[llvm-commits] CVS: llvm/lib/Analysis/ScalarEvolution.cpp

Chris Lattner lattner at cs.uiuc.edu
Fri Apr 2 14:45:12 PST 2004


Changes in directory llvm/lib/Analysis:

ScalarEvolution.cpp added (r1.1)

---
Log message:

Add a new analysis


---
Diffs of the changes:  (+2482 -0)

Index: llvm/lib/Analysis/ScalarEvolution.cpp
diff -c /dev/null llvm/lib/Analysis/ScalarEvolution.cpp:1.1
*** /dev/null	Fri Apr  2 14:23:27 2004
--- llvm/lib/Analysis/ScalarEvolution.cpp	Fri Apr  2 14:23:17 2004
***************
*** 0 ****
--- 1,2482 ----
+ //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
+ // 
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ // 
+ //===----------------------------------------------------------------------===//
+ //
+ // This file contains the implementation of the scalar evolution analysis
+ // engine, which is used primarily to analyze expressions involving induction
+ // variables in loops.
+ //
+ // There are several aspects to this library.  First is the representation of
+ // scalar expressions, which are represented as subclasses of the SCEV class.
+ // These classes are used to represent certain types of subexpressions that we
+ // can handle.  These classes are reference counted, managed by the SCEVHandle
+ // class.  We only create one SCEV of a particular shape, so pointer-comparisons
+ // for equality are legal.
+ //
+ // One important aspect of the SCEV objects is that they are never cyclic, even
+ // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
+ // the PHI node is one of the idioms that we can represent (e.g., a polynomial
+ // recurrence) then we represent it directly as a recurrence node, otherwise we
+ // represent it as a SCEVUnknown node.
+ //
+ // In addition to being able to represent expressions of various types, we also
+ // have folders that are used to build the *canonical* representation for a
+ // particular expression.  These folders are capable of using a variety of
+ // rewrite rules to simplify the expressions.
+ // 
+ // Once the folders are defined, we can implement the more interesting
+ // higher-level code, such as the code that recognizes PHI nodes of various
+ // types, computes the execution count of a loop, etc.
+ //
+ // Orthogonal to the analysis of code above, this file also implements the
+ // ScalarEvolutionRewriter class, which is used to emit code that represents the
+ // various recurrences present in a loop, in canonical forms.
+ //
+ // TODO: We should use these routines and value representations to implement
+ // dependence analysis!
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // There are several good references for the techniques used in this analysis.
+ //
+ //  Chains of recurrences -- a method to expedite the evaluation
+ //  of closed-form functions
+ //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
+ //
+ //  On computational properties of chains of recurrences
+ //  Eugene V. Zima
+ //
+ //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
+ //  Robert A. van Engelen
+ //
+ //  Efficient Symbolic Analysis for Optimizing Compilers
+ //  Robert A. van Engelen
+ //
+ //  Using the chains of recurrences algebra for data dependence testing and
+ //  induction variable substitution
+ //  MS Thesis, Johnie Birch
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #include "llvm/Analysis/ScalarEvolution.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Type.h"
+ #include "llvm/Value.h"
+ #include "llvm/Analysis/LoopInfo.h"
+ #include "llvm/Assembly/Writer.h"
+ #include "llvm/Transforms/Scalar.h"
+ #include "llvm/Support/CFG.h"
+ #include "llvm/Support/ConstantRange.h"
+ #include "llvm/Support/InstIterator.h"
+ #include "Support/Statistic.h"
+ using namespace llvm;
+ 
+ namespace {
+   RegisterAnalysis<ScalarEvolution>
+   R("scalar-evolution", "Scalar Evolution Analysis Printer");
+ 
+   Statistic<>
+   NumBruteForceEvaluations("scalar-evolution",
+                            "Number of brute force evaluations needed to calculate high-order polynomial exit values");
+   Statistic<>
+   NumTripCountsComputed("scalar-evolution",
+                         "Number of loops with predictable loop counts");
+   Statistic<>
+   NumTripCountsNotComputed("scalar-evolution",
+                            "Number of loops without predictable loop counts");
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                           SCEV class definitions
+ //===----------------------------------------------------------------------===//
+ 
+ //===----------------------------------------------------------------------===//
+ // Implementation of the SCEV class.
+ //
+ namespace {
+   enum SCEVTypes {
+     // These should be ordered in terms of increasing complexity to make the
+     // folders simpler.
+     scConstant, scTruncate, scZeroExtend, scAddExpr, scMulExpr, scUDivExpr,
+     scAddRecExpr, scUnknown, scCouldNotCompute
+   };
+ 
+   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
+   /// than the complexity of the RHS.  If the SCEVs have identical complexity,
+   /// order them by their addresses.  This comparator is used to canonicalize
+   /// expressions.
+   struct SCEVComplexityCompare {
+     bool operator()(SCEV *LHS, SCEV *RHS) {
+       if (LHS->getSCEVType() < RHS->getSCEVType())
+         return true;
+       if (LHS->getSCEVType() == RHS->getSCEVType())
+         return LHS < RHS;
+       return false;
+     }
+   };
+ }
+ 
+ SCEV::~SCEV() {}
+ void SCEV::dump() const {
+   print(std::cerr);
+ }
+ 
+ /// getValueRange - Return the tightest constant bounds that this value is
+ /// known to have.  This method is only valid on integer SCEV objects.
+ ConstantRange SCEV::getValueRange() const {
+   const Type *Ty = getType();
+   assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
+   Ty = Ty->getUnsignedVersion();
+   // Default to a full range if no better information is available.
+   return ConstantRange(getType());
+ }
+ 
+ 
+ SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
+ 
+ bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
+   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+ }
+ 
+ const Type *SCEVCouldNotCompute::getType() const {
+   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+ }
+ 
+ bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
+   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+   return false;
+ }
+ 
+ Value *SCEVCouldNotCompute::expandCodeFor(ScalarEvolutionRewriter &SER,
+                                           Instruction *InsertPt) {
+   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+   return 0;
+ }
+ 
+ 
+ void SCEVCouldNotCompute::print(std::ostream &OS) const {
+   OS << "***COULDNOTCOMPUTE***";
+ }
+ 
+ bool SCEVCouldNotCompute::classof(const SCEV *S) {
+   return S->getSCEVType() == scCouldNotCompute;
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ // SCEVConstant - This class represents a constant integer value.
+ //
+ namespace {
+   class SCEVConstant;
+   // SCEVConstants - Only allow the creation of one SCEVConstant for any
+   // particular value.  Don't use a SCEVHandle here, or else the object will
+   // never be deleted!
+   std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
+ 
+   class SCEVConstant : public SCEV {
+     ConstantInt *V;
+     SCEVConstant(ConstantInt *v) : SCEV(scConstant), V(v) {}
+ 
+     virtual ~SCEVConstant() {
+       SCEVConstants.erase(V);
+     }
+   public:
+     /// get method - This just gets and returns a new SCEVConstant object.
+     ///
+     static SCEVHandle get(ConstantInt *V) {
+       // Make sure that SCEVConstant instances are all unsigned.
+       if (V->getType()->isSigned()) {
+         const Type *NewTy = V->getType()->getUnsignedVersion();
+         V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
+       }
+ 
+       SCEVConstant *&R = SCEVConstants[V];
+       if (R == 0) R = new SCEVConstant(V);
+       return R;
+     }
+ 
+     ConstantInt *getValue() const { return V; }
+ 
+     /// getValueRange - Return the tightest constant bounds that this value is
+     /// known to have.  This method is only valid on integer SCEV objects.
+     virtual ConstantRange getValueRange() const {
+       return ConstantRange(V);
+     }
+ 
+     virtual bool isLoopInvariant(const Loop *L) const {
+       return true;
+     }
+ 
+     virtual bool hasComputableLoopEvolution(const Loop *L) const {
+       return false;  // Not loop variant
+     }
+ 
+     virtual const Type *getType() const { return V->getType(); }
+ 
+     Value *expandCodeFor(ScalarEvolutionRewriter &SER,
+                          Instruction *InsertPt) {
+       return getValue();
+     }
+     
+     virtual void print(std::ostream &OS) const {
+       WriteAsOperand(OS, V, false);
+     }
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVConstant *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scConstant;
+     }
+   };
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ // SCEVTruncateExpr - This class represents a truncation of an integer value to
+ // a smaller integer value.
