[llvm-commits] CVS: llvm/lib/Bytecode/Writer/Writer.cpp WriterInternals.h ConstantWriter.cpp InstructionWriter.cpp WriterPrimitives.h
LLVM
llvm at cs.uiuc.edu
Sun Jul 25 11:07:46 PDT 2004
Changes in directory llvm/lib/Bytecode/Writer:
Writer.cpp updated: 1.70 -> 1.71
WriterInternals.h updated: 1.21 -> 1.22
ConstantWriter.cpp (r1.40) removed
InstructionWriter.cpp (r1.42) removed
WriterPrimitives.h (r1.7) removed
---
Log message:
bug 263: http://llvm.cs.uiuc.edu/PR263 :
- encode/decode target triple and dependent libraries
bug 401: http://llvm.cs.uiuc.edu/PR401 :
- fix encoding/decoding of FP values to be little-endian only
bug 402: http://llvm.cs.uiuc.edu/PR402 :
- initial (compatible) cut at 24-bit types instead of 32-bit
- reduce size of block headers by 50%
Other:
- cleanup Writer by consolidating to one compilation unit, rem. other files
- use a std::vector instead of std::deque so the buffer can be allocated
in multiples of 64KByte chunks rather than in multiples of some smaller
(default) number.
---
Diffs of the changes: (+832 -74)
Index: llvm/lib/Bytecode/Writer/Writer.cpp
diff -u llvm/lib/Bytecode/Writer/Writer.cpp:1.70 llvm/lib/Bytecode/Writer/Writer.cpp:1.71
--- llvm/lib/Bytecode/Writer/Writer.cpp:1.70 Sat Jul 17 19:16:21 2004
+++ llvm/lib/Bytecode/Writer/Writer.cpp Sun Jul 25 13:07:36 2004
@@ -10,24 +10,21 @@
// This library implements the functionality defined in llvm/Bytecode/Writer.h
//
// Note that this file uses an unusual technique of outputting all the bytecode
-// to a deque of unsigned char, then copies the deque to an ostream. The
+// to a vector of unsigned char, then copies the vector to an ostream. The
// reason for this is that we must do "seeking" in the stream to do back-
// patching, and some very important ostreams that we want to support (like
// pipes) do not support seeking. :( :( :(
//
-// The choice of the deque data structure is influenced by the extremely fast
-// "append" speed, plus the free "seek"/replace in the middle of the stream. I
-// didn't use a vector because the stream could end up very large and copying
-// the whole thing to reallocate would be kinda silly.
-//
//===----------------------------------------------------------------------===//
#include "WriterInternals.h"
#include "llvm/Bytecode/WriteBytecodePass.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include <cstring>
@@ -39,15 +36,720 @@
static Statistic<>
BytesWritten("bytecodewriter", "Number of bytecode bytes written");
-BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
+//===----------------------------------------------------------------------===//
+//=== Output Primitives ===//
+//===----------------------------------------------------------------------===//
+
+// output - If a position is specified, it must be in the valid portion of the
+// string... note that this should be inlined always so only the relevant IF
+// body should be included.
+inline void BytecodeWriter::output(unsigned i, int pos) {
+ if (pos == -1) { // Be endian clean, little endian is our friend
+ Out.push_back((unsigned char)i);
+ Out.push_back((unsigned char)(i >> 8));
+ Out.push_back((unsigned char)(i >> 16));
+ Out.push_back((unsigned char)(i >> 24));
+ } else {
+ Out[pos ] = (unsigned char)i;
+ Out[pos+1] = (unsigned char)(i >> 8);
+ Out[pos+2] = (unsigned char)(i >> 16);
+ Out[pos+3] = (unsigned char)(i >> 24);
+ }
+}
+
+inline void BytecodeWriter::output(int i) {
+ output((unsigned)i);
+}
+
+/// output_vbr - Output an unsigned value, by using the least number of bytes
+/// possible. This is useful because many of our "infinite" values are really
+/// very small most of the time; but can be large a few times.
+/// Data format used: If you read a byte with the high bit set, use the low
+/// seven bits as data and then read another byte. Note that using this may
+/// cause the output buffer to become unaligned.
+inline void BytecodeWriter::output_vbr(uint64_t i) {
+ while (1) {
+ if (i < 0x80) { // done?
+ Out.push_back((unsigned char)i); // We know the high bit is clear...
+ return;
+ }
+
+ // Nope, we are bigger than a character, output the next 7 bits and set the
+ // high bit to say that there is more coming...
+ Out.push_back(0x80 | ((unsigned char)i & 0x7F));
+ i >>= 7; // Shift out 7 bits now...
+ }
+}
+
+inline void BytecodeWriter::output_vbr(unsigned i) {
+ while (1) {
+ if (i < 0x80) { // done?
+ Out.push_back((unsigned char)i); // We know the high bit is clear...
+ return;
+ }
+
+ // Nope, we are bigger than a character, output the next 7 bits and set the
+ // high bit to say that there is more coming...
+ Out.push_back(0x80 | ((unsigned char)i & 0x7F));
+ i >>= 7; // Shift out 7 bits now...
