[llvm-commits] CVS: llvm/lib/Bytecode/Writer/SlotCalculator.cpp SlotCalculator.h
LLVM
llvm at cs.uiuc.edu
Sun Jul 4 06:44:01 PDT 2004
Changes in directory llvm/lib/Bytecode/Writer:
SlotCalculator.cpp updated: 1.57 -> 1.58
SlotCalculator.h updated: 1.19 -> 1.20
---
Log message:
For bug 122: http://llvm.cs.uiuc.edu/PR122 :
Separate Types from Values because Type no longer inherits from Value. The
changes for this are too numerous to list. In essence, any data structure
that contained a Value was doubled so that Types could be contained
similarly. New members include Types, TypeMap, CompactionTypes, and
CompactionTypeMap. Functions taking a Value* were overloaded with a variant
that takes a Type* that acts on the new data structures.
---
Diffs of the changes: (+236 -132)
Index: llvm/lib/Bytecode/Writer/SlotCalculator.cpp
diff -u llvm/lib/Bytecode/Writer/SlotCalculator.cpp:1.57 llvm/lib/Bytecode/Writer/SlotCalculator.cpp:1.58
--- llvm/lib/Bytecode/Writer/SlotCalculator.cpp:1.57 Thu Jun 24 19:35:55 2004
+++ llvm/lib/Bytecode/Writer/SlotCalculator.cpp Sun Jul 4 06:42:49 2004
@@ -14,19 +14,24 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Analysis/SlotCalculator.h"
+#include "SlotCalculator.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iOther.h"
+#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
+#include "llvm/Type.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "Support/PostOrderIterator.h"
#include "Support/STLExtras.h"
#include <algorithm>
+#include <functional>
+
using namespace llvm;
#if 0
+#include <iostream>
#define SC_DEBUG(X) std::cerr << X
#else
#define SC_DEBUG(X)
@@ -34,6 +39,7 @@
SlotCalculator::SlotCalculator(const Module *M ) {
ModuleContainsAllFunctionConstants = false;
+ ModuleTypeLevel = 0;
TheModule = M;
// Preload table... Make sure that all of the primitive types are in the table
@@ -42,7 +48,7 @@
SC_DEBUG("Inserting primitive types:\n");
for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
assert(Type::getPrimitiveType((Type::TypeID)i));
- insertValue(Type::getPrimitiveType((Type::TypeID)i), true);
+ insertType(Type::getPrimitiveType((Type::TypeID)i), true);
}
if (M == 0) return; // Empty table...
@@ -59,7 +65,7 @@
SC_DEBUG("Inserting primitive types:\n");
for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
assert(Type::getPrimitiveType((Type::TypeID)i));
- insertValue(Type::getPrimitiveType((Type::TypeID)i), true);
+ insertType(Type::getPrimitiveType((Type::TypeID)i), true);
}
if (TheModule == 0) return; // Empty table...
@@ -78,8 +84,13 @@
return I->second;
}
+unsigned SlotCalculator::getGlobalSlot(const Type* T) const {
+ std::map<const Type*, unsigned>::const_iterator I = TypeMap.find(T);
+ assert(I != TypeMap.end() && "Didn't find global slot entry!");
+ return I->second;
+}
+
SlotCalculator::TypePlane &SlotCalculator::getPlane(unsigned Plane) {
- unsigned PIdx = Plane;
if (CompactionTable.empty()) { // No compaction table active?
// fall out
} else if (!CompactionTable[Plane].empty()) { // Compaction table active.
@@ -89,22 +100,21 @@
// Final case: compaction table active, but this plane is not
// compactified. If the type plane is compactified, unmap back to the
// global type plane corresponding to "Plane".
- if (!CompactionTable[Type::TypeTyID].empty()) {
- const Type *Ty = cast<Type>(CompactionTable[Type::TypeTyID][Plane]);
- std::map<const Value*, unsigned>::iterator It = NodeMap.find(Ty);
- assert(It != NodeMap.end() && "Type not in global constant map?");
- PIdx = It->second;
+ if (!CompactionTypes.empty()) {
+ const Type *Ty = CompactionTypes[Plane];
+ TypeMapType::iterator It = TypeMap.find(Ty);
+ assert(It != TypeMap.end() && "Type not in global constant map?");
+ Plane = It->second;
}
}
// Okay we are just returning an entry out of the main Table. Make sure the
// plane exists and return it.