+ //
+ namespace {
+   class SCEVTruncateExpr;
+   // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
+   // particular input.  Don't use a SCEVHandle here, or else the object will
+   // never be deleted!
+   std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
+ 
+   class SCEVTruncateExpr : public SCEV {
+     SCEVHandle Op;
+     const Type *Ty;
+     SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
+       : SCEV(scTruncate), Op(op), Ty(ty) {
+       assert(Op->getType()->isInteger() && Ty->isInteger() &&
+              Ty->isUnsigned() &&
+              "Cannot truncate non-integer value!");
+       assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
+              "This is not a truncating conversion!");
+     }
+ 
+     virtual ~SCEVTruncateExpr() {
+       SCEVTruncates.erase(std::make_pair(Op, Ty));
+     }
+   public:
+     /// get method - This just gets and returns a new SCEVTruncate object
+     ///
+     static SCEVHandle get(const SCEVHandle &Op, const Type *Ty);
+ 
+     const SCEVHandle &getOperand() const { return Op; }
+     virtual const Type *getType() const { return Ty; }
+     
+     virtual bool isLoopInvariant(const Loop *L) const {
+       return Op->isLoopInvariant(L);
+     }
+ 
+     virtual bool hasComputableLoopEvolution(const Loop *L) const {
+       return Op->hasComputableLoopEvolution(L);
+     }
+ 
+     /// getValueRange - Return the tightest constant bounds that this value is
+     /// known to have.  This method is only valid on integer SCEV objects.
+     virtual ConstantRange getValueRange() const {
+       return getOperand()->getValueRange().truncate(getType());
+     }
+ 
+     Value *expandCodeFor(ScalarEvolutionRewriter &SER,
+                          Instruction *InsertPt);
+     
+     virtual void print(std::ostream &OS) const {
+       OS << "(truncate " << *Op << " to " << *Ty << ")";
+     }
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVTruncateExpr *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scTruncate;
+     }
+   };
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ // SCEVZeroExtendExpr - This class represents a zero extension of a small
+ // integer value to a larger integer value.
+ //
+ namespace {
+   class SCEVZeroExtendExpr;
+   // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
+   // particular input.  Don't use a SCEVHandle here, or else the object will
+   // never be deleted!
+   std::map<std::pair<SCEV*, const Type*>, SCEVZeroExtendExpr*> SCEVZeroExtends;
+ 
+   class SCEVZeroExtendExpr : public SCEV {
+     SCEVHandle Op;
+     const Type *Ty;
+     SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
+       : SCEV(scTruncate), Op(Op), Ty(ty) {
+       assert(Op->getType()->isInteger() && Ty->isInteger() &&
+              Ty->isUnsigned() &&
+              "Cannot zero extend non-integer value!");
+       assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
+              "This is not an extending conversion!");
+     }
+ 
+     virtual ~SCEVZeroExtendExpr() {
+       SCEVZeroExtends.erase(std::make_pair(Op, Ty));
+     }
+   public:
+     /// get method - This just gets and returns a new SCEVZeroExtend object
+     ///
+     static SCEVHandle get(const SCEVHandle &Op, const Type *Ty);
+ 
+     const SCEVHandle &getOperand() const { return Op; }
+     virtual const Type *getType() const { return Ty; }
+     
+     virtual bool isLoopInvariant(const Loop *L) const {
+       return Op->isLoopInvariant(L);
+     }
+ 
+     virtual bool hasComputableLoopEvolution(const Loop *L) const {
+       return Op->hasComputableLoopEvolution(L);
+     }
+ 
+     /// getValueRange - Return the tightest constant bounds that this value is
+     /// known to have.  This method is only valid on integer SCEV objects.
+     virtual ConstantRange getValueRange() const {
+       return getOperand()->getValueRange().zeroExtend(getType());
+     }
+ 
+     Value *expandCodeFor(ScalarEvolutionRewriter &SER,
+                          Instruction *InsertPt);
+     
+     virtual void print(std::ostream &OS) const {
+       OS << "(zeroextend " << *Op << " to " << *Ty << ")";
+     }
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVZeroExtendExpr *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scZeroExtend;
+     }
+   };
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ // SCEVCommutativeExpr - This node is the base class for n'ary commutative
+ // operators.
+ 
+ namespace {
+   class SCEVCommutativeExpr;
+   // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
+   // particular input.  Don't use a SCEVHandle here, or else the object will
+   // never be deleted!
+   std::map<std::pair<unsigned, std::vector<SCEV*> >,
+            SCEVCommutativeExpr*> SCEVCommExprs;
+ 
+   class SCEVCommutativeExpr : public SCEV {
+     std::vector<SCEVHandle> Operands;
+ 
+   protected:
+     SCEVCommutativeExpr(enum SCEVTypes T, const std::vector<SCEVHandle> &ops)
+       : SCEV(T) {
+       Operands.reserve(ops.size());
+       Operands.insert(Operands.end(), ops.begin(), ops.end());
+     }
+ 
+     ~SCEVCommutativeExpr() {
+       SCEVCommExprs.erase(std::make_pair(getSCEVType(),
+                                          std::vector<SCEV*>(Operands.begin(),
+                                                             Operands.end())));
+     }
+ 
+   public:
+     unsigned getNumOperands() const { return Operands.size(); }
+     const SCEVHandle &getOperand(unsigned i) const {
+       assert(i < Operands.size() && "Operand index out of range!");
+       return Operands[i];
+     }
+ 
+     const std::vector<SCEVHandle> &getOperands() const { return Operands; }
+     typedef std::vector<SCEVHandle>::const_iterator op_iterator;
+     op_iterator op_begin() const { return Operands.begin(); }
+     op_iterator op_end() const { return Operands.end(); }
+ 
+ 
+     virtual bool isLoopInvariant(const Loop *L) const {
+       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+         if (!getOperand(i)->isLoopInvariant(L)) return false;
+       return true;
+     }
+ 
+     virtual bool hasComputableLoopEvolution(const Loop *L) const {
+       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+         if (getOperand(i)->hasComputableLoopEvolution(L)) return true;
+       return false;
+     }
+ 
+     virtual const Type *getType() const { return getOperand(0)->getType(); }
+ 
+     virtual const char *getOperationStr() const = 0;
+     
+     virtual void print(std::ostream &OS) const {
+       assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
+       const char *OpStr = getOperationStr();
+       OS << "(" << *Operands[0];
+       for (unsigned i = 1, e = Operands.size(); i != e; ++i)
+         OS << OpStr << *Operands[i];
+       OS << ")";
+     }
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVCommutativeExpr *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scAddExpr ||
+              S->getSCEVType() == scMulExpr;
+     }
+   };
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ // SCEVAddExpr - This node represents an addition of some number of SCEV's.
+ //
+ namespace {
+   class SCEVAddExpr : public SCEVCommutativeExpr {
+     SCEVAddExpr(const std::vector<SCEVHandle> &ops)
+       : SCEVCommutativeExpr(scAddExpr, ops) {
+     }
+ 
+   public:
+     static SCEVHandle get(std::vector<SCEVHandle> &Ops);
+ 
+     static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
+       std::vector<SCEVHandle> Ops;
+       Ops.push_back(LHS);
+       Ops.push_back(RHS);
+       return get(Ops);
+     }
+ 
+     static SCEVHandle get(const SCEVHandle &Op0, const SCEVHandle &Op1,
+                           const SCEVHandle &Op2) {
+       std::vector<SCEVHandle> Ops;
+       Ops.push_back(Op0);
+       Ops.push_back(Op1);
+       Ops.push_back(Op2);
+       return get(Ops);
+     }
+ 
+     virtual const char *getOperationStr() const { return " + "; }
+ 
+     Value *expandCodeFor(ScalarEvolutionRewriter &SER,
+                          Instruction *InsertPt);
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVAddExpr *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scAddExpr;
+     }
+   };
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ // SCEVMulExpr - This node represents multiplication of some number of SCEV's.