+ }
+}
+
+inline void BytecodeWriter::output_typeid(unsigned i) {
+ if (i <= 0x00FFFFFF)
+ this->output_vbr(i);
+ else {
+ this->output_vbr(0x00FFFFFF);
+ this->output_vbr(i);
+ }
+}
+
+inline void BytecodeWriter::output_vbr(int64_t i) {
+ if (i < 0)
+ output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit...
+ else
+ output_vbr((uint64_t)i << 1); // Low order bit is clear.
+}
+
+
+inline void BytecodeWriter::output_vbr(int i) {
+ if (i < 0)
+ output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit...
+ else
+ output_vbr((unsigned)i << 1); // Low order bit is clear.
+}
+
+// align32 - emit the minimal number of bytes that will bring us to 32 bit
+// alignment...
+//
+inline void BytecodeWriter::align32() {
+ int NumPads = (4-(Out.size() & 3)) & 3; // Bytes to get padding to 32 bits
+ while (NumPads--) Out.push_back((unsigned char)0xAB);
+}
+
+inline void BytecodeWriter::output(const std::string &s, bool Aligned ) {
+ unsigned Len = s.length();
+ output_vbr(Len ); // Strings may have an arbitrary length...
+ Out.insert(Out.end(), s.begin(), s.end());
+
+ if (Aligned)
+ align32(); // Make sure we are now aligned...
+}
+
+inline void BytecodeWriter::output_data(const void *Ptr, const void *End) {
+ Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End);
+}
+
+inline void BytecodeWriter::output_float(float& FloatVal) {
+ /// FIXME: This isn't optimal, it has size problems on some platforms
+ /// where FP is not IEEE.
+ union {
+ float f;
+ uint32_t i;
+ } FloatUnion;
+ FloatUnion.f = FloatVal;
+ Out.push_back( static_cast<unsigned char>( (FloatUnion.i & 0xFF )));
+ Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 8) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 16) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 24) & 0xFF));
+}
+
+inline void BytecodeWriter::output_double(double& DoubleVal) {
+ /// FIXME: This isn't optimal, it has size problems on some platforms
+ /// where FP is not IEEE.
+ union {
+ double d;
+ uint64_t i;
+ } DoubleUnion;
+ DoubleUnion.d = DoubleVal;
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i & 0xFF )));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 8) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 16) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 24) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 32) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 40) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 48) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 56) & 0xFF));
+}
+
+inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter& w,
+ bool elideIfEmpty, bool hasLongFormat )
+ : Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){
+
+ if (HasLongFormat) {
+ w.output(ID);
+ w.output(0U); // For length in long format
+ } else {
+ w.output(0U); /// Place holder for ID and length for this block
+ }
+ Loc = w.size();
+}
+
+inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out
+ // of scope...
+ if (Loc == Writer.size() && ElideIfEmpty) {
+ // If the block is empty, and we are allowed to, do not emit the block at
+ // all!
+ Writer.resize(Writer.size()-(HasLongFormat?8:4));
+ return;
+ }
+
+ //cerr << "OldLoc = " << Loc << " NewLoc = " << NewLoc << " diff = "
+ // << (NewLoc-Loc) << endl;
+ if (HasLongFormat)
+ Writer.output(unsigned(Writer.size()-Loc), int(Loc-4));
+ else
+ Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4));
+ Writer.align32(); // Blocks must ALWAYS be aligned
+}
+
+//===----------------------------------------------------------------------===//
+//=== Constant Output ===//
+//===----------------------------------------------------------------------===//
+
+void BytecodeWriter::outputType(const Type *T) {
+ output_vbr((unsigned)T->getTypeID());
+
+ // That's all there is to handling primitive types...
+ if (T->isPrimitiveType()) {
+ return; // We might do this if we alias a prim type: %x = type int
+ }
+
+ switch (T->getTypeID()) { // Handle derived types now.
+ case Type::FunctionTyID: {
+ const FunctionType *MT = cast<FunctionType>(T);
+ int Slot = Table.getSlot(MT->getReturnType());
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+
+ // Output the number of arguments to function (+1 if varargs):
+ output_vbr((unsigned)MT->getNumParams()+MT->isVarArg());
+
+ // Output all of the arguments...
+ FunctionType::param_iterator I = MT->param_begin();
+ for (; I != MT->param_end(); ++I) {
+ Slot = Table.getSlot(*I);
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+ }
+
+ // Terminate list with VoidTy if we are a varargs function...
+ if (MT->isVarArg())
+ output_typeid((unsigned)Type::VoidTyID);
+ break;
+ }
+
+ case Type::ArrayTyID: {
+ const ArrayType *AT = cast<ArrayType>(T);
+ int Slot = Table.getSlot(AT->getElementType());
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+ //std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl;
+
+ output_vbr(AT->getNumElements());
+ break;
+ }
+
+ case Type::StructTyID: {
+ const StructType *ST = cast<StructType>(T);
+
+ // Output all of the element types...
+ for (StructType::element_iterator I = ST->element_begin(),
+ E = ST->element_end(); I != E; ++I) {
+ int Slot = Table.getSlot(*I);
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+ }
+
+ // Terminate list with VoidTy
+ output_typeid((unsigned)Type::VoidTyID);
+ break;
+ }
+
+ case Type::PointerTyID: {
+ const PointerType *PT = cast<PointerType>(T);
+ int Slot = Table.getSlot(PT->getElementType());
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+ break;
+ }
+
+ case Type::OpaqueTyID: {
+ // No need to emit anything, just the count of opaque types is enough.
