[llvm-commits] CVS: llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
Chris Lattner
lattner at cs.uiuc.edu
Thu Jan 6 23:48:05 PST 2005
Changes in directory llvm/lib/CodeGen/SelectionDAG:
SelectionDAGISel.cpp added (r1.1)
---
Log message:
Initial implementation of the SelectionDAGISel class. This contains most
of the code for lowering from LLVM code to a SelectionDAG.
---
Diffs of the changes: (+853 -0)
Index: llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
diff -c /dev/null llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1.1
*** /dev/null Fri Jan 7 01:48:03 2005
--- llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp Fri Jan 7 01:47:53 2005
***************
*** 0 ****
--- 1,853 ----
+ //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
+ //
+ // The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This implements the SelectionDAGISel class.
+ //
+ //===----------------------------------------------------------------------===//
+
+ #define DEBUG_TYPE "isel"
+ #include "llvm/CodeGen/SelectionDAGISel.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Function.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Intrinsics.h"
+ #include "llvm/CodeGen/MachineFunction.h"
+ #include "llvm/CodeGen/MachineFrameInfo.h"
+ #include "llvm/CodeGen/MachineInstrBuilder.h"
+ #include "llvm/CodeGen/SelectionDAG.h"
+ #include "llvm/CodeGen/SSARegMap.h"
+ #include "llvm/Target/TargetData.h"
+ #include "llvm/Target/TargetFrameInfo.h"
+ #include "llvm/Target/TargetInstrInfo.h"
+ #include "llvm/Target/TargetLowering.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Support/Debug.h"
+ #include <map>
+ #include <iostream>
+ using namespace llvm;
+
+ namespace llvm {
+ //===--------------------------------------------------------------------===//
+ /// FunctionLoweringInfo - This contains information that is global to a
+ /// function that is used when lowering a region of the function.
+ struct FunctionLoweringInfo {
+ TargetLowering &TLI;
+ Function &Fn;
+ MachineFunction &MF;
+ SSARegMap *RegMap;
+
+ FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
+
+ /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
+ std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
+
+ /// ValueMap - Since we emit code for the function a basic block at a time,
+ /// we must remember which virtual registers hold the values for
+ /// cross-basic-block values.
+ std::map<const Value*, unsigned> ValueMap;
+
+ /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
+ /// the entry block. This allows the allocas to be efficiently referenced
+ /// anywhere in the function.
+ std::map<const AllocaInst*, int> StaticAllocaMap;
+
+ unsigned MakeReg(MVT::ValueType VT) {
+ return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
+ }
+
+ unsigned CreateRegForValue(const Value *V) {
+ MVT::ValueType VT = TLI.getValueType(V->getType());
+ // The common case is that we will only create one register for this
+ // value. If we have that case, create and return the virtual register.
+ unsigned NV = TLI.getNumElements(VT);
+ if (NV == 1) return MakeReg(VT);
+
+ // If this value is represented with multiple target registers, make sure
+ // to create enough consequtive registers of the right (smaller) type.
+ unsigned NT = VT-1; // Find the type to use.
+ while (TLI.getNumElements((MVT::ValueType)NT) != 1)
+ --NT;
+
+ unsigned R = MakeReg((MVT::ValueType)NT);
+ for (unsigned i = 1; i != NV; ++i)
+ MakeReg((MVT::ValueType)NT);
+ return R;
+ }
+
+ unsigned InitializeRegForValue(const Value *V) {
+ unsigned &R = ValueMap[V];
+ assert(R == 0 && "Already initialized this value register!");
+ return R = CreateRegForValue(V);
+ }
+ };
+ }
+
+ /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
+ /// PHI nodes or outside of the basic block that defines it.
+ static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
+ if (isa<PHINode>(I)) return true;
+ BasicBlock *BB = I->getParent();
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
+ if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
+ return true;
+ return false;
+ }
+
+ FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
+ Function &fn, MachineFunction &mf)
+ : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
+
+ // Initialize the mapping of values to registers. This is only set up for
+ // instruction values that are used outside of the block that defines
+ // them.
+ for (Function::aiterator AI = Fn.abegin(), E = Fn.aend(); AI != E; ++AI)
+ InitializeRegForValue(AI);
+
+ Function::iterator BB = Fn.begin(), E = Fn.end();
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+ if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
+ const Type *Ty = AI->getAllocatedType();
+ uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
+ unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
+ TySize *= CUI->getValue(); // Get total allocated size.