+ //
+ namespace {
+   class SCEVMulExpr : public SCEVCommutativeExpr {
+     SCEVMulExpr(const std::vector<SCEVHandle> &ops)
+       : SCEVCommutativeExpr(scMulExpr, ops) {
+     }
+ 
+   public:
+     static SCEVHandle get(std::vector<SCEVHandle> &Ops);
+ 
+     static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
+       std::vector<SCEVHandle> Ops;
+       Ops.push_back(LHS);
+       Ops.push_back(RHS);
+       return get(Ops);
+     }
+ 
+     virtual const char *getOperationStr() const { return " * "; }
+ 
+     Value *expandCodeFor(ScalarEvolutionRewriter &SER,
+                          Instruction *InsertPt);
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVMulExpr *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scMulExpr;
+     }
+   };
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ // SCEVUDivExpr - This class represents a binary unsigned division operation.
+ //
+ namespace {
+   class SCEVUDivExpr;
+   // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
+   // input.  Don't use a SCEVHandle here, or else the object will never be
+   // deleted!
+   std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
+ 
+   class SCEVUDivExpr : public SCEV {
+     SCEVHandle LHS, RHS;
+     SCEVUDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs)
+       : SCEV(scUDivExpr), LHS(lhs), RHS(rhs) {}
+ 
+     virtual ~SCEVUDivExpr() {
+       SCEVUDivs.erase(std::make_pair(LHS, RHS));
+     }
+   public:
+     /// get method - This just gets and returns a new SCEVUDiv object.
+     ///
+     static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS);
+ 
+     const SCEVHandle &getLHS() const { return LHS; }
+     const SCEVHandle &getRHS() const { return RHS; }
+ 
+     virtual bool isLoopInvariant(const Loop *L) const {
+       return LHS->isLoopInvariant(L) && RHS->isLoopInvariant(L);
+     }
+ 
+     virtual bool hasComputableLoopEvolution(const Loop *L) const {
+       return LHS->hasComputableLoopEvolution(L) &&
+              RHS->hasComputableLoopEvolution(L);
+     }
+ 
+     virtual const Type *getType() const {
+       const Type *Ty = LHS->getType();
+       if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
+       return Ty;
+     }
+ 
+     Value *expandCodeFor(ScalarEvolutionRewriter &SER,
+                          Instruction *InsertPt);
+     
+     virtual void print(std::ostream &OS) const {
+       OS << "(" << *LHS << " /u " << *RHS << ")";
+     }
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVUDivExpr *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scUDivExpr;
+     }
+   };
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ 
+ // SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
+ // count of the specified loop.
+ //
+ // All operands of an AddRec are required to be loop invariant.
+ //
+ namespace {
+   class SCEVAddRecExpr;
+   // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
+   // particular input.  Don't use a SCEVHandle here, or else the object will
+   // never be deleted!
+   std::map<std::pair<const Loop *, std::vector<SCEV*> >,
+            SCEVAddRecExpr*> SCEVAddRecExprs;
+ 
+   class SCEVAddRecExpr : public SCEV {
+     std::vector<SCEVHandle> Operands;
+     const Loop *L;
+ 
+     SCEVAddRecExpr(const std::vector<SCEVHandle> &ops, const Loop *l)
+       : SCEV(scAddRecExpr), Operands(ops), L(l) {
+       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+         assert(Operands[i]->isLoopInvariant(l) &&
+                "Operands of AddRec must be loop-invariant!");
+     }
+     ~SCEVAddRecExpr() {
+       SCEVAddRecExprs.erase(std::make_pair(L,
+                                            std::vector<SCEV*>(Operands.begin(),
+                                                               Operands.end())));
+     }
+   public:
+     static SCEVHandle get(const SCEVHandle &Start, const SCEVHandle &Step,
+                           const Loop *);
+     static SCEVHandle get(std::vector<SCEVHandle> &Operands,
+                           const Loop *);
+     static SCEVHandle get(const std::vector<SCEVHandle> &Operands,
+                           const Loop *L) {
+       std::vector<SCEVHandle> NewOp(Operands);
+       return get(NewOp, L);
+     }
+ 
+     typedef std::vector<SCEVHandle>::const_iterator op_iterator;
+     op_iterator op_begin() const { return Operands.begin(); }
+     op_iterator op_end() const { return Operands.end(); }
+ 
+     unsigned getNumOperands() const { return Operands.size(); }
+     const SCEVHandle &getOperand(unsigned i) const { return Operands[i]; }
+     const SCEVHandle &getStart() const { return Operands[0]; }
+     const Loop *getLoop() const { return L; }
+ 
+ 
+     /// getStepRecurrence - This method constructs and returns the recurrence
+     /// indicating how much this expression steps by.  If this is a polynomial
+     /// of degree N, it returns a chrec of degree N-1.
+     SCEVHandle getStepRecurrence() const {
+       if (getNumOperands() == 2) return getOperand(1);
+       return SCEVAddRecExpr::get(std::vector<SCEVHandle>(op_begin()+1,op_end()),
+                                  getLoop());
+     }
+ 
+     virtual bool hasComputableLoopEvolution(const Loop *QL) const {
+       if (L == QL) return true;
+       /// FIXME: What if the start or step value a recurrence for the specified
+       /// loop?
+       return false;
+     }
+ 
+ 
+     virtual bool isLoopInvariant(const Loop *QueryLoop) const {
+       // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
+       // contain L.
+       return !QueryLoop->contains(L->getHeader());
+     }
+ 
+     virtual const Type *getType() const { return Operands[0]->getType(); }
+ 
+     Value *expandCodeFor(ScalarEvolutionRewriter &SER,
+                          Instruction *InsertPt);
+ 
+ 
+     /// isAffine - Return true if this is an affine AddRec (i.e., it represents
+     /// an expressions A+B*x where A and B are loop invariant values.
+     bool isAffine() const {
+       // We know that the start value is invariant.  This expression is thus
+       // affine iff the step is also invariant.
+       return getNumOperands() == 2;
+     }
+ 
+     /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it
+     /// represents an expressions A+B*x+C*x^2 where A, B and C are loop
+     /// invariant values.  This corresponds to an addrec of the form {L,+,M,+,N}
+     bool isQuadratic() const {
+       return getNumOperands() == 3;
+     }
+ 
+     /// evaluateAtIteration - Return the value of this chain of recurrences at
+     /// the specified iteration number.
+     SCEVHandle evaluateAtIteration(SCEVHandle It) const;
+ 
+     /// getNumIterationsInRange - Return the number of iterations of this loop
+     /// that produce values in the specified constant range.  Another way of
+     /// looking at this is that it returns the first iteration number where the
+     /// value is not in the condition, thus computing the exit count.  If the
+     /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
+     /// returned.
+     SCEVHandle getNumIterationsInRange(ConstantRange Range) const;
+ 
+ 
+     virtual void print(std::ostream &OS) const {
+       OS << "{" << *Operands[0];
+       for (unsigned i = 1, e = Operands.size(); i != e; ++i)
+         OS << ",+," << *Operands[i];
+       OS << "}<" << L->getHeader()->getName() + ">";
+     }
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVAddRecExpr *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scAddRecExpr;
+     }
+   };
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ // SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
+ // value, and only represent it as it's LLVM Value.  This is the "bottom" value
+ // for the analysis.
+ //
+ namespace {
+   class SCEVUnknown;
+   // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any
+   // particular value.  Don't use a SCEVHandle here, or else the object will
+   // never be deleted!