- if (PIdx >= Table.size())
- Table.resize(PIdx+1);
- return Table[PIdx];
+ if (Plane >= Table.size())
+ Table.resize(Plane+1);
+ return Table[Plane];
}
-
// processModule - Process all of the module level function declarations and
// types that are available.
//
@@ -135,28 +145,27 @@
// that contain constant strings so that the strings occur at the start of the
// plane, not somewhere in the middle.
//
- TypePlane &Types = Table[Type::TypeTyID];
for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
if (AT->getElementType() == Type::SByteTy ||
- AT->getElementType() == Type::UByteTy) {
- TypePlane &Plane = Table[plane];
- unsigned FirstNonStringID = 0;
- for (unsigned i = 0, e = Plane.size(); i != e; ++i)
- if (isa<ConstantAggregateZero>(Plane[i]) ||
- cast<ConstantArray>(Plane[i])->isString()) {
- // Check to see if we have to shuffle this string around. If not,
- // don't do anything.
- if (i != FirstNonStringID) {
- // Swap the plane entries....
- std::swap(Plane[i], Plane[FirstNonStringID]);
-
- // Keep the NodeMap up to date.
- NodeMap[Plane[i]] = i;
- NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
- }
- ++FirstNonStringID;
- }
+ AT->getElementType() == Type::UByteTy) {
+ TypePlane &Plane = Table[plane];
+ unsigned FirstNonStringID = 0;
+ for (unsigned i = 0, e = Plane.size(); i != e; ++i)
+ if (isa<ConstantAggregateZero>(Plane[i]) ||
+ cast<ConstantArray>(Plane[i])->isString()) {
+ // Check to see if we have to shuffle this string around. If not,
+ // don't do anything.
+ if (i != FirstNonStringID) {
+ // Swap the plane entries....
+ std::swap(Plane[i], Plane[FirstNonStringID]);
+
+ // Keep the NodeMap up to date.
+ NodeMap[Plane[i]] = i;
+ NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
+ }
+ ++FirstNonStringID;
+ }
}
}
@@ -178,11 +187,11 @@
F != E; ++F) {
for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I){
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
- if (isa<Constant>(I->getOperand(op)))
- getOrCreateSlot(I->getOperand(op));
+ if (isa<Constant>(I->getOperand(op)))
+ getOrCreateSlot(I->getOperand(op));
getOrCreateSlot(I->getType());
if (const VANextInst *VAN = dyn_cast<VANextInst>(&*I))
- getOrCreateSlot(VAN->getArgType());
+ getOrCreateSlot(VAN->getArgType());
}
processSymbolTableConstants(&F->getSymbolTable());
}
@@ -201,31 +210,24 @@
// all non-value types are pushed to the end of the type table, giving nice
// low numbers to the types that can be used by instructions, thus reducing
// the amount of explodage we suffer.
- if (Table[Type::TypeTyID].size() >= 64) {
- // Scan through the type table moving value types to the start of the table.
- TypePlane *Types = &Table[Type::TypeTyID];
+ if (Types.size() >= 64) {
unsigned FirstNonValueTypeID = 0;
- for (unsigned i = 0, e = Types->size(); i != e; ++i)
- if (cast<Type>((*Types)[i])->isFirstClassType() ||
- cast<Type>((*Types)[i])->isPrimitiveType()) {
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
// Check to see if we have to shuffle this type around. If not, don't
// do anything.
if (i != FirstNonValueTypeID) {
- assert(i != Type::TypeTyID && FirstNonValueTypeID != Type::TypeTyID &&
- "Cannot move around the type plane!");
-
// Swap the type ID's.
- std::swap((*Types)[i], (*Types)[FirstNonValueTypeID]);
+ std::swap(Types[i], Types[FirstNonValueTypeID]);
- // Keep the NodeMap up to date.
- NodeMap[(*Types)[i]] = i;
- NodeMap[(*Types)[FirstNonValueTypeID]] = FirstNonValueTypeID;
+ // Keep the TypeMap up to date.
