges: " << numEdges << "\n");
+	    }
+	    
+	    //Ignore self loops
+	    if(nextSCC.size() > 1) {
+
+	      //Get least vertex in Vk
+	      if(!s) {
+		s = nextSCC[0];
+		Vk = nextSCC;
+	      }
+
+	      for(unsigned i = 0; i < nextSCC.size(); ++i) {
+		if(nextSCC[i] < s) {
+		  s = nextSCC[i];
+		  Vk = nextSCC;
+		}
+	      }
+	    }
+	  }
+	}
+      }
+
+
+
+    //Process SCC
+    DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end();
+	      N != NE; ++N) { std::cerr << *((*N)->getInst()); });
+
+    //Iterate over all nodes in this scc
+    for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end();
+	N != NE; ++N) {
+      blocked.erase(*N);
+      B[*N].clear();
+    }
+    if(Vk.size() > 1) {
+      if(numEdges < 98)
+	circuit(s, stack, blocked, Vk, s, B, II, newNodes);
+      else
+	addSCC(Vk, newNodes);
+
+
+      //Delete nodes from the graph
+      //Find all nodes up to s and delete them
+      std::vector<MSchedGraphSBNode*> nodesToRemove;
+      nodesToRemove.push_back(s);
+      for(MSchedGraphSB::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) {
+	if(N->second < s )
+	    nodesToRemove.push_back(N->second);
+      }
+      for(std::vector<MSchedGraphSBNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) {
+	DEBUG(std::cerr << "Deleting Node: " << **N << "\n");
+	MSG->deleteNode(*N);
+      }
+    }
+    else
+      break;
+  }    
+  DEBUG(std::cerr << "Num Circuits found: " << CircCountSB << "\n");
+}
+/// calculateNodeAttributes - The following properties are calculated for
+/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
+/// MOB.
+void ModuloSchedulingSBPass::calculateNodeAttributes(MSchedGraphSB *graph, int MII) {
+
+  TIME_REGION(X, "calculateNodeAttributes");
+
+  assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared");
+
+  //Loop over the nodes and add them to the map
+  for(MSchedGraphSB::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
+
+    DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n");
+
+    //Assert if its already in the map
+    assert(nodeToAttributesMap.count(I->second) == 0 &&
+	   "Node attributes are already in the map");
+
+    //Put into the map with default attribute values
+    nodeToAttributesMap[I->second] = MSNodeSBAttributes();
+  }
+
+  //Create set to deal with reccurrences
+  std::set<MSchedGraphSBNode*> visitedNodes;
+
+  //Now Loop over map and calculate the node attributes
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+    calculateASAP(I->first, MII, (MSchedGraphSBNode*) 0);
+    visitedNodes.clear();
+  }
+
+  int maxASAP = findMaxASAP();
+  //Calculate ALAP which depends on ASAP being totally calculated
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+    calculateALAP(I->first, MII, maxASAP, (MSchedGraphSBNode*) 0);
+    visitedNodes.clear();
+  }
+
+  //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+    (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
+
+    DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
+    calculateDepth(I->first, (MSchedGraphSBNode*) 0);
+    calculateHeight(I->first, (MSchedGraphSBNode*) 0);
+  }
+
+
+}
+
+/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
+bool ModuloSchedulingSBPass::ignoreEdge(MSchedGraphSBNode *srcNode, MSchedGraphSBNode *destNode) {
+  if(destNode == 0 || srcNode ==0)
+    return false;
+
+  bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
+
+  DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n");
+
+  return findEdge;
+}
+
+
+/// calculateASAP - Calculates the
+int  ModuloSchedulingSBPass::calculateASAP(MSchedGraphSBNode *node, int MII, MSchedGraphSBNode *destNode) {
+
+  DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
+
+  //Get current node attributes
+  MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+  if(attributes.ASAP != -1)
+    return attributes.ASAP;
+
+  int maxPredValue = 0;
+
+  //Iterate over all of the predecessors and find max
+  for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
+
+    //Only process if we are not ignoring the edge
+    if(!ignoreEdge(*P, node)) {
+      int predASAP = -1;
+      predASAP = calculateASAP(*P, MII, node);
+
+      assert(predASAP != -1 && "ASAP has not been calculated");
+      int iteDiff = node->getInEdge(*P).getIteDiff();
+
+      int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
+      DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
+      maxPredValue = std::max(maxPredValue, currentPredValue);
+    }
+  }
+
+  attributes.ASAP = maxPredValue;
+
+  DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
+
+  return maxPredValue;
+}
+
+
+int ModuloSchedulingSBPass::calculateALAP(MSchedGraphSBNode *node, int MII,
+					int maxASAP, MSchedGraphSBNode *srcNode) {
+
+  DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
+
+  MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+  if(attributes.ALAP != -1)
+    return attributes.ALAP;
+
+  if(node->hasSuccessors()) {
+
+    //Trying to deal with the issue where the node has successors, but
+    //we are ignoring all of the edges to them. So this is my hack for
+    //now.. there is probably a more elegant way of doing this (FIXME)
+    bool processedOneEdge = false;
+
+    //FIXME, set to something high to start
+    int minSuccValue = 9999999;
+
+    //Iterate over all of the predecessors and fine max
+    for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(),
+	  E = node->succ_end(); P != E; ++P) {
+
+      //Only process if we are not ignoring the edge
+      if(!ignoreEdge(node, *P)) {
+	processedOneEdge = true;
+	int succALAP = -1;
+	succALAP = calculateALAP(*P, MII, maxASAP, node);
+	
+	assert(succALAP != -1 && "Successors ALAP should have been caclulated");
+	
+	int iteDiff = P.getEdge().getIteDiff();
+	
+	int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
+	
+	DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
+
+	minSuccValue = std::min(minSuccValue, currentSuccValue);
+      }
+    }
+
+    if(processedOneEdge)
+    	attributes.ALAP = minSuccValue;
+
+    else
+      attributes.ALAP = maxASAP;
+  }
+  else
+    attributes.ALAP = maxASAP;
+
+  DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
+
+  if(attributes.ALAP < 0)
+    attributes.ALAP = 0;
+
+  return attributes.ALAP;
+}
+
+int ModuloSchedulingSBPass::findMaxASAP() {
+  int maxASAP = 0;
+
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(),
+	E = nodeToAttributesMap.end(); I != E; ++I)
+    maxASAP = std::max(maxASAP, I->second.ASAP);
+  return maxASAP;
+}
+
+
+int ModuloSchedulingSBPass::calculateHeight(MSchedGraphSBNode *node,MSchedGraphSBNode *srcNode) {
+
+  MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+  if(attributes.height != -1)
+    return attributes.height;
+
+  int maxHeight = 0;
+
+  //Iterate over all of the predecessors and find max
+  for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(),
+	E = node->succ_end(); P != E; ++P) {
+
+
+    if(!ignoreEdge(node, *P)) {
+      int succHeight = calculateHeight(*P, node);
+
+      assert(succHeight != -1 && "Successors Height should have been caclulated");
+
+      int currentHeight = succHeight + node->getLatency();
+      maxHeight = std::max(maxHeight, currentHeight);
+    }
+  }
+  attributes.height = maxHeight;
+  DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
+  return maxHeight;
+}
+
+
+int ModuloSchedulingSBPass::calculateDepth(MSchedGraphSBNode *node,
+					  MSchedGraphSBNode *destNode) {
+
+  MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+  if(attributes.depth != -1)
+    return attributes.depth;
+
+  int maxDepth = 0;
+
+  //Iterate over all of the predecessors and fine max
+  for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
+
+    if(!ignoreEdge(*P, node)) {
+      int predDepth = -1;
+      predDepth = calculateDepth(*P, node);
+
+      assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
+
+      int currentDepth = predDepth + (*P)->getLatency();
+      maxDepth = std::max(maxDepth, currentDepth);
+    }
+  }
+  attributes.depth = maxDepth;
+
+  DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
+  return maxDepth;
+}
+
+void ModuloSchedulingSBPass::computePartialOrder() {
+
+  TIME_REGION(X, "calculatePartialOrder");
+  
+  DEBUG(std::cerr << "Computing Partial Order\n");
+
+  //Steps to add a recurrence to the partial order 1) Find reccurrence
+  //with the highest RecMII. Add it to the partial order.  2) For each
+  //recurrence with decreasing RecMII, add it to the partial order
+  //along with any nodes that connect this recurrence to recurrences
+  //already in the partial order
+  for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::reverse_iterator 
+	I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
+
+    std::set<MSchedGraphSBNode*> new_recurrence;
+
+    //Loop through recurrence and remove any nodes already in the partial order
+    for(std::vector<MSchedGraphSBNode*>::const_iterator N = I->second.begin(),
+	  NE = I->second.end(); N != NE; ++N) {
+
+      bool found = false;
+      for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+	    PE = partialOrder.end(); PO != PE; ++PO) {
+	if(PO->count(*N))
+	  found = true;
+      }
+
+      //Check if its a branch, and remove to handle special
+      if(!found) {
+	new_recurrence.insert(*N);
+      }
+
+    }
+
+
+    if(new_recurrence.size() > 0) {
+
+      std::vector<MSchedGraphSBNode*> path;
+      std::set<MSchedGraphSBNode*> nodesToAdd;
+
+      //Dump recc we are dealing with (minus nodes already in PO)
+      DEBUG(std::cerr << "Recc: ");
+      DEBUG(for(std::set<MSchedGraphSBNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; });
+
+      //Add nodes that connect this recurrence to recurrences in the partial path
