[llvm-commits] CVS: llvm/lib/Target/SparcV9/SparcV9BurgISel.cpp SparcV9BurgISel.h Makefile SparcV9InstrInfo.cpp SparcV9InstrSelection.cpp SparcV9InstrSelectionSupport.h
Brian Gaeke
gaeke at cs.uiuc.edu
Wed Aug 4 00:29:02 PDT 2004
Changes in directory llvm/lib/Target/SparcV9:
SparcV9BurgISel.cpp added (r1.1)
SparcV9BurgISel.h added (r1.1)
Makefile updated: 1.42 -> 1.43
SparcV9InstrInfo.cpp (r1.71) removed
SparcV9InstrSelection.cpp (r1.145) removed
SparcV9InstrSelectionSupport.h (r1.19) removed
---
Log message:
All the SparcV9 BURG instruction selector pieces have been collected into the
new file SparcV9BurgISel.cpp, with exposed interfaces in SparcV9BurgISel.h.
The InstrSelection directory is now dead.
---
Diffs of the changes: (+4566 -1)
Index: llvm/lib/Target/SparcV9/SparcV9BurgISel.cpp
diff -c /dev/null llvm/lib/Target/SparcV9/SparcV9BurgISel.cpp:1.1
*** /dev/null Wed Aug 4 02:29:01 2004
--- llvm/lib/Target/SparcV9/SparcV9BurgISel.cpp Wed Aug 4 02:28:51 2004
***************
*** 0 ****
--- 1,4509 ----
+ //===- SparcV9BurgISel.cpp - SparcV9 BURG-based Instruction Selector ------===//
+ //
+ // The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // SparcV9 BURG-based instruction selector. It uses the SSA graph to
+ // construct a forest of BURG instruction trees (class InstrForest) and then
+ // uses the BURG-generated tree grammar (BURM) to find the optimal instruction
+ // sequences for the SparcV9.
+ //
+ //===----------------------------------------------------------------------===//
+
+ #include "MachineInstrAnnot.h"
+ #include "SparcV9BurgISel.h"
+ #include "SparcV9InstrForest.h"
+ #include "SparcV9Internals.h"
+ #include "SparcV9TmpInstr.h"
+ #include "llvm/CodeGen/IntrinsicLowering.h"
+ #include "llvm/CodeGen/MachineConstantPool.h"
+ #include "llvm/CodeGen/MachineFunction.h"
+ #include "llvm/CodeGen/MachineFunctionInfo.h"
+ #include "llvm/CodeGen/MachineInstr.h"
+ #include "llvm/CodeGen/MachineInstrBuilder.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/GlobalValue.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Intrinsics.h"
+ #include "llvm/Module.h"
+ #include "llvm/Pass.h"
+ #include "llvm/Support/CFG.h"
+ #include "llvm/Target/TargetInstrInfo.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Type.h"
+ #include "Config/alloca.h"
+ #include "Support/CommandLine.h"
+ #include "Support/LeakDetector.h"
+ #include "Support/MathExtras.h"
+ #include "Support/STLExtras.h"
+ #include "Support/hash_map"
+ #include <algorithm>
+ #include <cmath>
+ #include <iostream>
+ using namespace llvm;
+
+ //==------------------------------------------------------------------------==//
+ // InstrForest (V9ISel BURG instruction trees) implementation
+ //==------------------------------------------------------------------------==//
+
+ namespace llvm {
+
+ class InstructionNode : public InstrTreeNode {
+ bool codeIsFoldedIntoParent;
+
+ public:
+ InstructionNode(Instruction *_instr);
+
+ Instruction *getInstruction() const {
+ assert(treeNodeType == NTInstructionNode);
+ return cast<Instruction>(val);
+ }
+
+ void markFoldedIntoParent() { codeIsFoldedIntoParent = true; }
+ bool isFoldedIntoParent() { return codeIsFoldedIntoParent; }
+
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const InstructionNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTInstructionNode;
+ }
+
+ protected:
+ virtual void dumpNode(int indent) const;
+ };
+
+ class VRegListNode : public InstrTreeNode {
+ public:
+ VRegListNode() : InstrTreeNode(NTVRegListNode, 0) { opLabel = VRegListOp; }
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const VRegListNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTVRegListNode;
+ }
+ protected:
+ virtual void dumpNode(int indent) const;
+ };
+
+ class VRegNode : public InstrTreeNode {
+ public:
+ VRegNode(Value* _val) : InstrTreeNode(NTVRegNode, _val) {
+ opLabel = VRegNodeOp;
+ }
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const VRegNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTVRegNode;
+ }
+ protected:
+ virtual void dumpNode(int indent) const;
+ };
+
+ class ConstantNode : public InstrTreeNode {
+ public:
+ ConstantNode(Constant *constVal)
+ : InstrTreeNode(NTConstNode, (Value*)constVal) {
+ opLabel = ConstantNodeOp;
+ }
+ Constant *getConstVal() const { return (Constant*) val;}
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const ConstantNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTConstNode;
+ }
+ protected:
+ virtual void dumpNode(int indent) const;
+ };
+
+ class LabelNode : public InstrTreeNode {
+ public:
+ LabelNode(BasicBlock* BB) : InstrTreeNode(NTLabelNode, (Value*)BB) {
+ opLabel = LabelNodeOp;
+ }
+ BasicBlock *getBasicBlock() const { return (BasicBlock*)val;}
+ // Methods to support type inquiry through isa, cast, and dyn_cast:
+ static inline bool classof(const LabelNode *N) { return true; }
+ static inline bool classof(const InstrTreeNode *N) {
+ return N->getNodeType() == InstrTreeNode::NTLabelNode;
+ }
+ protected:
+ virtual void dumpNode(int indent) const;
+ };
+
+ /// InstrForest - A forest of instruction trees for a single function.
+ /// The goal of InstrForest is to group instructions into a single
+ /// tree if one or more of them might be potentially combined into a
+ /// single complex instruction in the target machine. We group two
+ /// instructions O and I if: (1) Instruction O computes an operand used
+ /// by instruction I, and (2) O and I are part of the same basic block,
+ /// and (3) O has only a single use, viz., I.
+ ///
+ class InstrForest : private hash_map<const Instruction *, InstructionNode*> {
+ public:
+ // Use a vector for the root set to get a deterministic iterator
+ // for stable code generation. Even though we need to erase nodes
+ // during forest construction, a vector should still be efficient
+ // because the elements to erase are nearly always near the end.
+ typedef std::vector<InstructionNode*> RootSet;
+ typedef RootSet:: iterator root_iterator;
+ typedef RootSet::const_iterator const_root_iterator;
+
+ private:
+ RootSet treeRoots;
+
+ public:
+ /*ctor*/ InstrForest (Function *F);
+ /*dtor*/ ~InstrForest ();
+
+ /// getTreeNodeForInstr - Returns the tree node for an Instruction.
+ ///
+ inline InstructionNode *getTreeNodeForInstr(Instruction* instr) {
+ return (*this)[instr];
+ }
+
+ /// Iterators for the root nodes for all the trees.
+ ///
+ const_root_iterator roots_begin() const { return treeRoots.begin(); }
+ root_iterator roots_begin() { return treeRoots.begin(); }
+ const_root_iterator roots_end () const { return treeRoots.end(); }
+ root_iterator roots_end () { return treeRoots.end(); }
+
+ void dump() const;
+
+ private:
+ // Methods used to build the instruction forest.
+ void eraseRoot (InstructionNode* node);
+ void setLeftChild (InstrTreeNode* parent, InstrTreeNode* child);
+ void setRightChild(InstrTreeNode* parent, InstrTreeNode* child);
+ void setParent (InstrTreeNode* child, InstrTreeNode* parent);
+ void noteTreeNodeForInstr(Instruction* instr, InstructionNode* treeNode);
+ InstructionNode* buildTreeForInstruction(Instruction* instr);
+ };
+
+ void InstrTreeNode::dump(int dumpChildren, int indent) const {
+ dumpNode(indent);
+
+ if (dumpChildren) {
+ if (LeftChild)
+ LeftChild->dump(dumpChildren, indent+1);
+ if (RightChild)
+ RightChild->dump(dumpChildren, indent+1);
+ }
+ }
+
+ InstructionNode::InstructionNode(Instruction* I)
+ : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false) {
+ opLabel = I->getOpcode();
+
+ // Distinguish special cases of some instructions such as Ret and Br
+ //
+ if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
+ opLabel = RetValueOp; // ret(value) operation
+ }
+ else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
+ {
+ opLabel = BrCondOp; // br(cond) operation
+ } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
+ opLabel = SetCCOp; // common label for all SetCC ops
+ } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
+ opLabel = AllocaN; // Alloca(ptr, N) operation
+ } else if (opLabel == Instruction::GetElementPtr &&
+ cast<GetElementPtrInst>(I)->hasIndices()) {
+ opLabel = opLabel + 100; // getElem with index vector
+ } else if (opLabel == Instruction::Xor &&
+ BinaryOperator::isNot(I)) {
+ opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
+ : BNotOp; // bitwise Not operator
+ } else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
+ opLabel == Instruction::Xor) {
+ // Distinguish bitwise operators from logical operators!
+ if (I->getType() != Type::BoolTy)
+ opLabel = opLabel + 100; // bitwise operator
+ } else if (opLabel == Instruction::Cast) {
+ const Type *ITy = I->getType();
+ switch(ITy->getTypeID())
+ {
+ case Type::BoolTyID: opLabel = ToBoolTy; break;
+ case Type::UByteTyID: opLabel = ToUByteTy; break;
+ case Type::SByteTyID: opLabel = ToSByteTy; break;
+ case Type::UShortTyID: opLabel = ToUShortTy; break;
+ case Type::ShortTyID: opLabel = ToShortTy; break;
+ case Type::UIntTyID: opLabel = ToUIntTy; break;
+ case Type::IntTyID: opLabel = ToIntTy; break;
+ case Type::ULongTyID: opLabel = ToULongTy; break;
+ case Type::LongTyID: opLabel = ToLongTy; break;
+ case Type::FloatTyID: opLabel = ToFloatTy; break;
+ case Type::DoubleTyID: opLabel = ToDoubleTy; break;
+ case Type::ArrayTyID: opLabel = ToArrayTy; break;
+ case Type::PointerTyID: opLabel = ToPointerTy; break;
+ default:
+ // Just use `Cast' opcode otherwise. It's probably ignored.
+ break;
+ }
+ }
+ }
+
+ void InstructionNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+ std::cerr << getInstruction()->getOpcodeName()
+ << " [label " << getOpLabel() << "]" << "\n";
+ }
+
+ void VRegListNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+
+ std::cerr << "List" << "\n";
+ }
+
+ void VRegNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+ std::cerr << "VReg " << *getValue() << "\n";
+ }
+
+ void ConstantNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+ std::cerr << "Constant " << *getValue() << "\n";
+ }
+
+ void LabelNode::dumpNode(int indent) const {
+ for (int i=0; i < indent; i++)
+ std::cerr << " ";
+
+ std::cerr << "Label " << *getValue() << "\n";
+ }
+
+ /// InstrForest ctor - Create a forest of instruction trees for a
+ /// single function.
+ ///
+ InstrForest::InstrForest(Function *F) {
+ for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
+ for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ buildTreeForInstruction(I);
+ }
+ }
+
+ InstrForest::~InstrForest() {
+ for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
+ }
+
+ void InstrForest::dump() const {
+ for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
+ (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
+ }
+
+ inline void InstrForest::eraseRoot(InstructionNode* node) {
+ for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
+ RI != RE; ++RI)
+ if (*RI == node)
+ treeRoots.erase(RI.base()-1);
+ }
+
+ inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
+ InstructionNode *treeNode) {
+ (*this)[instr] = treeNode;
+ treeRoots.push_back(treeNode); // mark node as root of a new tree
+ }
+
+ inline void InstrForest::setLeftChild(InstrTreeNode *parent,
+ InstrTreeNode *child) {
+ parent->LeftChild = child;
+ child->Parent = parent;
+ if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
+ eraseRoot(instrNode); // no longer a tree root
+ }
+
+ inline void InstrForest::setRightChild(InstrTreeNode *parent,
+ InstrTreeNode *child) {
+ parent->RightChild = child;
+ child->Parent = parent;
+ if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
+ eraseRoot(instrNode); // no longer a tree root
+ }
+
+ InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
+ InstructionNode *treeNode = getTreeNodeForInstr(instr);
+ if (treeNode) {
+ // treeNode has already been constructed for this instruction
+ assert(treeNode->getInstruction() == instr);
+ return treeNode;
+ }
+
+ // Otherwise, create a new tree node for this instruction.
+ treeNode = new InstructionNode(instr);
+ noteTreeNodeForInstr(instr, treeNode);
+
+ if (instr->getOpcode() == Instruction::Call) {
+ // Operands of call instruction
+ return treeNode;
+ }
+
+ // If the instruction has more than 2 instruction operands,
+ // then we need to create artificial list nodes to hold them.
+ // (Note that we only count operands that get tree nodes, and not
+ // others such as branch labels for a branch or switch instruction.)
+ // To do this efficiently, we'll walk all operands, build treeNodes
+ // for all appropriate operands and save them in an array. We then
+ // insert children at the end, creating list nodes where needed.
+ // As a performance optimization, allocate a child array only
+ // if a fixed array is too small.
+ int numChildren = 0;
+ InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
+
+ // Walk the operands of the instruction
+ for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end();
+ ++O) {
+ Value* operand = *O;
+
+ // Check if the operand is a data value, not an branch label, type,
+ // method or module. If the operand is an address type (i.e., label
+ // or method) that is used in an non-branching operation, e.g., `add'.
+ // that should be considered a data value.
+ // Check latter condition here just to simplify the next IF.
+ bool includeAddressOperand =
+ (isa<BasicBlock>(operand) || isa<Function>(operand))
+ && !instr->isTerminator();
+
+ if (includeAddressOperand || isa<Instruction>(operand) ||
+ isa<Constant>(operand) || isa<Argument>(operand)) {
+ // This operand is a data value.
+ // An instruction that computes the incoming value is added as a
+ // child of the current instruction if:
+ // the value has only a single use
+ // AND both instructions are in the same basic block.
+ // AND the current instruction is not a PHI (because the incoming
+ // value is conceptually in a predecessor block,
+ // even though it may be in the same static block)
+ // (Note that if the value has only a single use (viz., `instr'),
+ // the def of the value can be safely moved just before instr
+ // and therefore it is safe to combine these two instructions.)
+ // In all other cases, the virtual register holding the value
+ // is used directly, i.e., made a child of the instruction node.
+ InstrTreeNode* opTreeNode;
+ if (isa<Instruction>(operand) && operand->hasOneUse() &&
+ cast<Instruction>(operand)->getParent() == instr->getParent() &&
+ instr->getOpcode() != Instruction::PHI &&
+ instr->getOpcode() != Instruction::Call) {
+ // Recursively create a treeNode for it.
+ opTreeNode = buildTreeForInstruction((Instruction*)operand);
+ } else if (Constant *CPV = dyn_cast<Constant>(operand)) {
+ if (isa<GlobalValue>(CPV))
+ opTreeNode = new VRegNode(operand);
+ else
+ // Create a leaf node for a constant
+ opTreeNode = new ConstantNode(CPV);
+ } else {
+ // Create a leaf node for the virtual register
+ opTreeNode = new VRegNode(operand);
+ }
+
+ childArray[numChildren++] = opTreeNode;
+ }
+ }
+
+ // Add any selected operands as children in the tree.
+ // Certain instructions can have more than 2 in some instances (viz.,
+ // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
+ // array or struct). Make the operands of every such instruction into
+ // a right-leaning binary tree with the operand nodes at the leaves
+ // and VRegList nodes as internal nodes.
+ InstrTreeNode *parent = treeNode;
+
+ if (numChildren > 2) {
+ unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
+ assert(instrOpcode == Instruction::PHI ||
+ instrOpcode == Instruction::Call ||
+ instrOpcode == Instruction::Load ||
+ instrOpcode == Instruction::Store ||
+ instrOpcode == Instruction::GetElementPtr);
+ }
+
+ // Insert the first child as a direct child
+ if (numChildren >= 1)
+ setLeftChild(parent, childArray[0]);
+
+ int n;
+
+ // Create a list node for children 2 .. N-1, if any
+ for (n = numChildren-1; n >= 2; n--) {
+ // We have more than two children
+ InstrTreeNode *listNode = new VRegListNode();
+ setRightChild(parent, listNode);
+ setLeftChild(listNode, childArray[numChildren - n]);
+ parent = listNode;
+ }
+
+ // Now insert the last remaining child (if any).
+ if (numChildren >= 2) {
+ assert(n == 1);
+ setRightChild(parent, childArray[numChildren - 1]);
+ }
+
+ delete [] childArray;
+ return treeNode;
+ }
+ //==------------------------------------------------------------------------==//
+ // V9ISel Command-line options and declarations
+ //==------------------------------------------------------------------------==//
+
+ namespace {
+ /// Allow the user to select the amount of debugging information printed
+ /// out by V9ISel.
+ ///
+ enum SelectDebugLevel_t {
+ Select_NoDebugInfo,
+ Select_PrintMachineCode,
+ Select_DebugInstTrees,
+ Select_DebugBurgTrees,
+ };
+ cl::opt<SelectDebugLevel_t>
+ SelectDebugLevel("dselect", cl::Hidden,
+ cl::desc("enable instruction selection debug information"),
+ cl::values(
+ clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
+ clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
+ clEnumValN(Select_DebugInstTrees, "i",
+ "print debugging info for instruction selection"),
+ clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"),
+ clEnumValEnd));
+
+
+ /// V9ISel - This is the FunctionPass that drives the instruction selection
+ /// process on the SparcV9 target.
+ ///
+ class V9ISel : public FunctionPass {
+ TargetMachine &Target;
+ void InsertCodeForPhis(Function &F);
+ void InsertPhiElimInstructions(BasicBlock *BB,
+ const std::vector<MachineInstr*>& CpVec);
+ void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt);
+ void PostprocessMachineCodeForTree(InstructionNode* instrNode,
+ int ruleForNode, short* nts);
+ public:
+ V9ISel(TargetMachine &TM) : Target(TM) {}
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ }
+
+ bool runOnFunction(Function &F);
+ virtual const char *getPassName() const {
+ return "SparcV9 BURG Instruction Selector";
+ }
+ };
+ }
+
+
+ //==------------------------------------------------------------------------==//
+ // Various V9ISel helper functions
+ //==------------------------------------------------------------------------==//
+
+ static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*)
+ static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR
+
+ /// ConvertConstantToIntType - Function to get the value of an integral
+ /// constant in the form that must be put into the machine register. The
+ /// specified constant is interpreted as (i.e., converted if necessary to) the
+ /// specified destination type. The result is always returned as an uint64_t,
+ /// since the representation of int64_t and uint64_t are identical. The
+ /// argument can be any known const. isValidConstant is set to true if a valid
+ /// constant was found.
+ ///
+ uint64_t ConvertConstantToIntType(const TargetMachine &target, const Value *V,
+ const Type *destType, bool &isValidConstant) {
+ isValidConstant = false;
+ uint64_t C = 0;
+
+ if (! destType->isIntegral() && ! isa<PointerType>(destType))
+ return C;
+
+ if (! isa<Constant>(V) || isa<GlobalValue>(V))
+ return C;
+
+ // GlobalValue: no conversions needed: get value and return it
+ if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
+ isValidConstant = true; // may be overwritten by recursive call
+ return ConvertConstantToIntType(target, GV, destType, isValidConstant);
+ }
+
+ // ConstantBool: no conversions needed: get value and return it
+ if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) {
+ isValidConstant = true;
+ return (uint64_t) CB->getValue();
+ }
+
+ // ConstantPointerNull: it's really just a big, shiny version of zero.
+ if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(V)) {
+ isValidConstant = true;
+ return 0;
+ }
+
+ // For other types of constants, some conversion may be needed.
+ // First, extract the constant operand according to its own type
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ switch(CE->getOpcode()) {
+ case Instruction::Cast: // recursively get the value as cast
+ C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(),
+ isValidConstant);
+ break;
+ default: // not simplifying other ConstantExprs
+ break;
+ }
+ else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ isValidConstant = true;
+ C = CI->getRawValue();
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ isValidConstant = true;
+ double fC = CFP->getValue();
+ C = (destType->isSigned()? (uint64_t) (int64_t) fC
+ : (uint64_t) fC);
+ }
+
+ // Now if a valid value was found, convert it to destType.
+ if (isValidConstant) {
+ unsigned opSize = target.getTargetData().getTypeSize(V->getType());
+ unsigned destSize = target.getTargetData().getTypeSize(destType);
+ uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0;
+ assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected");
+
+ if (destType->isSigned()) {
+ if (opSize > destSize) // operand is larger than dest:
+ C = C & maskHi; // mask high bits
+
+ if (opSize > destSize ||
+ (opSize == destSize && ! V->getType()->isSigned()))
+ if (C & (1U << (8*destSize - 1)))
+ C = C | ~maskHi; // sign-extend from destSize to 64 bits
+ }
+ else {
+ if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) {
+ // operand is larger than dest,
+ // OR both are equal but smaller than the full register size
+ // AND operand is signed, so it may have extra sign bits:
+ // mask high bits
+ C = C & maskHi;
+ }
+ }
+ }
+
+ return C;
+ }
+
+ /// CreateSETUWConst - Copy a 32-bit unsigned constant into the register
+ /// `dest', using SETHI, OR in the worst case. This function correctly emulates
+ /// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). The
+ /// isSigned=true case is used to implement SETSW without duplicating code. It
+ /// optimizes some common cases:
+ /// (1) Small value that fits in simm13 field of OR: don't need SETHI.