+ TypeMap[Types[i]] = i;
+ TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
// When we move a type, make sure to move its value plane as needed.
if (Table.size() > FirstNonValueTypeID) {
if (Table.size() <= i) Table.resize(i+1);
std::swap(Table[i], Table[FirstNonValueTypeID]);
- Types = &Table[Type::TypeTyID];
}
}
++FirstNonValueTypeID;
@@ -248,7 +250,7 @@
for (SymbolTable::plane_const_iterator PI = ST->plane_begin(),
PE = ST->plane_end(); PI != PE; ++PI)
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
- VE = PI->second.end(); VI != VE; ++VI)
+ VE = PI->second.end(); VI != VE; ++VI)
getOrCreateSlot(VI->second);
}
@@ -262,14 +264,15 @@
for (SymbolTable::plane_const_iterator PI = ST->plane_begin(),
PE = ST->plane_end(); PI != PE; ++PI)
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
- VE = PI->second.end(); VI != VE; ++VI)
+ VE = PI->second.end(); VI != VE; ++VI)
if (isa<Constant>(VI->second))
- getOrCreateSlot(VI->second);
+ getOrCreateSlot(VI->second);
}
void SlotCalculator::incorporateFunction(const Function *F) {
- assert(ModuleLevel.size() == 0 && "Module already incorporated!");
+ assert((ModuleLevel.size() == 0 ||
+ ModuleTypeLevel == 0) && "Module already incorporated!");
SC_DEBUG("begin processFunction!\n");
@@ -281,6 +284,7 @@
ModuleLevel.resize(getNumPlanes());
for (unsigned i = 0, e = getNumPlanes(); i != e; ++i)
ModuleLevel[i] = getPlane(i).size();
+ ModuleTypeLevel = Types.size();
// Iterate over function arguments, adding them to the value table...
for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
@@ -295,8 +299,12 @@
// Emit all of the constants that are being used by the instructions in
// the function...
- for_each(constant_begin(F), constant_end(F),
- bind_obj(this, &SlotCalculator::getOrCreateSlot));
+ constant_iterator CI = constant_begin(F);
+ constant_iterator CE = constant_end(F);
+ while ( CI != CE ) {
+ this->getOrCreateSlot(*CI);
+ ++CI;
+ }
// If there is a symbol table, it is possible that the user has names for
// constants that are not being used. In this case, we will have problems
@@ -328,13 +336,15 @@
}
void SlotCalculator::purgeFunction() {
- assert(ModuleLevel.size() != 0 && "Module not incorporated!");
+ assert((ModuleLevel.size() != 0 ||
+ ModuleTypeLevel != 0) && "Module not incorporated!");
unsigned NumModuleTypes = ModuleLevel.size();
SC_DEBUG("begin purgeFunction!\n");
// First, free the compaction map if used.
CompactionNodeMap.clear();
+ CompactionTypeMap.clear();
// Next, remove values from existing type planes
for (unsigned i = 0; i != NumModuleTypes; ++i) {
@@ -355,8 +365,10 @@
// We don't need this state anymore, free it up.
ModuleLevel.clear();
+ ModuleTypeLevel = 0;
// Finally, remove any type planes defined by the function...
+ CompactionTypes.clear();
if (!CompactionTable.empty()) {
CompactionTable.clear();
} else {
@@ -379,8 +391,7 @@
}
static inline bool hasNullValue(unsigned TyID) {
- return TyID != Type::LabelTyID && TyID != Type::TypeTyID &&
- TyID != Type::VoidTyID;
+ return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
}
/// getOrCreateCompactionTableSlot - This method is used to build up the initial
@@ -395,15 +406,13 @@
// Make sure the type is in the table.
unsigned Ty;
- if (!CompactionTable[Type::TypeTyID].empty())
+ if (!CompactionTypes.empty())
Ty = getOrCreateCompactionTableSlot(V->getType());
else // If the type plane was decompactified, use the global plane ID
Ty = getSlot(V->getType());
if (CompactionTable.size() <= Ty)
CompactionTable.resize(Ty+1);
- assert(!isa<Type>(V) || ModuleLevel.empty());
-
TypePlane &TyPlane = CompactionTable[Ty];
// Make sure to insert the null entry if the thing we are inserting is not a
@@ -422,6 +431,20 @@
return SlotNo;
}
+/// getOrCreateCompactionTableSlot - This method is used to build up the initial
+/// approximation of the compaction table.
+unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Type *T) {
+ std::map<const Type*, unsigned>::iterator I =
+ CompactionTypeMap.lower_bound(T);
+ if (I != CompactionTypeMap.end() && I->first == T)
+ return I->second; // Already exists?