+      for(std::set<MSchedGraphSBNode*>::iterator N = new_recurrence.begin(),
+          NE = new_recurrence.end(); N != NE; ++N)
+	searchPath(*N, path, nodesToAdd, new_recurrence);
+
+      //Add nodes to this recurrence if they are not already in the partial order
+      for(std::set<MSchedGraphSBNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end();
+	  N != NE; ++N) {
+	bool found = false;
+	for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+	      PE = partialOrder.end(); PO != PE; ++PO) {
+	  if(PO->count(*N))
+	    found = true;
+	}
+	if(!found) {
+	  assert("FOUND CONNECTOR");
+	  new_recurrence.insert(*N);
+	}
+      }
+
+      partialOrder.push_back(new_recurrence);
+    }
+  }
+
+  //Add any nodes that are not already in the partial order
+  //Add them in a set, one set per connected component
+  std::set<MSchedGraphSBNode*> lastNodes;
+  std::set<MSchedGraphSBNode*> noPredNodes;
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(),
+	E = nodeToAttributesMap.end(); I != E; ++I) {
+
+    bool found = false;
+
+    //Check if its already in our partial order, if not add it to the final vector
+    for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+	  PE = partialOrder.end(); PO != PE; ++PO) {
+      if(PO->count(I->first))
+	found = true;
+    }
+    if(!found)
+      lastNodes.insert(I->first);
+  }
+
+  //For each node w/out preds, see if there is a path to one of the
+  //recurrences, and if so add them to that current recc
+  /*for(std::set<MSchedGraphSBNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end();
+      N != NE; ++N) {
+    DEBUG(std::cerr << "No Pred Path from: " << **N << "\n");
+    for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+	  PE = partialOrder.end(); PO != PE; ++PO) {
+      std::vector<MSchedGraphSBNode*> path;
+      pathToRecc(*N, path, *PO, lastNodes);
+    }
+    }*/
+
+
+  //Break up remaining nodes that are not in the partial order
+  ///into their connected compoenents
+    while(lastNodes.size() > 0) {
+      std::set<MSchedGraphSBNode*> ccSet;
+      connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes);
+      if(ccSet.size() > 0)
+	partialOrder.push_back(ccSet);
+    }
+
+}
+
+void ModuloSchedulingSBPass::connectedComponentSet(MSchedGraphSBNode *node, std::set<MSchedGraphSBNode*> &ccSet, std::set<MSchedGraphSBNode*> &lastNodes) {
+  
+  //Add to final set
+  if( !ccSet.count(node) && lastNodes.count(node)) {
+    lastNodes.erase(node);
+    ccSet.insert(node);
+  }
+  else
+    return;
+
+  //Loop over successors and recurse if we have not seen this node before
+  for(MSchedGraphSBNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) {
+    connectedComponentSet(*node_succ, ccSet, lastNodes);
+  }
+
+}
+
+void ModuloSchedulingSBPass::searchPath(MSchedGraphSBNode *node,
+				      std::vector<MSchedGraphSBNode*> &path,
+				      std::set<MSchedGraphSBNode*> &nodesToAdd,
+				     std::set<MSchedGraphSBNode*> &new_reccurrence) {
+  //Push node onto the path
+  path.push_back(node);
+
+  //Loop over all successors and see if there is a path from this node to
+  //a recurrence in the partial order, if so.. add all nodes to be added to recc
+  for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
+      ++S) {
+
+    //Check if we should ignore this edge first
+    if(ignoreEdge(node,*S))
+      continue;
+    
+    //check if successor is in this recurrence, we will get to it eventually
+    if(new_reccurrence.count(*S))
+      continue;
+
+    //If this node exists in a recurrence already in the partial
+    //order, then add all nodes in the path to the set of nodes to add
+     //Check if its already in our partial order, if not add it to the
+     //final vector
+    bool found = false;
+    for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+	  PE = partialOrder.end(); PO != PE; ++PO) {
+
+      if(PO->count(*S)) {
+	found = true;
+	break;
+      }
+    }
+
+    if(!found) {
+      nodesToAdd.insert(*S);
+      searchPath(*S, path, nodesToAdd, new_reccurrence);
+    }
+  }
+
+  //Pop Node off the path
+  path.pop_back();
+}
+
+void dumpIntersection(std::set<MSchedGraphSBNode*> &IntersectCurrent) {
+  std::cerr << "Intersection (";
+  for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
+    std::cerr << **I << ", ";
+  std::cerr << ")\n";
+}
+
+void ModuloSchedulingSBPass::orderNodes() {
+
+  TIME_REGION(X, "orderNodes");
+
+  int BOTTOM_UP = 0;
+  int TOP_DOWN = 1;
+
+  //Set default order
+  int order = BOTTOM_UP;
+
+  //Loop over and find all pred nodes and schedule them first
+  /*for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
+    for(std::set<MSchedGraphSBNode*>::iterator N = CurrentSet->begin(), NE = CurrentSet->end(); N != NE; ++N)
+      if((*N)->isPredicate()) {
+	FinalNodeOrder.push_back(*N);
+	CurrentSet->erase(*N);
+      }
+      }*/
+
+
+
+  //Loop over all the sets and place them in the final node order
+  for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
+
+    DEBUG(std::cerr << "Processing set in S\n");
+    DEBUG(dumpIntersection(*CurrentSet));
+
+    //Result of intersection
+    std::set<MSchedGraphSBNode*> IntersectCurrent;
+
+    predIntersect(*CurrentSet, IntersectCurrent);
+
+    //If the intersection of predecessor and current set is not empty
+    //sort nodes bottom up
+    if(IntersectCurrent.size() != 0) {
+      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
+      order = BOTTOM_UP;
+    }
+    //If empty, use successors
+    else {
+      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
+
+      succIntersect(*CurrentSet, IntersectCurrent);
+
+      //sort top-down
+      if(IntersectCurrent.size() != 0) {
+	 DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
+	order = TOP_DOWN;
+      }
+      else {
+	DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
+	//Find node with max ASAP in current Set
+	MSchedGraphSBNode *node;
+	int maxASAP = 0;
+	DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
+	for(std::set<MSchedGraphSBNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) {
+	  //Get node attributes
+	  MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*J)->second;
+	  //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
+	
+	  if(maxASAP <= nodeAttr.ASAP) {
+	    maxASAP = nodeAttr.ASAP;
+	    node = *J;
+	  }
+	}
+	assert(node != 0 && "In node ordering node should not be null");
+	IntersectCurrent.insert(node);
+	order = BOTTOM_UP;
+      }
+    }
+
+    //Repeat until all nodes are put into the final order from current set
+    while(IntersectCurrent.size() > 0) {
+
+      if(order == TOP_DOWN) {
+	DEBUG(std::cerr << "Order is TOP DOWN\n");
+
+	while(IntersectCurrent.size() > 0) {
+	  DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
+	
+	  int MOB = 0;
+	  int height = 0;
+	  MSchedGraphSBNode *highestHeightNode = *(IntersectCurrent.begin());
+	  	
+	  //Find node in intersection with highest heigh and lowest MOB
+	  for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(),
+		E = IntersectCurrent.end(); I != E; ++I) {
+	
+	    //Get current nodes properties
+	    MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
+
+	    if(height < nodeAttr.height) {
+	      highestHeightNode = *I;
+	      height = nodeAttr.height;
+	      MOB = nodeAttr.MOB;
+	    }
+	    else if(height ==  nodeAttr.height) {
+	      if(MOB > nodeAttr.height) {
+		highestHeightNode = *I;
+		height =  nodeAttr.height;
+		MOB = nodeAttr.MOB;
+	      }
+	    }
+	  }
+	
+	  //Append our node with greatest height to the NodeOrder
+	  if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
+	    DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
+	    FinalNodeOrder.push_back(highestHeightNode);
+	  }
+
+	  //Remove V from IntersectOrder
+	  IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
+				      IntersectCurrent.end(), highestHeightNode));
+
+
+	  //Intersect V's successors with CurrentSet
+	  for(MSchedGraphSBNode::succ_iterator P = highestHeightNode->succ_begin(),
+		E = highestHeightNode->succ_end(); P != E; ++P) {
+	    //if(lower_bound(CurrentSet->begin(),
+	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
+	    if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
+	      if(ignoreEdge(highestHeightNode, *P))
+		continue;
+	      //If not already in Intersect, add
+	      if(!IntersectCurrent.count(*P))
+		IntersectCurrent.insert(*P);
+	    }
+	  }
+     	} //End while loop over Intersect Size
+
+	//Change direction
+	order = BOTTOM_UP;
+
+	//Reset Intersect to reflect changes in OrderNodes
+	IntersectCurrent.clear();
+	predIntersect(*CurrentSet, IntersectCurrent);
+	
+      } //End If TOP_DOWN
+	
+	//Begin if BOTTOM_UP
+      else {
+	DEBUG(std::cerr << "Order is BOTTOM UP\n");
+	while(IntersectCurrent.size() > 0) {
+	  DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
+
+	  //dump intersection
+	  DEBUG(dumpIntersection(IntersectCurrent));
+	  //Get node with highest depth, if a tie, use one with lowest
+	  //MOB
+	  int MOB = 0;
+	  int depth = 0;
+	  MSchedGraphSBNode *highestDepthNode = *(IntersectCurrent.begin());
+	
+	  for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(),
+		E = IntersectCurrent.end(); I != E; ++I) {
+	    //Find node attribute in graph
+	    MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
+	
+	    if(depth < nodeAttr.depth) {
+	      highestDepthNode = *I;
+	      depth = nodeAttr.depth;
+	      MOB = nodeAttr.MOB;
+	    }
+	    else if(depth == nodeAttr.depth) {
+	      if(MOB > nodeAttr.MOB) {
+		highestDepthNode = *I;
+		depth = nodeAttr.depth;
+		MOB = nodeAttr.MOB;
+	      }
+	    }
+	  }
+	
+	
+
+	  //Append highest depth node to the NodeOrder
+	   if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