+ StaticAllocaMap[AI] =
+ MF.getFrameInfo()->CreateStackObject(TySize, Align);
+ }
+
+ for (; BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
+ if (!isa<AllocaInst>(I) ||
+ !StaticAllocaMap.count(cast<AllocaInst>(I)))
+ InitializeRegForValue(I);
+
+ // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
+ // also creates the initial PHI MachineInstrs, though none of the input
+ // operands are populated.
+ for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
+ MachineBasicBlock *MBB = new MachineBasicBlock(BB);
+ MBBMap[BB] = MBB;
+ MF.getBasicBlockList().push_back(MBB);
+
+ // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
+ // appropriate.
+ PHINode *PN;
+ for (BasicBlock::iterator I = BB->begin();
+ (PN = dyn_cast<PHINode>(I)); ++I) {
+ unsigned NumElements =TLI.getNumElements(TLI.getValueType(PN->getType()));
+ unsigned PHIReg = ValueMap[PN];
+ assert(PHIReg && "PHI node does not have an assigned virtual register!");
+ for (unsigned i = 0; i != NumElements; ++i)
+ BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
+ }
+ }
+ }
+
+
+
+ //===----------------------------------------------------------------------===//
+ /// SelectionDAGLowering - This is the common target-independent lowering
+ /// implementation that is parameterized by a TargetLowering object.
+ /// Also, targets can overload any lowering method.
+ ///
+ namespace llvm {
+ class SelectionDAGLowering {
+ MachineBasicBlock *CurMBB;
+
+ std::map<const Value*, SDOperand> NodeMap;
+
+ public:
+ // TLI - This is information that describes the available target features we
+ // need for lowering. This indicates when operations are unavailable,
+ // implemented with a libcall, etc.
+ TargetLowering &TLI;
+ SelectionDAG &DAG;
+ const TargetData &TD;
+
+ /// FuncInfo - Information about the function as a whole.
+ ///
+ FunctionLoweringInfo &FuncInfo;
+
+ SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
+ FunctionLoweringInfo &funcinfo)
+ : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
+ FuncInfo(funcinfo) {
+ }
+
+ void visit(Instruction &I) { visit(I.getOpcode(), I); }
+
+ void visit(unsigned Opcode, User &I) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown instruction type encountered!");
+ abort();
+ // Build the switch statement using the Instruction.def file.
+ #define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
+ #include "llvm/Instruction.def"
+ }
+ }
+
+ void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
+
+
+ SDOperand getIntPtrConstant(uint64_t Val) {
+ return DAG.getConstant(Val, TLI.getPointerTy());
+ }
+
+ SDOperand getValue(const Value *V) {
+ SDOperand &N = NodeMap[V];
+ if (N.Val) return N;
+
+ MVT::ValueType VT = TLI.getValueType(V->getType());
+ if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ visit(CE->getOpcode(), *CE);
+ assert(N.Val && "visit didn't populate the ValueMap!");
+ return N;
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
+ return N = DAG.getGlobalAddress(GV, VT);
+ } else if (isa<ConstantPointerNull>(C)) {
+ return N = DAG.getConstant(0, TLI.getPointerTy());
+ } else if (isa<UndefValue>(C)) {
+ /// FIXME: Implement UNDEFVALUE better.
+ if (MVT::isInteger(VT))
+ return N = DAG.getConstant(0, VT);
+ else if (MVT::isFloatingPoint(VT))
+ return N = DAG.getConstantFP(0, VT);
+ else
+ assert(0 && "Unknown value type!");
+
+ } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ return N = DAG.getConstantFP(CFP->getValue(), VT);
+ } else {
+ // Canonicalize all constant ints to be unsigned.
+ return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
+ }
+
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ std::map<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end())
+ return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
+ }
+
+ std::map<const Value*, unsigned>::const_iterator VMI =
+ FuncInfo.ValueMap.find(V);
+ assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
+ return N = DAG.getCopyFromReg(VMI->second, VT);
+ }
+
+ const SDOperand &setValue(const Value *V, SDOperand NewN) {
+ SDOperand &N = NodeMap[V];
+ assert(N.Val == 0 && "Already set a value for this node!");
+ return N = NewN;
+ }
+
+ // Terminator instructions.