+   std::map<Value*, SCEVUnknown*> SCEVUnknowns;
+ 
+   class SCEVUnknown : public SCEV {
+     Value *V;
+     SCEVUnknown(Value *v) : SCEV(scUnknown), V(v) {}
+ 
+   protected:
+     ~SCEVUnknown() { SCEVUnknowns.erase(V); }
+   public:
+     /// get method - For SCEVUnknown, this just gets and returns a new
+     /// SCEVUnknown.
+     static SCEVHandle get(Value *V) {
+       if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
+         return SCEVConstant::get(CI);
+       SCEVUnknown *&Result = SCEVUnknowns[V];
+       if (Result == 0) Result = new SCEVUnknown(V);
+       return Result;
+     }
+ 
+     Value *getValue() const { return V; }
+ 
+     Value *expandCodeFor(ScalarEvolutionRewriter &SER,
+                          Instruction *InsertPt) {
+       return V;
+     }
+ 
+     virtual bool isLoopInvariant(const Loop *L) const {
+       // All non-instruction values are loop invariant.  All instructions are
+       // loop invariant if they are not contained in the specified loop.
+       if (Instruction *I = dyn_cast<Instruction>(V))
+         return !L->contains(I->getParent());
+       return true;
+     }
+ 
+     virtual bool hasComputableLoopEvolution(const Loop *QL) const {
+       return false; // not computable
+     }
+ 
+     virtual const Type *getType() const { return V->getType(); }
+ 
+     virtual void print(std::ostream &OS) const {
+       WriteAsOperand(OS, V, false);
+     }
+ 
+     /// Methods for support type inquiry through isa, cast, and dyn_cast:
+     static inline bool classof(const SCEVUnknown *S) { return true; }
+     static inline bool classof(const SCEV *S) {
+       return S->getSCEVType() == scUnknown;
+     }
+   };
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                      Simple SCEV method implementations
+ //===----------------------------------------------------------------------===//
+ 
+ /// getIntegerSCEV - Given an integer or FP type, create a constant for the
+ /// specified signed integer value and return a SCEV for the constant.
+ static SCEVHandle getIntegerSCEV(int Val, const Type *Ty) {
+   Constant *C;
+   if (Val == 0) 
+     C = Constant::getNullValue(Ty);
+   else if (Ty->isFloatingPoint())
+     C = ConstantFP::get(Ty, Val);
+   else if (Ty->isSigned())
+     C = ConstantSInt::get(Ty, Val);
+   else {
+     C = ConstantSInt::get(Ty->getSignedVersion(), Val);
+     C = ConstantExpr::getCast(C, Ty);
+   }
+   return SCEVUnknown::get(C);
+ }
+ 
+ /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
+ /// input value to the specified type.  If the type must be extended, it is zero
+ /// extended.
+ static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
+   const Type *SrcTy = V->getType();
+   assert(SrcTy->isInteger() && Ty->isInteger() &&
+          "Cannot truncate or zero extend with non-integer arguments!");
+   if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
+     return V;  // No conversion
+   if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
+     return SCEVTruncateExpr::get(V, Ty);
+   return SCEVZeroExtendExpr::get(V, Ty);
+ }
+ 
+ /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
+ ///
+ static SCEVHandle getNegativeSCEV(const SCEVHandle &V) {
+   if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
+     return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
+   
+   return SCEVMulExpr::get(V, getIntegerSCEV(-1, V->getType()));
+ }
+ 
+ /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
+ ///
+ static SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
+   // X - Y --> X + -Y
+   return SCEVAddExpr::get(LHS, getNegativeSCEV(RHS));
+ }
+ 
+ 
+ /// Binomial - Evaluate N!/((N-M)!*M!)  .  Note that N is often large and M is
+ /// often very small, so we try to reduce the number of N! terms we need to
+ /// evaluate by evaluating this as  (N!/(N-M)!)/M!
+ static ConstantInt *Binomial(ConstantInt *N, unsigned M) {
+   uint64_t NVal = N->getRawValue();
+   uint64_t FirstTerm = 1;
+   for (unsigned i = 0; i != M; ++i)
+     FirstTerm *= NVal-i;
+ 
+   unsigned MFactorial = 1;
+   for (; M; --M)
+     MFactorial *= M;
+ 
+   Constant *Result = ConstantUInt::get(Type::ULongTy, FirstTerm/MFactorial);
+   Result = ConstantExpr::getCast(Result, N->getType());
+   assert(isa<ConstantInt>(Result) && "Cast of integer not folded??");
+   return cast<ConstantInt>(Result);
+ }
+ 
+ /// PartialFact - Compute V!/(V-NumSteps)!
+ static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
+   // Handle this case efficiently, it is common to have constant iteration
+   // counts while computing loop exit values.
+   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
+     uint64_t Val = SC->getValue()->getRawValue();
+     uint64_t Result = 1;
+     for (; NumSteps; --NumSteps)
+       Result *= Val-(NumSteps-1);
+     Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
+     return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
+   }
+ 
+   const Type *Ty = V->getType();
+   if (NumSteps == 0)
+     return getIntegerSCEV(1, Ty);
+   
+   SCEVHandle Result = V;
+   for (unsigned i = 1; i != NumSteps; ++i)
+     Result = SCEVMulExpr::get(Result, getMinusSCEV(V, getIntegerSCEV(i, Ty)));
+   return Result;
+ }
+ 
+ 
+ /// evaluateAtIteration - Return the value of this chain of recurrences at
+ /// the specified iteration number.  We can evaluate this recurrence by
+ /// multiplying each element in the chain by the binomial coefficient
+ /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
+ ///
+ ///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
+ ///
+ /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
+ /// Is the binomial equation safe using modular arithmetic??
+ ///
+ SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
+   SCEVHandle Result = getStart();
+   int Divisor = 1;
+   const Type *Ty = It->getType();
+   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+     SCEVHandle BC = PartialFact(It, i);
+     Divisor *= i;
+     SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
+                                        getIntegerSCEV(Divisor, Ty));
+     Result = SCEVAddExpr::get(Result, Val);
+   }
+   return Result;
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                    SCEV Expression folder implementations
+ //===----------------------------------------------------------------------===//
+ 
+ SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
+   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+     return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
+ 
+   // If the input value is a chrec scev made out of constants, truncate
+   // all of the constants.
+   if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
+     std::vector<SCEVHandle> Operands;
+     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
+       // FIXME: This should allow truncation of other expression types!
+       if (isa<SCEVConstant>(AddRec->getOperand(i)))
+         Operands.push_back(get(AddRec->getOperand(i), Ty));
+       else
+         break;
+     if (Operands.size() == AddRec->getNumOperands())
+       return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
+   }
+ 
+   SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
+   if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
+   return Result;
+ }
+ 
+ SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
+   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+     return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
+ 
+   // FIXME: If the input value is a chrec scev, and we can prove that the value
+   // did not overflow the old, smaller, value, we can zero extend all of the
+   // operands (often constants).  This would allow analysis of something like
+   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
+ 
+   SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
+   if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
+   return Result;
+ }
+ 
+ // get - Get a canonical add expression, or something simpler if possible.
+ SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
+   assert(!Ops.empty() && "Cannot get empty add!");
+ 
+   // Sort by complexity, this groups all similar expression types together.
+   std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
+ 
+   // If there are any constants, fold them together.
+   unsigned Idx = 0;
+   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+     ++Idx;
+     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+       // We found two constants, fold them together!
+       Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
+       if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
+         Ops[0] = SCEVConstant::get(CI);
+         Ops.erase(Ops.begin()+1);  // Erase the folded element
+         if (Ops.size() == 1) return Ops[0];
+       } else {
+         // If we couldn't fold the expression, move to the next constant.  Note
+         // that this is impossible to happen in practice because we always
+         // constant fold constant ints to constant ints.
+         ++Idx;
+       }
+     }
+ 
+     // If we are left with a constant zero being added, strip it off.
+     if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
+       Ops.erase(Ops.begin());
+       --Idx;
+     }
+   }
+ 
+   if (Ops.size() == 1)
+     return Ops[0];
+   
+   // Okay, check to see if the same value occurs in the operand list twice.  If
+   // so, merge them together into an multiply expression.  Since we sorted the
+   // list, these values are required to be adjacent.