+ /// (2) isSigned = true and C is a small negative signed value, i.e.,
+ /// high bits are 1, and the remaining bits fit in simm13(OR).
+ static inline void
+ CreateSETUWConst(const TargetMachine& target, uint32_t C,
+ Instruction* dest, std::vector<MachineInstr*>& mvec,
+ bool isSigned = false) {
+ MachineInstr *miSETHI = NULL, *miOR = NULL;
+
+ // In order to get efficient code, we should not generate the SETHI if
+ // all high bits are 1 (i.e., this is a small signed value that fits in
+ // the simm13 field of OR). So we check for and handle that case specially.
+ // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0.
+ // In fact, sC == -sC, so we have to check for this explicitly.
+ int32_t sC = (int32_t) C;
+ bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM;
+
+ // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough
+ if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) {
+ miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest);
+ miSETHI->getOperand(0).markHi32();
+ mvec.push_back(miSETHI);
+ }
+
+ // Set the low 10 or 12 bits in dest. This is necessary if no SETHI
+ // was generated, or if the low 10 bits are non-zero.
+ if (miSETHI==NULL || C & MAXLO) {
+ if (miSETHI) {
+ // unsigned value with high-order bits set using SETHI
+ miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest);
+ miOR->getOperand(1).markLo32();
+ } else {
+ // unsigned or small signed value that fits in simm13 field of OR
+ assert(smallNegValue || (C & ~MAXSIMM) == 0);
+ miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()->getZeroRegNum())
+ .addSImm(sC).addRegDef(dest);
+ }
+ mvec.push_back(miOR);
+ }
+
+ assert((miSETHI || miOR) && "Oops, no code was generated!");
+ }
+
+ /// CreateSETSWConst - Set a 32-bit signed constant in the register `dest',
+ /// with sign-extension to 64 bits. This uses SETHI, OR, SRA in the worst case.
+ /// This function correctly emulates the SETSW pseudo-op for SPARC v9. It
+ /// optimizes the same cases as SETUWConst, plus:
+ /// (1) SRA is not needed for positive or small negative values.
+ ///
+ static inline void
+ CreateSETSWConst(const TargetMachine& target, int32_t C,
+ Instruction* dest, std::vector<MachineInstr*>& mvec) {
+ // Set the low 32 bits of dest
+ CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true);
+
+ // Sign-extend to the high 32 bits if needed.
+ // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM
+ if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM))
+ mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest));
+ }
+
+ /// CreateSETXConst - Set a 64-bit signed or unsigned constant in the
+ /// register `dest'. Use SETUWConst for each 32 bit word, plus a
+ /// left-shift-by-32 in between. This function correctly emulates the SETX
+ /// pseudo-op for SPARC v9. It optimizes the same cases as SETUWConst for each
+ /// 32 bit word.
+ ///
+ static inline void
+ CreateSETXConst(const TargetMachine& target, uint64_t C,
+ Instruction* tmpReg, Instruction* dest,
+ std::vector<MachineInstr*>& mvec) {
+ assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!");
+
+ MachineInstr* MI;
+
+ // Code to set the upper 32 bits of the value in register `tmpReg'
+ CreateSETUWConst(target, (C >> 32), tmpReg, mvec);
+
+ // Shift tmpReg left by 32 bits
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+ .addRegDef(tmpReg));
+
+ // Code to set the low 32 bits of the value in register `dest'
+ CreateSETUWConst(target, C, dest, mvec);
+
+ // dest = OR(tmpReg, dest)
+ mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest));
+ }
+
+ /// CreateSETUWLabel - Set a 32-bit constant (given by a symbolic label) in
+ /// the register `dest'.
+ ///
+ static inline void
+ CreateSETUWLabel(const TargetMachine& target, Value* val,
+ Instruction* dest, std::vector<MachineInstr*>& mvec) {
+ MachineInstr* MI;
+
+ // Set the high 22 bits in dest
+ MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest);
+ MI->getOperand(0).markHi32();
+ mvec.push_back(MI);
+
+ // Set the low 10 bits in dest
+ MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest);
+ MI->getOperand(1).markLo32();
+ mvec.push_back(MI);
+ }
+
+ /// CreateSETXLabel - Set a 64-bit constant (given by a symbolic label) in the
+ /// register `dest'.
+ ///
+ static inline void
+ CreateSETXLabel(const TargetMachine& target, Value* val, Instruction* tmpReg,
+ Instruction* dest, std::vector<MachineInstr*>& mvec) {
+ assert(isa<Constant>(val) &&
+ "I only know about constant values and global addresses");
+
+ MachineInstr* MI;
+
+ MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg);
+ MI->getOperand(0).markHi64();
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg);
+ MI->getOperand(1).markLo64();
+ mvec.push_back(MI);
+
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+ .addRegDef(tmpReg));
+ MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest);
+ MI->getOperand(0).markHi32();
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest);
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest);
+ MI->getOperand(1).markLo32();
+ mvec.push_back(MI);
+ }
+
+ /// CreateUIntSetInstruction - Create code to Set an unsigned constant in the
+ /// register `dest'. Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst
+ /// as needed. CreateSETSWConst is an optimization for the case that the
+ /// unsigned value has all ones in the 33 high bits (so that sign-extension sets
+ /// them all).
+ ///
+ static inline void
+ CreateUIntSetInstruction(const TargetMachine& target,
+ uint64_t C, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ static const uint64_t lo32 = (uint32_t) ~0;
+ if (C <= lo32) // High 32 bits are 0. Set low 32 bits.
+ CreateSETUWConst(target, (uint32_t) C, dest, mvec);
+ else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) {
+ // All high 33 (not 32) bits are 1s: sign-extension will take care
+ // of high 32 bits, so use the sequence for signed int
+ CreateSETSWConst(target, (int32_t) C, dest, mvec);
+ } else if (C > lo32) {
+ // C does not fit in 32 bits
+ TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy);
+ CreateSETXConst(target, C, tmpReg, dest, mvec);
+ }
+ }
+
+ /// CreateIntSetInstruction - Create code to Set a signed constant in the
+ /// register `dest'. Really the same as CreateUIntSetInstruction.
+ ///
+ static inline void
+ CreateIntSetInstruction(const TargetMachine& target,
+ int64_t C, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi);
+ }
+
+ /// MaxConstantsTableTy - Table mapping LLVM opcodes to the max. immediate
+ /// constant usable for that operation in the SparcV9 backend. Used by
+ /// ConstantMayNotFitInImmedField().
+ ///
+ struct MaxConstantsTableTy {
+ // Entry == 0 ==> no immediate constant field exists at all.
+ // Entry > 0 ==> abs(immediate constant) <= Entry
+ std::vector<int> tbl;
+
+ int getMaxConstantForInstr (unsigned llvmOpCode);
+ MaxConstantsTableTy ();
+ unsigned size() const { return tbl.size (); }
+ int &operator[] (unsigned index) { return tbl[index]; }
+ };
+
+ int MaxConstantsTableTy::getMaxConstantForInstr(unsigned llvmOpCode) {
+ int modelOpCode = -1;
+
+ if (llvmOpCode >= Instruction::BinaryOpsBegin &&
+ llvmOpCode < Instruction::BinaryOpsEnd)
+ modelOpCode = V9::ADDi;
+ else
+ switch(llvmOpCode) {
+ case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break;
+
+ case Instruction::Malloc:
+ case Instruction::Alloca:
+ case Instruction::GetElementPtr:
+ case Instruction::PHI:
+ case Instruction::Cast:
+ case Instruction::Call: modelOpCode = V9::ADDi; break;
+
+ case Instruction::Shl:
+ case Instruction::Shr: modelOpCode = V9::SLLXi6; break;
+
+ default: break;
+ };
+
+ return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst;
+ }
+
+ MaxConstantsTableTy::MaxConstantsTableTy () : tbl (Instruction::OtherOpsEnd) {
+ unsigned op;
+ assert(tbl.size() == Instruction::OtherOpsEnd &&
+ "assignments below will be illegal!");
+ for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op)
+ tbl[op] = getMaxConstantForInstr(op);
+ for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op)
+ tbl[op] = getMaxConstantForInstr(op);
+ for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op)
+ tbl[op] = getMaxConstantForInstr(op);
+ for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op)
+ tbl[op] = getMaxConstantForInstr(op);
+ }
+
+ bool ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) {
+ // The one and only MaxConstantsTable, used only by this function.
+ static MaxConstantsTableTy MaxConstantsTable;
+
+ if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!)
+ return true;
+
+ if (isa<ConstantPointerNull>(CV)) // can always use %g0
+ return false;
+
+ if (isa<SwitchInst>(I)) // Switch instructions will be lowered!
+ return false;
+
+ if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV))
+ return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()];
+
+ if (isa<ConstantBool>(CV))
+ return 1 > MaxConstantsTable[I->getOpcode()];
+
+ return true;
+ }
+
+ /// ChooseLoadInstruction - Return the appropriate load instruction opcode
+ /// based on the given LLVM value type.
+ ///
+ static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) {
+ switch (DestTy->getTypeID()) {
+ case Type::BoolTyID:
+ case Type::UByteTyID: return V9::LDUBr;
+ case Type::SByteTyID: return V9::LDSBr;
+ case Type::UShortTyID: return V9::LDUHr;
+ case Type::ShortTyID: return V9::LDSHr;
+ case Type::UIntTyID: return V9::LDUWr;
+ case Type::IntTyID: return V9::LDSWr;
+ case Type::PointerTyID:
+ case Type::ULongTyID:
+ case Type::LongTyID: return V9::LDXr;
+ case Type::FloatTyID: return V9::LDFr;
+ case Type::DoubleTyID: return V9::LDDFr;
+ default: assert(0 && "Invalid type for Load instruction");
+ }
+ return 0;
+ }
+
+ /// ChooseStoreInstruction - Return the appropriate store instruction opcode
+ /// based on the given LLVM value type.
+ ///
+ static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) {
+ switch (DestTy->getTypeID()) {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: return V9::STBr;
+ case Type::UShortTyID:
+ case Type::ShortTyID: return V9::STHr;
+ case Type::UIntTyID:
+ case Type::IntTyID: return V9::STWr;
+ case Type::PointerTyID:
+ case Type::ULongTyID:
+ case Type::LongTyID: return V9::STXr;
+ case Type::FloatTyID: return V9::STFr;
+ case Type::DoubleTyID: return V9::STDFr;
+ default: assert(0 && "Invalid type for Store instruction");
+ }
+ return 0;
+ }
+
+ static inline MachineOpCode ChooseAddInstructionByType(const Type* resultType) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+ if (resultType->isIntegral() || isa<PointerType>(resultType)
+ || isa<FunctionType>(resultType) || resultType == Type::LabelTy) {
+ opCode = V9::ADDr;
+ } else
+ switch(resultType->getTypeID()) {
+ case Type::FloatTyID: opCode = V9::FADDS; break;
+ case Type::DoubleTyID: opCode = V9::FADDD; break;
+ default: assert(0 && "Invalid type for ADD instruction"); break;
+ }
+
+ return opCode;
+ }
+
+ /// convertOpcodeFromRegToImm - Because the SparcV9 instruction selector likes
+ /// to re-write operands to instructions, making them change from a Value*
+ /// (virtual register) to a Constant* (making an immediate field), we need to
+ /// change the opcode from a register-based instruction to an immediate-based
+ /// instruction, hence this mapping.
+ ///
+ static unsigned convertOpcodeFromRegToImm(unsigned Opcode) {
+ switch (Opcode) {
+ /* arithmetic */
+ case V9::ADDr: return V9::ADDi;
+ case V9::ADDccr: return V9::ADDcci;
+ case V9::ADDCr: return V9::ADDCi;
+ case V9::ADDCccr: return V9::ADDCcci;
+ case V9::SUBr: return V9::SUBi;
+ case V9::SUBccr: return V9::SUBcci;
+ case V9::SUBCr: return V9::SUBCi;
+ case V9::SUBCccr: return V9::SUBCcci;
+ case V9::MULXr: return V9::MULXi;
+ case V9::SDIVXr: return V9::SDIVXi;
+ case V9::UDIVXr: return V9::UDIVXi;
+
+ /* logical */
+ case V9::ANDr: return V9::ANDi;
+ case V9::ANDccr: return V9::ANDcci;
+ case V9::ANDNr: return V9::ANDNi;
+ case V9::ANDNccr: return V9::ANDNcci;
+ case V9::ORr: return V9::ORi;
+ case V9::ORccr: return V9::ORcci;
+ case V9::ORNr: return V9::ORNi;
+ case V9::ORNccr: return V9::ORNcci;
+ case V9::XORr: return V9::XORi;
+ case V9::XORccr: return V9::XORcci;
+ case V9::XNORr: return V9::XNORi;
+ case V9::XNORccr: return V9::XNORcci;
+
+ /* shift */
+ case V9::SLLr5: return V9::SLLi5;
+ case V9::SRLr5: return V9::SRLi5;
+ case V9::SRAr5: return V9::SRAi5;
+ case V9::SLLXr6: return V9::SLLXi6;
+ case V9::SRLXr6: return V9::SRLXi6;
+ case V9::SRAXr6: return V9::SRAXi6;
+
+ /* Conditional move on int comparison with zero */
+ case V9::MOVRZr: return V9::MOVRZi;
+ case V9::MOVRLEZr: return V9::MOVRLEZi;
+ case V9::MOVRLZr: return V9::MOVRLZi;
+ case V9::MOVRNZr: return V9::MOVRNZi;
+ case V9::MOVRGZr: return V9::MOVRGZi;
+ case V9::MOVRGEZr: return V9::MOVRGEZi;
+
+
+ /* Conditional move on int condition code */
+ case V9::MOVAr: return V9::MOVAi;
+ case V9::MOVNr: return V9::MOVNi;
+ case V9::MOVNEr: return V9::MOVNEi;
+ case V9::MOVEr: return V9::MOVEi;
+ case V9::MOVGr: return V9::MOVGi;
+ case V9::MOVLEr: return V9::MOVLEi;
+ case V9::MOVGEr: return V9::MOVGEi;
+ case V9::MOVLr: return V9::MOVLi;
+ case V9::MOVGUr: return V9::MOVGUi;
+ case V9::MOVLEUr: return V9::MOVLEUi;
+ case V9::MOVCCr: return V9::MOVCCi;
+ case V9::MOVCSr: return V9::MOVCSi;
+ case V9::MOVPOSr: return V9::MOVPOSi;
+ case V9::MOVNEGr: return V9::MOVNEGi;
+ case V9::MOVVCr: return V9::MOVVCi;
+ case V9::MOVVSr: return V9::MOVVSi;
+
+ /* Conditional move of int reg on fp condition code */
+ case V9::MOVFAr: return V9::MOVFAi;
+ case V9::MOVFNr: return V9::MOVFNi;
+ case V9::MOVFUr: return V9::MOVFUi;
+ case V9::MOVFGr: return V9::MOVFGi;
+ case V9::MOVFUGr: return V9::MOVFUGi;
+ case V9::MOVFLr: return V9::MOVFLi;
+ case V9::MOVFULr: return V9::MOVFULi;
+ case V9::MOVFLGr: return V9::MOVFLGi;
+ case V9::MOVFNEr: return V9::MOVFNEi;
+ case V9::MOVFEr: return V9::MOVFEi;
+ case V9::MOVFUEr: return V9::MOVFUEi;
+ case V9::MOVFGEr: return V9::MOVFGEi;
+ case V9::MOVFUGEr: return V9::MOVFUGEi;
+ case V9::MOVFLEr: return V9::MOVFLEi;
+ case V9::MOVFULEr: return V9::MOVFULEi;
+ case V9::MOVFOr: return V9::MOVFOi;
+
+ /* load */
+ case V9::LDSBr: return V9::LDSBi;
+ case V9::LDSHr: return V9::LDSHi;
+ case V9::LDSWr: return V9::LDSWi;
+ case V9::LDUBr: return V9::LDUBi;
+ case V9::LDUHr: return V9::LDUHi;
+ case V9::LDUWr: return V9::LDUWi;
+ case V9::LDXr: return V9::LDXi;
+ case V9::LDFr: return V9::LDFi;
+ case V9::LDDFr: return V9::LDDFi;
+ case V9::LDQFr: return V9::LDQFi;
+ case V9::LDFSRr: return V9::LDFSRi;
+ case V9::LDXFSRr: return V9::LDXFSRi;
+
+ /* store */
+ case V9::STBr: return V9::STBi;
+ case V9::STHr: return V9::STHi;
+ case V9::STWr: return V9::STWi;
+ case V9::STXr: return V9::STXi;
+ case V9::STFr: return V9::STFi;
+ case V9::STDFr: return V9::STDFi;
+ case V9::STFSRr: return V9::STFSRi;
+ case V9::STXFSRr: return V9::STXFSRi;
+
+ /* jump & return */
+ case V9::JMPLCALLr: return V9::JMPLCALLi;
+ case V9::JMPLRETr: return V9::JMPLRETi;
+
+ /* save and restore */
+ case V9::SAVEr: return V9::SAVEi;
+ case V9::RESTOREr: return V9::RESTOREi;
+
+ default:
+ // It's already in correct format
+ // Or, it's just not handled yet, but an assert() would break LLC
+ #if 0
+ std::cerr << "Unhandled opcode in convertOpcodeFromRegToImm(): " << Opcode
+ << "\n";
+ #endif
+ return Opcode;
+ }
+ }
+
+ /// CreateCodeToLoadConst - Create an instruction sequence to put the
+ /// constant `val' into the virtual register `dest'. `val' may be a Constant or
+ /// a GlobalValue, viz., the constant address of a global variable or function.
+ /// The generated instructions are returned in `mvec'. Any temp. registers
+ /// (TmpInstruction) created are recorded in mcfi. Any stack space required is
+ /// allocated via MachineFunction.
+ ///
+ void CreateCodeToLoadConst(const TargetMachine& target, Function* F,
+ Value* val, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ assert(isa<Constant>(val) &&
+ "I only know about constant values and global addresses");
+
+ // Use a "set" instruction for known constants or symbolic constants (labels)
+ // that can go in an integer reg.
+ // We have to use a "load" instruction for all other constants,
+ // in particular, floating point constants.
+ const Type* valType = val->getType();
+
+ if (isa<GlobalValue>(val)) {
+ TmpInstruction* tmpReg =
+ new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
+ CreateSETXLabel(target, val, tmpReg, dest, mvec);
+ return;
+ }
+
+ bool isValid;
+ uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid);
+ if (isValid) {
+ if (dest->getType()->isSigned())
+ CreateUIntSetInstruction(target, C, dest, mvec, mcfi);
+ else
+ CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi);
+
+ } else {
+ // Make an instruction sequence to load the constant, viz:
+ // SETX <addr-of-constant>, tmpReg, addrReg
+ // LOAD /*addr*/ addrReg, /*offset*/ 0, dest
+ // First, create a tmp register to be used by the SETX sequence.
+ TmpInstruction* tmpReg =
+ new TmpInstruction(mcfi, PointerType::get(val->getType()));
+
+ // Create another TmpInstruction for the address register
+ TmpInstruction* addrReg =
+ new TmpInstruction(mcfi, PointerType::get(val->getType()));
+
+ // Get the constant pool index for this constant
+ MachineConstantPool *CP = MachineFunction::get(F).getConstantPool();
+ Constant *C = cast<Constant>(val);
+ unsigned CPI = CP->getConstantPoolIndex(C);
+
+ // Put the address of the constant into a register
+ MachineInstr* MI;
+
+ MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg);
+ MI->getOperand(0).markHi64();
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI)
+ .addRegDef(tmpReg);
+ MI->getOperand(1).markLo64();
+ mvec.push_back(MI);
+
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+ .addRegDef(tmpReg));
+ MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg);
+ MI->getOperand(0).markHi32();
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg);
+ mvec.push_back(MI);
+
+ MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI)
+ .addRegDef(addrReg);
+ MI->getOperand(1).markLo32();
+ mvec.push_back(MI);
+
+ // Now load the constant from out ConstantPool label
+ unsigned Opcode = ChooseLoadInstruction(val->getType());
+ Opcode = convertOpcodeFromRegToImm(Opcode);
+ mvec.push_back(BuildMI(Opcode, 3)
+ .addReg(addrReg).addSImm((int64_t)0).addRegDef(dest));
+ }
+ }
+
+ /// CreateCodeToCopyFloatToInt - Similarly, create an instruction sequence
+ /// to copy an FP register `val' to an integer register `dest' by copying to
+ /// memory and back. The generated instructions are returned in `mvec'. Any
+ /// temp. virtual registers (TmpInstruction) created are recorded in mcfi.