+ break;
+ }
+
+ //case Type::PackedTyID:
+ default:
+ std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
+ << " Type '" << T->getDescription() << "'\n";
+ break;
+ }
+}
+
+void BytecodeWriter::outputConstant(const Constant *CPV) {
+ assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) &&
+ "Shouldn't output null constants!");
+
+ // We must check for a ConstantExpr before switching by type because
+ // a ConstantExpr can be of any type, and has no explicit value.
+ //
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
+ // FIXME: Encoding of constant exprs could be much more compact!
+ assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
+ output_vbr(CE->getNumOperands()); // flags as an expr
+ output_vbr(CE->getOpcode()); // flags as an expr
+
+ for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
+ int Slot = Table.getSlot(*OI);
+ assert(Slot != -1 && "Unknown constant used in ConstantExpr!!");
+ output_vbr((unsigned)Slot);
+ Slot = Table.getSlot((*OI)->getType());
+ output_typeid((unsigned)Slot);
+ }
+ return;
+ } else {
+ output_vbr(0U); // flag as not a ConstantExpr
+ }
+
+ switch (CPV->getType()->getTypeID()) {
+ case Type::BoolTyID: // Boolean Types
+ if (cast<ConstantBool>(CPV)->getValue())
+ output_vbr(1U);
+ else
+ output_vbr(0U);
+ break;
+
+ case Type::UByteTyID: // Unsigned integer types...
+ case Type::UShortTyID:
+ case Type::UIntTyID:
+ case Type::ULongTyID:
+ output_vbr(cast<ConstantUInt>(CPV)->getValue());
+ break;
+
+ case Type::SByteTyID: // Signed integer types...
+ case Type::ShortTyID:
+ case Type::IntTyID:
+ case Type::LongTyID:
+ output_vbr(cast<ConstantSInt>(CPV)->getValue());
+ break;
+
+ case Type::ArrayTyID: {
+ const ConstantArray *CPA = cast<ConstantArray>(CPV);
+ assert(!CPA->isString() && "Constant strings should be handled specially!");
+
+ for (unsigned i = 0; i != CPA->getNumOperands(); ++i) {
+ int Slot = Table.getSlot(CPA->getOperand(i));
+ assert(Slot != -1 && "Constant used but not available!!");
+ output_vbr((unsigned)Slot);
+ }
+ break;
+ }
+
+ case Type::StructTyID: {
+ const ConstantStruct *CPS = cast<ConstantStruct>(CPV);
+ const std::vector<Use> &Vals = CPS->getValues();
+
+ for (unsigned i = 0; i < Vals.size(); ++i) {
+ int Slot = Table.getSlot(Vals[i]);
+ assert(Slot != -1 && "Constant used but not available!!");
+ output_vbr((unsigned)Slot);
+ }
+ break;
+ }
+
+ case Type::PointerTyID:
+ assert(0 && "No non-null, non-constant-expr constants allowed!");
+ abort();
+
+ case Type::FloatTyID: { // Floating point types...
+ float Tmp = (float)cast<ConstantFP>(CPV)->getValue();
+ output_float(Tmp);
+ break;
+ }
+ case Type::DoubleTyID: {
+ double Tmp = cast<ConstantFP>(CPV)->getValue();
+ output_double(Tmp);
+ break;
+ }
+
+ case Type::VoidTyID:
+ case Type::LabelTyID:
+ default:
+ std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
+ << " type '" << *CPV->getType() << "'\n";
+ break;
+ }
+ return;
+}
+
+void BytecodeWriter::outputConstantStrings() {
+ SlotCalculator::string_iterator I = Table.string_begin();
+ SlotCalculator::string_iterator E = Table.string_end();
+ if (I == E) return; // No strings to emit
+
+ // If we have != 0 strings to emit, output them now. Strings are emitted into
+ // the 'void' type plane.
+ output_vbr(unsigned(E-I));
+ output_typeid(Type::VoidTyID);
+
+ // Emit all of the strings.
+ for (I = Table.string_begin(); I != E; ++I) {
+ const ConstantArray *Str = *I;
+ int Slot = Table.getSlot(Str->getType());
+ assert(Slot != -1 && "Constant string of unknown type?");
+ output_typeid((unsigned)Slot);
+
+ // Now that we emitted the type (which indicates the size of the string),
+ // emit all of the characters.
+ std::string Val = Str->getAsString();
+ output_data(Val.c_str(), Val.c_str()+Val.size());
+ }
+}
+
+//===----------------------------------------------------------------------===//
+//=== Instruction Output ===//
+//===----------------------------------------------------------------------===//
+typedef unsigned char uchar;
+
+// outputInstructionFormat0 - Output those wierd instructions that have a large
+// number of operands or have large operands themselves...
+//
+// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
+//
+void BytecodeWriter::outputInstructionFormat0(const Instruction *I, unsigned Opcode,
+ const SlotCalculator &Table,
+ unsigned Type) {
+ // Opcode must have top two bits clear...