+   const Type *Ty = Ops[0]->getType();
+   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
+     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
+       // Found a match, merge the two values into a multiply, and add any
+       // remaining values to the result.
+       SCEVHandle Two = getIntegerSCEV(2, Ty);
+       SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
+       if (Ops.size() == 2)
+         return Mul;
+       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
+       Ops.push_back(Mul);
+       return SCEVAddExpr::get(Ops);
+     }
+ 
+   // Okay, now we know the first non-constant operand.  If there are add
+   // operands they would be next.
+   if (Idx < Ops.size()) {
+     bool DeletedAdd = false;
+     while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
+       // If we have an add, expand the add operands onto the end of the operands
+       // list.
+       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
+       Ops.erase(Ops.begin()+Idx);
+       DeletedAdd = true;
+     }
+ 
+     // If we deleted at least one add, we added operands to the end of the list,
+     // and they are not necessarily sorted.  Recurse to resort and resimplify
+     // any operands we just aquired.
+     if (DeletedAdd)
+       return get(Ops);
+   }
+ 
+   // Skip over the add expression until we get to a multiply.
+   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
+     ++Idx;
+ 
+   // If we are adding something to a multiply expression, make sure the
+   // something is not already an operand of the multiply.  If so, merge it into
+   // the multiply.
+   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
+     SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
+     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
+       SCEV *MulOpSCEV = Mul->getOperand(MulOp);
+       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
+         if (MulOpSCEV == Ops[AddOp] &&
+             (Mul->getNumOperands() != 2 || !isa<SCEVConstant>(MulOpSCEV))) {
+           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
+           SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
+           if (Mul->getNumOperands() != 2) {
+             // If the multiply has more than two operands, we must get the
+             // Y*Z term.
+             std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
+             MulOps.erase(MulOps.begin()+MulOp);
+             InnerMul = SCEVMulExpr::get(MulOps);
+           }
+           SCEVHandle One = getIntegerSCEV(1, Ty);
+           SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
+           SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
+           if (Ops.size() == 2) return OuterMul;
+           if (AddOp < Idx) {
+             Ops.erase(Ops.begin()+AddOp);
+             Ops.erase(Ops.begin()+Idx-1);
+           } else {
+             Ops.erase(Ops.begin()+Idx);
+             Ops.erase(Ops.begin()+AddOp-1);
+           }
+           Ops.push_back(OuterMul);
+           return SCEVAddExpr::get(Ops);
+         }
+       
+       // Check this multiply against other multiplies being added together.
+       for (unsigned OtherMulIdx = Idx+1;
+            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
+            ++OtherMulIdx) {
+         SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
+         // If MulOp occurs in OtherMul, we can fold the two multiplies
+         // together.
+         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
+              OMulOp != e; ++OMulOp)
+           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
+             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
+             SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
+             if (Mul->getNumOperands() != 2) {
+               std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
+               MulOps.erase(MulOps.begin()+MulOp);
+               InnerMul1 = SCEVMulExpr::get(MulOps);
+             }
+             SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
+             if (OtherMul->getNumOperands() != 2) {
+               std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
+                                              OtherMul->op_end());
+               MulOps.erase(MulOps.begin()+OMulOp);
+               InnerMul2 = SCEVMulExpr::get(MulOps);
+             }
+             SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
+             SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
+             if (Ops.size() == 2) return OuterMul;
+             Ops.erase(Ops.begin()+Idx);
+             Ops.erase(Ops.begin()+OtherMulIdx-1);
+             Ops.push_back(OuterMul);
+             return SCEVAddExpr::get(Ops);
+           }
+       }
+     }
+   }
+ 
+   // If there are any add recurrences in the operands list, see if any other
+   // added values are loop invariant.  If so, we can fold them into the
+   // recurrence.
+   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
+     ++Idx;
+ 
+   // Scan over all recurrences, trying to fold loop invariants into them.
+   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
+     // Scan all of the other operands to this add and add them to the vector if
+     // they are loop invariant w.r.t. the recurrence.
+     std::vector<SCEVHandle> LIOps;
+     SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
+     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
+         LIOps.push_back(Ops[i]);
+         Ops.erase(Ops.begin()+i);
+         --i; --e;
+       }
+ 
+     // If we found some loop invariants, fold them into the recurrence.
+     if (!LIOps.empty()) {
+       //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
+       LIOps.push_back(AddRec->getStart());
+ 
+       std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
+       AddRecOps[0] = SCEVAddExpr::get(LIOps);
+ 
+       SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
+       // If all of the other operands were loop invariant, we are done.
+       if (Ops.size() == 1) return NewRec;
+ 
+       // Otherwise, add the folded AddRec by the non-liv parts.
+       for (unsigned i = 0;; ++i)
+         if (Ops[i] == AddRec) {
+           Ops[i] = NewRec;
+           break;
+         }
+       return SCEVAddExpr::get(Ops);
+     }
+ 
+     // Okay, if there weren't any loop invariants to be folded, check to see if
+     // there are multiple AddRec's with the same loop induction variable being
+     // added together.  If so, we can fold them.
+     for (unsigned OtherIdx = Idx+1;
+          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
+       if (OtherIdx != Idx) {
+         SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
+           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
+           std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
+           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
+             if (i >= NewOps.size()) {
+               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
+                             OtherAddRec->op_end());
+               break;
+             }
+             NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
+           }
+           SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
+ 
+           if (Ops.size() == 2) return NewAddRec;
+ 
+           Ops.erase(Ops.begin()+Idx);
+           Ops.erase(Ops.begin()+OtherIdx-1);
+           Ops.push_back(NewAddRec);
+           return SCEVAddExpr::get(Ops);
+         }
+       }
+ 
+     // Otherwise couldn't fold anything into this recurrence.  Move onto the
+     // next one.
+   }
+ 
+   // Okay, it looks like we really DO need an add expr.  Check to see if we
+   // already have one, otherwise create a new one.
+   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
+   SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
+                                                               SCEVOps)];
+   if (Result == 0) Result = new SCEVAddExpr(Ops);
+   return Result;
+ }
+ 
+ 
+ SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
+   assert(!Ops.empty() && "Cannot get empty mul!");
+ 
+   // Sort by complexity, this groups all similar expression types together.
+   std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
+ 
+   // If there are any constants, fold them together.
+   unsigned Idx = 0;
+   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+ 
+     // C1*(C2+V) -> C1*C2 + C1*V
+     if (Ops.size() == 2)
+       if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
+         if (Add->getNumOperands() == 2 &&
+             isa<SCEVConstant>(Add->getOperand(0)))
+           return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
+                                   SCEVMulExpr::get(LHSC, Add->getOperand(1)));
+ 
+ 
+     ++Idx;
+     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+       // We found two constants, fold them together!
+       Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
+       if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
+         Ops[0] = SCEVConstant::get(CI);
+         Ops.erase(Ops.begin()+1);  // Erase the folded element
+         if (Ops.size() == 1) return Ops[0];
+       } else {
+         // If we couldn't fold the expression, move to the next constant.  Note
+         // that this is impossible to happen in practice because we always
+         // constant fold constant ints to constant ints.
+         ++Idx;
+       }
+     }
+ 
+     // If we are left with a constant one being multiplied, strip it off.
+     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
+       Ops.erase(Ops.begin());
+       --Idx;
+     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
+       // If we have a multiply of zero, it will always be zero.
+       return Ops[0];
+     }
+   }
+ 
+   // Skip over the add expression until we get to a multiply.
+   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
+     ++Idx;
+ 
+   if (Ops.size() == 1)
+     return Ops[0];
+   
+   // If there are mul operands inline them all into this expression.
+   if (Idx < Ops.size()) {
+     bool DeletedMul = false;
+     while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
+       // If we have an mul, expand the mul operands onto the end of the operands
+       // list.