+	     DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
+	     FinalNodeOrder.push_back(highestDepthNode);
+	   }
+	  //Remove heightestDepthNode from IntersectOrder
+	   IntersectCurrent.erase(highestDepthNode);
+	
+
+	  //Intersect heightDepthNode's pred with CurrentSet
+	  for(MSchedGraphSBNode::pred_iterator P = highestDepthNode->pred_begin(),
+		E = highestDepthNode->pred_end(); P != E; ++P) {
+	    if(CurrentSet->count(*P)) {
+	      if(ignoreEdge(*P, highestDepthNode))
+		continue;
+	
+	    //If not already in Intersect, add
+	    if(!IntersectCurrent.count(*P))
+	      IntersectCurrent.insert(*P);
+	    }
+	  }
+	
+	} //End while loop over Intersect Size
+	
+	  //Change order
+	order = TOP_DOWN;
+	
+	//Reset IntersectCurrent to reflect changes in OrderNodes
+	IntersectCurrent.clear();
+	succIntersect(*CurrentSet, IntersectCurrent);
+	} //End if BOTTOM_DOWN
+	
+      DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
+    }
+    //End Wrapping while loop
+    DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");
+  }//End for over all sets of nodes
+
+  //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no
+  //data dependencies) to the final order. We add this manually. It will always be
+  //in the last set of S since its not part of a recurrence
+    //Loop over all the sets and place them in the final node order
+  std::vector<std::set<MSchedGraphSBNode*> > ::reverse_iterator LastSet = partialOrder.rbegin();
+  for(std::set<MSchedGraphSBNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end();
+      CurrentNode != LastNode; ++CurrentNode) {
+    if((*CurrentNode)->getInst()->getOpcode() == V9::BA)
+      FinalNodeOrder.push_back(*CurrentNode);
+  }
+  //Return final Order
+  //return FinalNodeOrder;
+}
+
+
+void ModuloSchedulingSBPass::predIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) {
+
+  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
+    for(MSchedGraphSBNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
+	  E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
+
+      //Check if we are supposed to ignore this edge or not
+      if(ignoreEdge(*P,FinalNodeOrder[j]))
+	continue;
+	
+      if(CurrentSet.count(*P))
+	if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
+	  IntersectResult.insert(*P);
+    }
+  }
+}
+
+void ModuloSchedulingSBPass::succIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) {
+
+  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
+    for(MSchedGraphSBNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
+	  E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
+
+      //Check if we are supposed to ignore this edge or not
+      if(ignoreEdge(FinalNodeOrder[j],*P))
+	continue;
+
+      if(CurrentSet.count(*P))
+	if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
+	  IntersectResult.insert(*P);
+    }
+  }
+}
+
+
+
+bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock*> &SB, MSchedGraphSB *MSG) {
+
+  TIME_REGION(X, "computeSchedule");
+
+  bool success = false;
+
+  //FIXME: Should be set to max II of the original loop
+  //Cap II in order to prevent infinite loop
+  int capII = MSG->totalDelay();
+
+  while(!success) {
+
+    //Keep track of branches, but do not insert into the schedule
+    std::vector<MSchedGraphSBNode*> branches;
+
+    //Loop over the final node order and process each node
+    for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(),
+	  E = FinalNodeOrder.end(); I != E; ++I) {
+
+      //CalculateEarly and Late start
+      bool initialLSVal = false;
+      bool initialESVal = false;
+      int EarlyStart = 0;
+      int LateStart = 0; 
+      bool hasSucc = false;
+      bool hasPred = false;
+      bool sched;
+
+      if((*I)->isBranch())
+	if((*I)->hasPredecessors())
+	  sched = true;
+	else
+	  sched = false;
+      else
+	sched = true;
+
+      if(sched) {
+	//Loop over nodes in the schedule and determine if they are predecessors
+	//or successors of the node we are trying to schedule
+	for(MSScheduleSB::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end();
+	    nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
+	
+	  //For this cycle, get the vector of nodes schedule and loop over it
+	  for(std::vector<MSchedGraphSBNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
+	
+	    if((*I)->isPredecessor(*schedNode)) {
+	      int diff = (*I)->getInEdge(*schedNode).getIteDiff();
+	      int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
+	      DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
+	      DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
+	      if(initialESVal)
+		EarlyStart = std::max(EarlyStart, ES_Temp);
+	      else {
+		EarlyStart = ES_Temp;
+		initialESVal = true;
+	      }
+	      hasPred = true;
+	    }
+	    if((*I)->isSuccessor(*schedNode)) {
+	      int diff = (*schedNode)->getInEdge(*I).getIteDiff();
+	      int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
+	      DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
+	      DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
+	      if(initialLSVal)
+		LateStart = std::min(LateStart, LS_Temp);
+	      else {
+		LateStart = LS_Temp;
+		initialLSVal = true;
+	      }
+	      hasSucc = true;
+	    }
+	  }
+	}
+      }
+      else {
+	branches.push_back(*I);
+	continue;
+      }
+
+      //Check if the node has no pred or successors and set Early Start to its ASAP
+      if(!hasSucc && !hasPred)
+	EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
+
+      DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
+      DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
+
+      //Now, try to schedule this node depending upon its pred and successor in the schedule
+      //already
+      if(!hasSucc && hasPred)
+	success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
+      else if(!hasPred && hasSucc)
+	success = scheduleNode(*I, LateStart, (LateStart - II +1));
+      else if(hasPred && hasSucc) {
+	if(EarlyStart > LateStart) {
+	success = false;
+	  //LateStart = EarlyStart;
+	  DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n");
+	}
+      	else
+	  success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
+      }
+      else
+	success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
+
+      if(!success) {
+	++II; 
+	schedule.clear();
+	break;
+      }
+
+    }
+
+    if(success) {
+      DEBUG(std::cerr << "Constructing Schedule Kernel\n");
+      success = schedule.constructKernel(II, branches, indVarInstrs[SB]);
+      DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
+      if(!success) {
+	++II;
+	schedule.clear();
+      }
+      DEBUG(std::cerr << "Final II: " << II << "\n");
+     
+    }
+
+    if(II >= capII) {
+      DEBUG(std::cerr << "Maximum II reached, giving up\n");
+      return false;
+    }
+
+    assert(II < capII && "The II should not exceed the original loop number of cycles");
+  }
+  return true;
+}
+
+
+bool ModuloSchedulingSBPass::scheduleNode(MSchedGraphSBNode *node,
+				      int start, int end) {
+  bool success = false;
+
+  DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
+
+  //Make sure start and end are not negative
+  //if(start < 0) {
+  //start = 0;
+
+  //}
+  //if(end < 0)
+  //end = 0;
+
+  bool forward = true;
+  if(start > end)
+    forward = false;
+
+  bool increaseSC = true;
+  int cycle = start ;
+
+
+  while(increaseSC) {
+
+    increaseSC = false;
+
+    increaseSC = schedule.insert(node, cycle, II);
+
+    if(!increaseSC)
+      return true;
+
+    //Increment cycle to try again
+    if(forward) {
+      ++cycle;
+      DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
+      if(cycle > end)
+	return false;
+    }
+    else {
+      --cycle;
+      DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
+      if(cycle < end)
+	return false;
+    }
+  }
+
+  return success;
+}
+
+void ModuloSchedulingSBPass::reconstructLoop(std::vector<const MachineBasicBlock*> &SB) {
+
+  TIME_REGION(X, "reconstructLoop");
+
+
+  DEBUG(std::cerr << "Reconstructing Loop\n");
+
+  //First find the value *'s that we need to "save"
+  std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave;
+
+  //Keep track of instructions we have already seen and their stage because
+  //we don't want to "save" values if they are used in the kernel immediately
+  std::map<const MachineInstr*, int> lastInstrs;
+
+
+  std::set<MachineBasicBlock*> seenBranchesBB;
+  const TargetInstrInfo *MTI = target.getInstrInfo();
+  std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > instrsMovedDown;
+  std::map<MachineBasicBlock*, int> branchStage;
+
+  //Loop over kernel and only look at instructions from a stage > 0
+  //Look at its operands and save values *'s that are read
+  for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+    
+    if(I->second !=0) {
+      //For this instruction, get the Value*'s that it reads and put them into the set.
+      //Assert if there is an operand of another type that we need to save
+      const MachineInstr *inst = I->first;
+      lastInstrs[inst] = I->second;
+
+      for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+	//get machine operand
+	const MachineOperand &mOp = inst->getOperand(i);
+	
+	if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+	  //find the value in the map
+	  if (const Value* srcI = mOp.getVRegValue()) {
+
+	    if(isa<Constant>(srcI) || isa<Argument>(srcI))
+	      continue;
+
+	    //Before we declare this Value* one that we should save
+	    //make sure its def is not of the same stage as this instruction
+	    //because it will be consumed before its used
+	    Instruction *defInst = (Instruction*) srcI;
+	
+	    //Should we save this value?