+ /// Temporary stack space required is allocated via MachineFunction.
+ ///
+ void CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F,
+ Value* val, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ const Type* opTy = val->getType();
+ const Type* destTy = dest->getType();
+ assert(opTy->isFloatingPoint() && "Source type must be float/double");
+ assert((destTy->isIntegral() || isa<PointerType>(destTy))
+ && "Dest type must be integer, bool or pointer");
+
+ // FIXME: For now, we allocate permanent space because the stack frame
+ // manager does not allow locals to be allocated (e.g., for alloca) after
+ // a temp is allocated!
+ int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
+
+ unsigned FPReg = target.getRegInfo()->getFramePointer();
+
+ // Store instruction stores `val' to [%fp+offset].
+ // The store opCode is based only the source value being copied.
+ unsigned StoreOpcode = ChooseStoreInstruction(opTy);
+ StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
+ mvec.push_back(BuildMI(StoreOpcode, 3)
+ .addReg(val).addMReg(FPReg).addSImm(offset));
+
+ // Load instruction loads [%fp+offset] to `dest'.
+ // The type of the load opCode is the integer type that matches the
+ // source type in size:
+ // On SparcV9: int for float, long for double.
+ // Note that we *must* use signed loads even for unsigned dest types, to
+ // ensure correct sign-extension for UByte, UShort or UInt:
+ const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy;
+ unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
+ LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
+ mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg)
+ .addSImm(offset).addRegDef(dest));
+ }
+
+ /// CreateBitExtensionInstructions - Helper function for sign-extension and
+ /// zero-extension. For SPARC v9, we sign-extend the given operand using SLL;
+ /// SRA/SRL.
+ ///
+ inline void
+ CreateBitExtensionInstructions(bool signExtend, const TargetMachine& target,
+ Function* F, Value* srcVal, Value* destVal,
+ unsigned int numLowBits,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ MachineInstr* M;
+
+ assert(numLowBits <= 32 && "Otherwise, nothing should be done here!");
+
+ if (numLowBits < 32) {
+ // SLL is needed since operand size is < 32 bits.
+ TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(),
+ srcVal, destVal, "make32");
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal)
+ .addZImm(32-numLowBits).addRegDef(tmpI));
+ srcVal = tmpI;
+ }
+
+ mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3)
+ .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal));
+ }
+
+ /// CreateSignExtensionInstructions - Create instruction sequence to produce
+ /// a sign-extended register value from an arbitrary-sized integer value (sized
+ /// in bits, not bytes). The generated instructions are returned in `mvec'. Any
+ /// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack
+ /// space required is allocated via MachineFunction.
+ ///
+ void CreateSignExtensionInstructions(const TargetMachine& target,
+ Function* F, Value* srcVal, Value* destVal,
+ unsigned int numLowBits,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal,
+ destVal, numLowBits, mvec, mcfi);
+ }
+
+ /// CreateZeroExtensionInstructions - Create instruction sequence to produce
+ /// a zero-extended register value from an arbitrary-sized integer value (sized
+ /// in bits, not bytes). For SPARC v9, we sign-extend the given operand using
+ /// SLL; SRL. The generated instructions are returned in `mvec'. Any temp.
+ /// registers (TmpInstruction) created are recorded in mcfi. Any stack space
+ /// required is allocated via MachineFunction.
+ ///
+ void CreateZeroExtensionInstructions(const TargetMachine& target,
+ Function* F, Value* srcVal, Value* destVal,
+ unsigned int numLowBits,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal,
+ destVal, numLowBits, mvec, mcfi);
+ }
+
+ /// CreateCodeToCopyIntToFloat - Create an instruction sequence to copy an
+ /// integer register `val' to a floating point register `dest' by copying to
+ /// memory and back. val must be an integral type. dest must be a Float or
+ /// Double. The generated instructions are returned in `mvec'. Any temp.
+ /// registers (TmpInstruction) created are recorded in mcfi. Any stack space
+ /// required is allocated via MachineFunction.
+ ///
+ void CreateCodeToCopyIntToFloat(const TargetMachine& target,
+ Function* F, Value* val, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
+ && "Source type must be integral (integer or bool) or pointer");
+ assert(dest->getType()->isFloatingPoint()
+ && "Dest type must be float/double");
+
+ // Get a stack slot to use for the copy
+ int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
+
+ // Get the size of the source value being copied.
+ size_t srcSize = target.getTargetData().getTypeSize(val->getType());
+
+ // Store instruction stores `val' to [%fp+offset].
+ // The store and load opCodes are based on the size of the source value.
+ // If the value is smaller than 32 bits, we must sign- or zero-extend it
+ // to 32 bits since the load-float will load 32 bits.
+ // Note that the store instruction is the same for signed and unsigned ints.
+ const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy;
+ Value* storeVal = val;
+ if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) {
+ // sign- or zero-extend respectively
+ storeVal = new TmpInstruction(mcfi, storeType, val);
+ if (val->getType()->isSigned())
+ CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize,
+ mvec, mcfi);
+ else
+ CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize,
+ mvec, mcfi);
+ }
+
+ unsigned FPReg = target.getRegInfo()->getFramePointer();
+ unsigned StoreOpcode = ChooseStoreInstruction(storeType);
+ StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
+ mvec.push_back(BuildMI(StoreOpcode, 3)
+ .addReg(storeVal).addMReg(FPReg).addSImm(offset));
+
+ // Load instruction loads [%fp+offset] to `dest'.
+ // The type of the load opCode is the floating point type that matches the
+ // stored type in size:
+ // On SparcV9: float for int or smaller, double for long.
+ const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
+ unsigned LoadOpcode = ChooseLoadInstruction(loadType);
+ LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
+ mvec.push_back(BuildMI(LoadOpcode, 3)
+ .addMReg(FPReg).addSImm(offset).addRegDef(dest));
+ }
+
+ /// InsertCodeToLoadConstant - Generates code to load the constant
+ /// into a TmpInstruction (virtual reg) and returns the virtual register.
+ ///
+ static TmpInstruction*
+ InsertCodeToLoadConstant(Function *F, Value* opValue, Instruction* vmInstr,
+ std::vector<MachineInstr*>& loadConstVec,
+ TargetMachine& target) {
+ // Create a tmp virtual register to hold the constant.
+ MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
+ TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue);
+
+ CreateCodeToLoadConst(target, F, opValue, tmpReg, loadConstVec, mcfi);
+
+ // Record the mapping from the tmp VM instruction to machine instruction.
+ // Do this for all machine instructions that were not mapped to any
+ // other temp values created by
+ // tmpReg->addMachineInstruction(loadConstVec.back());
+ return tmpReg;
+ }
+
+ MachineOperand::MachineOperandType
+ ChooseRegOrImmed(int64_t intValue, bool isSigned,
+ MachineOpCode opCode, const TargetMachine& target,
+ bool canUseImmed, unsigned int& getMachineRegNum,
+ int64_t& getImmedValue) {
+ MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
+ getMachineRegNum = 0;
+ getImmedValue = 0;
+
+ if (canUseImmed &&
+ target.getInstrInfo()->constantFitsInImmedField(opCode, intValue)) {
+ opType = isSigned? MachineOperand::MO_SignExtendedImmed
+ : MachineOperand::MO_UnextendedImmed;
+ getImmedValue = intValue;
+ } else if (intValue == 0 &&
+ target.getRegInfo()->getZeroRegNum() != (unsigned)-1) {
+ opType = MachineOperand::MO_MachineRegister;
+ getMachineRegNum = target.getRegInfo()->getZeroRegNum();
+ }
+
+ return opType;
+ }
+
+ MachineOperand::MachineOperandType
+ ChooseRegOrImmed(Value* val,
+ MachineOpCode opCode, const TargetMachine& target,
+ bool canUseImmed, unsigned int& getMachineRegNum,
+ int64_t& getImmedValue) {
+ getMachineRegNum = 0;
+ getImmedValue = 0;
+
+ // To use reg or immed, constant needs to be integer, bool, or a NULL pointer.
+ // ConvertConstantToIntType() does the right conversions.
+ bool isValidConstant;
+ uint64_t valueToUse =
+ ConvertConstantToIntType(target, val, val->getType(), isValidConstant);
+ if (! isValidConstant)
+ return MachineOperand::MO_VirtualRegister;
+
+ // Now check if the constant value fits in the IMMED field.
+ return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(),
+ opCode, target, canUseImmed,
+ getMachineRegNum, getImmedValue);
+ }
+
+ /// CreateCopyInstructionsByType - Create instruction(s) to copy src to dest,
+ /// for arbitrary types. The generated instructions are returned in `mvec'. Any
+ /// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack
+ /// space required is allocated via MachineFunction.
+ ///
+ void CreateCopyInstructionsByType(const TargetMachine& target,
+ Function *F, Value* src, Instruction* dest,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ bool loadConstantToReg = false;
+ const Type* resultType = dest->getType();
+ MachineOpCode opCode = ChooseAddInstructionByType(resultType);
+ assert (opCode != V9::INVALID_OPCODE
+ && "Unsupported result type in CreateCopyInstructionsByType()");
+
+ // If `src' is a constant that doesn't fit in the immed field or if it is
+ // a global variable (i.e., a constant address), generate a load
+ // instruction instead of an add.
+ if (isa<GlobalValue>(src))
+ loadConstantToReg = true;
+ else if (isa<Constant>(src)) {
+ unsigned int machineRegNum;
+ int64_t immedValue;
+ MachineOperand::MachineOperandType opType =
+ ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
+ machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_VirtualRegister)
+ loadConstantToReg = true;
+ }
+
+ if (loadConstantToReg) {
+ // `src' is constant and cannot fit in immed field for the ADD.
+ // Insert instructions to "load" the constant into a register.
+ CreateCodeToLoadConst(target, F, src, dest, mvec, mcfi);
+ } else {
+ // Create a reg-to-reg copy instruction for the given type:
+ // -- For FP values, create a FMOVS or FMOVD instruction
+ // -- For non-FP values, create an add-with-0 instruction (opCode as above)
+ // Make `src' the second operand, in case it is a small constant!
+ MachineInstr* MI;
+ if (resultType->isFloatingPoint())
+ MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
+ .addReg(src).addRegDef(dest));
+ else {
+ const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType;
+ MI = (BuildMI(opCode, 3)
+ .addSImm((int64_t) 0).addReg(src).addRegDef(dest));
+ }
+ mvec.push_back(MI);
+ }
+ }
+
+ /// FixConstantOperandsForInstr - Make a machine instruction use its constant
+ /// operands more efficiently. If the constant is 0, then use the hardwired 0
+ /// register, if any. Else, if the constant fits in the IMMEDIATE field, then
+ /// use that field. Otherwise, else create instructions to put the constant
+ /// into a register, either directly or by loading explicitly from the constant
+ /// pool. In the first 2 cases, the operand of `minstr' is modified in place.
+ /// Returns a vector of machine instructions generated for operands that fall
+ /// under case 3; these must be inserted before `minstr'.
+ ///
+ std::vector<MachineInstr*>
+ FixConstantOperandsForInstr(Instruction* vmInstr, MachineInstr* minstr,
+ TargetMachine& target) {
+ std::vector<MachineInstr*> MVec;
+
+ MachineOpCode opCode = minstr->getOpcode();
+ const TargetInstrInfo& instrInfo = *target.getInstrInfo();
+ int resultPos = instrInfo.getResultPos(opCode);
+ int immedPos = instrInfo.getImmedConstantPos(opCode);
+
+ Function *F = vmInstr->getParent()->getParent();
+
+ for (unsigned op=0; op < minstr->getNumOperands(); op++) {
+ const MachineOperand& mop = minstr->getOperand(op);
+
+ // Skip the result position, preallocated machine registers, or operands
+ // that cannot be constants (CC regs or PC-relative displacements)
+ if (resultPos == (int)op ||
+ mop.getType() == MachineOperand::MO_MachineRegister ||
+ mop.getType() == MachineOperand::MO_CCRegister ||
+ mop.getType() == MachineOperand::MO_PCRelativeDisp)
+ continue;
+
+ bool constantThatMustBeLoaded = false;
+ unsigned int machineRegNum = 0;
+ int64_t immedValue = 0;
+ Value* opValue = NULL;
+ MachineOperand::MachineOperandType opType =
+ MachineOperand::MO_VirtualRegister;
+
+ // Operand may be a virtual register or a compile-time constant
+ if (mop.getType() == MachineOperand::MO_VirtualRegister) {
+ assert(mop.getVRegValue() != NULL);
+ opValue = mop.getVRegValue();
+ if (Constant *opConst = dyn_cast<Constant>(opValue))
+ if (!isa<GlobalValue>(opConst)) {
+ opType = ChooseRegOrImmed(opConst, opCode, target,
+ (immedPos == (int)op), machineRegNum,
+ immedValue);
+ if (opType == MachineOperand::MO_VirtualRegister)
+ constantThatMustBeLoaded = true;
+ }
+ } else {
+ // If the operand is from the constant pool, don't try to change it.
+ if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) {
+ continue;
+ }
+ assert(mop.isImmediate());
+ bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
+
+ // Bit-selection flags indicate an instruction that is extracting
+ // bits from its operand so ignore this even if it is a big constant.
+ if (mop.isHiBits32() || mop.isLoBits32() ||
+ mop.isHiBits64() || mop.isLoBits64())
+ continue;
+
+ opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
+ opCode, target, (immedPos == (int)op),
+ machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_SignExtendedImmed ||
+ opType == MachineOperand::MO_UnextendedImmed) {
+ // The optype is an immediate value
+ // This means we need to change the opcode, e.g. ADDr -> ADDi
+ unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
+ minstr->setOpcode(newOpcode);
+ }
+
+ if (opType == mop.getType())
+ continue; // no change: this is the most common case
+
+ if (opType == MachineOperand::MO_VirtualRegister) {
+ constantThatMustBeLoaded = true;
+ opValue = isSigned
+ ? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
+ : (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
+ }
+ }
+
+ if (opType == MachineOperand::MO_MachineRegister)
+ minstr->SetMachineOperandReg(op, machineRegNum);
+ else if (opType == MachineOperand::MO_SignExtendedImmed ||
+ opType == MachineOperand::MO_UnextendedImmed) {
+ minstr->SetMachineOperandConst(op, opType, immedValue);
+ // The optype is or has become an immediate
+ // This means we need to change the opcode, e.g. ADDr -> ADDi
+ unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
+ minstr->setOpcode(newOpcode);
+ } else if (constantThatMustBeLoaded ||
+ (opValue && isa<GlobalValue>(opValue)))
+ { // opValue is a constant that must be explicitly loaded into a reg
+ assert(opValue);
+ TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
+ MVec, target);
+ minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
+ tmpReg);
+ }
+ }
+
+ // Also, check for implicit operands used by the machine instruction
+ // (no need to check those defined since they cannot be constants).
+ // These include:
+ // -- arguments to a Call
+ // -- return value of a Return
+ // Any such operand that is a constant value needs to be fixed also.
+ // The current instructions with implicit refs (viz., Call and Return)
+ // have no immediate fields, so the constant always needs to be loaded
+ // into a register.
+ bool isCall = instrInfo.isCall(opCode);
+ unsigned lastCallArgNum = 0; // unused if not a call
+ CallArgsDescriptor* argDesc = NULL; // unused if not a call
+ if (isCall)
+ argDesc = CallArgsDescriptor::get(minstr);
+
+ for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
+ if (isa<Constant>(minstr->getImplicitRef(i))) {
+ Value* oldVal = minstr->getImplicitRef(i);
+ TmpInstruction* tmpReg =
+ InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
+ minstr->setImplicitRef(i, tmpReg);
+
+ if (isCall) {
+ // find and replace the argument in the CallArgsDescriptor
+ unsigned i=lastCallArgNum;
+ while (argDesc->getArgInfo(i).getArgVal() != oldVal)
+ ++i;
+ assert(i < argDesc->getNumArgs() &&
+ "Constant operands to a call *must* be in the arg list");
+ lastCallArgNum = i;
+ argDesc->getArgInfo(i).replaceArgVal(tmpReg);
+ }
+ }
+
+ return MVec;
+ }
+
+ static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
+ std::vector<MachineInstr*>& mvec) {
+ mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue())
+ .addReg(Node->rightChild()->getValue())
+ .addRegDef(Node->getValue()));
+ }
+
+ /// IsZero - Check for a constant 0.
+ ///
+ static inline bool IsZero(Value* idx) {
+ return (idx == ConstantSInt::getNullValue(idx->getType()));
+ }
+
+ /// FoldGetElemChain - Fold a chain of GetElementPtr instructions containing
+ /// only constant offsets into an equivalent (Pointer, IndexVector) pair.
+ /// Returns the pointer Value, and stores the resulting IndexVector in argument
+ /// chainIdxVec. This is a helper function for FoldConstantIndices that does the
+ /// actual folding.
+ //
+ static Value*
+ FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
+ bool lastInstHasLeadingNonZero) {
+ InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
+ GetElementPtrInst* gepInst =
+ dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);
+
+ // ptr value is not computed in this tree or ptr value does not come from GEP
+ // instruction
+ if (gepInst == NULL)
+ return NULL;
+
+ // Return NULL if we don't fold any instructions in.
+ Value* ptrVal = NULL;
+
+ // Now chase the chain of getElementInstr instructions, if any.
+ // Check for any non-constant indices and stop there.
+ // Also, stop if the first index of child is a non-zero array index
+ // and the last index of the current node is a non-array index:
+ // in that case, a non-array declared type is being accessed as an array
+ // which is not type-safe, but could be legal.
+ InstructionNode* ptrChild = gepNode;
+ while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+ ptrChild->getOpLabel() == GetElemPtrIdx)) {
+ // Child is a GetElemPtr instruction
+ gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
+ User::op_iterator OI, firstIdx = gepInst->idx_begin();
+ User::op_iterator lastIdx = gepInst->idx_end();
+ bool allConstantOffsets = true;
+
+ // The first index of every GEP must be an array index.
+ assert((*firstIdx)->getType() == Type::LongTy &&
+ "INTERNAL ERROR: Structure index for a pointer type!");
+
+ // If the last instruction had a leading non-zero index, check if the
+ // current one references a sequential (i.e., indexable) type.
+ // If not, the code is not type-safe and we would create an illegal GEP
+ // by folding them, so don't fold any more instructions.
+ if (lastInstHasLeadingNonZero)
+ if (! isa<SequentialType>(gepInst->getType()->getElementType()))
+ break; // cannot fold in any preceding getElementPtr instrs.
+
+ // Check that all offsets are constant for this instruction
+ for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
+ allConstantOffsets = isa<ConstantInt>(*OI);
+
+ if (allConstantOffsets) {
+ // Get pointer value out of ptrChild.
+ ptrVal = gepInst->getPointerOperand();
+
+ // Insert its index vector at the start, skipping any leading [0]
+ // Remember the old size to check if anything was inserted.
+ unsigned oldSize = chainIdxVec.size();
+ int firstIsZero = IsZero(*firstIdx);
+ chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx);
+
+ // Remember if it has leading zero index: it will be discarded later.
+ if (oldSize < chainIdxVec.size())
+ lastInstHasLeadingNonZero = !firstIsZero;
+
+ // Mark the folded node so no code is generated for it.
+ ((InstructionNode*) ptrChild)->markFoldedIntoParent();
+
+ // Get the previous GEP instruction and continue trying to fold
+ ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
+ } else // cannot fold this getElementPtr instr. or any preceding ones
+ break;
+ }
+
+ // If the first getElementPtr instruction had a leading [0], add it back.
+ // Note that this instruction is the *last* one that was successfully
+ // folded *and* contributed any indices, in the loop above.
+ if (ptrVal && ! lastInstHasLeadingNonZero)
+ chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));
+
+ return ptrVal;
+ }
+
+ /// GetGEPInstArgs - Helper function for GetMemInstArgs that handles the
+ /// final getElementPtr instruction used by (or same as) the memory operation.
+ /// Extracts the indices of the current instruction and tries to fold in
+ /// preceding ones if all indices of the current one are constant.
+ ///
+ static Value *GetGEPInstArgs(InstructionNode *gepNode,
+ std::vector<Value *> &idxVec,
+ bool &allConstantIndices) {
+ allConstantIndices = true;
+ GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());
+
+ // Default pointer is the one from the current instruction.
+ Value* ptrVal = gepI->getPointerOperand();
+ InstrTreeNode* ptrChild = gepNode->leftChild();
+
+ // Extract the index vector of the GEP instruction.
+ // If all indices are constant and first index is zero, try to fold
+ // in preceding GEPs with all constant indices.
+ for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end();
+ allConstantIndices && OI != OE; ++OI)
+ if (! isa<Constant>(*OI))
+ allConstantIndices = false; // note: this also terminates loop!
+
+ // If we have only constant indices, fold chains of constant indices
+ // in this and any preceding GetElemPtr instructions.
+ bool foldedGEPs = false;
+ bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin());
+ if (allConstantIndices)
+ if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) {
+ ptrVal = newPtr;
+ foldedGEPs = true;
+ }
+
+ // Append the index vector of the current instruction.