+ void visitRet(ReturnInst &I);
+ void visitBr(BranchInst &I);
+ void visitUnreachable(UnreachableInst &I) { /* noop */ }
+
+ // These all get lowered before this pass.
+ void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
+ void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
+ void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
+
+ //
+ void visitBinary(User &I, unsigned Opcode);
+ void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
+ void visitSub(User &I) { visitBinary(I, ISD::SUB); }
+ void visitMul(User &I) { visitBinary(I, ISD::MUL); }
+ void visitDiv(User &I) {
+ visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
+ }
+ void visitRem(User &I) {
+ visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
+ }
+ void visitAnd(User &I) { visitBinary(I, ISD::AND); }
+ void visitOr (User &I) { visitBinary(I, ISD::OR); }
+ void visitXor(User &I) { visitBinary(I, ISD::XOR); }
+ void visitShl(User &I) { visitBinary(I, ISD::SHL); }
+ void visitShr(User &I) {
+ visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
+ }
+
+ void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
+ void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
+ void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
+ void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
+ void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
+ void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
+ void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
+
+ void visitGetElementPtr(User &I);
+ void visitCast(User &I);
+ void visitSelect(User &I);
+ //
+
+ void visitMalloc(MallocInst &I);
+ void visitFree(FreeInst &I);
+ void visitAlloca(AllocaInst &I);
+ void visitLoad(LoadInst &I);
+ void visitStore(StoreInst &I);
+ void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
+ void visitCall(CallInst &I);
+
+ // FIXME: These should go through the FunctionLoweringInfo object!!!
+ void visitVAStart(CallInst &I);
+ void visitVANext(VANextInst &I);
+ void visitVAArg(VAArgInst &I);
+ void visitVAEnd(CallInst &I);
+ void visitVACopy(CallInst &I);
+ void visitReturnAddress(CallInst &I);
+ void visitFrameAddress(CallInst &I);
+
+ void visitMemSet(CallInst &I);
+ void visitMemCpy(CallInst &I);
+ void visitMemMove(CallInst &I);
+
+ void visitUserOp1(Instruction &I) {
+ assert(0 && "UserOp1 should not exist at instruction selection time!");
+ abort();
+ }
+ void visitUserOp2(Instruction &I) {
+ assert(0 && "UserOp2 should not exist at instruction selection time!");
+ abort();
+ }
+ };
+ } // end namespace llvm
+
+ void SelectionDAGLowering::visitRet(ReturnInst &I) {
+ if (I.getNumOperands() == 0) {
+ DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, DAG.getRoot()));
+ return;
+ }
+
+ SDOperand Op1 = getValue(I.getOperand(0));
+ switch (Op1.getValueType()) {
+ default: assert(0 && "Unknown value type!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ // Extend integer types to 32-bits.
+ if (I.getOperand(0)->getType()->isSigned())
+ Op1 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Op1);
+ else
+ Op1 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op1);
+ break;
+ case MVT::f32:
+ // Extend float to double.
+ Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1);
+ break;
+ case MVT::i32:
+ case MVT::i64:
+ case MVT::f64:
+ break; // No extension needed!
+ }
+
+ DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, DAG.getRoot(), Op1));
+ }
+
+ void SelectionDAGLowering::visitBr(BranchInst &I) {
+ // Update machine-CFG edges.
+ MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
+ CurMBB->addSuccessor(Succ0MBB);
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CurMBB;
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ if (I.isUnconditional()) {
+ // If this is not a fall-through branch, emit the branch.
+ if (Succ0MBB != NextBlock)
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, DAG.getRoot(),
+ DAG.getBasicBlock(Succ0MBB)));
+ } else {
+ MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
+ CurMBB->addSuccessor(Succ1MBB);
+
+ SDOperand Cond = getValue(I.getCondition());
+
+ if (Succ1MBB == NextBlock) {
+ // If the condition is false, fall through. This means we should branch
+ // if the condition is true to Succ #0.
+ DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
+ Cond, DAG.getBasicBlock(Succ0MBB)));
+ } else if (Succ0MBB == NextBlock) {
+ // If the condition is true, fall through. This means we should branch if
+ // the condition is false to Succ #1. Invert the condition first.