+       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
+       Ops.erase(Ops.begin()+Idx);
+       DeletedMul = true;
+     }
+ 
+     // If we deleted at least one mul, we added operands to the end of the list,
+     // and they are not necessarily sorted.  Recurse to resort and resimplify
+     // any operands we just aquired.
+     if (DeletedMul)
+       return get(Ops);
+   }
+ 
+   // If there are any add recurrences in the operands list, see if any other
+   // added values are loop invariant.  If so, we can fold them into the
+   // recurrence.
+   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
+     ++Idx;
+ 
+   // Scan over all recurrences, trying to fold loop invariants into them.
+   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
+     // Scan all of the other operands to this mul and add them to the vector if
+     // they are loop invariant w.r.t. the recurrence.
+     std::vector<SCEVHandle> LIOps;
+     SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
+     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
+         LIOps.push_back(Ops[i]);
+         Ops.erase(Ops.begin()+i);
+         --i; --e;
+       }
+ 
+     // If we found some loop invariants, fold them into the recurrence.
+     if (!LIOps.empty()) {
+       //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
+       std::vector<SCEVHandle> NewOps;
+       NewOps.reserve(AddRec->getNumOperands());
+       if (LIOps.size() == 1) {
+         SCEV *Scale = LIOps[0];
+         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
+           NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
+       } else {
+         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
+           std::vector<SCEVHandle> MulOps(LIOps);
+           MulOps.push_back(AddRec->getOperand(i));
+           NewOps.push_back(SCEVMulExpr::get(MulOps));
+         }
+       }
+ 
+       SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
+ 
+       // If all of the other operands were loop invariant, we are done.
+       if (Ops.size() == 1) return NewRec;
+ 
+       // Otherwise, multiply the folded AddRec by the non-liv parts.
+       for (unsigned i = 0;; ++i)
+         if (Ops[i] == AddRec) {
+           Ops[i] = NewRec;
+           break;
+         }
+       return SCEVMulExpr::get(Ops);
+     }
+ 
+     // Okay, if there weren't any loop invariants to be folded, check to see if
+     // there are multiple AddRec's with the same loop induction variable being
+     // multiplied together.  If so, we can fold them.
+     for (unsigned OtherIdx = Idx+1;
+          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
+       if (OtherIdx != Idx) {
+         SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
+           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
+           SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
+           SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
+                                                  G->getStart());
+           SCEVHandle B = F->getStepRecurrence();
+           SCEVHandle D = G->getStepRecurrence();
+           SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
+                                                 SCEVMulExpr::get(G, B),
+                                                 SCEVMulExpr::get(B, D));
+           SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
+                                                      F->getLoop());
+           if (Ops.size() == 2) return NewAddRec;
+ 
+           Ops.erase(Ops.begin()+Idx);
+           Ops.erase(Ops.begin()+OtherIdx-1);
+           Ops.push_back(NewAddRec);
+           return SCEVMulExpr::get(Ops);
+         }
+       }
+ 
+     // Otherwise couldn't fold anything into this recurrence.  Move onto the
+     // next one.
+   }
+ 
+   // Okay, it looks like we really DO need an mul expr.  Check to see if we
+   // already have one, otherwise create a new one.
+   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
+   SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
+                                                               SCEVOps)];
+   if (Result == 0) Result = new SCEVMulExpr(Ops);
+   return Result;
+ }
+ 
+ SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
+   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
+     if (RHSC->getValue()->equalsInt(1))
+       return LHS;                            // X /u 1 --> x
+     if (RHSC->getValue()->isAllOnesValue())
+       return getNegativeSCEV(LHS);           // X /u -1  -->  -x
+ 
+     if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
+       Constant *LHSCV = LHSC->getValue();
+       Constant *RHSCV = RHSC->getValue();
+       if (LHSCV->getType()->isSigned())
+         LHSCV = ConstantExpr::getCast(LHSCV,
+                                       LHSCV->getType()->getUnsignedVersion());
+       if (RHSCV->getType()->isSigned())
+         RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
+       return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
+     }
+   }
+ 
+   // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
+ 
+   SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
+   if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
+   return Result;
+ }
+ 
+ 
+ /// SCEVAddRecExpr::get - Get a add recurrence expression for the
+ /// specified loop.  Simplify the expression as much as possible.
+ SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
+                                const SCEVHandle &Step, const Loop *L) {
+   std::vector<SCEVHandle> Operands;
+   Operands.push_back(Start);
+   if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
+     if (StepChrec->getLoop() == L) {
+       Operands.insert(Operands.end(), StepChrec->op_begin(),
+                       StepChrec->op_end());
+       return get(Operands, L);
+     }
+ 
+   Operands.push_back(Step);
+   return get(Operands, L);
+ }
+ 
+ /// SCEVAddRecExpr::get - Get a add recurrence expression for the
+ /// specified loop.  Simplify the expression as much as possible.
+ SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
+                                const Loop *L) {
+   if (Operands.size() == 1) return Operands[0];
+ 
+   if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
+     if (StepC->getValue()->isNullValue()) {
+       Operands.pop_back();
+       return get(Operands, L);             // { X,+,0 }  -->  X
+     }
+ 
+   SCEVAddRecExpr *&Result =
+     SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
+                                                          Operands.end()))];
+   if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
+   return Result;
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                  Non-trivial closed-form SCEV Expanders
+ //===----------------------------------------------------------------------===//
+ 
+ Value *SCEVTruncateExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
+                                        Instruction *InsertPt) {
+   Value *V = SER.ExpandCodeFor(getOperand(), InsertPt);
+   return new CastInst(V, getType(), "tmp.", InsertPt);
+ }
+ 
+ Value *SCEVZeroExtendExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
+                                          Instruction *InsertPt) {
+   Value *V = SER.ExpandCodeFor(getOperand(), InsertPt,
+                                getOperand()->getType()->getUnsignedVersion());
+   return new CastInst(V, getType(), "tmp.", InsertPt);
+ }
+ 
+ Value *SCEVAddExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
+                                   Instruction *InsertPt) {
+   const Type *Ty = getType();
+   Value *V = SER.ExpandCodeFor(getOperand(getNumOperands()-1), InsertPt, Ty);
+ 
+   // Emit a bunch of add instructions
+   for (int i = getNumOperands()-2; i >= 0; --i)
+     V = BinaryOperator::create(Instruction::Add, V,
+                                SER.ExpandCodeFor(getOperand(i), InsertPt, Ty),
+                                "tmp.", InsertPt);
+   return V;
+ }
+ 
+ Value *SCEVMulExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
+                                   Instruction *InsertPt) {
+   const Type *Ty = getType();
+   int FirstOp = 0;  // Set if we should emit a subtract.
+   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getOperand(0)))
+     if (SC->getValue()->isAllOnesValue())
+       FirstOp = 1;
+ 
+   int i = getNumOperands()-2;
+   Value *V = SER.ExpandCodeFor(getOperand(i+1), InsertPt, Ty);
+ 
+   // Emit a bunch of multiply instructions
+   for (; i >= FirstOp; --i)
+     V = BinaryOperator::create(Instruction::Mul, V,
+                                SER.ExpandCodeFor(getOperand(i), InsertPt, Ty),
+                                "tmp.", InsertPt);
+   // -1 * ...  --->  0 - ...
+   if (FirstOp == 1)
+     V = BinaryOperator::create(Instruction::Sub, Constant::getNullValue(Ty), V,
+                                "tmp.", InsertPt);
+   return V;
+ }
+ 
+ Value *SCEVUDivExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
+                                    Instruction *InsertPt) {
+   const Type *Ty = getType();
+   Value *LHS = SER.ExpandCodeFor(getLHS(), InsertPt, Ty);
+   Value *RHS = SER.ExpandCodeFor(getRHS(), InsertPt, Ty);
+   return BinaryOperator::create(Instruction::Div, LHS, RHS, "tmp.", InsertPt);
+ }
+ 
+ Value *SCEVAddRecExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
+                                      Instruction *InsertPt) {
+   const Type *Ty = getType();
+   // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
+   assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
+ 
+   // {X,+,F} --> X + {0,+,F}
+   if (!isa<SCEVConstant>(getStart()) ||
+       !cast<SCEVConstant>(getStart())->getValue()->isNullValue()) {
+     Value *Start = SER.ExpandCodeFor(getStart(), InsertPt, Ty);
+     std::vector<SCEVHandle> NewOps(op_begin(), op_end());
+     NewOps[0] = getIntegerSCEV(0, getType());
+     Value *Rest = SER.ExpandCodeFor(SCEVAddRecExpr::get(NewOps, getLoop()),
+                                     InsertPt, getType());
+ 
+     // FIXME: look for an existing add to use.