+	    bool save = true;
+
+	    //Continue if not in the def map, loop invariant code does not need to be saved
+	    if(!defMap.count(srcI))
+	      continue;
+
+	    MachineInstr *defInstr = defMap[srcI];
+	
+
+	    if(lastInstrs.count(defInstr)) {
+	      if(lastInstrs[defInstr] == I->second) {
+		save = false;
+		
+	      }
+	    }
+	
+	    if(save)
+	      valuesToSave[srcI] = std::make_pair(I->first, i);
+	  }	
+	}
+	
+	if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+	  assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
+	}
+      }
+    }
+    
+    
+    //Do a check to see if instruction was moved below its original branch
+    if(MTI->isBranch(I->first->getOpcode())) {
+      seenBranchesBB.insert(I->first->getParent());
+      branchStage[I->first->getParent()] = I->second;
+    }
+    else {
+      instrsMovedDown[I->first->getParent()].push_back(std::make_pair(I->first, I->second));
+      //assert(seenBranchesBB.count(I->first->getParent()) && "Instruction moved below branch\n");
+    }
+
+  }
+
+  //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
+
+  //Map to keep track of old to new values
+  std::map<Value*, std::map<int, Value*> > newValues;
+
+  //Map to keep track of old to new values in kernel
+  std::map<Value*, std::map<int, Value*> > kernelPHIs;
+
+  //Another map to keep track of what machine basic blocks these new value*s are in since
+  //they have no llvm instruction equivalent
+  std::map<Value*, MachineBasicBlock*> newValLocation;
+
+  std::vector<std::vector<MachineBasicBlock*> > prologues;
+  std::vector<std::vector<BasicBlock*> > llvm_prologues;
+
+  //Map to keep track of where the inner branches go
+  std::map<const MachineBasicBlock*, Value*> sideExits;
+
+  
+  //Write prologue
+  if(schedule.getMaxStage() != 0)
+    writePrologues(prologues, SB, llvm_prologues, valuesToSave, newValues, newValLocation);
+
+  std::vector<BasicBlock*> llvmKernelBBs;
+  std::vector<MachineBasicBlock*> machineKernelBBs;
+  Function *parent = (Function*) SB[0]->getBasicBlock()->getParent();
+
+  for(unsigned i = 0; i < SB.size(); ++i) {
+    llvmKernelBBs.push_back(new BasicBlock("Kernel", parent));
+    
+    machineKernelBBs.push_back(new MachineBasicBlock(llvmKernelBBs[i]));
+    (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(machineKernelBBs[i]);
+  }
+
+  writeKernel(llvmKernelBBs, machineKernelBBs, valuesToSave, newValues, newValLocation, kernelPHIs);
+
+
+  std::vector<std::vector<MachineBasicBlock*> > epilogues;
+  std::vector<std::vector<BasicBlock*> > llvm_epilogues;
+
+  //Write epilogues
+  if(schedule.getMaxStage() != 0)
+    writeEpilogues(epilogues, SB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs);
+
+
+  //Fix our branches
+  fixBranches(prologues, llvm_prologues, machineKernelBBs, llvmKernelBBs, epilogues, llvm_epilogues, SB, sideExits);
+
+  //Print out epilogues and prologue
+  DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end();
+      PI != PE; ++PI) {
+	  std::cerr << "PROLOGUE\n";
+	  for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I)
+	    (*I)->print(std::cerr);
+	});
+
+  DEBUG(std::cerr << "KERNEL\n");
+  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);});
+
+  DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end();
+      EI != EE; ++EI) {
+    std::cerr << "EPILOGUE\n";
+    for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I)
+      (*I)->print(std::cerr);
+  });
+
+
+  //Remove phis
+  removePHIs(SB, prologues, epilogues, machineKernelBBs, newValLocation);
+
+  //Print out epilogues and prologue
+  DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end();
+      PI != PE; ++PI) {
+	  std::cerr << "PROLOGUE\n";
+	  for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I)
+	    (*I)->print(std::cerr);
+	});
+
+  DEBUG(std::cerr << "KERNEL\n");
+  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);});
+
+  DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end();
+      EI != EE; ++EI) {
+    std::cerr << "EPILOGUE\n";
+    for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I)
+      (*I)->print(std::cerr);
+  });
+
+  writeSideExits(prologues, llvm_prologues, epilogues, llvm_epilogues, sideExits, instrsMovedDown, SB, machineKernelBBs, branchStage);
+
+
+  DEBUG(std::cerr << "New Machine Function" << "\n");
+}
+
+
+void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<MachineBasicBlock*> &machineKernelBB, std::vector<BasicBlock*> &llvmKernelBB, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::vector<const MachineBasicBlock*> &SB, std::map<const MachineBasicBlock*, Value*> &sideExits) {
+
+  const TargetInstrInfo *TMI = target.getInstrInfo();
+
+  //Get exit BB
+  BasicBlock *last = (BasicBlock*) SB[SB.size()-1]->getBasicBlock();
+  BasicBlock *kernel_exit = 0;
+  bool sawFirst = false;
+
+  for(succ_iterator I = succ_begin(last),
+	E = succ_end(last); I != E; ++I) {
+    if (*I != SB[0]->getBasicBlock()) {
+      kernel_exit = *I;
+      break;
+    }
+    else
+      sawFirst = true;
+  }
+  if(!kernel_exit && sawFirst) {
+    kernel_exit = (BasicBlock*) SB[0]->getBasicBlock();
+  }
+
+  assert(kernel_exit && "Kernel Exit can not be null");
+
+  if(schedule.getMaxStage() != 0) {
+    //Fix prologue branches
+    for(unsigned i = 0; i <  prologues.size(); ++i) {
+
+      for(unsigned j = 0; j < prologues[i].size(); ++j) {
+
+	MachineBasicBlock *currentMBB = prologues[i][j];
+       
+	//Find terminator since getFirstTerminator does not work!
+	for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+	  MachineOpCode OC = mInst->getOpcode();
+	  //If its a branch update its branchto
+	  if(TMI->isBranch(OC)) {
+	    for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+	      MachineOperand &mOp = mInst->getOperand(opNum);
+	      if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+		//Check if we are branching to the kernel, if not branch to epilogue
+		if(mOp.getVRegValue() == SB[0]->getBasicBlock()) {
+		  if(i >= prologues.size()-1)
+		    mOp.setValueReg(llvmKernelBB[0]);
+		  else
+		    mOp.setValueReg(llvm_prologues[i+1][0]);
+		}
+		else if( (mOp.getVRegValue() == kernel_exit) && (j == prologues[i].size()-1)) {
+		  mOp.setValueReg(llvm_epilogues[i][0]);
+		}
+		else if(mOp.getVRegValue() == SB[j+1]->getBasicBlock()) {
+		  mOp.setValueReg(llvm_prologues[i][j+1]);
+		}
+		
+	      }
+	    }
+	    
+	    DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
+	  }
+	}
+
+	//Update llvm basic block with our new branch instr
+	DEBUG(std::cerr << SB[i]->getBasicBlock()->getTerminator() << "\n");
+	
+	const BranchInst *branchVal = dyn_cast<BranchInst>(SB[i]->getBasicBlock()->getTerminator());
+
+	//Check for inner branch
+	if(j < prologues[i].size()-1) {
+	  //Find our side exit LLVM basic block
+	  BasicBlock *sideExit = 0;
+	  for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) {
+	    if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock())
+	      sideExit = branchVal->getSuccessor(s);
+	  }
+	  assert(sideExit && "Must have side exit llvm basic block");
+	  TerminatorInst *newBranch = new BranchInst(sideExit,
+					llvm_prologues[i][j+1],
+					branchVal->getCondition(),
+					llvm_prologues[i][j]);
+	}
+	else {
+	  //If last prologue
+	  if(i == prologues.size()-1) {
+	    TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
+						       llvm_epilogues[i][0],
+						       branchVal->getCondition(),
+						       llvm_prologues[i][j]);
+	  }
+	  else {
+	    TerminatorInst *newBranch = new BranchInst(llvm_prologues[i+1][0],
+						       llvm_epilogues[i][0],
+						       branchVal->getCondition(),
+						       llvm_prologues[i][j]);
+	  }
+	}
+      }
+    }
+  }
+
+  //Fix up kernel machine branches
+  for(unsigned i = 0; i < machineKernelBB.size(); ++i) {
+    MachineBasicBlock *currentMBB = machineKernelBB[i];
+
+    for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+      MachineOpCode OC = mInst->getOpcode();
+      if(TMI->isBranch(OC)) {
+	for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+	  MachineOperand &mOp = mInst->getOperand(opNum);
+	
+	  if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+	    //Deal with inner kernel branches
+	    if(i < machineKernelBB.size()-1) {
+	      if(mOp.getVRegValue() == SB[i+1]->getBasicBlock())
+		mOp.setValueReg(llvmKernelBB[i+1]);
+	      //Side exit!
+	      else {
+		sideExits[SB[i]] = mOp.getVRegValue();
+	      }
+	    }
+	    else {
+	      if(mOp.getVRegValue() == SB[0]->getBasicBlock())
+		mOp.setValueReg(llvmKernelBB[0]);
+	      else {
+		if(llvm_epilogues.size() > 0)
+		  mOp.setValueReg(llvm_epilogues[0][0]);
+	      }
+	    }
+	  }
+	}
+      }
+    }
+
+    //Update kernelLLVM branches
+    const BranchInst *branchVal = dyn_cast<BranchInst>(SB[0]->getBasicBlock()->getTerminator());
+  
+    //deal with inner branch
+    if(i < machineKernelBB.size()-1) {
+      
+      //Find our side exit LLVM basic block
+      BasicBlock *sideExit = 0;
+      for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) {
+	if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock())
+	  sideExit = branchVal->getSuccessor(s);
+      }
+      assert(sideExit && "Must have side exit llvm basic block");
+      TerminatorInst *newBranch = new BranchInst(sideExit,
+						 llvmKernelBB[i+1],
+						 branchVal->getCondition(),
+						 llvmKernelBB[i]);
+    }
+    else {
+      //Deal with outter branches
+      if(epilogues.size() > 0) {
+	TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
+						   llvm_epilogues[0][0],
+						   branchVal->getCondition(),
+						   llvmKernelBB[i]);
+      }
+      else {
+	TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
+						   kernel_exit,
+						   branchVal->getCondition(),
+						   llvmKernelBB[i]);
+      }
+    }
+  }
+
+  if(schedule.getMaxStage() != 0) {
+  
+    //Lastly add unconditional branches for the epilogues
+    for(unsigned i = 0; i <  epilogues.size(); ++i) {
+
+      for(unsigned j=0; j < epilogues[i].size(); ++j) {
+	//Now since we don't have fall throughs, add a unconditional
+	//branch to the next prologue
+	
+	//Before adding these, we need to check if the epilogue already has
+	//a branch in it
+	bool hasBranch = false;
+	/*if(j < epilogues[i].size()-1) {
+	  MachineBasicBlock *currentMBB = epilogues[i][j];
+	  for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+	    
+	    MachineOpCode OC = mInst->getOpcode();
+	    
+	    //If its a branch update its branchto
+	    if(TMI->isBranch(OC)) {
+	      hasBranch = true;
+	      for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+		MachineOperand &mOp = mInst->getOperand(opNum);
+		if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+		 
+		  if(mOp.getVRegValue() != sideExits[SB[j]]) {
+		    mOp.setValueReg(llvm_epilogues[i][j+1]);
+		  }
+		  
+		}
+	      }
+	      
+	      
+	      DEBUG(std::cerr << "New Epilogue Branch: " << *mInst << "\n");
+	    }
+	  }
+	  if(hasBranch) {
+	    const BranchInst *branchVal = dyn_cast<BranchInst>(SB[j]->getBasicBlock()->getTerminator());
+	    TerminatorInst *newBranch = new BranchInst((BasicBlock*)sideExits[SB[j]],
+						       llvm_epilogues[i][j+1],
+						       branchVal->getCondition(),
+						       llvm_epilogues[i][j]);
+	  }
+	  }*/
+
+	if(!hasBranch) {
+	
+	  //Handle inner branches
+	  if(j < epilogues[i].size()-1) {
+	    BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i][j+1]);
+	    TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i][j+1],
+						       llvm_epilogues[i][j]);
+	  }
+	  else {
+	    
+	    //Check if this is the last epilogue
+	    if(i != epilogues.size()-1) {
+	      BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i+1][0]);
+	      //Add unconditional branch to end of epilogue
+	      TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i+1][0],
+							 llvm_epilogues[i][j]);
+	      
+	    }
+	    else {
+	      BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(kernel_exit);
+	      TerminatorInst *newBranch = new BranchInst(kernel_exit, llvm_epilogues[i][j]);
+	    }
+	  }
+	  
+	  //Add one more nop!