+ SDOperand True = DAG.getConstant(1, Cond.getValueType());
+ Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
+ DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
+ Cond, DAG.getBasicBlock(Succ1MBB)));
+ } else {
+ // Neither edge is a fall through. If the comparison is true, jump to
+ // Succ#0, otherwise branch unconditionally to succ #1.
+ DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
+ Cond, DAG.getBasicBlock(Succ0MBB)));
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, DAG.getRoot(),
+ DAG.getBasicBlock(Succ1MBB)));
+ }
+ }
+ }
+
+ void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
+ SDOperand Op1 = getValue(I.getOperand(0));
+ SDOperand Op2 = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
+ }
+
+ void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
+ ISD::CondCode UnsignedOpcode) {
+ SDOperand Op1 = getValue(I.getOperand(0));
+ SDOperand Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Opcode = SignedOpcode;
+ if (I.getOperand(0)->getType()->isUnsigned())
+ Opcode = UnsignedOpcode;
+ setValue(&I, DAG.getSetCC(Opcode, Op1, Op2));
+ }
+
+ void SelectionDAGLowering::visitSelect(User &I) {
+ SDOperand Cond = getValue(I.getOperand(0));
+ SDOperand TrueVal = getValue(I.getOperand(1));
+ SDOperand FalseVal = getValue(I.getOperand(2));
+ setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
+ TrueVal, FalseVal));
+ }
+
+ void SelectionDAGLowering::visitCast(User &I) {
+ SDOperand N = getValue(I.getOperand(0));
+ MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
+ MVT::ValueType DestTy = TLI.getValueType(I.getType());
+
+ if (N.getValueType() == DestTy) {
+ setValue(&I, N); // noop cast.
+ return;
+ } else if (isInteger(SrcTy) && isInteger(DestTy)) {
+ if (DestTy < SrcTy) // Truncating cast?
+ setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
+ else if (I.getOperand(0)->getType()->isSigned())
+ setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
+ else
+ setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
+ return;
+ } else if (isFloatingPoint(SrcTy) && isFloatingPoint(DestTy)) {
+ if (DestTy < SrcTy) // Rounding cast?
+ setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
+ else
+ setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
+ } else {
+ // F->I or I->F
+ // FIXME: implement integer/fp conversions!
+ assert(0 && "This CAST is not yet implemented!\n");
+ }
+ }
+
+ void SelectionDAGLowering::visitGetElementPtr(User &I) {
+ SDOperand N = getValue(I.getOperand(0));
+ const Type *Ty = I.getOperand(0)->getType();
+ const Type *UIntPtrTy = TD.getIntPtrType();
+
+ for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
+ OI != E; ++OI) {
+ Value *Idx = *OI;
+ if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
+ unsigned Field = cast<ConstantUInt>(Idx)->getValue();
+ if (Field) {
+ // N = N + Offset
+ uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
+ N = DAG.getNode(ISD::ADD, N.getValueType(), N,
+ getIntPtrConstant(Offset));
+ }
+ Ty = StTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+ if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
+ // N = N + Idx * ElementSize;
+ uint64_t ElementSize = TD.getTypeSize(Ty);
+ SDOperand IdxN = getValue(Idx);
+ IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN,
+ getIntPtrConstant(ElementSize));
+ N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
+ }
+ }
+ }
+ setValue(&I, N);
+ }
+
+ void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
+ // If this is a fixed sized alloca in the entry block of the function,
+ // allocate it statically on the stack.
+ if (FuncInfo.StaticAllocaMap.count(&I))
+ return; // getValue will auto-populate this.
+
+ const Type *Ty = I.getAllocatedType();
+ uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
+ unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
+
+ SDOperand AllocSize = getValue(I.getArraySize());
+
+ assert(AllocSize.getValueType() == TLI.getPointerTy() &&
+ "FIXME: should extend or truncate to pointer size!");
+
+ AllocSize = DAG.getNode(ISD::MUL, TLI.getPointerTy(), AllocSize,
+ getIntPtrConstant(TySize));
+
+ // Handle alignment. If the requested alignment is less than or equal to the
+ // stack alignment, ignore it and round the size of the allocation up to the
+ // stack alignment size. If the size is greater than the stack alignment, we
+ // note this in the DYNAMIC_STACKALLOC node.
+ unsigned StackAlign =
+ TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
+ if (Align <= StackAlign) {
+ Align = 0;
+ // Add SA-1 to the size.
+ AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
+ getIntPtrConstant(StackAlign-1));
+ // Mask out the low bits for alignment purposes.
+ AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
+ getIntPtrConstant(~(uint64_t)(StackAlign-1)));
+ }
+
+ SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(),
+ DAG.getRoot(), AllocSize,
+ getIntPtrConstant(Align));
+ DAG.setRoot(setValue(&I, DSA).getValue(1));
+
+ // Inform the Frame Information that we have just allocated a variable-sized
+ // object.
+ CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
+ }
+
+
+ void SelectionDAGLowering::visitLoad(LoadInst &I) {
+ SDOperand Ptr = getValue(I.getOperand(0));
+ SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), DAG.getRoot(), Ptr);
+ DAG.setRoot(setValue(&I, L).getValue(1));
+ }
+
+
+ void SelectionDAGLowering::visitStore(StoreInst &I) {
+ Value *SrcV = I.getOperand(0);
+ SDOperand Src = getValue(SrcV);
+ SDOperand Ptr = getValue(I.getOperand(1));
+ DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, DAG.getRoot(), Src, Ptr));
+ return;
+ }
+
+ void SelectionDAGLowering::visitCall(CallInst &I) {
+ if (Function *F = I.getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ case 0: break; // Not an intrinsic.
+ case Intrinsic::vastart: visitVAStart(I); return;
+ case Intrinsic::vaend: visitVAEnd(I); return;
+ case Intrinsic::vacopy: visitVACopy(I); return;
+ case Intrinsic::returnaddress:
+ visitReturnAddress(I); return;
+ case Intrinsic::frameaddress:
+ visitFrameAddress(I); return;
+ default:
+ // FIXME: IMPLEMENT THESE.
+ // readport, writeport, readio, writeio
+ assert(0 && "This intrinsic is not implemented yet!");
+ return;
+ case Intrinsic::memcpy: visitMemCpy(I); return;
+ case Intrinsic::memset: visitMemSet(I); return;
+ case Intrinsic::memmove: visitMemMove(I); return;
+
+ case Intrinsic::isunordered:
+ setValue(&I, DAG.getSetCC(ISD::SETUO, getValue(I.getOperand(1)),
+ getValue(I.getOperand(2))));
+ return;
+ }
+
+ SDOperand Callee = getValue(I.getOperand(0));
+ std::vector<std::pair<SDOperand, const Type*> > Args;
+
+ for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
+ Value *Arg = I.getOperand(i);
+ SDOperand ArgNode = getValue(Arg);
+ Args.push_back(std::make_pair(ArgNode, Arg->getType()));
+ }
+
+ SDNode *Result = TLI.LowerCallTo(I.getType(), Callee, Args, DAG);
+ if (I.getType() != Type::VoidTy)
+ setValue(&I, SDOperand(Result, 0));
+ }
+
+ void SelectionDAGLowering::visitMalloc(MallocInst &I) {
+ SDOperand Src = getValue(I.getOperand(0));
+
+ MVT::ValueType IntPtr = TLI.getPointerTy();
+ // FIXME: Extend or truncate to the intptr size.
+ assert(Src.getValueType() == IntPtr && "Need to adjust the amount!");
+
+ // Scale the source by the type size.
+ uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
+ Src = DAG.getNode(ISD::MUL, Src.getValueType(),
+ Src, getIntPtrConstant(ElementSize));
+
+ std::vector<std::pair<SDOperand, const Type*> > Args;
+ Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
+ SDNode *C = TLI.LowerCallTo(I.getType(),
+ DAG.getExternalSymbol("malloc", IntPtr),
+ Args, DAG);
+ setValue(&I, SDOperand(C, 0)); // Pointers always fit in registers
+ }
+
+ void SelectionDAGLowering::visitFree(FreeInst &I) {
+ std::vector<std::pair<SDOperand, const Type*> > Args;
+ Args.push_back(std::make_pair(getValue(I.getOperand(0)),
+ TLI.getTargetData().getIntPtrType()));
+ MVT::ValueType IntPtr = TLI.getPointerTy();
+ TLI.LowerCallTo(Type::VoidTy, DAG.getExternalSymbol("free", IntPtr),
+ Args, DAG);
+ }
+
+ void SelectionDAGLowering::visitVAStart(CallInst &I) {
+ // We have no sane default behavior, just emit a useful error message and bail
+ // out.