+     return BinaryOperator::create(Instruction::Add, Rest, Start, "tmp.",
+                                   InsertPt);
+   }
+ 
+   // {0,+,1} --> Insert a canonical induction variable into the loop!
+   if (getNumOperands() == 2 && getOperand(1) == getIntegerSCEV(1, getType())) {
+     // Create and insert the PHI node for the induction variable in the
+     // specified loop.
+     BasicBlock *Header = getLoop()->getHeader();
+     PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
+     PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
+ 
+     // Insert a unit add instruction after the PHI nodes in the header block.
+     BasicBlock::iterator I = PN;
+     while (isa<PHINode>(I)) ++I;
+ 
+     Constant *One = Ty->isFloatingPoint() ?(Constant*)ConstantFP::get(Ty, 1.0)
+       :(Constant*)ConstantInt::get(Ty, 1);
+     Instruction *Add = BinaryOperator::create(Instruction::Add, PN, One,
+                                               "indvar.next", I);
+ 
+     pred_iterator PI = pred_begin(Header);
+     if (*PI == L->getLoopPreheader())
+       ++PI;
+     PN->addIncoming(Add, *PI);
+     return PN;
+   }
+ 
+   // Get the canonical induction variable I for this loop.
+   Value *I = SER.GetOrInsertCanonicalInductionVariable(getLoop(), Ty);
+ 
+   if (getNumOperands() == 2) {   // {0,+,F} --> i*F
+     Value *F = SER.ExpandCodeFor(getOperand(1), InsertPt, Ty);
+     return BinaryOperator::create(Instruction::Mul, I, F, "tmp.", InsertPt);
+   }
+ 
+   // If this is a chain of recurrences, turn it into a closed form, using the
+   // folders, then expandCodeFor the closed form.  This allows the folders to
+   // simplify the expression without having to build a bunch of special code
+   // into this folder.
+   SCEVHandle IH = SCEVUnknown::get(I);   // Get I as a "symbolic" SCEV.
+ 
+   SCEVHandle V = evaluateAtIteration(IH);
+   std::cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
+ 
+   return SER.ExpandCodeFor(V, InsertPt, Ty);
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //             ScalarEvolutionsImpl Definition and Implementation
+ //===----------------------------------------------------------------------===//
+ //
+ /// ScalarEvolutionsImpl - This class implements the main driver for the scalar
+ /// evolution code.
+ ///
+ namespace {
+   struct ScalarEvolutionsImpl {
+     /// F - The function we are analyzing.
+     ///
+     Function &F;
+ 
+     /// LI - The loop information for the function we are currently analyzing.
+     ///
+     LoopInfo &LI;
+ 
+     /// UnknownValue - This SCEV is used to represent unknown trip counts and
+     /// things.
+     SCEVHandle UnknownValue;
+ 
+     /// Scalars - This is a cache of the scalars we have analyzed so far.
+     ///
+     std::map<Value*, SCEVHandle> Scalars;
+ 
+     /// IterationCounts - Cache the iteration count of the loops for this
+     /// function as they are computed.
+     std::map<const Loop*, SCEVHandle> IterationCounts;
+ 
+   public:
+     ScalarEvolutionsImpl(Function &f, LoopInfo &li)
+       : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
+ 
+     /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
+     /// expression and create a new one.
+     SCEVHandle getSCEV(Value *V);
+ 
+     /// getSCEVAtScope - Compute the value of the specified expression within
+     /// the indicated loop (which may be null to indicate in no loop).  If the
+     /// expression cannot be evaluated, return UnknownValue itself.
+     SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
+ 
+ 
+     /// hasLoopInvariantIterationCount - Return true if the specified loop has
+     /// an analyzable loop-invariant iteration count.
+     bool hasLoopInvariantIterationCount(const Loop *L);
+ 
+     /// getIterationCount - If the specified loop has a predictable iteration
+     /// count, return it.  Note that it is not valid to call this method on a
+     /// loop without a loop-invariant iteration count.
+     SCEVHandle getIterationCount(const Loop *L);
+ 
+     /// deleteInstructionFromRecords - This method should be called by the
+     /// client before it removes an instruction from the program, to make sure
+     /// that no dangling references are left around.
+     void deleteInstructionFromRecords(Instruction *I);
+ 
+   private:
+     /// createSCEV - We know that there is no SCEV for the specified value.
+     /// Analyze the expression.
+     SCEVHandle createSCEV(Value *V);
+     SCEVHandle createNodeForCast(CastInst *CI);
+ 
+     /// createNodeForPHI - Provide the special handling we need to analyze PHI
+     /// SCEVs.
+     SCEVHandle createNodeForPHI(PHINode *PN);
+     void UpdatePHIUserScalarEntries(Instruction *I, PHINode *PN,
+                                     std::set<Instruction*> &UpdatedInsts);
+ 
+     /// ComputeIterationCount - Compute the number of times the specified loop
+     /// will iterate.
+     SCEVHandle ComputeIterationCount(const Loop *L);
+ 
+     /// HowFarToZero - Return the number of times a backedge comparing the
+     /// specified value to zero will execute.  If not computable, return
+     /// UnknownValue
+     SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
+ 
+     /// HowFarToNonZero - Return the number of times a backedge checking the
+     /// specified value for nonzero will execute.  If not computable, return
+     /// UnknownValue
+     SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
+   };
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //            Basic SCEV Analysis and PHI Idiom Recognition Code
+ //
+ 
+ /// deleteInstructionFromRecords - This method should be called by the
+ /// client before it removes an instruction from the program, to make sure
+ /// that no dangling references are left around.
+ void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
+   Scalars.erase(I);
+ }
+ 
+ 
+ /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
+ /// expression and create a new one.
+ SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
+   assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
+ 
+   std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
+   if (I != Scalars.end()) return I->second;
+   SCEVHandle S = createSCEV(V);
+   Scalars.insert(std::make_pair(V, S));
+   return S;
+ }
+ 
+ 
+ /// UpdatePHIUserScalarEntries - After PHI node analysis, we have a bunch of
+ /// entries in the scalar map that refer to the "symbolic" PHI value instead of
+ /// the recurrence value.  After we resolve the PHI we must loop over all of the
+ /// using instructions that have scalar map entries and update them.
+ void ScalarEvolutionsImpl::UpdatePHIUserScalarEntries(Instruction *I,
+                                                       PHINode *PN,
+                                         std::set<Instruction*> &UpdatedInsts) {
+   std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
+   if (SI == Scalars.end()) return;   // This scalar wasn't previous processed.
+   if (UpdatedInsts.insert(I).second) {
+     Scalars.erase(SI);                 // Remove the old entry
+     getSCEV(I);                        // Calculate the new entry
+     
+     for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+          UI != E; ++UI)
+       UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN, UpdatedInsts);
+   }
+ }
+ 
+ 
+ /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
+ /// a loop header, making it a potential recurrence, or it doesn't.
+ ///
+ SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
+   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
+     if (const Loop *L = LI.getLoopFor(PN->getParent()))
+       if (L->getHeader() == PN->getParent()) {
+         // If it lives in the loop header, it has two incoming values, one
+         // from outside the loop, and one from inside.
+         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
+         unsigned BackEdge     = IncomingEdge^1;
+         
+         // While we are analyzing this PHI node, handle its value symbolically.