+	  BuildMI(epilogues[i][j], V9::NOP, 0);
+	  
+	}
+      }
+    }
+  }
+
+  //Find all llvm basic blocks that branch to the loop entry and
+  //change to our first prologue.
+  const BasicBlock *llvmBB = SB[0]->getBasicBlock();
+  
+  std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB));
+  
+  for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), 
+	PE = Preds.end(); P != PE; ++P) {
+    if(*P == SB[SB.size()-1]->getBasicBlock())
+       continue;
+     else {
+       DEBUG(std::cerr << "Found our entry BB\n");
+       DEBUG((*P)->print(std::cerr));
+       //Get the Terminator instruction for this basic block and print it out
+       //DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
+       
+       //Update the terminator
+       TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
+       for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
+	 if(term->getSuccessor(i) == llvmBB) {
+	   DEBUG(std::cerr << "Replacing successor bb\n");
+	   if(llvm_prologues.size() > 0) {
+	     term->setSuccessor(i, llvm_prologues[0][0]);
+
+	     DEBUG(std::cerr << "New Term" << *((*P)->getTerminator()) << "\n");
+
+	     //Also update its corresponding machine instruction
+	     MachineCodeForInstruction & tempMvec =
+	       MachineCodeForInstruction::get(term);
+	     for (unsigned j = 0; j < tempMvec.size(); j++) {
+	       MachineInstr *temp = tempMvec[j];
+	       MachineOpCode opc = temp->getOpcode();
+	       if(TMI->isBranch(opc)) {
+		 DEBUG(std::cerr << *temp << "\n");
+		 //Update branch
+		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+		   MachineOperand &mOp = temp->getOperand(opNum);
+		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+		     if(mOp.getVRegValue() == llvmBB)
+		       mOp.setValueReg(llvm_prologues[0][0]);
+		   }
+		 }
+	       }
+	     }
+	   }
+	   else {
+	     term->setSuccessor(i, llvmKernelBB[0]);
+
+	     //Also update its corresponding machine instruction
+	     MachineCodeForInstruction & tempMvec =
+	       MachineCodeForInstruction::get(term);
+	     for(unsigned j = 0; j < tempMvec.size(); j++) {
+	       MachineInstr *temp = tempMvec[j];
+	       MachineOpCode opc = temp->getOpcode();
+	       if(TMI->isBranch(opc)) {
+		 DEBUG(std::cerr << *temp << "\n");
+		 //Update branch
+		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+		   MachineOperand &mOp = temp->getOperand(opNum);
+		   if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+		     if(mOp.getVRegValue() == llvmBB)
+		       mOp.setValueReg(llvmKernelBB[0]);
+		   }
+		 }
+	       }
+	     }
+	   }
+	 }
+       }
+       break;
+     }
+  }
+
+}
+
+
+void ModuloSchedulingSBPass::writePrologues(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
+
+  //Keep a map to easily know whats in the kernel
+  std::map<int, std::set<const MachineInstr*> > inKernel;
+  int maxStageCount = 0;
+
+  //Keep a map of new values we consumed in case they need to be added back
+  std::map<Value*, std::map<int, Value*> > consumedValues;
+
+  DEBUG(schedule.print(std::cerr));
+
+  for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+    maxStageCount = std::max(maxStageCount, I->second);
+
+    //Put int the map so we know what instructions in each stage are in the kernel
+    DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n");
+    inKernel[I->second].insert(I->first);
+  }
+
+  //Get target information to look at machine operands
+  const TargetInstrInfo *mii = target.getInstrInfo();
+
+ //Now write the prologues
+  for(int i = 0; i < maxStageCount; ++i) {
+    std::vector<MachineBasicBlock*> current_prologue;
+    std::vector<BasicBlock*> current_llvm_prologue;
+
+    for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), 
+	  MBE = origSB.end(); MB != MBE; ++MB) {
+      const MachineBasicBlock *MBB = *MB;
+      //Create new llvm and machine bb
+      BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (MBB->getBasicBlock()->getParent()));
+      MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
+
+      DEBUG(std::cerr << "i=" << i << "\n");
+
+      for(int j = i; j >= 0; --j) {
+	//iterate over instructions in original bb
+	for(MachineBasicBlock::const_iterator MI = MBB->begin(), 
+	      ME = MBB->end(); ME != MI; ++MI) {
+	  if(inKernel[j].count(&*MI)) {
+	    MachineInstr *instClone = MI->clone();
+	    machineBB->push_back(instClone);
+	    
+	    //If its a branch, insert a nop
+	    if(mii->isBranch(instClone->getOpcode()))
+	      BuildMI(machineBB, V9::NOP, 0);
+	
+	    
+	    DEBUG(std::cerr << "Cloning: " << *MI << "\n");
+	    
+	    //After cloning, we may need to save the value that this instruction defines
+	    for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
+	      Instruction *tmp;
+	      
+	      //get machine operand
+	      MachineOperand &mOp = instClone->getOperand(opNum);
+	      if(mOp.getType() == MachineOperand::MO_VirtualRegister 
+		 && mOp.isDef()) {
+
+		//Check if this is a value we should save
+		if(valuesToSave.count(mOp.getVRegValue())) {
+		  //Save copy in tmpInstruction
+		  tmp = new TmpInstruction(mOp.getVRegValue());
+		  
+		  //Add TmpInstruction to safe LLVM Instruction MCFI
+		  MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+		  tempMvec.addTemp((Value*) tmp);
+
+		  DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) 
+			<< " New Value: " << *tmp << " Stage: " << i << "\n");
+		
+		newValues[mOp.getVRegValue()][i]= tmp;
+		newValLocation[tmp] = machineBB;
+
+		DEBUG(std::cerr << "Machine Instr Operands: " 
+		      << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
+		
+		//Create machine instruction and put int machineBB
+		MachineInstr *saveValue;
+		if(mOp.getVRegValue()->getType() == Type::FloatTy)
+		  saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+		else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+		  saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+		else
+		  saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+	
+
+		DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
+		}
+	      }
+
+	      //We may also need to update the value that we use if
+	      //its from an earlier prologue
+	      if(j != 0) {
+		if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+		  if(newValues.count(mOp.getVRegValue())) {
+		    if(newValues[mOp.getVRegValue()].count(i-1)) {
+		      Value *oldV =  mOp.getVRegValue();
+		      DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n");
+		      //Update the operand with the right value
+		      mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]);
+		      
+		      //Remove this value since we have consumed it
+		      //NOTE: Should this only be done if j != maxStage?
+		      consumedValues[oldV][i-1] = (newValues[oldV][i-1]);
+		      DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n");
+		      newValues[oldV].erase(i-1);
+		    }
+		  }
+		  else
+		    if(consumedValues.count(mOp.getVRegValue()))
+		      assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value");
+		}
+	      }
+	    }
+	  }
+	}
+      }
+      	(((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB);
+	current_prologue.push_back(machineBB);
+	current_llvm_prologue.push_back(llvmBB);
+    }
+    prologues.push_back(current_prologue);
+    llvm_prologues.push_back(current_llvm_prologue);
+
+  }
+}
+
+
+void ModuloSchedulingSBPass::writeEpilogues(std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
+
+  std::map<int, std::set<const MachineInstr*> > inKernel;
+   const TargetInstrInfo *MTI = target.getInstrInfo();
+
+  for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+    //Put int the map so we know what instructions in each stage are in the kernel
+    inKernel[I->second].insert(I->first);
+  }
+
+  std::map<Value*, Value*> valPHIs;
+
+  //some debug stuff, will remove later
+  DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) {
+    std::cerr << "Old Value: " << *(V->first) << "\n";
+    for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
+      std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
+  });
+
+
+  //Now write the epilogues
+  for(int i = schedule.getMaxStage()-1; i >= 0; --i) {
+    std::vector<MachineBasicBlock*> current_epilogue;
+    std::vector<BasicBlock*> current_llvm_epilogue;
+    
+    for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), MBE = origSB.end(); MB != MBE; ++MB) {
+      const MachineBasicBlock *MBB = *MB;
+
+      BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (MBB->getBasicBlock()->getParent()));
+      MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
+      
+      DEBUG(std::cerr << " Epilogue #: " << i << "\n");
+      
+      std::map<Value*, int> inEpilogue;
+      
+      for(MachineBasicBlock::const_iterator MI = MBB->begin(), ME = MBB->end(); ME != MI; ++MI) {
+	for(int j=schedule.getMaxStage(); j > i; --j) {
+	  if(inKernel[j].count(&*MI)) {
+	    DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
+	    MachineInstr *clone = MI->clone();
+	    
+	    //Update operands that need to use the result from the phi
+	    for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) {
+	      //get machine operand
+	      const MachineOperand &mOp = clone->getOperand(opNum);
+	      
+	      if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
+		
+		DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n");
+		
+		//If this is the last instructions for the max iterations ago, don't update operands
+		if(inEpilogue.count(mOp.getVRegValue()))
+		  if(inEpilogue[mOp.getVRegValue()] == i)
+		    continue;
+		
+		//Quickly write appropriate phis for this operand
+		if(newValues.count(mOp.getVRegValue())) {
+		  if(newValues[mOp.getVRegValue()].count(i)) {
+		    Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]);
+		    
+		    //Get machine code for this instruction
+		    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+		    tempMvec.addTemp((Value*) tmp);
+		    
+		    //assert of no kernelPHI for this value
+		    assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi");
+		    
+		    MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
+		    DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+		    valPHIs[mOp.getVRegValue()] = tmp;
+		  }
+		}
+		
+		if(valPHIs.count(mOp.getVRegValue())) {
+		  //Update the operand in the cloned instruction
+		  clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]);
+		}
+	      }
+	      else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) {
+		inEpilogue[mOp.getVRegValue()] = i;
+	      }
+	     
+	    }
+	    machineBB->push_back(clone);
+	    //if(MTI->isBranch(clone->getOpcode()))
+	    //BuildMI(machineBB, V9::NOP, 0);
+	  }
+	}
+      }
+      (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB);
+      current_epilogue.push_back(machineBB);
+      current_llvm_epilogue.push_back(llvmBB);
+    }
+     
+    DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
+    DEBUG(for(std::vector<MachineBasicBlock*>::iterator B = current_epilogue.begin(), BE = current_epilogue.end(); B != BE; ++B) {
+	    (*B)->print(std::cerr);});
+    
+    epilogues.push_back(current_epilogue);
+    llvm_epilogues.push_back(current_llvm_epilogue);
+  }
+}
+
+void ModuloSchedulingSBPass::writeKernel(std::vector<BasicBlock*> &llvmBB, std::vector<MachineBasicBlock*> &machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
+
+  //Keep track of operands that are read and saved from a previous iteration. The new clone
+  //instruction will use the result of the phi instead.