+ output_vbr(Opcode << 2); // Instruction Opcode ID
+ output_typeid(Type); // Result type
+
+ unsigned NumArgs = I->getNumOperands();
+ output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
+ isa<VAArgInst>(I)));
+
+ if (!isa<GetElementPtrInst>(&I)) {
+ for (unsigned i = 0; i < NumArgs; ++i) {
+ int Slot = Table.getSlot(I->getOperand(i));
+ assert(Slot >= 0 && "No slot number for value!?!?");
+ output_vbr((unsigned)Slot);
+ }
+
+ if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
+ int Slot = Table.getSlot(I->getType());
+ assert(Slot != -1 && "Cast return type unknown?");
+ output_typeid((unsigned)Slot);
+ } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
+ int Slot = Table.getSlot(VAI->getArgType());
+ assert(Slot != -1 && "VarArg argument type unknown?");
+ output_typeid((unsigned)Slot);
+ }
+
+ } else {
+ int Slot = Table.getSlot(I->getOperand(0));
+ assert(Slot >= 0 && "No slot number for value!?!?");
+ output_vbr(unsigned(Slot));
+
+ // We need to encode the type of sequential type indices into their slot #
+ unsigned Idx = 1;
+ for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
+ Idx != NumArgs; ++TI, ++Idx) {
+ Slot = Table.getSlot(I->getOperand(Idx));
+ assert(Slot >= 0 && "No slot number for value!?!?");
+
+ if (isa<SequentialType>(*TI)) {
+ unsigned IdxId;
+ switch (I->getOperand(Idx)->getType()->getTypeID()) {
+ default: assert(0 && "Unknown index type!");
+ case Type::UIntTyID: IdxId = 0; break;
+ case Type::IntTyID: IdxId = 1; break;
+ case Type::ULongTyID: IdxId = 2; break;
+ case Type::LongTyID: IdxId = 3; break;
+ }
+ Slot = (Slot << 2) | IdxId;
+ }
+ output_vbr(unsigned(Slot));
+ }
+ }
+
+ align32(); // We must maintain correct alignment!
+}
+
+
+// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
+// This are more annoying than most because the signature of the call does not
+// tell us anything about the types of the arguments in the varargs portion.
+// Because of this, we encode (as type 0) all of the argument types explicitly
+// before the argument value. This really sucks, but you shouldn't be using
+// varargs functions in your code! *death to printf*!
+//
+// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
+//
+void BytecodeWriter::outputInstrVarArgsCall(const Instruction *I,
+ unsigned Opcode,
+ const SlotCalculator &Table,
+ unsigned Type) {
+ assert(isa<CallInst>(I) || isa<InvokeInst>(I));
+ // Opcode must have top two bits clear...
+ output_vbr(Opcode << 2); // Instruction Opcode ID
+ output_typeid(Type); // Result type (varargs type)
+
+ const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ unsigned NumParams = FTy->getNumParams();
+
+ unsigned NumFixedOperands;
+ if (isa<CallInst>(I)) {
+ // Output an operand for the callee and each fixed argument, then two for
+ // each variable argument.
+ NumFixedOperands = 1+NumParams;
+ } else {
+ assert(isa<InvokeInst>(I) && "Not call or invoke??");
+ // Output an operand for the callee and destinations, then two for each
+ // variable argument.
+ NumFixedOperands = 3+NumParams;
+ }
+ output_vbr(2 * I->getNumOperands()-NumFixedOperands);
+
+ // The type for the function has already been emitted in the type field of the
+ // instruction. Just emit the slot # now.
+ for (unsigned i = 0; i != NumFixedOperands; ++i) {
+ int Slot = Table.getSlot(I->getOperand(i));
+ assert(Slot >= 0 && "No slot number for value!?!?");
+ output_vbr((unsigned)Slot);
+ }
+
+ for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
+ // Output Arg Type ID
+ int Slot = Table.getSlot(I->getOperand(i)->getType());
+ assert(Slot >= 0 && "No slot number for value!?!?");
+ output_typeid((unsigned)Slot);
+
+ // Output arg ID itself
+ Slot = Table.getSlot(I->getOperand(i));
+ assert(Slot >= 0 && "No slot number for value!?!?");
+ output_vbr((unsigned)Slot);
+ }
+ align32(); // We must maintain correct alignment!
+}
+
+
+// outputInstructionFormat1 - Output one operand instructions, knowing that no
+// operand index is >= 2^12.
+//
+inline void BytecodeWriter::outputInstructionFormat1(const Instruction *I,
+ unsigned Opcode,
+ unsigned *Slots,
+ unsigned Type) {
+ // bits Instruction format:
+ // --------------------------
+ // 01-00: Opcode type, fixed to 1.
+ // 07-02: Opcode
+ // 19-08: Resulting type plane
+ // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
+ //
+ unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
+ // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
+ output(Bits);
+}
+
+
+// outputInstructionFormat2 - Output two operand instructions, knowing that no
+// operand index is >= 2^8.
+//
+inline void BytecodeWriter::outputInstructionFormat2(const Instruction *I,
+ unsigned Opcode,
+ unsigned *Slots,
+ unsigned Type) {
+ // bits Instruction format:
+ // --------------------------
+ // 01-00: Opcode type, fixed to 2.
+ // 07-02: Opcode
+ // 15-08: Resulting type plane
+ // 23-16: Operand #1
+ // 31-24: Operand #2
+ //
+ unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
+ (Slots[0] << 16) | (Slots[1] << 24);
+ // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " "
+ // << Slots[1] << endl;
+ output(Bits);
+}
+
+
+// outputInstructionFormat3 - Output three operand instructions, knowing that no
+// operand index is >= 2^6.