+
+ unsigned SlotNo = CompactionTypes.size();
+ SC_DEBUG("Inserting Compaction Type #" << SlotNo << ": " << T << "\n");
+ CompactionTypes.push_back(T);
+ CompactionTypeMap.insert(std::make_pair(T, SlotNo));
+ return SlotNo;
+}
/// buildCompactionTable - Since all of the function constants and types are
/// stored in the module-level constant table, we don't need to emit a function
@@ -432,12 +455,13 @@
/// identifiers.
void SlotCalculator::buildCompactionTable(const Function *F) {
assert(CompactionNodeMap.empty() && "Compaction table already built!");
+ assert(CompactionTypeMap.empty() && "Compaction types already built!");
// First step, insert the primitive types.
- CompactionTable.resize(Type::TypeTyID+1);
- for (unsigned i = 0; i != Type::FirstDerivedTyID; ++i) {
+ CompactionTable.resize(Type::LastPrimitiveTyID+1);
+ for (unsigned i = 0; i <= Type::LastPrimitiveTyID; ++i) {
const Type *PrimTy = Type::getPrimitiveType((Type::TypeID)i);
- CompactionTable[Type::TypeTyID].push_back(PrimTy);
- CompactionNodeMap[PrimTy] = i;
+ CompactionTypes.push_back(PrimTy);
+ CompactionTypeMap[PrimTy] = i;
}
// Next, include any types used by function arguments.
@@ -445,7 +469,7 @@
getOrCreateCompactionTableSlot(I->getType());
// Next, find all of the types and values that are referred to by the
- // instructions in the program.
+ // instructions in the function.
for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
getOrCreateCompactionTableSlot(I->getType());
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
@@ -466,19 +490,22 @@
for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
PE = ST.plane_end(); PI != PE; ++PI)
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
- VE = PI->second.end(); VI != VE; ++VI)
+ VE = PI->second.end(); VI != VE; ++VI)
if (isa<Constant>(VI->second) || isa<GlobalValue>(VI->second))
- getOrCreateCompactionTableSlot(VI->second);
+ getOrCreateCompactionTableSlot(VI->second);
// Now that we have all of the values in the table, and know what types are
// referenced, make sure that there is at least the zero initializer in any
// used type plane. Since the type was used, we will be emitting instructions
// to the plane even if there are no constants in it.
- CompactionTable.resize(CompactionTable[Type::TypeTyID].size());
+ CompactionTable.resize(CompactionTypes.size());
for (unsigned i = 0, e = CompactionTable.size(); i != e; ++i)
- if (CompactionTable[i].empty() && i != Type::VoidTyID &&
+ if (CompactionTable[i].empty() && (i != Type::VoidTyID) &&
i != Type::LabelTyID) {
- const Type *Ty = cast<Type>(CompactionTable[Type::TypeTyID][i]);
+ const Type *Ty = CompactionTypes[i];
+ SC_DEBUG("Getting Null Value #" << i << " for Type " << Ty << "\n");
+ assert(Ty->getTypeID() != Type::VoidTyID);
+ assert(Ty->getTypeID() != Type::LabelTyID);
getOrCreateCompactionTableSlot(Constant::getNullValue(Ty));
}
@@ -487,13 +514,13 @@
// it will not save us anything. Because we have not yet incorporated the
// function body itself yet, we don't know whether or not it's a good idea to
// compactify other planes. We will defer this decision until later.
- TypePlane &GlobalTypes = Table[Type::TypeTyID];
+ TypeList &GlobalTypes = Types;
// All of the values types will be scrunched to the start of the types plane
// of the global table. Figure out just how many there are.
assert(!GlobalTypes.empty() && "No global types???");
unsigned NumFCTypes = GlobalTypes.size()-1;
- while (!cast<Type>(GlobalTypes[NumFCTypes])->isFirstClassType())
+ while (!GlobalTypes[NumFCTypes]->isFirstClassType())
--NumFCTypes;
// If there are fewer that 64 types, no instructions will be exploded due to
@@ -506,29 +533,27 @@
// CompactionNodeMap for non-types though.
std::vector<TypePlane> TmpCompactionTable;
std::swap(CompactionTable, TmpCompactionTable);
- TypePlane Types;
- std::swap(Types, TmpCompactionTable[Type::TypeTyID]);
+ TypeList TmpTypes;
+ std::swap(TmpTypes, CompactionTypes);
// Move each plane back over to the uncompactified plane
- while (!Types.empty()) {
- const Type *Ty = cast<Type>(Types.back());
- Types.pop_back();
- CompactionNodeMap.erase(Ty); // Decompactify type!