+ std::cerr << "Variable arguments support not implemented for this target!\n";
+ abort();
+ }
+
+ void SelectionDAGLowering::visitVANext(VANextInst &I) {
+ // We have no sane default behavior, just emit a useful error message and bail
+ // out.
+ std::cerr << "Variable arguments support not implemented for this target!\n";
+ abort();
+ }
+ void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
+ // We have no sane default behavior, just emit a useful error message and bail
+ // out.
+ std::cerr << "Variable arguments support not implemented for this target!\n";
+ abort();
+ }
+
+ void SelectionDAGLowering::visitVAEnd(CallInst &I) {
+ // By default, this is a noop. On almost all targets, this is fine.
+ }
+
+ void SelectionDAGLowering::visitVACopy(CallInst &I) {
+ // By default, vacopy just does a simple pointer copy.
+ setValue(&I, getValue(I.getOperand(1)));
+ }
+
+ void SelectionDAGLowering::visitReturnAddress(CallInst &I) {
+ // It is always conservatively correct for llvm.returnaddress to return 0.
+ setValue(&I, getIntPtrConstant(0));
+ }
+
+ void SelectionDAGLowering::visitFrameAddress(CallInst &I) {
+ // It is always conservatively correct for llvm.frameaddress to return 0.
+ setValue(&I, getIntPtrConstant(0));
+ }
+
+
+ void SelectionDAGLowering::visitMemSet(CallInst &I) {
+ MVT::ValueType IntPtr = TLI.getPointerTy();
+ const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
+
+ // Extend the ubyte argument to be an int value for the call.
+ SDOperand Val = getValue(I.getOperand(2));
+ Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Val);
+
+ std::vector<std::pair<SDOperand, const Type*> > Args;
+ Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
+ Args.push_back(std::make_pair(Val, Type::IntTy));
+ Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
+
+ TLI.LowerCallTo(Type::VoidTy, DAG.getExternalSymbol("memset", IntPtr),
+ Args, DAG);
+ }
+
+ void SelectionDAGLowering::visitMemCpy(CallInst &I) {
+ MVT::ValueType IntPtr = TLI.getPointerTy();
+ const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
+
+ std::vector<std::pair<SDOperand, const Type*> > Args;
+ Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
+ Args.push_back(std::make_pair(getValue(I.getOperand(2)), IntPtrTy));
+ Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
+
+ TLI.LowerCallTo(Type::VoidTy, DAG.getExternalSymbol("memcpy", IntPtr),
+ Args, DAG);
+ }
+
+ void SelectionDAGLowering::visitMemMove(CallInst &I) {
+ MVT::ValueType IntPtr = TLI.getPointerTy();
+ const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
+
+ std::vector<std::pair<SDOperand, const Type*> > Args;
+ Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
+ Args.push_back(std::make_pair(getValue(I.getOperand(2)), IntPtrTy));
+ Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
+
+ TLI.LowerCallTo(Type::VoidTy, DAG.getExternalSymbol("memmove", IntPtr),
+ Args, DAG);
+ }
+
+ unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
+ return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
+ }
+
+
+
+ bool SelectionDAGISel::runOnFunction(Function &Fn) {
+ MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
+ RegMap = MF.getSSARegMap();
+ DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
+
+ FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
+
+ for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
+ SelectBasicBlock(I, MF, FuncInfo);
+
+ return true;
+ }
+
+
+ void SelectionDAGISel::CopyValueToVirtualRegister(SelectionDAGLowering &SDL,
+ Value *V, unsigned Reg) {
+ SelectionDAG &DAG = SDL.DAG;
+ DAG.setRoot(DAG.getCopyToReg(DAG.getRoot(), SDL.getValue(V), Reg));
+ }
+
+ void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
+ std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
+ FunctionLoweringInfo &FuncInfo) {
+ SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
+
+ // If this is the entry block, emit arguments.
+ Function *F = LLVMBB->getParent();
+ if (LLVMBB == &F->front()) {
+ // FIXME: If an argument is only used in one basic block, we could directly
+ // emit it (ONLY) into that block, not emitting the COPY_TO_VREG node. This
+ // would improve codegen in several cases on X86 by allowing the loads to be
+ // folded into the user operation.