+  std::map<Value*, Value*> finalPHIValue;
+  std::map<Value*, Value*> kernelValue;
+
+  //Branches are a special case
+  std::vector<MachineInstr*> branches;
+
+  //Get target information to look at machine operands
+  const TargetInstrInfo *mii = target.getInstrInfo();
+  unsigned index = 0;
+  int numBr = 0;
+  bool seenBranch = false;
+
+  //Create TmpInstructions for the final phis
+  for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+   DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";);
+
+   //Clone instruction
+   const MachineInstr *inst = I->first;
+   MachineInstr *instClone = inst->clone();
+
+   if(seenBranch && !mii->isBranch(instClone->getOpcode())) {
+     index++;
+     seenBranch = false;
+     numBr = 0;
+   }
+   else if(seenBranch && (numBr == 2)) {
+     index++;
+     numBr = 0;
+   }
+
+   //Insert into machine basic block
+   assert(index < machineBB.size() && "Must have a valid index into kernel MBBs");
+   machineBB[index]->push_back(instClone);
+
+   if(mii->isBranch(instClone->getOpcode())) {
+     BuildMI(machineBB[index], V9::NOP, 0);
+
+     seenBranch = true;
+     numBr++;
+   }
+   
+   DEBUG(std::cerr <<  "Cloned Inst: " << *instClone << "\n");
+
+   //Loop over Machine Operands
+   for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+     //get machine operand
+     const MachineOperand &mOp = inst->getOperand(i);
+
+     if(I->second != 0) {
+       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+
+	 //Check to see where this operand is defined if this instruction is from max stage
+	 if(I->second == schedule.getMaxStage()) {
+	   DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n");
+	 }
+
+	 //If its in the value saved, we need to create a temp instruction and use that instead
+	 if(valuesToSave.count(mOp.getVRegValue())) {
+
+	   //Check if we already have a final PHI value for this
+	   if(!finalPHIValue.count(mOp.getVRegValue())) {
+	     //Only create phi if the operand def is from a stage before this one
+	     if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) {
+	     TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
+	
+	     //Get machine code for this instruction
+	     MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+	     tempMvec.addTemp((Value*) tmp);
+	
+	     //Update the operand in the cloned instruction
+	     instClone->getOperand(i).setValueReg(tmp);
+	
+	     //save this as our final phi
+	     finalPHIValue[mOp.getVRegValue()] = tmp;
+	     newValLocation[tmp] = machineBB[index];
+	     }
+	   }
+	   else {
+	     //Use the previous final phi value
+	     instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]);
+	   }
+	 }
+       }
+     }
+     if(I->second != schedule.getMaxStage()) {
+       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+	 if(valuesToSave.count(mOp.getVRegValue())) {
+	
+	   TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
+	
+	   //Get machine code for this instruction
+	   MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst);
+	   tempVec.addTemp((Value*) tmp);
+
+	   //Create new machine instr and put in MBB
+	   MachineInstr *saveValue;
+	   if(mOp.getVRegValue()->getType() == Type::FloatTy)
+	     saveValue = BuildMI(machineBB[index], V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+	   else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+	     saveValue = BuildMI(machineBB[index], V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+	   else
+	     saveValue = BuildMI(machineBB[index], V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+	
+	
+	   //Save for future cleanup
+	   kernelValue[mOp.getVRegValue()] = tmp;
+	   newValLocation[tmp] = machineBB[index];
+	   kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp;
+	 }
+       }
+     }
+   }
+
+ }
+
+  //Loop over each value we need to generate phis for
+ for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(),
+       E = newValues.end(); V != E; ++V) {
+
+
+   DEBUG(std::cerr << "Writing phi for" << *(V->first));
+   DEBUG(std::cerr << "\nMap of Value* for this phi\n");
+   DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(),
+	       IE = V->second.end(); I != IE; ++I) {
+     std::cerr << "Stage: " << I->first;
+     std::cerr << " Value: " << *(I->second) << "\n";
+   });
+
+   //If we only have one current iteration live, its safe to set
+   //lastPhi = to kernel value
+   if(V->second.size() == 1) {
+     assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
+     MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]);
+     DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n");
+     kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first];
+     DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n");
+   }
+   else {
+
+     //Keep track of last phi created.
+     Instruction *lastPhi = 0;
+
+     unsigned count = 1;
+     //Loop over the the map backwards to generate phis
+     for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend();
+	 I != IE; ++I) {
+
+       if(count < (V->second).size()) {
+	 if(lastPhi == 0) {
+	   lastPhi = new TmpInstruction(I->second);
+
+	   //Get machine code for this instruction
+	   MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+	   tempMvec.addTemp((Value*) lastPhi);
+
+	   MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi);
+	   DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+	   newValLocation[lastPhi] = machineBB[0];
+	 }
+	 else {
+	   Instruction *tmp = new TmpInstruction(I->second);
+
+	   //Get machine code for this instruction
+	   MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+	   tempMvec.addTemp((Value*) tmp);
+	
+
+	   MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp);
+	   DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+	   lastPhi = tmp;
+	   kernelPHIs[V->first][I->first] = lastPhi;
+	   newValLocation[lastPhi] = machineBB[0];
+	 }
+       }
+       //Final phi value
+       else {
+	 //The resulting value must be the Value* we created earlier
+	 assert(lastPhi != 0 && "Last phi is NULL!\n");
+	 MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]);
+	 DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+	 kernelPHIs[V->first][I->first] = finalPHIValue[V->first];
+       }
+
+       ++count;
+     }
+
+   }
+ }
+}
+
+
+void ModuloSchedulingSBPass::removePHIs(std::vector<const MachineBasicBlock*> &SB, std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<MachineBasicBlock*> &kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
+
+  //Worklist to delete things
+  std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
+
+  //Worklist of TmpInstructions that need to be added to a MCFI
+  std::vector<Instruction*> addToMCFI;
+
+  //Worklist to add OR instructions to end of kernel so not to invalidate the iterator
+  //std::vector<std::pair<Instruction*, Value*> > newORs;
+
+  const TargetInstrInfo *TMI = target.getInstrInfo();
+
+  //Start with the kernel and for each phi insert a copy for the phi
+  //def and for each arg
+  //phis are only in the first BB in the kernel
+  for(MachineBasicBlock::iterator I = kernelBB[0]->begin(), E = kernelBB[0]->end(); 
+      I != E; ++I) {
+
+    DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
+    
+    //Get op code and check if its a phi
+    if(I->getOpcode() == V9::PHI) {
+
+      DEBUG(std::cerr << "Replacing PHI: " << *I << "\n");
+      Instruction *tmp = 0;
+
+      for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+	
+	//Get Operand
+	const MachineOperand &mOp = I->getOperand(i);
+	assert(mOp.getType() == MachineOperand::MO_VirtualRegister 
+	       && "Should be a Value*\n");
+	
+	if(!tmp) {
+	  tmp = new TmpInstruction(mOp.getVRegValue());
+	  addToMCFI.push_back(tmp);
+	}
+
+	//Now for all our arguments we read, OR to the new
+	//TmpInstruction that we created
+	if(mOp.isUse()) {
+	  DEBUG(std::cerr << "Use: " << mOp << "\n");
+	  //Place a copy at the end of its BB but before the branches
+	  assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
+	  //Reverse iterate to find the branches, we can safely assume no instructions have been
+	  //put in the nop positions
+	  for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
+	    MachineOpCode opc = inst->getOpcode();
+	    if(TMI->isBranch(opc) || TMI->isNop(opc))
+	      continue;
+	    else {
+	      if(mOp.getVRegValue()->getType() == Type::FloatTy)
+		BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+	      else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+		BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+	      else
+		BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+	
+	      break;
+	    }
+	
+	  }
+
+	}
+	else {
+	  //Remove the phi and replace it with an OR
+	  DEBUG(std::cerr << "Def: " << mOp << "\n");
+	  //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue()));
+	  if(tmp->getType() == Type::FloatTy)
+	    BuildMI(*kernelBB[0], I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+	  else if(tmp->getType() == Type::DoubleTy)
+	    BuildMI(*kernelBB[0], I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+	  else
+	    BuildMI(*kernelBB[0], I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
+	
+	
+	  worklist.push_back(std::make_pair(kernelBB[0], I));
+	}
+	
+      }
+
+    }
+
+
+  }
+
+  //Add TmpInstructions to some MCFI
+  if(addToMCFI.size() > 0) {
+    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+    for(unsigned x = 0; x < addToMCFI.size(); ++x) {
+      tempMvec.addTemp(addToMCFI[x]);
+    }
+    addToMCFI.clear();
+  }
+
+
+  //Remove phis from epilogue
+  for(std::vector<std::vector<MachineBasicBlock*> >::iterator MB = epilogues.begin(), 
+	ME = epilogues.end(); MB != ME; ++MB) {
+    
+    for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB->begin(), currentME = MB->end(); currentMBB != currentME; ++currentMBB) {
+      
+      for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), 
+	    E = (*currentMBB)->end(); I != E; ++I) {
+
+	DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
+	//Get op code and check if its a phi
+	if(I->getOpcode() == V9::PHI) {
+	  Instruction *tmp = 0;
+
+	  for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+	    //Get Operand
+	    const MachineOperand &mOp = I->getOperand(i);
+	    assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