-
- if (Ty != Type::TypeTy) {
- // Find the global slot number for this type.
- int TySlot = getSlot(Ty);
- assert(TySlot != -1 && "Type doesn't exist in global table?");
-
- // Now we know where to put the compaction table plane.
- if (CompactionTable.size() <= unsigned(TySlot))
- CompactionTable.resize(TySlot+1);
- // Move the plane back into the compaction table.
- std::swap(CompactionTable[TySlot], TmpCompactionTable[Types.size()]);
+ while (!TmpTypes.empty()) {
+ const Type *Ty = TmpTypes.back();
+ TmpTypes.pop_back();
+ CompactionTypeMap.erase(Ty); // Decompactify type!
+
+ // Find the global slot number for this type.
+ int TySlot = getSlot(Ty);
+ assert(TySlot != -1 && "Type doesn't exist in global table?");
+
+ // Now we know where to put the compaction table plane.
+ if (CompactionTable.size() <= unsigned(TySlot))
+ CompactionTable.resize(TySlot+1);
+ // Move the plane back into the compaction table.
+ std::swap(CompactionTable[TySlot], TmpCompactionTable[TmpTypes.size()]);
- // And remove the empty plane we just moved in.
- TmpCompactionTable.pop_back();
- }
+ // And remove the empty plane we just moved in.
+ TmpCompactionTable.pop_back();
}
}
}
@@ -544,9 +569,9 @@
/// Note that the type plane has already been compactified if possible.
///
void SlotCalculator::pruneCompactionTable() {
- TypePlane &TyPlane = CompactionTable[Type::TypeTyID];
+ TypeList &TyPlane = CompactionTypes;
for (unsigned ctp = 0, e = CompactionTable.size(); ctp != e; ++ctp)
- if (ctp != Type::TypeTyID && !CompactionTable[ctp].empty()) {
+ if (!CompactionTable[ctp].empty()) {
TypePlane &CPlane = CompactionTable[ctp];
unsigned GlobalSlot = ctp;
if (!TyPlane.empty())
@@ -603,7 +628,6 @@
}
}
-
int SlotCalculator::getSlot(const Value *V) const {
// If there is a CompactionTable active...
if (!CompactionNodeMap.empty()) {
@@ -626,6 +650,23 @@
return -1;
}
+int SlotCalculator::getSlot(const Type*T) const {
+ // If there is a CompactionTable active...
+ if (!CompactionTypeMap.empty()) {
+ std::map<const Type*, unsigned>::const_iterator I =
+ CompactionTypeMap.find(T);
+ if (I != CompactionTypeMap.end())
+ return (int)I->second;
+ // Otherwise, if it's not in the compaction table, it must be in a
+ // non-compactified plane.
+ }
+
+ std::map<const Type*, unsigned>::const_iterator I = TypeMap.find(T);
+ if (I != TypeMap.end())
+ return (int)I->second;
+
+ return -1;
+}
int SlotCalculator::getOrCreateSlot(const Value *V) {
if (V->getType() == Type::VoidTy) return -1;
@@ -665,6 +706,11 @@
return insertValue(V);
}
+int SlotCalculator::getOrCreateSlot(const Type* T) {
+ int SlotNo = getSlot(T); // Check to see if it's already in!
+ if (SlotNo != -1) return SlotNo;
+ return insertType(T);
+}
int SlotCalculator::insertValue(const Value *D, bool dontIgnore) {
assert(D && "Can't insert a null value!");
@@ -674,7 +720,7 @@
// insert the value into the compaction map, not into the global map.
if (!CompactionNodeMap.empty()) {
if (D->getType() == Type::VoidTy) return -1; // Do not insert void values
- assert(!isa<Type>(D) && !isa<Constant>(D) && !isa<GlobalValue>(D) &&
+ assert(!isa<Constant>(D) && !isa<GlobalValue>(D) &&
"Types, constants, and globals should be in global SymTab!");
int Plane = getSlot(D->getType());
@@ -694,41 +740,46 @@
return -1; // We do need types unconditionally though
}
- // If it's a type, make sure that all subtypes of the type are included...
- if (const Type *TheTy = dyn_cast<Type>(D)) {
+ // Okay, everything is happy, actually insert the silly value now...