+//
+inline void BytecodeWriter::outputInstructionFormat3(const Instruction *I,
+ unsigned Opcode,
+ unsigned *Slots,
+ unsigned Type) {
+ // bits Instruction format:
+ // --------------------------
+ // 01-00: Opcode type, fixed to 3.
+ // 07-02: Opcode
+ // 13-08: Resulting type plane
+ // 19-14: Operand #1
+ // 25-20: Operand #2
+ // 31-26: Operand #3
+ //
+ unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
+ (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
+ //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " "
+ // << Slots[1] << " " << Slots[2] << endl;
+ output(Bits);
+}
+
+void BytecodeWriter::outputInstruction(const Instruction &I) {
+ assert(I.getOpcode() < 62 && "Opcode too big???");
+ unsigned Opcode = I.getOpcode();
+ unsigned NumOperands = I.getNumOperands();
+
+ // Encode 'volatile load' as 62 and 'volatile store' as 63.
+ if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
+ Opcode = 62;
+ if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
+ Opcode = 63;
+
+ // Figure out which type to encode with the instruction. Typically we want
+ // the type of the first parameter, as opposed to the type of the instruction
+ // (for example, with setcc, we always know it returns bool, but the type of
+ // the first param is actually interesting). But if we have no arguments
+ // we take the type of the instruction itself.
+ //
+ const Type *Ty;
+ switch (I.getOpcode()) {
+ case Instruction::Select:
+ case Instruction::Malloc:
+ case Instruction::Alloca:
+ Ty = I.getType(); // These ALWAYS want to encode the return type
+ break;
+ case Instruction::Store:
+ Ty = I.getOperand(1)->getType(); // Encode the pointer type...
+ assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
+ break;
+ default: // Otherwise use the default behavior...
+ Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
+ break;
+ }
+
+ unsigned Type;
+ int Slot = Table.getSlot(Ty);
+ assert(Slot != -1 && "Type not available!!?!");
+ Type = (unsigned)Slot;
+
+ // Varargs calls and invokes are encoded entirely different from any other
+ // instructions.
+ if (const CallInst *CI = dyn_cast<CallInst>(&I)){
+ const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
+ if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
+ outputInstrVarArgsCall(CI, Opcode, Table, Type);
+ return;
+ }
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+ const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
+ if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
+ outputInstrVarArgsCall(II, Opcode, Table, Type);
+ return;
+ }
+ }
+
+ if (NumOperands <= 3) {
+ // Make sure that we take the type number into consideration. We don't want
+ // to overflow the field size for the instruction format we select.
+ //
+ unsigned MaxOpSlot = Type;
+ unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
+
+ for (unsigned i = 0; i != NumOperands; ++i) {
+ int slot = Table.getSlot(I.getOperand(i));
+ assert(slot != -1 && "Broken bytecode!");
+ if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
+ Slots[i] = unsigned(slot);
+ }
+
+ // Handle the special cases for various instructions...
+ if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
+ // Cast has to encode the destination type as the second argument in the
+ // packet, or else we won't know what type to cast to!
+ Slots[1] = Table.getSlot(I.getType());
+ assert(Slots[1] != ~0U && "Cast return type unknown?");
+ if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
+ NumOperands++;
+ } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
+ Slots[1] = Table.getSlot(VANI->getArgType());
+ assert(Slots[1] != ~0U && "va_next return type unknown?");
+ if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
+ NumOperands++;
+ } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ // We need to encode the type of sequential type indices into their slot #
+ unsigned Idx = 1;
+ for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
+ I != E; ++I, ++Idx)
+ if (isa<SequentialType>(*I)) {
+ unsigned IdxId;
+ switch (GEP->getOperand(Idx)->getType()->getTypeID()) {
+ default: assert(0 && "Unknown index type!");
+ case Type::UIntTyID: IdxId = 0; break;
+ case Type::IntTyID: IdxId = 1; break;
+ case Type::ULongTyID: IdxId = 2; break;
+ case Type::LongTyID: IdxId = 3; break;
+ }
+ Slots[Idx] = (Slots[Idx] << 2) | IdxId;
+ if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
+ }
+ }
+
+ // Decide which instruction encoding to use. This is determined primarily
+ // by the number of operands, and secondarily by whether or not the max
+ // operand will fit into the instruction encoding. More operands == fewer
+ // bits per operand.
+ //
+ switch (NumOperands) {
+ case 0:
+ case 1:
+ if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
+ outputInstructionFormat1(&I, Opcode, Slots, Type);
+ return;
+ }
+ break;
+
+ case 2:
+ if (MaxOpSlot < (1 << 8)) {
+ outputInstructionFormat2(&I, Opcode, Slots, Type);
+ return;
+ }
+ break;
+
+ case 3:
+ if (MaxOpSlot < (1 << 6)) {
+ outputInstructionFormat3(&I, Opcode, Slots, Type);
+ return;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+ // If we weren't handled before here, we either have a large number of
+ // operands or a large operand index that we are referring to.