+	
+	    if(!tmp) {
+	      tmp = new TmpInstruction(mOp.getVRegValue());
+	      addToMCFI.push_back(tmp);
+	    }
+	
+	    //Now for all our arguments we read, OR to the new TmpInstruction that we created
+	    if(mOp.isUse()) {
+	      DEBUG(std::cerr << "Use: " << mOp << "\n");
+	      //Place a copy at the end of its BB but before the branches
+	      assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
+	      //Reverse iterate to find the branches, we can safely assume no instructions have been
+	      //put in the nop positions
+	      for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
+		MachineOpCode opc = inst->getOpcode();
+		if(TMI->isBranch(opc) || TMI->isNop(opc))
+		  continue;
+		else {
+		  if(mOp.getVRegValue()->getType() == Type::FloatTy)
+		    BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+		  else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+		    BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+		  else
+		    BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+		  
+		  
+		  break;
+		}
+		
+	      }
+	      
+	    }
+	    else {
+	      //Remove the phi and replace it with an OR
+	      DEBUG(std::cerr << "Def: " << mOp << "\n");
+	      if(tmp->getType() == Type::FloatTy)
+		BuildMI(**currentMBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+	      else if(tmp->getType() == Type::DoubleTy)
+		BuildMI(**currentMBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+	      else
+		BuildMI(**currentMBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
+	      
+	      worklist.push_back(std::make_pair(*currentMBB,I));
+	    }
+	  }
+	}
+      }
+    }
+  }
+
+
+  if(addToMCFI.size() > 0) {
+    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+    for(unsigned x = 0; x < addToMCFI.size(); ++x) {
+      tempMvec.addTemp(addToMCFI[x]);
+    }
+    addToMCFI.clear();
+  }
+  
+    //Delete the phis
+  for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I =  worklist.begin(), E = worklist.end(); I != E; ++I) {
+    DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n");
+    I->first->erase(I->second);
+		
+  }
+
+
+  assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction");
+}
+
+
+
+
+void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<std::vector<MachineBasicBlock *> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const MachineBasicBlock*, Value*> &sideExits, std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > &instrsMovedDown, std::vector<const MachineBasicBlock*> &SB, std::vector<MachineBasicBlock*> &kernelMBBs, std::map<MachineBasicBlock*, int> branchStage) {
+
+  const TargetInstrInfo *TMI = target.getInstrInfo();
+
+  //Repeat for each side exit
+  for(unsigned sideExitNum = 0; sideExitNum < SB.size()-1; ++sideExitNum) {
+
+    std::vector<std::vector<BasicBlock*> > side_llvm_epilogues;
+    std::vector<std::vector<MachineBasicBlock*> > side_epilogues;
+    MachineBasicBlock* sideMBB;
+    BasicBlock* sideBB;
+
+    //Create side exit blocks
+    //Get the LLVM basic block
+    BasicBlock *bb = (BasicBlock*) SB[sideExitNum]->getBasicBlock();
+    MachineBasicBlock *mbb = (MachineBasicBlock*) SB[sideExitNum];
+    
+    int stage = branchStage[mbb];
+
+    //Create new basic blocks for our side exit instructios that were moved below the branch
+    sideBB = new BasicBlock("SideExit", (Function*) bb->getParent());
+    sideMBB = new MachineBasicBlock(sideBB);
+    (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(sideMBB);
+
+    
+    if(instrsMovedDown.count(mbb)) {
+      for(std::vector<std::pair<MachineInstr*, int> >::iterator I = instrsMovedDown[mbb].begin(), E = instrsMovedDown[mbb].end(); I != E; ++I) {
+	if(branchStage[mbb] == I->second)
+	  sideMBB->push_back((I->first)->clone());
+      }
+        
+      //Add unconditional branches to original exits
+      BuildMI(sideMBB, V9::BA, 1).addPCDisp(sideExits[mbb]);
+      BuildMI(sideMBB, V9::NOP, 0);
+      
+      //Add unconditioal branch to llvm BB
+      BasicBlock *extBB = dyn_cast<BasicBlock>(sideExits[mbb]);
+      assert(extBB && "Side exit basicblock can not be null");
+      TerminatorInst *newBranch = new BranchInst(extBB, sideBB);
+    }
+
+     //Clone epilogues and update their branches, one cloned epilogue set per side exit
+    //only clone epilogues that are from a greater stage!
+    for(unsigned i = 0; i < epilogues.size()-stage; ++i) {
+      std::vector<MachineBasicBlock*> MB = epilogues[i];
+      
+      std::vector<MachineBasicBlock*> newEp;
+      std::vector<BasicBlock*> newLLVMEp;
+    
+      for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB.begin(), 
+	    lastMBB = MB.end(); currentMBB != lastMBB; ++currentMBB) {
+	BasicBlock *tmpBB = new BasicBlock("SideEpilogue", (Function*) (*currentMBB)->getBasicBlock()->getParent());
+	MachineBasicBlock *tmp = new MachineBasicBlock(tmpBB);
+      
+	//Clone instructions and insert into new MBB
+	for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), 
+	      E = (*currentMBB)->end(); I != E; ++I) {
+	
+	  MachineInstr *clone = I->clone();
+	  if(clone->getOpcode() == V9::BA && (currentMBB+1 == lastMBB)) {
+	    //update branch to side exit
+	    for(unsigned i = 0; i < clone->getNumOperands(); ++i) {
+	      MachineOperand &mOp = clone->getOperand(i);
+	      if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+		mOp.setValueReg(sideBB);
+	      }
+	    }
+	  }
+	
+	  tmp->push_back(clone);
+	
+	}
+      
+	//Add llvm branch
+	TerminatorInst *newBranch = new BranchInst(sideBB, tmpBB);
+      
+	newEp.push_back(tmp);
+	(((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(tmp);
+
+	newLLVMEp.push_back(tmpBB);
+      
+      }
+      side_llvm_epilogues.push_back(newLLVMEp);
+      side_epilogues.push_back(newEp);
+    }
+  
+  //Now stich up all the branches
+  
+  //Loop over prologues, and if its an inner branch and branches to our original side exit
+  //then have it branch to the appropriate epilogue first (if it exists)
+    for(unsigned P = 0; P < prologues.size(); ++P) {
+
+      //Get BB side exit we are dealing with
+      MachineBasicBlock *currentMBB = prologues[P][sideExitNum];
+      if(P >= (unsigned) stage) {
+	//Iterate backwards of machine instructions to find the branch we need to update
+	for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+	  MachineOpCode OC = mInst->getOpcode();
+	  
+	  //If its a branch update its branchto
+	  if(TMI->isBranch(OC)) {
+	    for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+	      MachineOperand &mOp = mInst->getOperand(opNum);
+	      if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+		//Check if we branch to side exit
+		if(mOp.getVRegValue() == sideExits[mbb]) {
+		  mOp.setValueReg(side_llvm_epilogues[P][0]);
+		}
+	      }
+	    }
+	    DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
+	  }
+	}
+	
+	//Update llvm branch
+	TerminatorInst *branchVal = ((BasicBlock*) currentMBB->getBasicBlock())->getTerminator();
+	DEBUG(std::cerr << *branchVal << "\n");
+        
+	for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) {
+	  if(branchVal->getSuccessor(i) == sideExits[mbb]) {
+	    DEBUG(std::cerr << "Replacing successor bb\n");
+	    branchVal->setSuccessor(i, side_llvm_epilogues[P][0]);
+	  }
+	}
+      }
+      else {
+	//must add BA branch because another prologue or kernel has the actual side exit branch
+	 //Add unconditional branches to original exits
+	assert( (sideExitNum+1) < prologues[P].size() && "must have valid prologue to branch to");
+	BuildMI(prologues[P][sideExitNum], V9::BA, 1).addPCDisp((BasicBlock*)(prologues[P][sideExitNum+1])->getBasicBlock());
+	BuildMI(prologues[P][sideExitNum], V9::NOP, 0);
+
+	TerminatorInst *newBranch = new BranchInst((BasicBlock*) (prologues[P][sideExitNum+1])->getBasicBlock(), (BasicBlock*) (prologues[P][sideExitNum])->getBasicBlock());
+
+      }
+    }
+
+
+    //Update side exits in kernel
+    MachineBasicBlock *currentMBB = kernelMBBs[sideExitNum];
+    //Iterate backwards of machine instructions to find the branch we need to update
+    for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+      MachineOpCode OC = mInst->getOpcode();
+      
+      //If its a branch update its branchto
+      if(TMI->isBranch(OC)) {
+	for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+	  MachineOperand &mOp = mInst->getOperand(opNum);
+	  if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+	    //Check if we branch to side exit
+	    if(mOp.getVRegValue() == sideExits[mbb]) {
+	      if(side_llvm_epilogues.size() > 0)
+		mOp.setValueReg(side_llvm_epilogues[0][0]);
+	      else
+		mOp.setValueReg(sideBB);
+	    }
+	  }
+	}
+	DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
+      }
+    }
+
+    //Update llvm branch
+    //Update llvm branch
+    TerminatorInst *branchVal = ((BasicBlock*)currentMBB->getBasicBlock())->getTerminator();
+    DEBUG(std::cerr << *branchVal << "\n");
+    
+    for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) {
+      if(branchVal->getSuccessor(i) == sideExits[mbb]) {
+	DEBUG(std::cerr << "Replacing successor bb\n");
+	if(side_llvm_epilogues.size() > 0)
+	  branchVal->setSuccessor(i, side_llvm_epilogues[0][0]);
+	else
+	  branchVal->setSuccessor(i, sideBB);
+      }
+    }
+  }
+}
+


Index: llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.h
diff -u llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.h:1.1 llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.h:1.2
--- llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.h:1.1	Sat Apr 30 20:27:47 2005
+++ llvm/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.h	Thu Jun 16 23:00:57 2005
@@ -15,22 +15,24 @@
 #define LLVM_MODULOSCHEDULINGSB_H
 
 #include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolution.h"
 #include "llvm/Function.h"
 #include "llvm/Pass.h"
 #include "llvm/CodeGen/MachineBasicBlock.h"
-#include "MSSchedule.h"
-#include "MSchedGraph.h"
+#include "MSScheduleSB.h"
+#include "MSchedGraphSB.h"
+
 
 namespace llvm {
 
   //Struct to contain ModuloScheduling Specific Information for each node
-  struct MSNodeAttributes {
+  struct MSNodeSBAttributes {
     int ASAP; //Earliest time at which the opreation can be scheduled
     int ALAP; //Latest time at which the operation can be scheduled.