+ // Skip the leading [0] index if preceding GEPs were folded into this.
+ idxVec.insert(idxVec.end(),
+ gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx),
+ gepI->idx_end());
+
+ return ptrVal;
+ }
+
+ /// GetMemInstArgs - Get the pointer value and the index vector for a memory
+ /// operation (GetElementPtr, Load, or Store). If all indices of the given
+ /// memory operation are constant, fold in constant indices in a chain of
+ /// preceding GetElementPtr instructions (if any), and return the pointer value
+ /// of the first instruction in the chain. All folded instructions are marked so
+ /// no code is generated for them. Returns the pointer Value to use, and
+ /// returns the resulting IndexVector in idxVec. Sets allConstantIndices
+ /// to true/false if all indices are/aren't const.
+ ///
+ static Value *GetMemInstArgs(InstructionNode *memInstrNode,
+ std::vector<Value*> &idxVec,
+ bool& allConstantIndices) {
+ allConstantIndices = false;
+ Instruction* memInst = memInstrNode->getInstruction();
+ assert(idxVec.size() == 0 && "Need empty vector to return indices");
+
+ // If there is a GetElemPtr instruction to fold in to this instr,
+ // it must be in the left child for Load and GetElemPtr, and in the
+ // right child for Store instructions.
+ InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
+ ? memInstrNode->rightChild()
+ : memInstrNode->leftChild());
+
+ // Default pointer is the one from the current instruction.
+ Value* ptrVal = ptrChild->getValue();
+
+ // Find the "last" GetElemPtr instruction: this one or the immediate child.
+ // There will be none if this is a load or a store from a scalar pointer.
+ InstructionNode* gepNode = NULL;
+ if (isa<GetElementPtrInst>(memInst))
+ gepNode = memInstrNode;
+ else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) {
+ // Child of load/store is a GEP and memInst is its only use.
+ // Use its indices and mark it as folded.
+ gepNode = cast<InstructionNode>(ptrChild);
+ gepNode->markFoldedIntoParent();
+ }
+
+ // If there are no indices, return the current pointer.
+ // Else extract the pointer from the GEP and fold the indices.
+ return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices)
+ : ptrVal;
+ }
+
+ static inline MachineOpCode
+ ChooseBprInstruction(const InstructionNode* instrNode) {
+ MachineOpCode opCode;
+
+ Instruction* setCCInstr =
+ ((InstructionNode*) instrNode->leftChild())->getInstruction();
+
+ switch(setCCInstr->getOpcode()) {
+ case Instruction::SetEQ: opCode = V9::BRZ; break;
+ case Instruction::SetNE: opCode = V9::BRNZ; break;
+ case Instruction::SetLE: opCode = V9::BRLEZ; break;
+ case Instruction::SetGE: opCode = V9::BRGEZ; break;
+ case Instruction::SetLT: opCode = V9::BRLZ; break;
+ case Instruction::SetGT: opCode = V9::BRGZ; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ opCode = V9::INVALID_OPCODE;
+ break;
+ }
+
+ return opCode;
+ }
+
+ static inline MachineOpCode
+ ChooseBpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+
+ if (isSigned) {
+ switch(setCCInstr->getOpcode()) {
+ case Instruction::SetEQ: opCode = V9::BE; break;
+ case Instruction::SetNE: opCode = V9::BNE; break;
+ case Instruction::SetLE: opCode = V9::BLE; break;
+ case Instruction::SetGE: opCode = V9::BGE; break;
+ case Instruction::SetLT: opCode = V9::BL; break;
+ case Instruction::SetGT: opCode = V9::BG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+ } else {
+ switch(setCCInstr->getOpcode()) {
+ case Instruction::SetEQ: opCode = V9::BE; break;
+ case Instruction::SetNE: opCode = V9::BNE; break;
+ case Instruction::SetLE: opCode = V9::BLEU; break;
+ case Instruction::SetGE: opCode = V9::BCC; break;
+ case Instruction::SetLT: opCode = V9::BCS; break;
+ case Instruction::SetGT: opCode = V9::BGU; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+ }
+
+ return opCode;
+ }
+
+ static inline MachineOpCode
+ ChooseBFpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ switch(setCCInstr->getOpcode()) {
+ case Instruction::SetEQ: opCode = V9::FBE; break;
+ case Instruction::SetNE: opCode = V9::FBNE; break;
+ case Instruction::SetLE: opCode = V9::FBLE; break;
+ case Instruction::SetGE: opCode = V9::FBGE; break;
+ case Instruction::SetLT: opCode = V9::FBL; break;
+ case Instruction::SetGT: opCode = V9::FBG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+ }
+
+ // GetTmpForCC - Create a unique TmpInstruction for a boolean value,
+ // representing the CC register used by a branch on that value.
+ // For now, hack this using a little static cache of TmpInstructions.
+ // Eventually the entire BURG instruction selection should be put
+ // into a separate class that can hold such information.
+ // The static cache is not too bad because the memory for these
+ // TmpInstructions will be freed along with the rest of the Function anyway.
+ //
+ static TmpInstruction *GetTmpForCC (Value* boolVal, const Function *F,
+ const Type* ccType,
+ MachineCodeForInstruction& mcfi) {
+ typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
+ static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
+ static const Function *lastFunction = 0;// Use to flush cache between funcs
+
+ assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
+
+ if (lastFunction != F) {
+ lastFunction = F;
+ boolToTmpCache.clear();
+ }
+
+ // Look for tmpI and create a new one otherwise. The new value is
+ // directly written to map using the ref returned by operator[].
+ TmpInstruction*& tmpI = boolToTmpCache[boolVal];
+ if (tmpI == NULL)
+ tmpI = new TmpInstruction(mcfi, ccType, boolVal);
+
+ return tmpI;
+ }
+
+ static inline MachineOpCode
+ ChooseBccInstruction(const InstructionNode* instrNode, const Type*& setCCType) {
+ InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+ assert(setCCNode->getOpLabel() == SetCCOp);
+ BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
+ setCCType = setCCInstr->getOperand(0)->getType();
+
+ if (setCCType->isFloatingPoint())
+ return ChooseBFpccInstruction(instrNode, setCCInstr);
+ else
+ return ChooseBpccInstruction(instrNode, setCCInstr);
+ }
+
+ /// ChooseMovFpcciInstruction - WARNING: since this function has only one
+ /// caller, it always returns the opcode that expects an immediate and a
+ /// register. If this function is ever used in cases where an opcode that takes
+ /// two registers is required, then modify this function and use
+ /// convertOpcodeFromRegToImm() where required. It will be necessary to expand
+ /// convertOpcodeFromRegToImm() to handle the new cases of opcodes.
+ ///
+ static inline MachineOpCode
+ ChooseMovFpcciInstruction(const InstructionNode* instrNode) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ switch(instrNode->getInstruction()->getOpcode()) {
+ case Instruction::SetEQ: opCode = V9::MOVFEi; break;
+ case Instruction::SetNE: opCode = V9::MOVFNEi; break;
+ case Instruction::SetLE: opCode = V9::MOVFLEi; break;
+ case Instruction::SetGE: opCode = V9::MOVFGEi; break;
+ case Instruction::SetLT: opCode = V9::MOVFLi; break;
+ case Instruction::SetGT: opCode = V9::MOVFGi; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+ }
+
+ /// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
+ /// based on the type of SetCC operation.
+ ///
+ /// WARNING: like the previous function, this function always returns
+ /// the opcode that expects an immediate and a register. See above.
+ ///
+ static MachineOpCode ChooseMovpcciForSetCC(const InstructionNode* instrNode) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ const Type* opType = instrNode->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || isa<PointerType>(opType));
+ bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
+
+ switch(instrNode->getInstruction()->getOpcode()) {
+ case Instruction::SetEQ: opCode = V9::MOVEi; break;
+ case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
+ case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break;
+ case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break;
+ case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break;
+ case Instruction::SetNE: opCode = V9::MOVNEi; break;
+ default: assert(0 && "Unrecognized LLVM instr!"); break;
+ }
+
+ return opCode;
+ }
+
+ /// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
+ /// instruction based on the type of SetCC operation. These instructions
+ /// compare a register with 0 and perform the move is the comparison is true.
+ ///
+ /// WARNING: like the previous function, this function it always returns
+ /// the opcode that expects an immediate and a register. See above.
+ ///
+ static MachineOpCode ChooseMovpregiForSetCC(const InstructionNode* instrNode) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ switch(instrNode->getInstruction()->getOpcode()) {
+ case Instruction::SetEQ: opCode = V9::MOVRZi; break;
+ case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
+ case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
+ case Instruction::SetLT: opCode = V9::MOVRLZi; break;
+ case Instruction::SetGT: opCode = V9::MOVRGZi; break;
+ case Instruction::SetNE: opCode = V9::MOVRNZi; break;
+ default: assert(0 && "Unrecognized VM instr!"); break;
+ }
+
+ return opCode;
+ }
+
+ static inline MachineOpCode
+ ChooseConvertToFloatInstr(const TargetMachine& target,
+ OpLabel vopCode, const Type* opType) {
+ assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) &&
+ "Unrecognized convert-to-float opcode!");
+ assert((opType->isIntegral() || opType->isFloatingPoint() ||
+ isa<PointerType>(opType))
+ && "Trying to convert a non-scalar type to FLOAT/DOUBLE?");
+
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ unsigned opSize = target.getTargetData().getTypeSize(opType);
+
+ if (opType == Type::FloatTy)
+ opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD);
+ else if (opType == Type::DoubleTy)
+ opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP);
+ else if (opSize <= 4)
+ opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD);
+ else {
+ assert(opSize == 8 && "Unrecognized type size > 4 and < 8!");
+ opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD);
+ }
+
+ return opCode;
+ }
+
+ static inline MachineOpCode
+ ChooseConvertFPToIntInstr(const TargetMachine& target,
+ const Type* destType, const Type* opType) {
+ assert((opType == Type::FloatTy || opType == Type::DoubleTy)
+ && "This function should only be called for FLOAT or DOUBLE");
+ assert((destType->isIntegral() || isa<PointerType>(destType))
+ && "Trying to convert FLOAT/DOUBLE to a non-scalar type?");
+
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ unsigned destSize = target.getTargetData().getTypeSize(destType);
+
+ if (destType == Type::UIntTy)
+ assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand.");
+ else if (destSize <= 4)
+ opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI;
+ else {
+ assert(destSize == 8 && "Unrecognized type size > 4 and < 8!");
+ opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX;
+ }
+
+ return opCode;
+ }
+
+ static MachineInstr*
+ CreateConvertFPToIntInstr(const TargetMachine& target, Value* srcVal,
+ Value* destVal, const Type* destType) {
+ MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType,
+ srcVal->getType());
+ assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!");
+ return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal);
+ }
+
+ /// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned
+ /// integer. The FP value must be converted to the dest type in an FP register,
+ /// and the result is then copied from FP to int register via memory. SPARC
+ /// does not have a float-to-uint conversion, only a float-to-int (fdtoi).
+ /// Since fdtoi converts to signed integers, any FP value V between MAXINT+1 and
+ /// MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly.
+ /// Therefore, for converting an FP value to uint32_t, we first need to convert
+ /// to uint64_t and then to uint32_t.
+ ///
+ static void
+ CreateCodeToConvertFloatToInt(const TargetMachine& target,
+ Value* opVal, Instruction* destI,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ Function* F = destI->getParent()->getParent();
+
+ // Create a temporary to represent the FP register into which the
+ // int value will placed after conversion. The type of this temporary
+ // depends on the type of FP register to use: single-prec for a 32-bit
+ // int or smaller; double-prec for a 64-bit int.
+ size_t destSize = target.getTargetData().getTypeSize(destI->getType());
+
+ const Type* castDestType = destI->getType(); // type for the cast instr result
+ const Type* castDestRegType; // type for cast instruction result reg
+ TmpInstruction* destForCast; // dest for cast instruction
+ Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr
+
+ // For converting an FP value to uint32_t, we first need to convert to
+ // uint64_t and then to uint32_t, as explained above.
+ if (destI->getType() == Type::UIntTy) {
+ castDestType = Type::ULongTy; // use this instead of type of destI
+ castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register.
+ destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
+ fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast);
+ } else {
+ castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
+ destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
+ }
+
+ // Create the fp-to-int conversion instruction (src and dest regs are FP regs)
+ mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast,
+ castDestType));
+
+ // Create the fpreg-to-intreg copy code
+ CreateCodeToCopyFloatToInt(target, F, destForCast, fpToIntCopyDest, mvec,
+ mcfi);
+
+ // Create the uint64_t to uint32_t conversion, if needed
+ if (destI->getType() == Type::UIntTy)
+ CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI,
+ /*numLowBits*/ 32, mvec, mcfi);
+ }
+
+ static inline MachineOpCode
+ ChooseAddInstruction(const InstructionNode* instrNode) {
+ return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
+ }
+
+ static inline MachineInstr*
+ CreateMovFloatInstruction(const InstructionNode* instrNode,
+ const Type* resultType) {
+ return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2)
+ .addReg(instrNode->leftChild()->getValue())
+ .addRegDef(instrNode->getValue());
+ }
+
+ static inline MachineInstr*
+ CreateAddConstInstruction(const InstructionNode* instrNode) {
+ MachineInstr* minstr = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(isa<Constant>(constOp));
+
+ // Cases worth optimizing are:
+ // (1) Add with 0 for float or double: use an FMOV of appropriate type,
+ // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
+ double dval = FPC->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode,
+ instrNode->getInstruction()->getType());
+ }
+
+ return minstr;
+ }
+
+ static inline MachineOpCode ChooseSubInstructionByType(const Type* resultType) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ if (resultType->isInteger() || isa<PointerType>(resultType)) {
+ opCode = V9::SUBr;
+ } else {
+ switch(resultType->getTypeID()) {
+ case Type::FloatTyID: opCode = V9::FSUBS; break;
+ case Type::DoubleTyID: opCode = V9::FSUBD; break;
+ default: assert(0 && "Invalid type for SUB instruction"); break;
+ }
+ }
+
+ return opCode;
+ }
+
+ static inline MachineInstr*
+ CreateSubConstInstruction(const InstructionNode* instrNode) {
+ MachineInstr* minstr = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(isa<Constant>(constOp));
+
+ // Cases worth optimizing are:
+ // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
+ // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
+ double dval = FPC->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode,
+ instrNode->getInstruction()->getType());
+ }
+
+ return minstr;
+ }
+
+ static inline MachineOpCode
+ ChooseFcmpInstruction(const InstructionNode* instrNode) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getTypeID()) {
+ case Type::FloatTyID: opCode = V9::FCMPS; break;
+ case Type::DoubleTyID: opCode = V9::FCMPD; break;
+ default: assert(0 && "Invalid type for FCMP instruction"); break;
+ }
+
+ return opCode;
+ }
+
+ /// BothFloatToDouble - Assumes that leftArg and rightArg of instrNode are both
+ /// cast instructions. Returns true if both are floats cast to double.
+ ///
+ static inline bool BothFloatToDouble(const InstructionNode* instrNode) {
+ InstrTreeNode* leftArg = instrNode->leftChild();
+ InstrTreeNode* rightArg = instrNode->rightChild();
+ InstrTreeNode* leftArgArg = leftArg->leftChild();
+ InstrTreeNode* rightArgArg = rightArg->leftChild();
+ assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
+ return (leftArg->getValue()->getType() == Type::DoubleTy &&
+ leftArgArg->getValue()->getType() == Type::FloatTy &&
+ rightArgArg->getValue()->getType() == Type::FloatTy);
+ }
+
+ static inline MachineOpCode ChooseMulInstructionByType(const Type* resultType) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ if (resultType->isInteger())
+ opCode = V9::MULXr;
+ else
+ switch(resultType->getTypeID()) {
+ case Type::FloatTyID: opCode = V9::FMULS; break;
+ case Type::DoubleTyID: opCode = V9::FMULD; break;
+ default: assert(0 && "Invalid type for MUL instruction"); break;
+ }
+
+ return opCode;
+ }
+
+ static inline MachineInstr*
+ CreateIntNegInstruction(const TargetMachine& target, Value* vreg) {
+ return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo()->getZeroRegNum())
+ .addReg(vreg).addRegDef(vreg);
+ }
+
+ /// CreateShiftInstructions - Create instruction sequence for any shift
+ /// operation. SLL or SLLX on an operand smaller than the integer reg. size
+ /// (64bits) requires a second instruction for explicit sign-extension. Note
+ /// that we only have to worry about a sign-bit appearing in the most
+ /// significant bit of the operand after shifting (e.g., bit 32 of Int or bit 16
+ /// of Short), so we do not have to worry about results that are as large as a
+ /// normal integer register.
+ ///
+ static inline void
+ CreateShiftInstructions(const TargetMachine& target, Function* F,
+ MachineOpCode shiftOpCode, Value* argVal1,
+ Value* optArgVal2, /* Use optArgVal2 if not NULL */
+ unsigned optShiftNum, /* else use optShiftNum */
+ Instruction* destVal, std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ assert((optArgVal2 != NULL || optShiftNum <= 64) &&
+ "Large shift sizes unexpected, but can be handled below: "
+ "You need to check whether or not it fits in immed field below");
+
+ // If this is a logical left shift of a type smaller than the standard
+ // integer reg. size, we have to extend the sign-bit into upper bits
+ // of dest, so we need to put the result of the SLL into a temporary.
+ Value* shiftDest = destVal;
+ unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType());
+
+ if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) {
+ // put SLL result into a temporary
+ shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp");
+ }
+
+ MachineInstr* M = (optArgVal2 != NULL)
+ ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2)
+ .addReg(shiftDest, MachineOperand::Def)
+ : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum)
+ .addReg(shiftDest, MachineOperand::Def);
+ mvec.push_back(M);
+
+ if (shiftDest != destVal) {
+ // extend the sign-bit of the result into all upper bits of dest
+ assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
+ CreateSignExtensionInstructions(target, F, shiftDest, destVal, 8*opSize,
+ mvec, mcfi);
+ }
+ }
+
+ /// CreateMulConstInstruction - Does not create any instructions if we
+ /// cannot exploit constant to create a cheaper instruction. This returns the
+ /// approximate cost of the instructions generated, which is used to pick the
+ /// cheapest when both operands are constant.
+ ///
+ static unsigned
+ CreateMulConstInstruction(const TargetMachine &target, Function* F,
+ Value* lval, Value* rval, Instruction* destVal,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ // Use max. multiply cost, viz., cost of MULX
+ unsigned cost = target.getInstrInfo()->minLatency(V9::MULXr);
+ unsigned firstNewInstr = mvec.size();
+
+ Value* constOp = rval;
+ if (! isa<Constant>(constOp))
+ return cost;
+
+ // Cases worth optimizing are:
+ // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
+ // (2) Multiply by 2^x for integer types: replace with Shift
+ const Type* resultType = destVal->getType();
+
+ if (resultType->isInteger() || isa<PointerType>(resultType)) {
+ bool isValidConst;
+ int64_t C = (int64_t) ConvertConstantToIntType(target, constOp,
+ constOp->getType(),
+ isValidConst);
+ if (isValidConst) {
+ unsigned pow;
+ bool needNeg = false;
+ if (C < 0) {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 0 || C == 1) {
+ cost = target.getInstrInfo()->minLatency(V9::ADDr);
+ unsigned Zero = target.getRegInfo()->getZeroRegNum();
+ MachineInstr* M;
+ if (C == 0)
+ M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal);
+ else
+ M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal);
+ mvec.push_back(M);
+ } else if (isPowerOf2(C, pow)) {
+ unsigned opSize = target.getTargetData().getTypeSize(resultType);
+ MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6;
+ CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
+ destVal, mvec, mcfi);
+ }
+
+ if (mvec.size() > 0 && needNeg) {
+ // insert <reg = SUB 0, reg> after the instr to flip the sign
+ MachineInstr* M = CreateIntNegInstruction(target, destVal);
+ mvec.push_back(M);
+ }
+ }
+ } else {
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
+ double dval = FPC->getValue();
+ if (fabs(dval) == 1) {
+ MachineOpCode opCode = (dval < 0)
+ ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
+ : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
+ mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal));
+ }
+ }
+ }
+
+ if (firstNewInstr < mvec.size()) {
+ cost = 0;
+ for (unsigned i=firstNewInstr; i < mvec.size(); ++i)
+ cost += target.getInstrInfo()->minLatency(mvec[i]->getOpcode());
+ }
+
+ return cost;
+ }
+
+ /// CreateCheapestMulConstInstruction - Does not create any instructions
+ /// if we cannot exploit constant to create a cheaper instruction.