+ std::vector<SDOperand> Args = TLI.LowerArguments(*LLVMBB->getParent(), DAG);
+
+ unsigned a = 0;
+ for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI,++a)
+ if (!AI->use_empty()) {
+ SDL.setValue(AI, Args[a]);
+ CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
+ }
+ }
+
+ BB = FuncInfo.MBBMap[LLVMBB];
+ SDL.setCurrentBasicBlock(BB);
+
+ // Lower all of the non-terminator instructions.
+ for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
+ I != E; ++I)
+ SDL.visit(*I);
+
+ // Ensure that all instructions which are used outside of their defining
+ // blocks are available as virtual registers.
+ for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
+ if (!I->use_empty()) {
+ std::map<const Value*, unsigned>::iterator VMI =
+ FuncInfo.ValueMap.find(I);
+ if (VMI != FuncInfo.ValueMap.end())
+ CopyValueToVirtualRegister(SDL, I, VMI->second);
+ }
+
+ // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
+ // ensure constants are generated when needed. Remember the virtual registers
+ // that need to be added to the Machine PHI nodes as input. We cannot just
+ // directly add them, because expansion might result in multiple MBB's for one
+ // BB. As such, the start of the BB might correspond to a different MBB than
+ // the end.
+ //
+
+ // Emit constants only once even if used by multiple PHI nodes.
+ std::map<Constant*, unsigned> ConstantsOut;
+
+ // Check successor nodes PHI nodes that expect a constant to be available from
+ // this block.
+ TerminatorInst *TI = LLVMBB->getTerminator();
+ for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
+ BasicBlock *SuccBB = TI->getSuccessor(succ);
+ MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
+ PHINode *PN;
+
+ // At this point we know that there is a 1-1 correspondence between LLVM PHI
+ // nodes and Machine PHI nodes, but the incoming operands have not been
+ // emitted yet.
+ for (BasicBlock::iterator I = SuccBB->begin();
+ (PN = dyn_cast<PHINode>(I)); ++I) {
+ unsigned Reg;
+ Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
+ if (Constant *C = dyn_cast<Constant>(PHIOp)) {
+ unsigned &RegOut = ConstantsOut[C];
+ if (RegOut == 0) {
+ RegOut = FuncInfo.CreateRegForValue(C);
+ CopyValueToVirtualRegister(SDL, C, RegOut);
+ }
+ Reg = RegOut;
+ } else {
+ Reg = FuncInfo.ValueMap[PHIOp];
+ assert(Reg && "Didn't codegen value into a register!??");
+ }
+
+ // Remember that this register needs to added to the machine PHI node as
+ // the input for this MBB.
+ unsigned NumElements =TLI.getNumElements(TLI.getValueType(PN->getType()));
+ for (unsigned i = 0, e = NumElements; i != e; ++i)
+ PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
+ }
+ }
+ ConstantsOut.clear();
+
+ // Lower the terminator after the copies are emitted.
+ SDL.visit(*LLVMBB->getTerminator());
+ }
+
+ void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
+ FunctionLoweringInfo &FuncInfo) {
+ SelectionDAG DAG(TLI.getTargetMachine(), MF);
+ CurDAG = &DAG;
+ std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
+
+ // First step, lower LLVM code to some DAG. This DAG may use operations and
+ // types that are not supported by the target.
+ BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
+
+ DEBUG(std::cerr << "Lowered selection DAG:\n");
+ DEBUG(DAG.dump());
+
+ // Second step, hack on the DAG until it only uses operations and types that
+ // the target supports.
+ DAG.Legalize(TLI);
+
+ DEBUG(std::cerr << "Legalized selection DAG:\n");
+ DEBUG(DAG.dump());
+
+ // Finally, instruction select all of the operations to machine code, adding
+ // the code to the MachineBasicBlock.
+ InstructionSelectBasicBlock(DAG);
+
+ DEBUG(std::cerr << "Selected machine code:\n");
+ DEBUG(BB->dump());
+
+ // Finally, now that we know what the last MBB the LLVM BB expanded is, update
+ // PHI nodes in successors.
+ for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
+ MachineInstr *PHI = PHINodesToUpdate[i].first;
+ assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
+ "This is not a machine PHI node that we are updating!");
+ PHI->addRegOperand(PHINodesToUpdate[i].second);
+ PHI->addMachineBasicBlockOperand(BB);
+ }
+ }
More information about the llvm-commits
mailing list