+ return doInsertValue(D);
+}
- // Insert the current type before any subtypes. This is important because
- // recursive types elements are inserted in a bottom up order. Changing
- // this here can break things. For example:
- //
- // global { \2 * } { { \2 }* null }
- //
- int ResultSlot = doInsertValue(TheTy);
- SC_DEBUG(" Inserted type: " << TheTy->getDescription() << " slot=" <<
- ResultSlot << "\n");
+int SlotCalculator::insertType(const Type *Ty, bool dontIgnore) {
+ assert(Ty && "Can't insert a null type!");
+ assert(getSlot(Ty) == -1 && "Type is already in the table!");
- // Loop over any contained types in the definition... in post
- // order.
- //
- for (po_iterator<const Type*> I = po_begin(TheTy), E = po_end(TheTy);
- I != E; ++I) {
- if (*I != TheTy) {
- const Type *SubTy = *I;
- // If we haven't seen this sub type before, add it to our type table!
- if (getSlot(SubTy) == -1) {
- SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n");
- SC_DEBUG(int Slot = );
- doInsertValue(SubTy);
- SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() <<
- " slot=" << Slot << "\n");
- }
+ // If we are building a compaction map, and if this plane is being compacted,
+ // insert the value into the compaction map, not into the global map.
+ if (!CompactionTypeMap.empty()) {
+ getOrCreateCompactionTableSlot(Ty);
+ }
+
+ // Insert the current type before any subtypes. This is important because
+ // recursive types elements are inserted in a bottom up order. Changing
+ // this here can break things. For example:
+ //
+ // global { \2 * } { { \2 }* null }
+ //
+ int ResultSlot = doInsertType(Ty);
+ SC_DEBUG(" Inserted type: " << Ty->getDescription() << " slot=" <<
+ ResultSlot << "\n");
+
+ // Loop over any contained types in the definition... in post
+ // order.
+ for (po_iterator<const Type*> I = po_begin(Ty), E = po_end(Ty);
+ I != E; ++I) {
+ if (*I != Ty) {
+ const Type *SubTy = *I;
+ // If we haven't seen this sub type before, add it to our type table!
+ if (getSlot(SubTy) == -1) {
+ SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n");
+ int Slot = doInsertType(SubTy);
+ SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() <<
+ " slot=" << Slot << "\n");
}
}
- return ResultSlot;
}
-
- // Okay, everything is happy, actually insert the silly value now...
- return doInsertValue(D);
+ return ResultSlot;
}
// doInsertValue - This is a small helper function to be called only
@@ -750,7 +801,7 @@
ValSlot = getGlobalSlot(Typ);
if (ValSlot == -1) { // Have we already entered this type?
// Nope, this is the first we have seen the type, process it.
- ValSlot = insertValue(Typ, true);
+ ValSlot = insertType(Typ, true);
assert(ValSlot != -1 && "ProcessType returned -1 for a type?");
}
Ty = (unsigned)ValSlot;
@@ -778,10 +829,25 @@
Table[Ty].push_back(D);
SC_DEBUG(" Inserting value [" << Ty << "] = " << D << " slot=" <<
- DestSlot << " [");
+ DestSlot << " [");
// G = Global, C = Constant, T = Type, F = Function, o = other
SC_DEBUG((isa<GlobalVariable>(D) ? "G" : (isa<Constant>(D) ? "C" :
- (isa<Type>(D) ? "T" : (isa<Function>(D) ? "F" : "o")))));
+ (isa<Function>(D) ? "F" : "o"))));
SC_DEBUG("]\n");
return (int)DestSlot;
}
+
+// doInsertType - This is a small helper function to be called only
+// be insertType.
+//
+int SlotCalculator::doInsertType(const Type *Ty) {
+
+ // Insert node into table and NodeMap...