+ ///
+ static inline void
+ CreateCheapestMulConstInstruction(const TargetMachine &target, Function* F,
+ Value* lval, Value* rval,
+ Instruction* destVal,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi) {
+ Value* constOp;
+ if (isa<Constant>(lval) && isa<Constant>(rval)) {
+ // both operands are constant: evaluate and "set" in dest
+ Constant* P = ConstantExpr::get(Instruction::Mul,
+ cast<Constant>(lval),
+ cast<Constant>(rval));
+ CreateCodeToLoadConst (target, F, P, destVal, mvec, mcfi);
+ }
+ else if (isa<Constant>(rval)) // rval is constant, but not lval
+ CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
+ else if (isa<Constant>(lval)) // lval is constant, but not rval
+ CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
+
+ // else neither is constant
+ return;
+ }
+
+ /// CreateMulInstruction - Returns NULL if we cannot exploit constant
+ /// to create a cheaper instruction.
+ ///
+ static inline void
+ CreateMulInstruction(const TargetMachine &target, Function* F,
+ Value* lval, Value* rval, Instruction* destVal,
+ std::vector<MachineInstr*>& mvec,
+ MachineCodeForInstruction& mcfi,
+ MachineOpCode forceMulOp = -1) {
+ unsigned L = mvec.size();
+ CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
+ if (mvec.size() == L) {
+ // no instructions were added so create MUL reg, reg, reg.
+ // Use FSMULD if both operands are actually floats cast to doubles.
+ // Otherwise, use the default opcode for the appropriate type.
+ MachineOpCode mulOp = ((forceMulOp != -1)
+ ? forceMulOp
+ : ChooseMulInstructionByType(destVal->getType()));
+ mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval)
+ .addRegDef(destVal));
+ }
+ }
+
+ /// ChooseDivInstruction - Generate a divide instruction for Div or Rem.
+ /// For Rem, this assumes that the operand type will be signed if the result
+ /// type is signed. This is correct because they must have the same sign.
+ ///
+ static inline MachineOpCode
+ ChooseDivInstruction(TargetMachine &target, const InstructionNode* instrNode) {
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isInteger())
+ opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr;
+ else
+ switch(resultType->getTypeID()) {
+ case Type::FloatTyID: opCode = V9::FDIVS; break;
+ case Type::DoubleTyID: opCode = V9::FDIVD; break;
+ default: assert(0 && "Invalid type for DIV instruction"); break;
+ }
+
+ return opCode;
+ }
+
+ /// CreateDivConstInstruction - Return if we cannot exploit constant to create
+ /// a cheaper instruction.
+ ///
+ static void CreateDivConstInstruction(TargetMachine &target,
+ const InstructionNode* instrNode,
+ std::vector<MachineInstr*>& mvec) {
+ Value* LHS = instrNode->leftChild()->getValue();
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ if (!isa<Constant>(constOp))
+ return;
+
+ Instruction* destVal = instrNode->getInstruction();
+ unsigned ZeroReg = target.getRegInfo()->getZeroRegNum();
+
+ // Cases worth optimizing are:
+ // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
+ // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isInteger()) {
+ unsigned pow;
+ bool isValidConst;
+ int64_t C = (int64_t) ConvertConstantToIntType(target, constOp,
+ constOp->getType(),
+ isValidConst);
+ if (isValidConst) {
+ bool needNeg = false;
+ if (C < 0) {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 1) {
+ mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg)
+ .addRegDef(destVal));
+ } else if (isPowerOf2(C, pow)) {
+ unsigned opCode;
+ Value* shiftOperand;
+ unsigned opSize = target.getTargetData().getTypeSize(resultType);
+
+ if (resultType->isSigned()) {
+ // For N / 2^k, if the operand N is negative,
+ // we need to add (2^k - 1) before right-shifting by k, i.e.,
+ //
+ // (N / 2^k) = N >> k, if N >= 0;
+ // (N + 2^k - 1) >> k, if N < 0
+ //
+ // If N is <= 32 bits, use:
+ // sra N, 31, t1 // t1 = ~0, if N < 0, 0 else
+ // srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
+ // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
+ // sra t3, k, result // result = N / 2^k
+ //
+ // If N is 64 bits, use:
+ // srax N, k-1, t1 // t1 = sign bit in high k positions
+ // srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
+ // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
+ // sra t3, k, result // result = N / 2^k
+ TmpInstruction *sraTmp, *srlTmp, *addTmp;
+ MachineCodeForInstruction& mcfi
+ = MachineCodeForInstruction::get(destVal);
+ sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
+ srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1");
+ addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg");
+
+ // Create the SRA or SRAX instruction to get the sign bit
+ mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3)
+ .addReg(LHS)
+ .addSImm((resultType==Type::LongTy)? pow-1 : 31)
+ .addRegDef(sraTmp));
+
+ // Create the SRL or SRLX instruction to get the sign bit
+ mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3)
+ .addReg(sraTmp)
+ .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow)
+ .addRegDef(srlTmp));
+
+ // Create the ADD instruction to add 2^pow-1 for negative values
+ mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
+ .addRegDef(addTmp));
+
+ // Get the shift operand and "right-shift" opcode to do the divide
+ shiftOperand = addTmp;
+ opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5;
+ } else {
+ // Get the shift operand and "right-shift" opcode to do the divide
+ shiftOperand = LHS;
+ opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5;
+ }
+
+ // Now do the actual shift!
+ mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow)
+ .addRegDef(destVal));
+ }
+
+ if (needNeg && (C == 1 || isPowerOf2(C, pow))) {
+ // insert <reg = SUB 0, reg> after the instr to flip the sign
+ mvec.push_back(CreateIntNegInstruction(target, destVal));
+ }
+ }
+ } else {
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
+ double dval = FPC->getValue();
+ if (fabs(dval) == 1) {
+ unsigned opCode =
+ (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
+ : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
+
+ mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal));
+ }
+ }
+ }
+ }
+
+ static void CreateCodeForVariableSizeAlloca(const TargetMachine& target,
+ Instruction* result, unsigned tsize,
+ Value* numElementsVal,
+ std::vector<MachineInstr*>& getMvec)
+ {
+ Value* totalSizeVal;
+ MachineInstr* M;
+ MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result);
+ Function *F = result->getParent()->getParent();
+
+ // Enforce the alignment constraints on the stack pointer at
+ // compile time if the total size is a known constant.
+ if (isa<Constant>(numElementsVal)) {
+ bool isValid;
+ int64_t numElem = (int64_t)
+ ConvertConstantToIntType(target, numElementsVal,
+ numElementsVal->getType(), isValid);
+ assert(isValid && "Unexpectedly large array dimension in alloca!");
+ int64_t total = numElem * tsize;
+ if (int extra= total % target.getFrameInfo()->getStackFrameSizeAlignment())
+ total += target.getFrameInfo()->getStackFrameSizeAlignment() - extra;
+ totalSizeVal = ConstantSInt::get(Type::IntTy, total);
+ } else {
+ // The size is not a constant. Generate code to compute it and
+ // code to pad the size for stack alignment.
+ // Create a Value to hold the (constant) element size
+ Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
+
+ // Create temporary values to hold the result of MUL, SLL, SRL
+ // To pad `size' to next smallest multiple of 16:
+ // size = (size + 15) & (-16 = 0xfffffffffffffff0)
+ TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal);
+ TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd);
+ TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15);
+
+ // Instruction 1: mul numElements, typeSize -> tmpProd
+ // This will optimize the MUL as far as possible.
+ CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec,
+ mcfi, -1);
+
+ // Instruction 2: andn tmpProd, 0x0f -> tmpAndn
+ getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15)
+ .addReg(tmpAdd15, MachineOperand::Def));
+
+ // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16
+ getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16)
+ .addReg(tmpAndf0, MachineOperand::Def));
+
+ totalSizeVal = tmpAndf0;
+ }
+
+ // Get the constant offset from SP for dynamically allocated storage
+ // and create a temporary Value to hold it.
+ MachineFunction& mcInfo = MachineFunction::get(F);
+ bool growUp;
+ ConstantSInt* dynamicAreaOffset =
+ ConstantSInt::get(Type::IntTy,
+ target.getFrameInfo()->getDynamicAreaOffset(mcInfo,growUp));
+ assert(! growUp && "Has SPARC v9 stack frame convention changed?");
+
+ unsigned SPReg = target.getRegInfo()->getStackPointer();
+
+ // Instruction 2: sub %sp, totalSizeVal -> %sp
+ getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal)
+ .addMReg(SPReg,MachineOperand::Def));
+
+ // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
+ getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset)
+ .addRegDef(result));
+ }
+
+ static void
+ CreateCodeForFixedSizeAlloca(const TargetMachine& target,
+ Instruction* result, unsigned tsize,
+ unsigned numElements,
+ std::vector<MachineInstr*>& getMvec) {
+ assert(result && result->getParent() &&
+ "Result value is not part of a function?");
+ Function *F = result->getParent()->getParent();
+ MachineFunction &mcInfo = MachineFunction::get(F);
+
+ // If the alloca is of zero bytes (which is perfectly legal) we bump it up to
+ // one byte. This is unnecessary, but I really don't want to break any
+ // fragile logic in this code. FIXME.
+ if (tsize == 0)
+ tsize = 1;
+
+ // Put the variable in the dynamically sized area of the frame if either:
+ // (a) The offset is too large to use as an immediate in load/stores
+ // (check LDX because all load/stores have the same-size immed. field).
+ // (b) The object is "large", so it could cause many other locals,
+ // spills, and temporaries to have large offsets.
+ // NOTE: We use LARGE = 8 * argSlotSize = 64 bytes.
+ // You've gotta love having only 13 bits for constant offset values :-|.
+ //
+ unsigned paddedSize;
+ int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result,
+ paddedSize,
+ tsize * numElements);
+
+ if (((int)paddedSize) > 8 * target.getFrameInfo()->getSizeOfEachArgOnStack()||
+ !target.getInstrInfo()->constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
+ CreateCodeForVariableSizeAlloca(target, result, tsize,
+ ConstantSInt::get(Type::IntTy,numElements),
+ getMvec);
+ return;
+ }
+
+ // else offset fits in immediate field so go ahead and allocate it.
+ offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements);
+
+ // Create a temporary Value to hold the constant offset.
+ // This is needed because it may not fit in the immediate field.
+ ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
+
+ // Instruction 1: add %fp, offsetFromFP -> result
+ unsigned FPReg = target.getRegInfo()->getFramePointer();
+ getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal)
+ .addRegDef(result));
+ }
+
+ /// SetOperandsForMemInstr - Choose addressing mode for the given load or store
+ /// instruction. Use [reg+reg] if it is an indexed reference, and the index
+ /// offset is not a constant or if it cannot fit in the offset field. Use
+ /// [reg+offset] in all other cases. This assumes that all array refs are
+ /// "lowered" to one of these forms:
+ /// %x = load (subarray*) ptr, constant ; single constant offset
+ /// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
+ /// Generally, this should happen via strength reduction + LICM. Also, strength
+ /// reduction should take care of using the same register for the loop index
+ /// variable and an array index, when that is profitable.
+ ///
+ static void SetOperandsForMemInstr(unsigned Opcode,
+ std::vector<MachineInstr*>& mvec,
+ InstructionNode* vmInstrNode,
+ const TargetMachine& target) {
+ Instruction* memInst = vmInstrNode->getInstruction();
+ // Index vector, ptr value, and flag if all indices are const.
+ std::vector<Value*> idxVec;
+ bool allConstantIndices;
+ Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);
+
+ // Now create the appropriate operands for the machine instruction.
+ // First, initialize so we default to storing the offset in a register.
+ int64_t smallConstOffset = 0;
+ Value* valueForRegOffset = NULL;
+ MachineOperand::MachineOperandType offsetOpType =
+ MachineOperand::MO_VirtualRegister;
+
+ // Check if there is an index vector and if so, compute the
+ // right offset for structures and for arrays
+ if (!idxVec.empty()) {
+ const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
+
+ // If all indices are constant, compute the combined offset directly.
+ if (allConstantIndices) {
+ // Compute the offset value using the index vector. Create a
+ // virtual reg. for it since it may not fit in the immed field.
+ uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec);
+ valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
+ } else {
+ // There is at least one non-constant offset. Therefore, this must
+ // be an array ref, and must have been lowered to a single non-zero
+ // offset. (An extra leading zero offset, if any, can be ignored.)
+ // Generate code sequence to compute address from index.
+ bool firstIdxIsZero = IsZero(idxVec[0]);
+ assert(idxVec.size() == 1U + firstIdxIsZero
+ && "Array refs must be lowered before Instruction Selection");
+
+ Value* idxVal = idxVec[firstIdxIsZero];
+
+ std::vector<MachineInstr*> mulVec;
+ Instruction* addr =
+ new TmpInstruction(MachineCodeForInstruction::get(memInst),
+ Type::ULongTy, memInst);
+
+ // Get the array type indexed by idxVal, and compute its element size.
+ // The call to getTypeSize() will fail if size is not constant.
+ const Type* vecType = (firstIdxIsZero
+ ? GetElementPtrInst::getIndexedType(ptrType,
+ std::vector<Value*>(1U, idxVec[0]),
+ /*AllowCompositeLeaf*/ true)
+ : ptrType);
+ const Type* eltType = cast<SequentialType>(vecType)->getElementType();
+ ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy,
+ target.getTargetData().getTypeSize(eltType));
+
+ // CreateMulInstruction() folds constants intelligently enough.
+ CreateMulInstruction(target, memInst->getParent()->getParent(),
+ idxVal, /* lval, not likely to be const*/
+ eltSizeVal, /* rval, likely to be constant */
+ addr, /* result */
+ mulVec, MachineCodeForInstruction::get(memInst),
+ -1);
+
+ assert(mulVec.size() > 0 && "No multiply code created?");
+ mvec.insert(mvec.end(), mulVec.begin(), mulVec.end());
+
+ valueForRegOffset = addr;
+ }
+ } else {
+ offsetOpType = MachineOperand::MO_SignExtendedImmed;
+ smallConstOffset = 0;
+ }
+
+ // For STORE:
+ // Operand 0 is value, operand 1 is ptr, operand 2 is offset
+ // For LOAD or GET_ELEMENT_PTR,
+ // Operand 0 is ptr, operand 1 is offset, operand 2 is result.
+ unsigned offsetOpNum, ptrOpNum;
+ MachineInstr *MI;
+ if (memInst->getOpcode() == Instruction::Store) {
+ if (offsetOpType == MachineOperand::MO_VirtualRegister) {
+ MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
+ .addReg(ptrVal).addReg(valueForRegOffset);
+ } else {
+ Opcode = convertOpcodeFromRegToImm(Opcode);
+ MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
+ .addReg(ptrVal).addSImm(smallConstOffset);
+ }
+ } else {
+ if (offsetOpType == MachineOperand::MO_VirtualRegister) {
+ MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset)
+ .addRegDef(memInst);
+ } else {
+ Opcode = convertOpcodeFromRegToImm(Opcode);
+ MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset)
+ .addRegDef(memInst);
+ }
+ }
+ mvec.push_back(MI);
+ }
+
+ /// ForwardOperand - Substitute operand `operandNum' of the instruction in
+ /// node `treeNode' in place of the use(s) of that instruction in node `parent'.
+ /// Check both explicit and implicit operands! Also make sure to skip over a
+ /// parent who: (1) is a list node in the Burg tree, or (2) itself had its
+ /// results forwarded to its parent.
+ ///
+ static void ForwardOperand (InstructionNode *treeNode, InstrTreeNode *parent,
+ int operandNum) {
+ assert(treeNode && parent && "Invalid invocation of ForwardOperand");
+
+ Instruction* unusedOp = treeNode->getInstruction();
+ Value* fwdOp = unusedOp->getOperand(operandNum);
+
+ // The parent itself may be a list node, so find the real parent instruction
+ while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) {
+ parent = parent->parent();
+ assert(parent && "ERROR: Non-instruction node has no parent in tree.");
+ }
+ InstructionNode* parentInstrNode = (InstructionNode*) parent;
+
+ Instruction* userInstr = parentInstrNode->getInstruction();
+ MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
+
+ // The parent's mvec would be empty if it was itself forwarded.
+ // Recursively call ForwardOperand in that case...
+ //
+ if (mvec.size() == 0) {
+ assert(parent->parent() != NULL &&
+ "Parent could not have been forwarded, yet has no instructions?");
+ ForwardOperand(treeNode, parent->parent(), operandNum);
+ } else {
+ for (unsigned i=0, N=mvec.size(); i < N; i++) {
+ MachineInstr* minstr = mvec[i];
+ for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) {
+ const MachineOperand& mop = minstr->getOperand(i);
+ if (mop.getType() == MachineOperand::MO_VirtualRegister &&
+ mop.getVRegValue() == unusedOp) {
+ minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister,
+ fwdOp);
+ }
+ }
+
+ for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
+ if (minstr->getImplicitRef(i) == unusedOp)
+ minstr->setImplicitRef(i, fwdOp);
+ }
+ }
+ }
+
+ /// AllUsesAreBranches - Returns true if all the uses of I are
+ /// Branch instructions, false otherwise.
+ ///
+ inline bool AllUsesAreBranches(const Instruction* I) {
+ for (Value::use_const_iterator UI=I->use_begin(), UE=I->use_end();
+ UI != UE; ++UI)
+ if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here
+ && cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
+ return false;
+ return true;
+ }
+
+ /// CodeGenIntrinsic - Generate code for any intrinsic that needs a special
+ /// code sequence instead of a regular call. If not that kind of intrinsic, do
+ /// nothing. Returns true if code was generated, otherwise false.
+ ///
+ static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr,
+ TargetMachine &target,
+ std::vector<MachineInstr*>& mvec) {
+ switch (iid) {
+ default:
+ assert(0 && "Unknown intrinsic function call should have been lowered!");
+ case Intrinsic::vastart: {
+ // Get the address of the first incoming vararg argument on the stack
+ bool ignore;
+ Function* func = cast<Function>(callInstr.getParent()->getParent());
+ int numFixedArgs = func->getFunctionType()->getNumParams();
+ int fpReg = target.getFrameInfo()->getIncomingArgBaseRegNum();
+ int argSize = target.getFrameInfo()->getSizeOfEachArgOnStack();
+ int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo()->
+ getFirstIncomingArgOffset(MachineFunction::get(func), ignore);
+ mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff).
+ addRegDef(&callInstr));
+ return true;
+ }
+
+ case Intrinsic::vaend:
+ return true; // no-op on SparcV9
+
+ case Intrinsic::vacopy:
+ // Simple copy of current va_list (arg1) to new va_list (result)
+ mvec.push_back(BuildMI(V9::ORr, 3).
+ addMReg(target.getRegInfo()->getZeroRegNum()).
+ addReg(callInstr.getOperand(1)).
+ addRegDef(&callInstr));
+ return true;
+ }
+ }
+
+ /// ThisIsAChainRule - returns true if the given BURG rule is a chain rule.
+ ///
+ extern bool ThisIsAChainRule(int eruleno) {
+ switch(eruleno) {
+ case 111: // stmt: reg
+ case 123:
+ case 124:
+ case 125:
+ case 126:
+ case 127:
+ case 128:
+ case 129:
+ case 130:
+ case 131:
+ case 132:
+ case 133:
+ case 155:
+ case 221:
+ case 222:
+ case 241:
+ case 242:
+ case 243:
+ case 244:
+ case 245:
+ case 321:
+ return true; break;
+
+ default:
+ return false; break;
+ }
+ }
+
+ /// GetInstructionsByRule - Choose machine instructions for the
+ /// SPARC V9 according to the patterns chosen by the BURG-generated parser.
+ /// This is where most of the work in the V9 instruction selector gets done.
+ ///
+ void GetInstructionsByRule(InstructionNode* subtreeRoot, int ruleForNode,
+ short* nts, TargetMachine &target,
+ std::vector<MachineInstr*>& mvec) {
+ bool checkCast = false; // initialize here to use fall-through
+ bool maskUnsignedResult = false;
+ int nextRule;
+ int forwardOperandNum = -1;
+ unsigned allocaSize = 0;
+ MachineInstr* M, *M2;
+ unsigned L;
+ bool foldCase = false;
+
+ mvec.clear();
+
+ // If the code for this instruction was folded into the parent (user),
+ // then do nothing!
+ if (subtreeRoot->isFoldedIntoParent())
+ return;
+
+ // Let's check for chain rules outside the switch so that we don't have
+ // to duplicate the list of chain rule production numbers here again
+ if (ThisIsAChainRule(ruleForNode)) {
+ // Chain rules have a single nonterminal on the RHS.
+ // Get the rule that matches the RHS non-terminal and use that instead.
+ assert(nts[0] && ! nts[1]
+ && "A chain rule should have only one RHS non-terminal!");
+ nextRule = burm_rule(subtreeRoot->state, nts[0]);
+ nts = burm_nts[nextRule];
+ GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
+ } else {
+ switch(ruleForNode) {
+ case 1: // stmt: Ret
+ case 2: // stmt: RetValue(reg)
+ { // NOTE: Prepass of register allocation is responsible
+ // for moving return value to appropriate register.
+ // Copy the return value to the required return register.
+ // Mark the return Value as an implicit ref of the RET instr..
+ // Mark the return-address register as a hidden virtual reg.
+ // Finally put a NOP in the delay slot.
+ ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction());
+ Value* retVal = returnInstr->getReturnValue();
+ MachineCodeForInstruction& mcfi =
+ MachineCodeForInstruction::get(returnInstr);
+
+ // Create a hidden virtual reg to represent the return address register
+ // used by the machine instruction but not represented in LLVM.
+ Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr);
+
+ MachineInstr* retMI =
+ BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8)
+ .addMReg(target.getRegInfo()->getZeroRegNum(), MachineOperand::Def);
+
+ // If there is a value to return, we need to:
+ // (a) Sign-extend the value if it is smaller than 8 bytes (reg size)
+ // (b) Insert a copy to copy the return value to the appropriate reg.
+ // -- For FP values, create a FMOVS or FMOVD instruction
+ // -- For non-FP values, create an add-with-0 instruction
+ if (retVal != NULL) {
+ const SparcV9RegInfo& regInfo =
+ (SparcV9RegInfo&) *target.getRegInfo();
+ const Type* retType = retVal->getType();
+ unsigned regClassID = regInfo.getRegClassIDOfType(retType);
+ unsigned retRegNum = (retType->isFloatingPoint()
+ ? (unsigned) SparcV9FloatRegClass::f0
+ : (unsigned) SparcV9IntRegClass::i0);
+ retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);
+
+ // Insert sign-extension instructions for small signed values.
+ Value* retValToUse = retVal;
+ if (retType->isIntegral() && retType->isSigned()) {
+ unsigned retSize = target.getTargetData().getTypeSize(retType);
+ if (retSize <= 4) {
+ // Create a temporary virtual reg. to hold the sign-extension.
+ retValToUse = new TmpInstruction(mcfi, retVal);
+
+ // Sign-extend retVal and put the result in the temporary reg.
+ CreateSignExtensionInstructions
+ (target, returnInstr->getParent()->getParent(),
+ retVal, retValToUse, 8*retSize, mvec, mcfi);
+ }
+ }
+
+ // (b) Now, insert a copy to to the appropriate register:
+ // -- For FP values, create a FMOVS or FMOVD instruction
+ // -- For non-FP values, create an add-with-0 instruction
+ // First, create a virtual register to represent the register and
+ // mark this vreg as being an implicit operand of the ret MI.
+ TmpInstruction* retVReg =
+ new TmpInstruction(mcfi, retValToUse, NULL, "argReg");
+
+ retMI->addImplicitRef(retVReg);
+
+ if (retType->isFloatingPoint())
+ M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
+ .addReg(retValToUse).addReg(retVReg, MachineOperand::Def));
+ else
+ M = (BuildMI(ChooseAddInstructionByType(retType), 3)
+ .addReg(retValToUse).addSImm((int64_t) 0)
+ .addReg(retVReg, MachineOperand::Def));
+
+ // Mark the operand with the register it should be assigned
+ M->SetRegForOperand(M->getNumOperands()-1, retRegNum);
+ retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum);
+
+ mvec.push_back(M);
+ }
+
+ // Now insert the RET instruction and a NOP for the delay slot
+ mvec.push_back(retMI);
+ mvec.push_back(BuildMI(V9::NOP, 0));
+
+ break;
+ }
+
+ case 3: // stmt: Store(reg,reg)
+ case 4: // stmt: Store(reg,ptrreg)
+ SetOperandsForMemInstr(ChooseStoreInstruction(
+ subtreeRoot->leftChild()->getValue()->getType()),
+ mvec, subtreeRoot, target);
+ break;
+
+ case 5: // stmt: BrUncond
+ {
+ BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
+ mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0)));
+
+ // delay slot
+ mvec.push_back(BuildMI(V9::NOP, 0));
+ break;
+ }
+
+ case 206: // stmt: BrCond(setCCconst)
+ { // setCCconst => boolean was computed with `%b = setCC type reg1 const'
+ // If the constant is ZERO, we can use the branch-on-integer-register
+ // instructions and avoid the SUBcc instruction entirely.
+ // Otherwise this is just the same as case 5, so just fall through.
+ //
+ InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+ assert(constNode &&
+ constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+ Constant *constVal = cast<Constant>(constNode->getValue());
+ bool isValidConst;
+
+ if ((constVal->getType()->isInteger()
+ || isa<PointerType>(constVal->getType()))
+ && ConvertConstantToIntType(target,
+ constVal, constVal->getType(), isValidConst) == 0
+ && isValidConst)
+ {
+ // That constant is a zero after all...
+ // Use the left child of setCC as the first argument!
+ // Mark the setCC node so that no code is generated for it.
+ InstructionNode* setCCNode = (InstructionNode*)
+ subtreeRoot->leftChild();
+ assert(setCCNode->getOpLabel() == SetCCOp);
+ setCCNode->markFoldedIntoParent();
+
+ BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
+
+ M = BuildMI(ChooseBprInstruction(subtreeRoot), 2)
+ .addReg(setCCNode->leftChild()->getValue())
+ .addPCDisp(brInst->getSuccessor(0));
+ mvec.push_back(M);
+
+ // delay slot
+ mvec.push_back(BuildMI(V9::NOP, 0));
+
+ // false branch
+ mvec.push_back(BuildMI(V9::BA, 1)
+ .addPCDisp(brInst->getSuccessor(1)));
+
+ // delay slot
+ mvec.push_back(BuildMI(V9::NOP, 0));
+ break;
+ }
+ // ELSE FALL THROUGH
+ }
+
+ case 6: // stmt: BrCond(setCC)
+ { // bool => boolean was computed with SetCC.
+ // The branch to use depends on whether it is FP, signed, or unsigned.
+ // If it is an integer CC, we also need to find the unique
+ // TmpInstruction representing that CC.
+ //
+ BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
+ const Type* setCCType;
+ unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType);
+ Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
+ brInst->getParent()->getParent(),
+ setCCType,
+ MachineCodeForInstruction::get(brInst));
+ M = BuildMI(Opcode, 2).addCCReg(ccValue)
+ .addPCDisp(brInst->getSuccessor(0));
+ mvec.push_back(M);
+
+ // delay slot
+ mvec.push_back(BuildMI(V9::NOP, 0));
+
+ // false branch
+ mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1)));
+
+ // delay slot
+ mvec.push_back(BuildMI(V9::NOP, 0));
+ break;
+ }
+
+ case 208: // stmt: BrCond(boolconst)
+ {
+ // boolconst => boolean is a constant; use BA to first or second label
+ Constant* constVal =
+ cast<Constant>(subtreeRoot->leftChild()->getValue());
+ unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
+
+ M = BuildMI(V9::BA, 1).addPCDisp(
+ cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
+ mvec.push_back(M);
+
+ // delay slot
+ mvec.push_back(BuildMI(V9::NOP, 0));
+ break;
+ }
+
+ case 8: // stmt: BrCond(boolreg)
+ { // boolreg => boolean is recorded in an integer register.
+ // Use branch-on-integer-register instruction.
+ //
+ BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
+ M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue())
+ .addPCDisp(BI->getSuccessor(0));
+ mvec.push_back(M);
+
+ // delay slot
+ mvec.push_back(BuildMI(V9::NOP, 0));
+
+ // false branch
+ mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1)));
+
+ // delay slot
+ mvec.push_back(BuildMI(V9::NOP, 0));
+ break;
+ }
+
+ case 9: // stmt: Switch(reg)
+ assert(0 && "*** SWITCH instruction is not implemented yet.");
+ break;
+
+ case 10: // reg: VRegList(reg, reg)
+ assert(0 && "VRegList should never be the topmost non-chain rule");
+ break;
+
+ case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg
+ { // First find the unary operand. It may be left or right, usually right.
+ Instruction* notI = subtreeRoot->getInstruction();
+ Value* notArg = BinaryOperator::getNotArgument(
+ cast<BinaryOperator>(subtreeRoot->getInstruction()));
+ unsigned ZeroReg = target.getRegInfo()->getZeroRegNum();
+
+ // Unconditionally set register to 0
+ mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI));
+
+ // Now conditionally move 1 into the register.
+ // Mark the register as a use (as well as a def) because the old
+ // value will be retained if the condition is false.
+ mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1)
+ .addReg(notI, MachineOperand::UseAndDef));
+
+ break;
+ }
+
+ case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0
+ { // First find the unary operand. It may be left or right, usually right.
+ Value* notArg = BinaryOperator::getNotArgument(
+ cast<BinaryOperator>(subtreeRoot->getInstruction()));
+ unsigned ZeroReg = target.getRegInfo()->getZeroRegNum();
+ mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg)
+ .addRegDef(subtreeRoot->getValue()));
+ break;
+ }
+
+ case 322: // reg: Not(tobool, reg):
+ // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool
+ foldCase = true;
+ // Just fall through!
+
+ case 22: // reg: ToBoolTy(reg):
+ {
+ Instruction* castI = subtreeRoot->getInstruction();
+ Value* opVal = subtreeRoot->leftChild()->getValue();
+ assert(opVal->getType()->isIntegral() ||
+ isa<PointerType>(opVal->getType()));
+
+ // Unconditionally set register to 0
+ mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI));
+
+ // Now conditionally move 1 into the register.
+ // Mark the register as a use (as well as a def) because the old
+ // value will be retained if the condition is false.
+ MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi;
+ mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1)
+ .addReg(castI, MachineOperand::UseAndDef));
+
+ break;
+ }
+
+ case 23: // reg: ToUByteTy(reg)
+ case 24: // reg: ToSByteTy(reg)
+ case 25: // reg: ToUShortTy(reg)
+ case 26: // reg: ToShortTy(reg)
+ case 27: // reg: ToUIntTy(reg)
+ case 28: // reg: ToIntTy(reg)
+ case 29: // reg: ToULongTy(reg)
+ case 30: // reg: ToLongTy(reg)
+ {
+ //======================================================================
+ // Rules for integer conversions:
+ //
+ //--------
+ // From ISO 1998 C++ Standard, Sec. 4.7:
+ //
+ // 2. If the destination type is unsigned, the resulting value is
+ // the least unsigned integer congruent to the source integer
+ // (modulo 2n where n is the number of bits used to represent the
+ // unsigned type). [Note: In a two s complement representation,
+ // this conversion is conceptual and there is no change in the
+ // bit pattern (if there is no truncation). ]
+ //
+ // 3. If the destination type is signed, the value is unchanged if
+ // it can be represented in the destination type (and bitfield width);
+ // otherwise, the value is implementation-defined.
+ //--------
+ //
+ // Since we assume 2s complement representations, this implies:
+ //
+ // -- If operand is smaller than destination, zero-extend or sign-extend
+ // according to the signedness of the *operand*: source decides:
+ // (1) If operand is signed, sign-extend it.
+ // If dest is unsigned, zero-ext the result!
+ // (2) If operand is unsigned, our current invariant is that
+ // it's high bits are correct, so zero-extension is not needed.
+ //
+ // -- If operand is same size as or larger than destination,
+ // zero-extend or sign-extend according to the signedness of
+ // the *destination*: destination decides:
+ // (1) If destination is signed, sign-extend (truncating if needed)
+ // This choice is implementation defined. We sign-extend the
+ // operand, which matches both Sun's cc and gcc3.2.
+ // (2) If destination is unsigned, zero-extend (truncating if needed)
+ //======================================================================
+
+ Instruction* destI = subtreeRoot->getInstruction();
+ Function* currentFunc = destI->getParent()->getParent();
+ MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI);
+
+ Value* opVal = subtreeRoot->leftChild()->getValue();
+ const Type* opType = opVal->getType();
+ const Type* destType = destI->getType();
+ unsigned opSize = target.getTargetData().getTypeSize(opType);
+ unsigned destSize = target.getTargetData().getTypeSize(destType);
+
+ bool isIntegral = opType->isIntegral() || isa<PointerType>(opType);
+
+ if (opType == Type::BoolTy ||
+ opType == destType ||
+ isIntegral && opSize == destSize && opSize == 8) {
+ // nothing to do in all these cases
+ forwardOperandNum = 0; // forward first operand to user
+
+ } else if (opType->isFloatingPoint()) {
+
+ CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
+ if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy)
+ maskUnsignedResult = true; // not handled by fp->int code
+
+ } else if (isIntegral) {
+
+ bool opSigned = opType->isSigned();
+ bool destSigned = destType->isSigned();
+ unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize);
+
+ assert(! (opSize == destSize && opSigned == destSigned) &&
+ "How can different int types have same size and signedness?");
+
+ bool signExtend = (opSize < destSize && opSigned ||
+ opSize >= destSize && destSigned);
+
+ bool signAndZeroExtend = (opSize < destSize && destSize < 8u &&
+ opSigned && !destSigned);
+ assert(!signAndZeroExtend || signExtend);
+
+ bool zeroExtendOnly = opSize >= destSize && !destSigned;
+ assert(!zeroExtendOnly || !signExtend);
+
+ if (signExtend) {
+ Value* signExtDest = (signAndZeroExtend
+ ? new TmpInstruction(mcfi, destType, opVal)
+ : destI);
+
+ CreateSignExtensionInstructions
+ (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi);
+
+ if (signAndZeroExtend)
+ CreateZeroExtensionInstructions
+ (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi);
+ }
+ else if (zeroExtendOnly) {
+ CreateZeroExtensionInstructions
+ (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi);
+ }
+ else
+ forwardOperandNum = 0; // forward first operand to user
+
+ } else
+ assert(0 && "Unrecognized operand type for convert-to-integer");
+
+ break;
+ }
+
+ case 31: // reg: ToFloatTy(reg):
+ case 32: // reg: ToDoubleTy(reg):
+ case 232: // reg: ToDoubleTy(Constant):
+
+ // If this instruction has a parent (a user) in the tree
+ // and the user is translated as an FsMULd instruction,
+ // then the cast is unnecessary. So check that first.
+ // In the future, we'll want to do the same for the FdMULq instruction,
+ // so do the check here instead of only for ToFloatTy(reg).
+ //
+ if (subtreeRoot->parent() != NULL) {
+ const MachineCodeForInstruction& mcfi =
+ MachineCodeForInstruction::get(
+ cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
+ if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD)
+ forwardOperandNum = 0; // forward first operand to user
+ }
+
+ if (forwardOperandNum != 0) { // we do need the cast
+ Value* leftVal = subtreeRoot->leftChild()->getValue();
+ const Type* opType = leftVal->getType();
+ MachineOpCode opCode=ChooseConvertToFloatInstr(target,
+ subtreeRoot->getOpLabel(), opType);
+ if (opCode == V9::NOP) { // no conversion needed
+ forwardOperandNum = 0; // forward first operand to user
+ } else {
+ // If the source operand is a non-FP type it must be
+ // first copied from int to float register via memory!
+ Instruction *dest = subtreeRoot->getInstruction();
+ Value* srcForCast;
+ int n = 0;
+ if (! opType->isFloatingPoint()) {
+ // Create a temporary to represent the FP register
+ // into which the integer will be copied via memory.
+ // The type of this temporary will determine the FP
+ // register used: single-prec for a 32-bit int or smaller,
+ // double-prec for a 64-bit int.
+ //
+ uint64_t srcSize =
+ target.getTargetData().getTypeSize(leftVal->getType());
+ Type* tmpTypeToUse =
+ (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
+ MachineCodeForInstruction &destMCFI =
+ MachineCodeForInstruction::get(dest);
+ srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest);
+
+ CreateCodeToCopyIntToFloat(target,
+ dest->getParent()->getParent(),
+ leftVal, cast<Instruction>(srcForCast),
+ mvec, destMCFI);
+ } else
+ srcForCast = leftVal;
+
+ M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest);
+ mvec.push_back(M);
+ }
+ }
+ break;
+
+ case 19: // reg: ToArrayTy(reg):
+ case 20: // reg: ToPointerTy(reg):
+ forwardOperandNum = 0; // forward first operand to user
+ break;
+
+ case 233: // reg: Add(reg, Constant)
+ maskUnsignedResult = true;
+ M = CreateAddConstInstruction(subtreeRoot);
+ if (M != NULL) {
+ mvec.push_back(M);
+ break;
+ }
+ // ELSE FALL THROUGH
+
+ case 33: // reg: Add(reg, reg)
+ maskUnsignedResult = true;
+ Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec);
+ break;
+
+ case 234: // reg: Sub(reg, Constant)
+ maskUnsignedResult = true;
+ M = CreateSubConstInstruction(subtreeRoot);
+ if (M != NULL) {
+ mvec.push_back(M);
+ break;
+ }
+ // ELSE FALL THROUGH
+
+ case 34: // reg: Sub(reg, reg)
+ maskUnsignedResult = true;
+ Add3OperandInstr(ChooseSubInstructionByType(
+ subtreeRoot->getInstruction()->getType()),
+ subtreeRoot, mvec);
+ break;
+
+ case 135: // reg: Mul(todouble, todouble)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 35: // reg: Mul(reg, reg)
+ {
+ maskUnsignedResult = true;
+ MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
+ ? (MachineOpCode)V9::FSMULD
+ : -1);
+ Instruction* mulInstr = subtreeRoot->getInstruction();
+ CreateMulInstruction(target, mulInstr->getParent()->getParent(),
+ subtreeRoot->leftChild()->getValue(),
+ subtreeRoot->rightChild()->getValue(),
+ mulInstr, mvec,
+ MachineCodeForInstruction::get(mulInstr),forceOp);
+ break;
+ }
+ case 335: // reg: Mul(todouble, todoubleConst)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 235: // reg: Mul(reg, Constant)
+ {
+ maskUnsignedResult = true;
+ MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
+ ? (MachineOpCode)V9::FSMULD
+ : -1);
+ Instruction* mulInstr = subtreeRoot->getInstruction();
+ CreateMulInstruction(target, mulInstr->getParent()->getParent(),
+ subtreeRoot->leftChild()->getValue(),
+ subtreeRoot->rightChild()->getValue(),
+ mulInstr, mvec,
+ MachineCodeForInstruction::get(mulInstr),
+ forceOp);
+ break;
+ }
+ case 236: // reg: Div(reg, Constant)
+ maskUnsignedResult = true;
+ L = mvec.size();
+ CreateDivConstInstruction(target, subtreeRoot, mvec);
+ if (mvec.size() > L)
+ break;
+ // ELSE FALL THROUGH
+
+ case 36: // reg: Div(reg, reg)
+ {
+ maskUnsignedResult = true;
+
+ // If either operand of divide is smaller than 64 bits, we have
+ // to make sure the unused top bits are correct because they affect
+ // the result. These bits are already correct for unsigned values.
+ // They may be incorrect for signed values, so sign extend to fill in.
+ Instruction* divI = subtreeRoot->getInstruction();
+ Value* divOp1 = subtreeRoot->leftChild()->getValue();
+ Value* divOp2 = subtreeRoot->rightChild()->getValue();
+ Value* divOp1ToUse = divOp1;
+ Value* divOp2ToUse = divOp2;
+ if (divI->getType()->isSigned()) {
+ unsigned opSize=target.getTargetData().getTypeSize(divI->getType());
+ if (opSize < 8) {
+ MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI);
+ divOp1ToUse = new TmpInstruction(mcfi, divOp1);
+ divOp2ToUse = new TmpInstruction(mcfi, divOp2);
+ CreateSignExtensionInstructions(target,
+ divI->getParent()->getParent(),
+ divOp1, divOp1ToUse,
+ 8*opSize, mvec, mcfi);
+ CreateSignExtensionInstructions(target,
+ divI->getParent()->getParent(),
+ divOp2, divOp2ToUse,
+ 8*opSize, mvec, mcfi);
+ }
+ }
+
+ mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
+ .addReg(divOp1ToUse)
+ .addReg(divOp2ToUse)
+ .addRegDef(divI));
+
+ break;
+ }
+
+ case 37: // reg: Rem(reg, reg)
+ case 237: // reg: Rem(reg, Constant)
+ {
+ maskUnsignedResult = true;
+
+ Instruction* remI = subtreeRoot->getInstruction();
+ Value* divOp1 = subtreeRoot->leftChild()->getValue();
+ Value* divOp2 = subtreeRoot->rightChild()->getValue();
+
+ MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI);
+
+ // If second operand of divide is smaller than 64 bits, we have
+ // to make sure the unused top bits are correct because they affect
+ // the result. These bits are already correct for unsigned values.
+ // They may be incorrect for signed values, so sign extend to fill in.
+ //
+ Value* divOpToUse = divOp2;
+ if (divOp2->getType()->isSigned()) {
+ unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
+ if (opSize < 8) {
+ divOpToUse = new TmpInstruction(mcfi, divOp2);
+ CreateSignExtensionInstructions(target,
+ remI->getParent()->getParent(),
+ divOp2, divOpToUse,
+ 8*opSize, mvec, mcfi);
+ }
+ }
+
+ // Now compute: result = rem V1, V2 as:
+ // result = V1 - (V1 / signExtend(V2)) * signExtend(V2)
+ //
+ TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse);
+ TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse);
+
+ mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
+ .addReg(divOp1).addReg(divOpToUse).addRegDef(quot));
+
+ mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3)
+ .addReg(quot).addReg(divOpToUse).addRegDef(prod));
+
+ mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3)
+ .addReg(divOp1).addReg(prod).addRegDef(remI));
+
+ break;
+ }
+
+ case 38: // bool: And(bool, bool)
+ case 138: // bool: And(bool, not)
+ case 238: // bool: And(bool, boolconst)
+ case 338: // reg : BAnd(reg, reg)
+ case 538: // reg : BAnd(reg, Constant)
+ Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
+ break;
+
+ case 438: // bool: BAnd(bool, bnot)
+ { // Use the argument of NOT as the second argument!