+ outputInstructionFormat0(&I, Opcode, Table, Type);
+}
+
+//===----------------------------------------------------------------------===//
+//=== Block Output ===//
+//===----------------------------------------------------------------------===//
+
+BytecodeWriter::BytecodeWriter(std::vector<unsigned char> &o, const Module *M)
: Out(o), Table(M) {
// Emit the signature...
static const unsigned char *Sig = (const unsigned char*)"llvm";
- output_data(Sig, Sig+4, Out);
+ output_data(Sig, Sig+4);
// Emit the top level CLASS block.
- BytecodeBlock ModuleBlock(BytecodeFormat::Module, Out);
+ BytecodeBlock ModuleBlock(BytecodeFormat::ModuleBlockID, *this, false, true);
bool isBigEndian = M->getEndianness() == Module::BigEndian;
bool hasLongPointers = M->getPointerSize() == Module::Pointer64;
@@ -56,14 +758,14 @@
// Output the version identifier... we are currently on bytecode version #2,
// which corresponds to LLVM v1.3.
- unsigned Version = (2 << 4) | (unsigned)isBigEndian | (hasLongPointers << 1) |
+ unsigned Version = (3 << 4) | (unsigned)isBigEndian | (hasLongPointers << 1) |
(hasNoEndianness << 2) | (hasNoPointerSize << 3);
- output_vbr(Version, Out);
- align32(Out);
+ output_vbr(Version);
+ align32();
// The Global type plane comes first
{
- BytecodeBlock CPool(BytecodeFormat::GlobalTypePlane, Out );
+ BytecodeBlock CPool(BytecodeFormat::GlobalTypePlaneBlockID, *this );
outputTypes(Type::FirstDerivedTyID);
}
@@ -94,7 +796,7 @@
unsigned NumEntries = Types.size() - TypeNum;
// Output type header: [num entries]
- output_vbr(NumEntries, Out);
+ output_vbr(NumEntries);
for (unsigned i = TypeNum; i < TypeNum+NumEntries; ++i)
outputType(Types[i]);
@@ -126,12 +828,12 @@
// Output type header: [num entries][type id number]
//
- output_vbr(NC, Out);
+ output_vbr(NC);
// Output the Type ID Number...
int Slot = Table.getSlot(Plane.front()->getType());
assert (Slot != -1 && "Type in constant pool but not in function!!");
- output_vbr((unsigned)Slot, Out);
+ output_typeid((unsigned)Slot);
for (unsigned i = ValNo; i < ValNo+NC; ++i) {
const Value *V = Plane[i];
@@ -146,7 +848,7 @@
}
void BytecodeWriter::outputConstants(bool isFunction) {
- BytecodeBlock CPool(BytecodeFormat::ConstantPool, Out,
+ BytecodeBlock CPool(BytecodeFormat::ConstantPoolBlockID, *this,
true /* Elide block if empty */);
unsigned NumPlanes = Table.getNumPlanes();
@@ -189,7 +891,7 @@
}
void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
- BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfo, Out);
+ BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfoBlockID, *this);
// Output the types for the global variables in the module...
for (Module::const_giterator I = M->gbegin(), End = M->gend(); I != End;++I) {
@@ -200,37 +902,48 @@
// bit5+ = Slot # for type
unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) |
(I->hasInitializer() << 1) | (unsigned)I->isConstant();
- output_vbr(oSlot, Out);
+ output_vbr(oSlot );
// If we have an initializer, output it now.
if (I->hasInitializer()) {
Slot = Table.getSlot((Value*)I->getInitializer());
assert(Slot != -1 && "No slot for global var initializer!");
- output_vbr((unsigned)Slot, Out);
+ output_vbr((unsigned)Slot);
}
}
- output_vbr((unsigned)Table.getSlot(Type::VoidTy), Out);
+ output_typeid((unsigned)Table.getSlot(Type::VoidTy));
// Output the types of the functions in this module...
for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) {
int Slot = Table.getSlot(I->getType());
assert(Slot != -1 && "Module const pool is broken!");
assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!");
- output_vbr((unsigned)Slot, Out);
+ output_typeid((unsigned)Slot);
}
- output_vbr((unsigned)Table.getSlot(Type::VoidTy), Out);
+ output_typeid((unsigned)Table.getSlot(Type::VoidTy));
+
+ // Put out the list of dependent libraries for the Module
+ Module::const_literator LI = M->lbegin();
+ Module::const_literator LE = M->lend();
+ output_vbr( unsigned(LE - LI) ); // Put out the number of dependent libraries
+ for ( ; LI != LE; ++LI ) {
+ output(*LI, /*aligned=*/false);
+ }
+
+ // Output the target triple from the module
+ output(M->getTargetTriple(), /*aligned=*/ true);
}
void BytecodeWriter::outputInstructions(const Function *F) {
- BytecodeBlock ILBlock(BytecodeFormat::InstructionList, Out);
+ BytecodeBlock ILBlock(BytecodeFormat::InstructionListBlockID, *this);
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
outputInstruction(*I);
}
void BytecodeWriter::outputFunction(const Function *F) {
- BytecodeBlock FunctionBlock(BytecodeFormat::Function, Out);
- output_vbr(getEncodedLinkage(F), Out);
+ BytecodeBlock FunctionBlock(BytecodeFormat::FunctionBlockID, *this);
+ output_vbr(getEncodedLinkage(F));
// If this is an external function, there is nothing else to emit!
if (F->isExternal()) return;
@@ -273,17 +986,17 @@
case 0: // Avoid emitting two vbr's if possible.
case 1:
case 2:
- output_vbr((PlaneNo << 2) | End-StartNo, Out);
+ output_vbr((PlaneNo << 2) | End-StartNo);
break;
default:
// Output the number of things.