     int MOB;
     int depth;
     int height;
-    MSNodeAttributes(int asap=-1, int alap=-1, int mob=-1,
+    MSNodeSBAttributes(int asap=-1, int alap=-1, int mob=-1,
 			     int d=-1, int h=-1) : ASAP(asap), ALAP(alap),
 						   MOB(mob), depth(d),
 						   height(h) {}
@@ -55,22 +57,22 @@
     Instruction *defaultInst;
 
     //Map that holds node to node attribute information
-    std::map<MSchedGraphNode*, MSNodeAttributes> nodeToAttributesMap;
+    std::map<MSchedGraphSBNode*, MSNodeSBAttributes> nodeToAttributesMap;
 
     //Map to hold all reccurrences
-    std::set<std::pair<int, std::vector<MSchedGraphNode*> > > recurrenceList;
+    std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > > recurrenceList;
 
     //Set of edges to ignore, stored as src node and index into vector of successors
-    std::set<std::pair<MSchedGraphNode*, unsigned> > edgesToIgnore;
+    std::set<std::pair<MSchedGraphSBNode*, unsigned> > edgesToIgnore;
 
     //Vector containing the partial order
-    std::vector<std::set<MSchedGraphNode*> > partialOrder;
+    std::vector<std::set<MSchedGraphSBNode*> > partialOrder;
 
     //Vector containing the final node order
-    std::vector<MSchedGraphNode*> FinalNodeOrder;
+    std::vector<MSchedGraphSBNode*> FinalNodeOrder;
 
     //Schedule table, key is the cycle number and the vector is resource, node pairs
-    MSSchedule schedule;
+    MSScheduleSB schedule;
 
     //Current initiation interval
     int II;
@@ -78,10 +80,99 @@
     //Internal Functions
     void FindSuperBlocks(Function &F, LoopInfo &LI, 
 			 std::vector<std::vector<const MachineBasicBlock*> > &Worklist);
-    bool MachineBBisValid(const MachineBasicBlock *B);
+    bool MachineBBisValid(const MachineBasicBlock *B,
+			  std::map<const MachineInstr*, unsigned> &indexMap, 
+			  unsigned &offset);
     bool CreateDefMap(std::vector<const MachineBasicBlock*> &SB);
+    bool getIndVar(std::vector<const MachineBasicBlock*> &superBlock, 
+		   std::map<BasicBlock*, MachineBasicBlock*> &bbMap,
+		   std::map<const MachineInstr*, unsigned> &indexMap);
+    bool assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
+		     std::vector<Instruction*> &stack, 
+		     std::map<BasicBlock*, MachineBasicBlock*> &bbMap, 
+		     const BasicBlock *first,
+		     std::set<const BasicBlock*> &llvmSuperBlock);
+    int calculateResMII(std::vector<const MachineBasicBlock*> &superBlock);
+    int calculateRecMII(MSchedGraphSB *graph, int MII);
+    void findAllCircuits(MSchedGraphSB *g, int II);
+    void addRecc(std::vector<MSchedGraphSBNode*> &stack, 
+		 std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes);
+    bool circuit(MSchedGraphSBNode *v, std::vector<MSchedGraphSBNode*> &stack,
+		 std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC,
+		 MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, 
+		 std::set<MSchedGraphSBNode*> > &B,
+		 int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes);
+    void unblock(MSchedGraphSBNode *u, std::set<MSchedGraphSBNode*> &blocked,
+		 std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B);
+    void addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes);
+    void calculateNodeAttributes(MSchedGraphSB *graph, int MII);
+    bool ignoreEdge(MSchedGraphSBNode *srcNode, MSchedGraphSBNode *destNode);
+    int  calculateASAP(MSchedGraphSBNode *node, int MII, MSchedGraphSBNode *destNode);
+    int calculateALAP(MSchedGraphSBNode *node, int MII,
+		      int maxASAP, MSchedGraphSBNode *srcNode);
+    int findMaxASAP();
+    int calculateHeight(MSchedGraphSBNode *node,MSchedGraphSBNode *srcNode);
+    int calculateDepth(MSchedGraphSBNode *node, MSchedGraphSBNode *destNode);
+    void computePartialOrder();
+    void connectedComponentSet(MSchedGraphSBNode *node, std::set<MSchedGraphSBNode*> &ccSet, 
+			       std::set<MSchedGraphSBNode*> &lastNodes);
+    void searchPath(MSchedGraphSBNode *node,
+		    std::vector<MSchedGraphSBNode*> &path,
+		    std::set<MSchedGraphSBNode*> &nodesToAdd,
+		    std::set<MSchedGraphSBNode*> &new_reccurrence);
+    void orderNodes();
+    bool computeSchedule(std::vector<const MachineBasicBlock*> &BB, MSchedGraphSB *MSG);
+    bool scheduleNode(MSchedGraphSBNode *node, int start, int end);
+      void predIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult);
+    void succIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult);
+    void reconstructLoop(std::vector<const MachineBasicBlock*> &SB);
+    void fixBranches(std::vector<std::vector<MachineBasicBlock*> > &prologues, 
+		     std::vector<std::vector<BasicBlock*> > &llvm_prologues, 
+		     std::vector<MachineBasicBlock*> &machineKernelBB, 
+		     std::vector<BasicBlock*> &llvmKernelBB, 
+		     std::vector<std::vector<MachineBasicBlock*> > &epilogues, 
+		     std::vector<std::vector<BasicBlock*> > &llvm_epilogues, 
+		     std::vector<const MachineBasicBlock*> &SB,
+		     std::map<const MachineBasicBlock*, Value*> &sideExits);
+
+    void writePrologues(std::vector<std::vector<MachineBasicBlock *> > &prologues, 
+			std::vector<const MachineBasicBlock*> &origBB, 
+			std::vector<std::vector<BasicBlock*> > &llvm_prologues, 
+			std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, 
+			std::map<Value*, std::map<int, Value*> > &newValues, 
+			std::map<Value*, MachineBasicBlock*> &newValLocation);
+
+    void writeKernel(std::vector<BasicBlock*> &llvmBB, std::vector<MachineBasicBlock*> &machineBB, 
+		     std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, 
+		     std::map<Value*, std::map<int, Value*> > &newValues, 
+		     std::map<Value*, MachineBasicBlock*> &newValLocation, 
+		     std::map<Value*, std::map<int, Value*> > &kernelPHIs);
+
+    void removePHIs(std::vector<const MachineBasicBlock*> &SB, 
+		    std::vector<std::vector<MachineBasicBlock*> > &prologues, 
+		    std::vector<std::vector<MachineBasicBlock*> > &epilogues, 
+		    std::vector<MachineBasicBlock*> &kernelBB, 
+		    std::map<Value*, MachineBasicBlock*> &newValLocation);
+    
+    void writeEpilogues(std::vector<std::vector<MachineBasicBlock*> > &epilogues, 
+			std::vector<const MachineBasicBlock*> &origSB, 
+			std::vector<std::vector<BasicBlock*> > &llvm_epilogues, 
+			std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave,
+			std::map<Value*, std::map<int, Value*> > &newValues,
+			std::map<Value*, MachineBasicBlock*> &newValLocation, 
+			std::map<Value*, std::map<int, Value*> > &kernelPHIs);
+    
+    void writeSideExits(std::vector<std::vector<MachineBasicBlock *> > &prologues, 
+			std::vector<std::vector<BasicBlock*> > &llvm_prologues, 
+			std::vector<std::vector<MachineBasicBlock *> > &epilogues, 
+			std::vector<std::vector<BasicBlock*> > &llvm_epilogues, 
+			std::map<const MachineBasicBlock*, Value*> &sideExits, 
+			std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > &instrsMovedDown,
+			std::vector<const MachineBasicBlock*> &SB, 
+			std::vector<MachineBasicBlock*> &kernelMBBs,
+			  std::map<MachineBasicBlock*, int> branchStage);
 
-  public:
+ public:
     ModuloSchedulingSBPass(TargetMachine &targ) : target(targ) {}
       virtual bool runOnFunction(Function &F);
       virtual const char* getPassName() const { return "ModuloScheduling-SuperBlock"; }
@@ -89,7 +180,11 @@
       
       // getAnalysisUsage
       virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+	/// HACK: We don't actually need scev, but we have
+	/// to say we do so that the pass manager does not delete it
+	/// before we run.
 	AU.addRequired<LoopInfo>();
+	AU.addRequired<ScalarEvolution>();
 	AU.addRequired<DependenceAnalyzer>();
       }
   };






More information about the llvm-commits mailing list