+ // Mark the NOT node so that no code is generated for it.
+ // If the type is boolean, set 1 or 0 in the result register.
+ InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
+ Value* notArg = BinaryOperator::getNotArgument(
+ cast<BinaryOperator>(notNode->getInstruction()));
+ notNode->markFoldedIntoParent();
+ Value *lhs = subtreeRoot->leftChild()->getValue();
+ Value *dest = subtreeRoot->getValue();
+ mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg)
+ .addReg(dest, MachineOperand::Def));
+
+ if (notArg->getType() == Type::BoolTy) {
+ // set 1 in result register if result of above is non-zero
+ mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+ .addReg(dest, MachineOperand::UseAndDef));
+ }
+
+ break;
+ }
+
+ case 39: // bool: Or(bool, bool)
+ case 139: // bool: Or(bool, not)
+ case 239: // bool: Or(bool, boolconst)
+ case 339: // reg : BOr(reg, reg)
+ case 539: // reg : BOr(reg, Constant)
+ Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
+ break;
+
+ case 439: // bool: BOr(bool, bnot)
+ { // Use the argument of NOT as the second argument!
+ // Mark the NOT node so that no code is generated for it.
+ // If the type is boolean, set 1 or 0 in the result register.
+ InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
+ Value* notArg = BinaryOperator::getNotArgument(
+ cast<BinaryOperator>(notNode->getInstruction()));
+ notNode->markFoldedIntoParent();
+ Value *lhs = subtreeRoot->leftChild()->getValue();
+ Value *dest = subtreeRoot->getValue();
+
+ mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg)
+ .addReg(dest, MachineOperand::Def));
+
+ if (notArg->getType() == Type::BoolTy) {
+ // set 1 in result register if result of above is non-zero
+ mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+ .addReg(dest, MachineOperand::UseAndDef));
+ }
+
+ break;
+ }
+
+ case 40: // bool: Xor(bool, bool)
+ case 140: // bool: Xor(bool, not)
+ case 240: // bool: Xor(bool, boolconst)
+ case 340: // reg : BXor(reg, reg)
+ case 540: // reg : BXor(reg, Constant)
+ Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
+ break;
+
+ case 440: // bool: BXor(bool, bnot)
+ { // Use the argument of NOT as the second argument!
+ // Mark the NOT node so that no code is generated for it.
+ // If the type is boolean, set 1 or 0 in the result register.
+ InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
+ Value* notArg = BinaryOperator::getNotArgument(
+ cast<BinaryOperator>(notNode->getInstruction()));
+ notNode->markFoldedIntoParent();
+ Value *lhs = subtreeRoot->leftChild()->getValue();
+ Value *dest = subtreeRoot->getValue();
+ mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg)
+ .addReg(dest, MachineOperand::Def));
+
+ if (notArg->getType() == Type::BoolTy) {
+ // set 1 in result register if result of above is non-zero
+ mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+ .addReg(dest, MachineOperand::UseAndDef));
+ }
+ break;
+ }
+
+ case 41: // setCCconst: SetCC(reg, Constant)
+ { // Comparison is with a constant:
+ //
+ // If the bool result must be computed into a register (see below),
+ // and the constant is int ZERO, we can use the MOVR[op] instructions
+ // and avoid the SUBcc instruction entirely.
+ // Otherwise this is just the same as case 42, so just fall through.
+ //
+ // The result of the SetCC must be computed and stored in a register if
+ // it is used outside the current basic block (so it must be computed
+ // as a boolreg) or it is used by anything other than a branch.
+ // We will use a conditional move to do this.
+ //
+ Instruction* setCCInstr = subtreeRoot->getInstruction();
+ bool computeBoolVal = (subtreeRoot->parent() == NULL ||
+ ! AllUsesAreBranches(setCCInstr));
+
+ if (computeBoolVal) {
+ InstrTreeNode* constNode = subtreeRoot->rightChild();
+ assert(constNode &&
+ constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+ Constant *constVal = cast<Constant>(constNode->getValue());
+ bool isValidConst;
+
+ if ((constVal->getType()->isInteger()
+ || isa<PointerType>(constVal->getType()))
+ && ConvertConstantToIntType(target,
+ constVal, constVal->getType(), isValidConst) == 0
+ && isValidConst)
+ {
+ // That constant is an integer zero after all...
+ // Use a MOVR[op] to compute the boolean result
+ // Unconditionally set register to 0
+ mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0)
+ .addRegDef(setCCInstr));
+
+ // Now conditionally move 1 into the register.
+ // Mark the register as a use (as well as a def) because the old
+ // value will be retained if the condition is false.
+ MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot);
+ mvec.push_back(BuildMI(movOpCode, 3)
+ .addReg(subtreeRoot->leftChild()->getValue())
+ .addZImm(1)
+ .addReg(setCCInstr, MachineOperand::UseAndDef));
+
+ break;
+ }
+ }
+ // ELSE FALL THROUGH
+ }
+
+ case 42: // bool: SetCC(reg, reg):
+ {
+ // This generates a SUBCC instruction, putting the difference in a
+ // result reg. if needed, and/or setting a condition code if needed.
+ //
+ Instruction* setCCInstr = subtreeRoot->getInstruction();
+ Value* leftVal = subtreeRoot->leftChild()->getValue();
+ Value* rightVal = subtreeRoot->rightChild()->getValue();
+ const Type* opType = leftVal->getType();
+ bool isFPCompare = opType->isFloatingPoint();
+
+ // If the boolean result of the SetCC is used outside the current basic
+ // block (so it must be computed as a boolreg) or is used by anything
+ // other than a branch, the boolean must be computed and stored
+ // in a result register. We will use a conditional move to do this.
+ //
+ bool computeBoolVal = (subtreeRoot->parent() == NULL ||
+ ! AllUsesAreBranches(setCCInstr));
+
+ // A TmpInstruction is created to represent the CC "result".
+ // Unlike other instances of TmpInstruction, this one is used
+ // by machine code of multiple LLVM instructions, viz.,
+ // the SetCC and the branch. Make sure to get the same one!
+ // Note that we do this even for FP CC registers even though they
+ // are explicit operands, because the type of the operand
+ // needs to be a floating point condition code, not an integer
+ // condition code. Think of this as casting the bool result to
+ // a FP condition code register.
+ // Later, we mark the 4th operand as being a CC register, and as a def.
+ //
+ TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
+ setCCInstr->getParent()->getParent(),
+ leftVal->getType(),
+ MachineCodeForInstruction::get(setCCInstr));
+
+ // If the operands are signed values smaller than 4 bytes, then they
+ // must be sign-extended in order to do a valid 32-bit comparison
+ // and get the right result in the 32-bit CC register (%icc).
+ //
+ Value* leftOpToUse = leftVal;
+ Value* rightOpToUse = rightVal;
+ if (opType->isIntegral() && opType->isSigned()) {
+ unsigned opSize = target.getTargetData().getTypeSize(opType);
+ if (opSize < 4) {
+ MachineCodeForInstruction& mcfi =
+ MachineCodeForInstruction::get(setCCInstr);
+
+ // create temporary virtual regs. to hold the sign-extensions
+ leftOpToUse = new TmpInstruction(mcfi, leftVal);
+ rightOpToUse = new TmpInstruction(mcfi, rightVal);
+
+ // sign-extend each operand and put the result in the temporary reg.
+ CreateSignExtensionInstructions
+ (target, setCCInstr->getParent()->getParent(),
+ leftVal, leftOpToUse, 8*opSize, mvec, mcfi);
+ CreateSignExtensionInstructions
+ (target, setCCInstr->getParent()->getParent(),
+ rightVal, rightOpToUse, 8*opSize, mvec, mcfi);
+ }
+ }
+
+ if (! isFPCompare) {
+ // Integer condition: set CC and discard result.
+ mvec.push_back(BuildMI(V9::SUBccr, 4)
+ .addReg(leftOpToUse)
+ .addReg(rightOpToUse)
+ .addMReg(target.getRegInfo()->
+ getZeroRegNum(), MachineOperand::Def)
+ .addCCReg(tmpForCC, MachineOperand::Def));
+ } else {
+ // FP condition: dest of FCMP should be some FCCn register
+ mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
+ .addCCReg(tmpForCC, MachineOperand::Def)
+ .addReg(leftOpToUse)
+ .addReg(rightOpToUse));
+ }
+
+ if (computeBoolVal) {
+ MachineOpCode movOpCode = (isFPCompare
+ ? ChooseMovFpcciInstruction(subtreeRoot)
+ : ChooseMovpcciForSetCC(subtreeRoot));
+
+ // Unconditionally set register to 0
+ M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
+ mvec.push_back(M);
+
+ // Now conditionally move 1 into the register.
+ // Mark the register as a use (as well as a def) because the old
+ // value will be retained if the condition is false.
+ M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1)
+ .addReg(setCCInstr, MachineOperand::UseAndDef));
+ mvec.push_back(M);
+ }
+ break;
+ }
+
+ case 51: // reg: Load(reg)
+ case 52: // reg: Load(ptrreg)
+ SetOperandsForMemInstr(ChooseLoadInstruction(
+ subtreeRoot->getValue()->getType()),
+ mvec, subtreeRoot, target);
+ break;
+
+ case 55: // reg: GetElemPtr(reg)
+ case 56: // reg: GetElemPtrIdx(reg,reg)
+ // If the GetElemPtr was folded into the user (parent), it will be
+ // caught above. For other cases, we have to compute the address.
+ SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target);
+ break;
+
+ case 57: // reg: Alloca: Implement as 1 instruction:
+ { // add %fp, offsetFromFP -> result
+ AllocationInst* instr =
+ cast<AllocationInst>(subtreeRoot->getInstruction());
+ unsigned tsize =
+ target.getTargetData().getTypeSize(instr->getAllocatedType());
+ assert(tsize != 0);
+ CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
+ break;
+ }
+
+ case 58: // reg: Alloca(reg): Implement as 3 instructions:
+ // mul num, typeSz -> tmp
+ // sub %sp, tmp -> %sp
+ { // add %sp, frameSizeBelowDynamicArea -> result
+ AllocationInst* instr =
+ cast<AllocationInst>(subtreeRoot->getInstruction());
+ const Type* eltType = instr->getAllocatedType();
+
+ // If #elements is constant, use simpler code for fixed-size allocas
+ int tsize = (int) target.getTargetData().getTypeSize(eltType);
+ Value* numElementsVal = NULL;
+ bool isArray = instr->isArrayAllocation();
+
+ if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) {
+ // total size is constant: generate code for fixed-size alloca
+ unsigned numElements = isArray?
+ cast<ConstantUInt>(numElementsVal)->getValue() : 1;
+ CreateCodeForFixedSizeAlloca(target, instr, tsize,
+ numElements, mvec);
+ } else {
+ // total size is not constant.
+ CreateCodeForVariableSizeAlloca(target, instr, tsize,
+ numElementsVal, mvec);
+ }
+ break;
+ }
+
+ case 61: // reg: Call
+ { // Generate a direct (CALL) or indirect (JMPL) call.
+ // Mark the return-address register, the indirection
+ // register (for indirect calls), the operands of the Call,
+ // and the return value (if any) as implicit operands
+ // of the machine instruction.
+ //
+ // If this is a varargs function, floating point arguments
+ // have to passed in integer registers so insert
+ // copy-float-to-int instructions for each float operand.
+ //
+ CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
+ Value *callee = callInstr->getCalledValue();
+ Function* calledFunc = dyn_cast<Function>(callee);
+
+ // Check if this is an intrinsic function that needs a special code
+ // sequence (e.g., va_start). Indirect calls cannot be special.
+ //
+ bool specialIntrinsic = false;
+ Intrinsic::ID iid;
+ if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID()))
+ specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec);
+
+ // If not, generate the normal call sequence for the function.
+ // This can also handle any intrinsics that are just function calls.
+ //
+ if (! specialIntrinsic) {
+ Function* currentFunc = callInstr->getParent()->getParent();
+ MachineFunction& MF = MachineFunction::get(currentFunc);
+ MachineCodeForInstruction& mcfi =
+ MachineCodeForInstruction::get(callInstr);
+ const SparcV9RegInfo& regInfo =
+ (SparcV9RegInfo&) *target.getRegInfo();
+ const TargetFrameInfo& frameInfo = *target.getFrameInfo();
+
+ // Create hidden virtual register for return address with type void*
+ TmpInstruction* retAddrReg =
+ new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr);
+
+ // Generate the machine instruction and its operands.
+ // Use CALL for direct function calls; this optimistically assumes
+ // the PC-relative address fits in the CALL address field (22 bits).
+ // Use JMPL for indirect calls.
+ // This will be added to mvec later, after operand copies.
+ //
+ MachineInstr* callMI;
+ if (calledFunc) // direct function call
+ callMI = BuildMI(V9::CALL, 1).addPCDisp(callee);
+ else // indirect function call
+ callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee)
+ .addSImm((int64_t)0).addRegDef(retAddrReg));
+
+ const FunctionType* funcType =
+ cast<FunctionType>(cast<PointerType>(callee->getType())
+ ->getElementType());
+ bool isVarArgs = funcType->isVarArg();
+ bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
+
+ // Use a descriptor to pass information about call arguments
+ // to the register allocator. This descriptor will be "owned"
+ // and freed automatically when the MachineCodeForInstruction
+ // object for the callInstr goes away.
+ CallArgsDescriptor* argDesc =
+ new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype);
+ assert(callInstr->getOperand(0) == callee
+ && "This is assumed in the loop below!");
+
+ // Insert sign-extension instructions for small signed values,
+ // if this is an unknown function (i.e., called via a funcptr)
+ // or an external one (i.e., which may not be compiled by llc).
+ //
+ if (calledFunc == NULL || calledFunc->isExternal()) {
+ for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
+ Value* argVal = callInstr->getOperand(i);
+ const Type* argType = argVal->getType();
+ if (argType->isIntegral() && argType->isSigned()) {
+ unsigned argSize = target.getTargetData().getTypeSize(argType);
+ if (argSize <= 4) {
+ // create a temporary virtual reg. to hold the sign-extension
+ TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal);
+
+ // sign-extend argVal and put the result in the temporary reg.
+ CreateSignExtensionInstructions
+ (target, currentFunc, argVal, argExtend,
+ 8*argSize, mvec, mcfi);
+
+ // replace argVal with argExtend in CallArgsDescriptor
+ argDesc->getArgInfo(i-1).replaceArgVal(argExtend);
+ }
+ }
+ }
+ }
+
+ // Insert copy instructions to get all the arguments into
+ // all the places that they need to be.
+ //
+ for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
+ int argNo = i-1;
+ CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
+ Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here
+ const Type* argType = argVal->getType();
+ unsigned regType = regInfo.getRegTypeForDataType(argType);
+ unsigned argSize = target.getTargetData().getTypeSize(argType);
+ int regNumForArg = SparcV9RegInfo::getInvalidRegNum();
+ unsigned regClassIDOfArgReg;
+
+ // Check for FP arguments to varargs functions.
+ // Any such argument in the first $K$ args must be passed in an
+ // integer register. If there is no prototype, it must also
+ // be passed as an FP register.
+ // K = #integer argument registers.
+ bool isFPArg = argVal->getType()->isFloatingPoint();
+ if (isVarArgs && isFPArg) {
+
+ if (noPrototype) {
+ // It is a function with no prototype: pass value
+ // as an FP value as well as a varargs value. The FP value
+ // may go in a register or on the stack. The copy instruction
+ // to the outgoing reg/stack is created by the normal argument
+ // handling code since this is the "normal" passing mode.
+ //
+ regNumForArg = regInfo.regNumForFPArg(regType,
+ false, false, argNo,
+ regClassIDOfArgReg);
+ if (regNumForArg == regInfo.getInvalidRegNum())
+ argInfo.setUseStackSlot();
+ else
+ argInfo.setUseFPArgReg();
+ }
+
+ // If this arg. is in the first $K$ regs, add special copy-
+ // float-to-int instructions to pass the value as an int.
+ // To check if it is in the first $K$, get the register
+ // number for the arg #i. These copy instructions are
+ // generated here because they are extra cases and not needed
+ // for the normal argument handling (some code reuse is
+ // possible though -- later).
+ //
+ int copyRegNum = regInfo.regNumForIntArg(false, false, argNo,
+ regClassIDOfArgReg);
+ if (copyRegNum != regInfo.getInvalidRegNum()) {
+ // Create a virtual register to represent copyReg. Mark
+ // this vreg as being an implicit operand of the call MI
+ const Type* loadTy = (argType == Type::FloatTy
+ ? Type::IntTy : Type::LongTy);
+ TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy,
+ argVal, NULL,
+ "argRegCopy");
+ callMI->addImplicitRef(argVReg);
+
+ // Get a temp stack location to use to copy
+ // float-to-int via the stack.
+ //
+ // FIXME: For now, we allocate permanent space because
+ // the stack frame manager does not allow locals to be
+ // allocated (e.g., for alloca) after a temp is
+ // allocated!
+ //
+ // int tmpOffset = MF.getInfo()->pushTempValue(argSize);
+ int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg);
+
+ // Generate the store from FP reg to stack
+ unsigned StoreOpcode = ChooseStoreInstruction(argType);
+ M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3)
+ .addReg(argVal).addMReg(regInfo.getFramePointer())
+ .addSImm(tmpOffset);
+ mvec.push_back(M);
+
+ // Generate the load from stack to int arg reg
+ unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
+ M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3)
+ .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset)
+ .addReg(argVReg, MachineOperand::Def);
+
+ // Mark operand with register it should be assigned
+ // both for copy and for the callMI
+ M->SetRegForOperand(M->getNumOperands()-1, copyRegNum);
+ callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
+ copyRegNum);
+ mvec.push_back(M);
+
+ // Add info about the argument to the CallArgsDescriptor
+ argInfo.setUseIntArgReg();
+ argInfo.setArgCopy(copyRegNum);
+ } else {
+ // Cannot fit in first $K$ regs so pass arg on stack
+ argInfo.setUseStackSlot();
+ }
+ } else if (isFPArg) {
+ // Get the outgoing arg reg to see if there is one.
+ regNumForArg = regInfo.regNumForFPArg(regType, false, false,
+ argNo, regClassIDOfArgReg);
+ if (regNumForArg == regInfo.getInvalidRegNum())
+ argInfo.setUseStackSlot();
+ else {
+ argInfo.setUseFPArgReg();
+ regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
+ regNumForArg);
+ }
+ } else {
+ // Get the outgoing arg reg to see if there is one.
+ regNumForArg = regInfo.regNumForIntArg(false,false,
+ argNo, regClassIDOfArgReg);
+ if (regNumForArg == regInfo.getInvalidRegNum())
+ argInfo.setUseStackSlot();
+ else {
+ argInfo.setUseIntArgReg();
+ regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
+ regNumForArg);
+ }
+ }
+
+ //
+ // Now insert copy instructions to stack slot or arg. register
+ //
+ if (argInfo.usesStackSlot()) {
+ // Get the stack offset for this argument slot.
+ // FP args on stack are right justified so adjust offset!
+ // int arguments are also right justified but they are
+ // always loaded as a full double-word so the offset does
+ // not need to be adjusted.
+ int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo);
+ if (argType->isFloatingPoint()) {
+ unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
+ assert(argSize <= slotSize && "Insufficient slot size!");
+ argOffset += slotSize - argSize;
+ }
+
+ // Now generate instruction to copy argument to stack
+ MachineOpCode storeOpCode =
+ (argType->isFloatingPoint()
+ ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi);
+
+ M = BuildMI(storeOpCode, 3).addReg(argVal)
+ .addMReg(regInfo.getStackPointer()).addSImm(argOffset);
+ mvec.push_back(M);
+ }
+ else if (regNumForArg != regInfo.getInvalidRegNum()) {
+
+ // Create a virtual register to represent the arg reg. Mark
+ // this vreg as being an implicit operand of the call MI.
+ TmpInstruction* argVReg =
+ new TmpInstruction(mcfi, argVal, NULL, "argReg");
+
+ callMI->addImplicitRef(argVReg);
+
+ // Generate the reg-to-reg copy into the outgoing arg reg.
+ // -- For FP values, create a FMOVS or FMOVD instruction
+ // -- For non-FP values, create an add-with-0 instruction
+ if (argType->isFloatingPoint())
+ M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2)
+ .addReg(argVal).addReg(argVReg, MachineOperand::Def));
+ else
+ M = (BuildMI(ChooseAddInstructionByType(argType), 3)
+ .addReg(argVal).addSImm((int64_t) 0)
+ .addReg(argVReg, MachineOperand::Def));
+
+ // Mark the operand with the register it should be assigned
+ M->SetRegForOperand(M->getNumOperands()-1, regNumForArg);
+ callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
+ regNumForArg);
+
+ mvec.push_back(M);
+ }
+ else
+ assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() &&
+ "Arg. not in stack slot, primary or secondary register?");
+ }
+
+ // add call instruction and delay slot before copying return value
+ mvec.push_back(callMI);
+ mvec.push_back(BuildMI(V9::NOP, 0));
+
+ // Add the return value as an implicit ref. The call operands
+ // were added above. Also, add code to copy out the return value.