- output_vbr((unsigned(End-StartNo) << 2) | 3, Out);
- output_vbr(PlaneNo, Out); // Emit the type plane this is
+ output_vbr((unsigned(End-StartNo) << 2) | 3);
+ output_typeid(PlaneNo); // Emit the type plane this is
break;
}
for (unsigned i = StartNo; i != End; ++i)
- output_vbr(Table.getGlobalSlot(Plane[i]), Out);
+ output_vbr(Table.getGlobalSlot(Plane[i]));
}
void BytecodeWriter::outputCompactionTypes(unsigned StartNo) {
@@ -293,7 +1006,7 @@
// The compaction types may have been uncompactified back to the
// global types. If so, we just write an empty table
if (CTypes.size() == 0 ) {
- output_vbr(0U, Out);
+ output_vbr(0U);
return;
}
@@ -303,14 +1016,15 @@
unsigned NumTypes = CTypes.size() - StartNo;
// Output the number of types.
- output_vbr(NumTypes, Out);
+ output_vbr(NumTypes);
for (unsigned i = StartNo; i < StartNo+NumTypes; ++i)
- output_vbr(Table.getGlobalSlot(CTypes[i]), Out);
+ output_typeid(Table.getGlobalSlot(CTypes[i]));
}
void BytecodeWriter::outputCompactionTable() {
- BytecodeBlock CTB(BytecodeFormat::CompactionTable, Out, true/*ElideIfEmpty*/);
+ BytecodeBlock CTB(BytecodeFormat::CompactionTableBlockID, *this,
+ true/*ElideIfEmpty*/);
const std::vector<std::vector<const Value*> > &CT =Table.getCompactionTable();
// First thing is first, emit the type compaction table if there is one.
@@ -325,16 +1039,16 @@
// space!
if ( MST.isEmpty() ) return;
- BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTable, Out,
+ BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTableBlockID, *this,
true/* ElideIfEmpty*/);
//Symtab block header for types: [num entries]
- output_vbr(MST.num_types(), Out);
+ output_vbr(MST.num_types());
for (SymbolTable::type_const_iterator TI = MST.type_begin(),
TE = MST.type_end(); TI != TE; ++TI ) {
//Symtab entry:[def slot #][name]
- output_vbr((unsigned)Table.getSlot(TI->second), Out);
- output(TI->first, Out, /*align=*/false);
+ output_typeid((unsigned)Table.getSlot(TI->second));
+ output(TI->first, /*align=*/false);
}
// Now do each of the type planes in order.
@@ -347,29 +1061,30 @@
if (I == End) continue; // Don't mess with an absent type...
// Symtab block header: [num entries][type id number]
- output_vbr(MST.type_size(PI->first), Out);
+ output_vbr(MST.type_size(PI->first));
Slot = Table.getSlot(PI->first);
assert(Slot != -1 && "Type in symtab, but not in table!");
- output_vbr((unsigned)Slot, Out);
+ output_typeid((unsigned)Slot);
for (; I != End; ++I) {
// Symtab entry: [def slot #][name]
Slot = Table.getSlot(I->second);
assert(Slot != -1 && "Value in symtab but has no slot number!!");
- output_vbr((unsigned)Slot, Out);
- output(I->first, Out, false); // Don't force alignment...
+ output_vbr((unsigned)Slot);
+ output(I->first, false); // Don't force alignment...
}
}
}
-void llvm::WriteBytecodeToFile(const Module *C, std::ostream &Out) {
- assert(C && "You can't write a null module!!");
+void llvm::WriteBytecodeToFile(const Module *M, std::ostream &Out) {
+ assert(M && "You can't write a null module!!");
- std::deque<unsigned char> Buffer;
+ std::vector<unsigned char> Buffer;
+ Buffer.reserve(64 * 1024); // avoid lots of little reallocs
// This object populates buffer for us...
- BytecodeWriter BCW(Buffer, C);
+ BytecodeWriter BCW(Buffer, M);
// Keep track of how much we've written...
BytesWritten += Buffer.size();
@@ -379,7 +1094,7 @@
// chunks, until we're done.
//
- std::deque<unsigned char>::const_iterator I = Buffer.begin(),E = Buffer.end();
+ std::vector<unsigned char>::const_iterator I = Buffer.begin(),E = Buffer.end();
while (I != E) { // Loop until it's all written
// Scan to see how big this chunk is...