+ unsigned DestSlot = TypeMap[Ty] = Types.size();
+ Types.push_back(Ty);
+
+ SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n" );
+ return (int)DestSlot;
+}
+
+// vim: sw=2 ai
Index: llvm/lib/Bytecode/Writer/SlotCalculator.h
diff -u llvm/lib/Bytecode/Writer/SlotCalculator.h:1.19 llvm/lib/Bytecode/Writer/SlotCalculator.h:1.20
--- llvm/lib/Bytecode/Writer/SlotCalculator.h:1.19 Wed May 26 02:37:11 2004
+++ llvm/lib/Bytecode/Writer/SlotCalculator.h Sun Jul 4 06:42:49 2004
@@ -26,6 +26,7 @@
namespace llvm {
class Value;
+class Type;
class Module;
class Function;
class SymbolTable;
@@ -34,9 +35,15 @@
class SlotCalculator {
const Module *TheModule;
+ typedef std::vector<const Type*> TypeList;
typedef std::vector<const Value*> TypePlane;
std::vector<TypePlane> Table;
- std::map<const Value*, unsigned> NodeMap;
+ TypeList Types;
+ typedef std::map<const Value*, unsigned> NodeMapType;
+ NodeMapType NodeMap;
+
+ typedef std::map<const Type*, unsigned> TypeMapType;
+ TypeMapType TypeMap;
/// ConstantStrings - If we are indexing for a bytecode file, this keeps track
/// of all of the constants strings that need to be emitted.
@@ -46,6 +53,7 @@
/// and which values belong to the currently incorporated function.
///
std::vector<unsigned> ModuleLevel;
+ unsigned ModuleTypeLevel;
/// ModuleContainsAllFunctionConstants - This flag is set to true if all
/// function constants are incorporated into the module constant table. This
@@ -57,7 +65,11 @@
/// instructions in a function body. The 'getSlot()' method automatically
/// returns these entries if applicable, or the global entries if not.
std::vector<TypePlane> CompactionTable;
- std::map<const Value*, unsigned> CompactionNodeMap;
+ TypeList CompactionTypes;
+ typedef std::map<const Value*, unsigned> CompactionNodeMapType;
+ CompactionNodeMapType CompactionNodeMap;
+ typedef std::map<const Type*, unsigned> CompactionTypeMapType;
+ CompactionTypeMapType CompactionTypeMap;
SlotCalculator(const SlotCalculator &); // DO NOT IMPLEMENT
void operator=(const SlotCalculator &); // DO NOT IMPLEMENT
@@ -70,10 +82,12 @@
/// plane. This returns < 0 on error!
///
int getSlot(const Value *V) const;
+ int getSlot(const Type* T) const;
/// getGlobalSlot - Return a slot number from the global table. This can only
/// be used when a compaction table is active.
unsigned getGlobalSlot(const Value *V) const;
+ unsigned getGlobalSlot(const Type *V) const;
inline unsigned getNumPlanes() const {
if (CompactionTable.empty())
@@ -81,11 +95,29 @@
else
return CompactionTable.size();
}
+
+ inline unsigned getNumTypes() const {
+ if (CompactionTypes.empty())
+ return Types.size();
+ else
+ return CompactionTypes.size();
+ }
+
inline unsigned getModuleLevel(unsigned Plane) const {
return Plane < ModuleLevel.size() ? ModuleLevel[Plane] : 0;
}
+ /// Returns the number of types in the type list that are at module level
+ inline unsigned getModuleTypeLevel() const {
+ return ModuleTypeLevel;
+ }
+
TypePlane &getPlane(unsigned Plane);
+ TypeList& getTypes() {
+ if (!CompactionTypes.empty())
+ return CompactionTypes;
+ return Types;
+ }
/// incorporateFunction/purgeFunction - If you'd like to deal with a function,
/// use these two methods to get its data into the SlotCalculator!
@@ -104,21 +136,26 @@
return CompactionTable;
}
+ const TypeList& getCompactionTypes() const { return CompactionTypes; }
+
private:
// getOrCreateSlot - Values can be crammed into here at will... if
// they haven't been inserted already, they get inserted, otherwise
// they are ignored.
//
int getOrCreateSlot(const Value *D);
+ int getOrCreateSlot(const Type* T);
// insertValue - Insert a value into the value table... Return the
// slot that it occupies, or -1 if the declaration is to be ignored
// because of the IgnoreNamedNodes flag.
//
int insertValue(const Value *D, bool dontIgnore = false);
+ int insertType(const Type* T, bool dontIgnore = false );
// doInsertValue - Small helper function to be called only be insertVal.
int doInsertValue(const Value *D);
+ int doInsertType(const Type*T);
// processModule - Process all of the module level function declarations and
// types that are available.
@@ -133,6 +170,7 @@
void buildCompactionTable(const Function *F);
unsigned getOrCreateCompactionTableSlot(const Value *V);
+ unsigned getOrCreateCompactionTableSlot(const Type *V);
void pruneCompactionTable();
};
More information about the llvm-commits
mailing list