+ // This is always register-to-register for int or FP return values.
+ //
+ if (callInstr->getType() != Type::VoidTy) {
+ // Get the return value reg.
+ const Type* retType = callInstr->getType();
+
+ int regNum = (retType->isFloatingPoint()
+ ? (unsigned) SparcV9FloatRegClass::f0
+ : (unsigned) SparcV9IntRegClass::o0);
+ unsigned regClassID = regInfo.getRegClassIDOfType(retType);
+ regNum = regInfo.getUnifiedRegNum(regClassID, regNum);
+
+ // Create a virtual register to represent it and mark
+ // this vreg as being an implicit operand of the call MI
+ TmpInstruction* retVReg =
+ new TmpInstruction(mcfi, callInstr, NULL, "argReg");
+
+ callMI->addImplicitRef(retVReg, /*isDef*/ true);
+
+ // Generate the reg-to-reg copy from the return value reg.
+ // -- For FP values, create a FMOVS or FMOVD instruction
+ // -- For non-FP values, create an add-with-0 instruction
+ if (retType->isFloatingPoint())
+ M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
+ .addReg(retVReg).addReg(callInstr, MachineOperand::Def));
+ else
+ M = (BuildMI(ChooseAddInstructionByType(retType), 3)
+ .addReg(retVReg).addSImm((int64_t) 0)
+ .addReg(callInstr, MachineOperand::Def));
+
+ // Mark the operand with the register it should be assigned
+ // Also mark the implicit ref of the call defining this operand
+ M->SetRegForOperand(0, regNum);
+ callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum);
+
+ mvec.push_back(M);
+ }
+
+ // For the CALL instruction, the ret. addr. reg. is also implicit
+ if (isa<Function>(callee))
+ callMI->addImplicitRef(retAddrReg, /*isDef*/ true);
+
+ MF.getInfo()->popAllTempValues(); // free temps used for this inst
+ }
+
+ break;
+ }
+
+ case 62: // reg: Shl(reg, reg)
+ {
+ Value* argVal1 = subtreeRoot->leftChild()->getValue();
+ Value* argVal2 = subtreeRoot->rightChild()->getValue();
+ Instruction* shlInstr = subtreeRoot->getInstruction();
+
+ const Type* opType = argVal1->getType();
+ assert((opType->isInteger() || isa<PointerType>(opType)) &&
+ "Shl unsupported for other types");
+ unsigned opSize = target.getTargetData().getTypeSize(opType);
+
+ CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
+ (opSize > 4)? V9::SLLXr6:V9::SLLr5,
+ argVal1, argVal2, 0, shlInstr, mvec,
+ MachineCodeForInstruction::get(shlInstr));
+ break;
+ }
+
+ case 63: // reg: Shr(reg, reg)
+ {
+ const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert((opType->isInteger() || isa<PointerType>(opType)) &&
+ "Shr unsupported for other types");
+ unsigned opSize = target.getTargetData().getTypeSize(opType);
+ Add3OperandInstr(opType->isSigned()
+ ? (opSize > 4? V9::SRAXr6 : V9::SRAr5)
+ : (opSize > 4? V9::SRLXr6 : V9::SRLr5),
+ subtreeRoot, mvec);
+ break;
+ }
+
+ case 64: // reg: Phi(reg,reg)
+ break; // don't forward the value
+
+ case 65: // reg: VANext(reg): the va_next(va_list, type) instruction
+ { // Increment the va_list pointer register according to the type.
+ // All LLVM argument types are <= 64 bits, so use one doubleword.
+ Instruction* vaNextI = subtreeRoot->getInstruction();
+ assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 &&
+ "We assumed that all LLVM parameter types <= 8 bytes!");
+ int argSize = target.getFrameInfo()->getSizeOfEachArgOnStack();
+ mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)).
+ addSImm(argSize).addRegDef(vaNextI));
+ break;
+ }
+
+ case 66: // reg: VAArg (reg): the va_arg instruction
+ { // Load argument from stack using current va_list pointer value.
+ // Use 64-bit load for all non-FP args, and LDDF or double for FP.
+ Instruction* vaArgI = subtreeRoot->getInstruction();
+ MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint()
+ ? (vaArgI->getType() == Type::FloatTy
+ ? V9::LDFi : V9::LDDFi)
+ : V9::LDXi);
+ mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)).
+ addSImm(0).addRegDef(vaArgI));
+ break;
+ }
+
+ case 71: // reg: VReg
+ case 72: // reg: Constant
+ break; // don't forward the value
+
+ default:
+ assert(0 && "Unrecognized BURG rule");
+ break;
+ }
+ }
+
+ if (forwardOperandNum >= 0) {
+ // We did not generate a machine instruction but need to use operand.
+ // If user is in the same tree, replace Value in its machine operand.
+ // If not, insert a copy instruction which should get coalesced away
+ // by register allocation.
+ if (subtreeRoot->parent() != NULL)
+ ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
+ else {
+ std::vector<MachineInstr*> minstrVec;
+ Instruction* instr = subtreeRoot->getInstruction();
+ CreateCopyInstructionsByType(target,
+ instr->getParent()->getParent(),
+ instr->getOperand(forwardOperandNum),
+ instr, minstrVec,
+ MachineCodeForInstruction::get(instr));
+ assert(minstrVec.size() > 0);
+ mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
+ }
+ }
+
+ if (maskUnsignedResult) {
+ // If result is unsigned and smaller than int reg size,
+ // we need to clear high bits of result value.
+ assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
+ Instruction* dest = subtreeRoot->getInstruction();
+ if (dest->getType()->isUnsigned()) {
+ unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
+ if (destSize <= 4) {
+ // Mask high 64 - N bits, where N = 4*destSize.
+
+ // Use a TmpInstruction to represent the
+ // intermediate result before masking. Since those instructions
+ // have already been generated, go back and substitute tmpI
+ // for dest in the result position of each one of them.
+ //
+ MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest);
+ TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(),
+ dest, NULL, "maskHi");
+ Value* srlArgToUse = tmpI;
+
+ unsigned numSubst = 0;
+ for (unsigned i=0, N=mvec.size(); i < N; ++i) {
+
+ // Make sure we substitute all occurrences of dest in these instrs.
+ // Otherwise, we will have bogus code.
+ bool someArgsWereIgnored = false;
+
+ // Make sure not to substitute an upwards-exposed use -- that would
+ // introduce a use of `tmpI' with no preceding def. Therefore,
+ // substitute a use or def-and-use operand only if a previous def
+ // operand has already been substituted (i.e., numSubst > 0).
+ //
+ numSubst += mvec[i]->substituteValue(dest, tmpI,
+ /*defsOnly*/ numSubst == 0,
+ /*notDefsAndUses*/ numSubst > 0,
+ someArgsWereIgnored);
+ assert(!someArgsWereIgnored &&
+ "Operand `dest' exists but not replaced: probably bogus!");
+ }
+ assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!");
+
+ // Left shift 32-N if size (N) is less than 32 bits.
+ // Use another tmp. virtual register to represent this result.
+ if (destSize < 4) {
+ srlArgToUse = new TmpInstruction(mcfi, dest->getType(),
+ tmpI, NULL, "maskHi2");
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI)
+ .addZImm(8*(4-destSize))
+ .addReg(srlArgToUse, MachineOperand::Def));
+ }
+
+ // Logical right shift 32-N to get zero extension in top 64-N bits.
+ mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse)
+ .addZImm(8*(4-destSize))
+ .addReg(dest, MachineOperand::Def));
+
+ } else if (destSize < 8) {
+ assert(0 && "Unsupported type size: 32 < size < 64 bits");
+ }
+ }
+ }
+ }
+
+ } // End llvm namespace
+
+ //==------------------------------------------------------------------------==//
+ // Class V9ISel Implementation
+ //==------------------------------------------------------------------------==//
+
+ bool V9ISel::runOnFunction(Function &F) {
+ // First pass - Walk the function, lowering any calls to intrinsic functions
+ // which the instruction selector cannot handle.
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+ if (CallInst *CI = dyn_cast<CallInst>(I++))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::not_intrinsic:
+ case Intrinsic::vastart:
+ case Intrinsic::vacopy:
+ case Intrinsic::vaend:
+ // We directly implement these intrinsics. Note that this knowledge
+ // is incestuously entangled with the code in
+ // SparcInstrSelection.cpp and must be updated when it is updated.
+ // Since ALL of the code in this library is incestuously intertwined
+ // with it already and sparc specific, we will live with this.
+ break;
+ default:
+ // All other intrinsic calls we must lower.
+ Instruction *Before = CI->getPrev();
+ Target.getIntrinsicLowering().LowerIntrinsicCall(CI);
+ if (Before) { // Move iterator to instruction after call
+ I = Before; ++I;
+ } else {
+ I = BB->begin();
+ }
+ }
+
+ // Build the instruction trees to be given as inputs to BURG.
+ InstrForest instrForest(&F);
+ if (SelectDebugLevel >= Select_DebugInstTrees) {
+ std::cerr << "\n\n*** Input to instruction selection for function "
+ << F.getName() << "\n\n" << F
+ << "\n\n*** Instruction trees for function "
+ << F.getName() << "\n\n";
+ instrForest.dump();
+ }
+
+ // Invoke BURG instruction selection for each tree
+ for (InstrForest::const_root_iterator RI = instrForest.roots_begin();
+ RI != instrForest.roots_end(); ++RI) {
+ InstructionNode* basicNode = *RI;
+ assert(basicNode->parent() == NULL && "A `root' node has a parent?");
+
+ // Invoke BURM to label each tree node with a state
+ burm_label(basicNode);
+ if (SelectDebugLevel >= Select_DebugBurgTrees) {
+ printcover(basicNode, 1, 0);
+ std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
+ printMatches(basicNode);
+ }
+
+ // Then recursively walk the tree to select instructions
+ SelectInstructionsForTree(basicNode, /*goalnt*/1);
+ }
+
+ // Create the MachineBasicBlocks and add all of the MachineInstrs
+ // defined in the MachineCodeForInstruction objects to the MachineBasicBlocks.
+ MachineFunction &MF = MachineFunction::get(&F);
+ std::map<const BasicBlock *, MachineBasicBlock *> MBBMap;
+ for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
+ MachineBasicBlock *MBB = new MachineBasicBlock(BI);
+ MF.getBasicBlockList().push_back(MBB);
+ MBBMap[BI] = MBB;
+
+ for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
+ MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II);
+ MBB->insert(MBB->end(), mvec.begin(), mvec.end());
+ }
+ }
+
+ // Initialize Machine-CFG for the function.
+ for (MachineFunction::iterator i = MF.begin (), e = MF.end (); i != e; ++i) {
+ MachineBasicBlock &MBB = *i;
+ const BasicBlock *BB = MBB.getBasicBlock ();
+ // for each successor S of BB, add MBBMap[S] as a successor of MBB.
+ for (succ_const_iterator si = succ_begin(BB), se = succ_end(BB); si != se;
+ ++si) {
+ MachineBasicBlock *succMBB = MBBMap[*si];
+ assert (succMBB && "Can't find MachineBasicBlock for this successor");
+ MBB.addSuccessor (succMBB);
+ }
+ }
+
+ // Insert phi elimination code
+ InsertCodeForPhis(F);
+
+ if (SelectDebugLevel >= Select_PrintMachineCode) {
+ std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
+ MachineFunction::get(&F).dump();
+ }
+
+ return true;
+ }
+
+ /// InsertCodeForPhis - This method inserts Phi elimination code for
+ /// all Phi nodes in the given function. After this method is called,
+ /// the Phi nodes still exist in the LLVM code, but copies are added to the
+ /// machine code.
+ ///
+ void V9ISel::InsertCodeForPhis(Function &F) {
+ // Iterate over every Phi node PN in F:
+ MachineFunction &MF = MachineFunction::get(&F);
+ for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) {
+ for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin();
+ const PHINode *PN = dyn_cast<PHINode>(IIt); ++IIt) {
+ // Create a new temporary register to hold the result of the Phi copy.
+ // The leak detector shouldn't track these nodes. They are not garbage,
+ // even though their parent field is never filled in.
+ Value *PhiCpRes = new PHINode(PN->getType(), PN->getName() + ":PhiCp");
+ LeakDetector::removeGarbageObject(PhiCpRes);
+
+ // For each of PN's incoming values, insert a copy in the corresponding
+ // predecessor block.
+ MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get (PN);
+ for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
+ std::vector<MachineInstr*> mvec, CpVec;
+ Target.getRegInfo()->cpValue2Value(PN->getIncomingValue(i),
+ PhiCpRes, mvec);
+ for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
+ MI != mvec.end(); ++MI) {
+ std::vector<MachineInstr*> CpVec2 =
+ FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target);
+ CpVec2.push_back(*MI);
+ CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
+ }
+ // Insert the copy instructions into the predecessor BB.
+ InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
+ MCforPN.insert (MCforPN.end (), CpVec.begin (), CpVec.end ());
+ }
+ // Insert a copy instruction from PhiCpRes to PN.
+ std::vector<MachineInstr*> mvec;
+ Target.getRegInfo()->cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN),
+ mvec);
+ BB->insert(BB->begin(), mvec.begin(), mvec.end());
+ MCforPN.insert (MCforPN.end (), mvec.begin (), mvec.end ());
+ } // for each Phi Instr in BB
+ } // for all BBs in function
+ }
+
+ /// InsertPhiElimInstructions - Inserts the instructions in CpVec into the
+ /// MachineBasicBlock corresponding to BB, just before its terminator
+ /// instruction. This is used by InsertCodeForPhis() to insert copies, above.
+ ///
+ void V9ISel::InsertPhiElimInstructions(BasicBlock *BB,
+ const std::vector<MachineInstr*>& CpVec)
+ {
+ Instruction *TermInst = (Instruction*)BB->getTerminator();
+ MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
+ MachineInstr *FirstMIOfTerm = MC4Term.front();
+ assert (FirstMIOfTerm && "No Machine Instrs for terminator");
+
+ MachineBasicBlock *MBB = FirstMIOfTerm->getParent();
+ assert(MBB && "Machine BB for predecessor's terminator not found");
+ MachineBasicBlock::iterator MCIt = FirstMIOfTerm;
+ assert(MCIt != MBB->end() && "Start inst of terminator not found");
+
+ // Insert the copy instructions just before the first machine instruction
+ // generated for the terminator.
+ MBB->insert(MCIt, CpVec.begin(), CpVec.end());
+ }
+
+ /// SelectInstructionsForTree - Recursively walk the tree to select
+ /// instructions. Do this top-down so that child instructions can exploit
+ /// decisions made at the child instructions.
+ ///
+ /// E.g., if br(setle(reg,const)) decides the constant is 0 and uses
+ /// a branch-on-integer-register instruction, then the setle node
+ /// can use that information to avoid generating the SUBcc instruction.
+ ///
+ /// Note that this cannot be done bottom-up because setle must do this
+ /// only if it is a child of the branch (otherwise, the result of setle
+ /// may be used by multiple instructions).
+ ///
+ void V9ISel::SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt) {
+ // Get the rule that matches this node.
+ int ruleForNode = burm_rule(treeRoot->state, goalnt);
+
+ if (ruleForNode == 0) {
+ std::cerr << "Could not match instruction tree for instr selection\n";
+ abort();
+ }
+
+ // Get this rule's non-terminals and the corresponding child nodes (if any)
+ short *nts = burm_nts[ruleForNode];
+
+ // First, select instructions for the current node and rule.
+ // (If this is a list node, not an instruction, then skip this step).
+ // This function is specific to the target architecture.
+ if (treeRoot->opLabel != VRegListOp) {
+ std::vector<MachineInstr*> minstrVec;
+ InstructionNode* instrNode = (InstructionNode*)treeRoot;
+ assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+ GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
+ MachineCodeForInstruction &mvec =
+ MachineCodeForInstruction::get(instrNode->getInstruction());
+ mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
+ }
+
+ // Then, recursively compile the child nodes, if any.
+ //
+ if (nts[0]) {
+ // i.e., there is at least one kid
+ InstrTreeNode* kids[2];
+ int currentRule = ruleForNode;
+ burm_kids(treeRoot, currentRule, kids);
+
+ // First skip over any chain rules so that we don't visit
+ // the current node again.
+ while (ThisIsAChainRule(currentRule)) {
+ currentRule = burm_rule(treeRoot->state, nts[0]);
+ nts = burm_nts[currentRule];
+ burm_kids(treeRoot, currentRule, kids);
+ }
+
+ // Now we have the first non-chain rule so we have found
+ // the actual child nodes. Recursively compile them.
+ for (unsigned i = 0; nts[i]; i++) {
+ assert(i < 2);
+ InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
+ if (nodeType == InstrTreeNode::NTVRegListNode ||
+ nodeType == InstrTreeNode::NTInstructionNode)
+ SelectInstructionsForTree(kids[i], nts[i]);
+ }
+ }
+
+ // Finally, do any post-processing on this node after its children
+ // have been translated.
+ if (treeRoot->opLabel != VRegListOp)
+ PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts);
+ }
+
+ /// PostprocessMachineCodeForTree - Apply any final cleanups to
+ /// machine code for the root of a subtree after selection for all its
+ /// children has been completed.
+ ///
+ void V9ISel::PostprocessMachineCodeForTree(InstructionNode *instrNode,
+ int ruleForNode, short *nts) {
+ // Fix up any constant operands in the machine instructions to either
+ // use an immediate field or to load the constant into a register.
+ // Walk backwards and use direct indexes to allow insertion before current.
+ Instruction* vmInstr = instrNode->getInstruction();
+ MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
+ for (unsigned i = mvec.size(); i != 0; --i) {
+ std::vector<MachineInstr*> loadConstVec =
+ FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
+ mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
+ }
+ }
+
+ /// createSparcV9BurgInstSelector - Creates and returns a new SparcV9
+ /// BURG-based instruction selection pass.
+ ///
+ FunctionPass *llvm::createSparcV9BurgInstSelector(TargetMachine &TM) {
+ return new V9ISel(TM);
+ }
Index: llvm/lib/Target/SparcV9/SparcV9BurgISel.h
diff -c /dev/null llvm/lib/Target/SparcV9/SparcV9BurgISel.h:1.1
*** /dev/null Wed Aug 4 02:29:02 2004
--- llvm/lib/Target/SparcV9/SparcV9BurgISel.h Wed Aug 4 02:28:51 2004
***************
*** 0 ****
--- 1,56 ----
+ //===-- SparcV9BurgISel.h ---------------------------------------*- C++ -*-===//
+ //
+ // The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // Global functions exposed by the BURG-based instruction selector
+ // for the SparcV9 target.
+ //
+ //===----------------------------------------------------------------------===//
+
+ #ifndef SPARCV9BURGISEL_H
+ #define SPARCV9BURGISEL_H
+
+ //#include "llvm/DerivedTypes.h"
+ //#include "llvm/Instruction.h"
+ //#include "SparcV9Internals.h"
+
+ namespace llvm {
+
+ class Constant;
+ class Instruction;
+ class TargetMachine;
+ class Function;
+ class Value;
+ class MachineInstr;
+ class MachineCodeForInstruction;
+ class FunctionPass;
+
+ /// ConstantMayNotFitInImmedField - Test if this constant may not fit in the
+ /// immediate field of the machine instructions (probably) generated for this
+ /// instruction.
+ ///
+ bool ConstantMayNotFitInImmedField (const Constant *CV, const Instruction *I);
+
+ /// CreateCodeToLoadConst - Create an instruction sequence to put the
+ /// constant `val' into the virtual register `dest'. `val' may be a Constant
+ /// or a GlobalValue, viz., the constant address of a global variable or
+ /// function. The generated instructions are returned in `mvec'. Any temp.
+ /// registers (TmpInstruction) created are recorded in mcfi.
+ ///
+ void CreateCodeToLoadConst (const TargetMachine &target, Function *F,
+ Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
+ MachineCodeForInstruction &mcfi);
+
+ /// createSparcV9BurgInstSelector - Creates and returns a new SparcV9
+ /// BURG-based instruction selection pass.
+ ///
+ FunctionPass *createSparcV9BurgInstSelector(TargetMachine &TM);
+
+ } // End llvm namespace
+
+ #endif
Index: llvm/lib/Target/SparcV9/Makefile
diff -u llvm/lib/Target/SparcV9/Makefile:1.42 llvm/lib/Target/SparcV9/Makefile:1.43
--- llvm/lib/Target/SparcV9/Makefile:1.42 Sun Apr 25 02:04:49 2004
+++ llvm/lib/Target/SparcV9/Makefile Wed Aug 4 02:28:51 2004
@@ -8,7 +8,7 @@
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME = sparcv9
-DIRS = InstrSelection RegAlloc LiveVar
+DIRS = RegAlloc LiveVar
ExtraSource = SparcV9.burm.cpp
More information about the llvm-commits
mailing list