const unsigned char *ChunkPtr = &*I;
Index: llvm/lib/Bytecode/Writer/WriterInternals.h
diff -u llvm/lib/Bytecode/Writer/WriterInternals.h:1.21 llvm/lib/Bytecode/Writer/WriterInternals.h:1.22
--- llvm/lib/Bytecode/Writer/WriterInternals.h:1.21 Sun Jul 4 06:44:27 2004
+++ llvm/lib/Bytecode/Writer/WriterInternals.h Sun Jul 25 13:07:36 2004
@@ -19,19 +19,21 @@
#ifndef LLVM_LIB_BYTECODE_WRITER_WRITERINTERNALS_H
#define LLVM_LIB_BYTECODE_WRITER_WRITERINTERNALS_H
-#include "WriterPrimitives.h"
#include "SlotCalculator.h"
#include "llvm/Bytecode/Writer.h"
#include "llvm/Bytecode/Format.h"
#include "llvm/Instruction.h"
+#include "Support/DataTypes.h"
+#include <string>
+#include <vector>
namespace llvm {
class BytecodeWriter {
- std::deque<unsigned char> &Out;
+ std::vector<unsigned char> &Out;
SlotCalculator Table;
public:
- BytecodeWriter(std::deque<unsigned char> &o, const Module *M);
+ BytecodeWriter(std::vector<unsigned char> &o, const Module *M);
private:
void outputConstants(bool isFunction);
@@ -44,6 +46,25 @@
unsigned StartNo);
void outputInstructions(const Function *F);
void outputInstruction(const Instruction &I);
+ void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
+ const SlotCalculator &Table,
+ unsigned Type);
+ void outputInstrVarArgsCall(const Instruction *I,
+ unsigned Opcode,
+ const SlotCalculator &Table,
+ unsigned Type) ;
+ inline void outputInstructionFormat1(const Instruction *I,
+ unsigned Opcode,
+ unsigned *Slots,
+ unsigned Type) ;
+ inline void outputInstructionFormat2(const Instruction *I,
+ unsigned Opcode,
+ unsigned *Slots,
+ unsigned Type) ;
+ inline void outputInstructionFormat3(const Instruction *I,
+ unsigned Opcode,
+ unsigned *Slots,
+ unsigned Type) ;
void outputModuleInfoBlock(const Module *C);
void outputSymbolTable(const SymbolTable &ST);
@@ -52,48 +73,70 @@
unsigned StartNo);
void outputConstant(const Constant *CPV);
void outputType(const Type *T);
-};
+ /// @brief Unsigned integer output primitive
+ inline void output(unsigned i, int pos = -1);
+
+ /// @brief Signed integer output primitive
+ inline void output(int i);
+
+ /// @brief 64-bit variable bit rate output primitive.
+ inline void output_vbr(uint64_t i);
+
+ /// @brief 32-bit variable bit rate output primitive.
+ inline void output_vbr(unsigned i);
+
+ /// @brief Signed 64-bit variable bit rate output primitive.
+ inline void output_vbr(int64_t i);
+
+ /// @brief Signed 32-bit variable bit rate output primitive.
+ inline void output_vbr(int i);
+
+ /// Emit the minimal number of bytes that will bring us to 32 bit alignment.
+ /// @brief 32-bit alignment output primitive
+ inline void align32();
+ inline void output(const std::string &s, bool Aligned = true);
+ inline void output_data(const void *Ptr, const void *End);
+
+ inline void output_float(float& FloatVal);
+ inline void output_double(double& DoubleVal);
+
+ inline void output_typeid(unsigned i);
+
+ inline size_t size() const { return Out.size(); }
+ inline void resize(size_t S) { Out.resize(S); }
+ friend class BytecodeBlock;
+};
/// BytecodeBlock - Little helper class is used by the bytecode writer to help
/// do backpatching of bytecode block sizes really easily. It backpatches when
/// it goes out of scope.
///
class BytecodeBlock {
+ unsigned Id;
unsigned Loc;
- std::deque<unsigned char> &Out;
+ BytecodeWriter& Writer;
/// ElideIfEmpty - If this is true and the bytecode block ends up being empty,
/// the block can remove itself from the output stream entirely.
bool ElideIfEmpty;
+ /// If this is true then the block is written with a long format header using
+ /// a uint (32-bits) for both the block id and size. Otherwise, it uses the
+ /// short format which is a single uint with 27 bits for size and 5 bits for
+ /// the block id. Both formats are used in a bc file with version 1.3.
+ /// Previously only the long format was used.
+ bool HasLongFormat;
+
BytecodeBlock(const BytecodeBlock &); // do not implement
void operator=(const BytecodeBlock &); // do not implement
public:
- inline BytecodeBlock(unsigned ID, std::deque<unsigned char> &o,
- bool elideIfEmpty = false)
- : Out(o), ElideIfEmpty(elideIfEmpty) {
- output(ID, Out);
- output(0U, Out); // Reserve the space for the block size...
- Loc = Out.size();
- }
-
- inline ~BytecodeBlock() { // Do backpatch when block goes out
- // of scope...
- if (Loc == Out.size() && ElideIfEmpty) {
- // If the block is empty, and we are allowed to, do not emit the block at
- // all!
- Out.resize(Out.size()-8);
- return;
- }
-
- //cerr << "OldLoc = " << Loc << " NewLoc = " << NewLoc << " diff = "
- // << (NewLoc-Loc) << endl;
- output(unsigned(Out.size()-Loc), Out, int(Loc-4));
- align32(Out); // Blocks must ALWAYS be aligned
- }
+ inline BytecodeBlock(unsigned ID, BytecodeWriter& w,
+ bool elideIfEmpty = false, bool hasLongFormat = false);
+
+ inline ~BytecodeBlock();
};
} // End llvm namespace
More information about the llvm-commits
mailing list