+         SCEVHandle SymbolicName = SCEVUnknown::get(PN);
+         assert(Scalars.find(PN) == Scalars.end() &&
+                "PHI node already processed?");
+         Scalars.insert(std::make_pair(PN, SymbolicName));
+ 
+         // Using this symbolic name for the PHI, analyze the value coming around
+         // the back-edge.
+         SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
+ 
+         // NOTE: If BEValue is loop invariant, we know that the PHI node just
+         // has a special value for the first iteration of the loop.
+ 
+         // If the value coming around the backedge is an add with the symbolic
+         // value we just inserted, then we found a simple induction variable!
+         if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
+           // If there is a single occurrence of the symbolic value, replace it
+           // with a recurrence.
+           unsigned FoundIndex = Add->getNumOperands();
+           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+             if (Add->getOperand(i) == SymbolicName)
+               if (FoundIndex == e) {
+                 FoundIndex = i;
+                 break;
+               }
+ 
+           if (FoundIndex != Add->getNumOperands()) {
+             // Create an add with everything but the specified operand.
+             std::vector<SCEVHandle> Ops;
+             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+               if (i != FoundIndex)
+                 Ops.push_back(Add->getOperand(i));
+             SCEVHandle Accum = SCEVAddExpr::get(Ops);
+ 
+             // This is not a valid addrec if the step amount is varying each
+             // loop iteration, but is not itself an addrec in this loop.
+             if (Accum->isLoopInvariant(L) ||
+                 (isa<SCEVAddRecExpr>(Accum) &&
+                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
+               SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
+               SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
+ 
+               // Okay, for the entire analysis of this edge we assumed the PHI
+               // to be symbolic.  We now need to go back and update all of the
+               // entries for the scalars that use the PHI (except for the PHI
+               // itself) to use the new analyzed value instead of the "symbolic"
+               // value.
+               Scalars.find(PN)->second = PHISCEV;       // Update the PHI value
+               std::set<Instruction*> UpdatedInsts;
+               UpdatedInsts.insert(PN);
+               for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
+                    UI != E; ++UI)
+                 UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN,
+                                            UpdatedInsts);
+               return PHISCEV;
+             }
+           }
+         }
+ 
+         return SymbolicName;
+       }
+   
+   // If it's not a loop phi, we can't handle it yet.
+   return SCEVUnknown::get(PN);
+ }
+ 
+ /// createNodeForCast - Handle the various forms of casts that we support.
+ ///
+ SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
+   const Type *SrcTy = CI->getOperand(0)->getType();
+   const Type *DestTy = CI->getType();
+   
+   // If this is a noop cast (ie, conversion from int to uint), ignore it.
+   if (SrcTy->isLosslesslyConvertibleTo(DestTy))
+     return getSCEV(CI->getOperand(0));
+   
+   if (SrcTy->isInteger() && DestTy->isInteger()) {
+     // Otherwise, if this is a truncating integer cast, we can represent this
+     // cast.
+     if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
+       return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
+                                    CI->getType()->getUnsignedVersion());
+     if (SrcTy->isUnsigned() &&
+         SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
+       return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
+                                      CI->getType()->getUnsignedVersion());
+   }
+ 
+   // If this is an sign or zero extending cast and we can prove that the value
+   // will never overflow, we could do similar transformations.
+ 
+   // Otherwise, we can't handle this cast!
+   return SCEVUnknown::get(CI);
+ }
+ 
+ 
+ /// createSCEV - We know that there is no SCEV for the specified value.
+ /// Analyze the expression.
+ ///
+ SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
+   if (Instruction *I = dyn_cast<Instruction>(V)) {
+     switch (I->getOpcode()) {
+     case Instruction::Add:
+       return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
+                               getSCEV(I->getOperand(1)));
+     case Instruction::Mul:
+       return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
+                               getSCEV(I->getOperand(1)));
+     case Instruction::Div:
+       if (V->getType()->isInteger() && V->getType()->isUnsigned())
+         return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
+                                  getSCEV(I->getOperand(1)));
+       break;
+ 
+     case Instruction::Sub:
+       return getMinusSCEV(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1)));
+ 
+     case Instruction::Shl:
+       // Turn shift left of a constant amount into a multiply.
+       if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+         Constant *X = ConstantInt::get(V->getType(), 1);
+         X = ConstantExpr::getShl(X, SA);
+         return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
+       }
+       break;
+ 
+     case Instruction::Shr:
+       if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
+         if (V->getType()->isUnsigned()) {
+           Constant *X = ConstantInt::get(V->getType(), 1);
+           X = ConstantExpr::getShl(X, SA);
+           return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
+         }
+       break;
+ 
+     case Instruction::Cast:
+       return createNodeForCast(cast<CastInst>(I));
+ 
+     case Instruction::PHI:
+       return createNodeForPHI(cast<PHINode>(I));
+ 
+     default: // We cannot analyze this expression.
+       break;
+     }
+   }
+ 
+   return SCEVUnknown::get(V);
+ }
+ 
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                   Iteration Count Computation Code
+ //
+ 
+ /// getIterationCount - If the specified loop has a predictable iteration
+ /// count, return it.  Note that it is not valid to call this method on a
+ /// loop without a loop-invariant iteration count.
+ SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
+   std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
+   if (I == IterationCounts.end()) {
+     SCEVHandle ItCount = ComputeIterationCount(L);
+     I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
+     if (ItCount != UnknownValue) {
+       assert(ItCount->isLoopInvariant(L) &&
+              "Computed trip count isn't loop invariant for loop!");
+       ++NumTripCountsComputed;
+     } else if (isa<PHINode>(L->getHeader()->begin())) {
+       // Only count loops that have phi nodes as not being computable.
+       ++NumTripCountsNotComputed;
+     }
+   }
+   return I->second;
+ }
+ 
+ /// ComputeIterationCount - Compute the number of times the specified loop
+ /// will iterate.
+ SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
+   // If the loop has a non-one exit block count, we can't analyze it.
+   if (L->getExitBlocks().size() != 1) return UnknownValue;
+ 
+   // Okay, there is one exit block.  Try to find the condition that causes the
+   // loop to be exited.
+   BasicBlock *ExitBlock = L->getExitBlocks()[0];
+ 
+   BasicBlock *ExitingBlock = 0;
+   for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
+        PI != E; ++PI)
+     if (L->contains(*PI)) {
+       if (ExitingBlock == 0)
+         ExitingBlock = *PI;
+       else
+         return UnknownValue;   // More than one block exiting!
+     }
+   assert(ExitingBlock && "No exits from loop, something is broken!");
+ 
+   // Okay, we've computed the exiting block.  See what condition causes us to
+   // exit.
+   //
+   // FIXME: we should be able to handle switch instructions (with a single exit)
+   // FIXME: We should handle cast of int to bool as well
+   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+   if (ExitBr == 0) return UnknownValue;
+   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
+   SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
+   if (ExitCond == 0) return UnknownValue;
+ 
+   SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
+   SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
+ 
+   // Try to evaluate any dependencies out of the loop.
+   SCEVHandle Tmp = getSCEVAtScope(LHS, L);
+   if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
+   Tmp = getSCEVAtScope(RHS, L);
+   if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
+ 
+   // If the condition was exit on true, convert the condition to exit on false.
+   Instruction::BinaryOps Cond;
+   if (ExitBr->getSuccessor(1) == ExitBlock)
+     Cond = ExitCond->getOpcode();
+   else
+     Cond = ExitCond->getInverseCondition();
+ 
+   // At this point, we would like to compute how many iterations of the loop the
+   // predicate will return true for these inputs.
+   if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
+     // If there is a constant, force it into the RHS.
+     std::swap(LHS, RHS);
+     Cond = SetCondInst::getSwappedCondition(Cond);
+   }
+ 
+   // FIXME: think about handling pointer comparisons!  i.e.:
+   // while (P != P+100) ++P;
+ 
+   // If we have a comparison of a chrec against a constant, try to use value
+   // ranges to answer this query.
+   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
+     if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
+       if (AddRec->getLoop() == L) {
+         // Form the comparison range using the constant of the correct type so
+         // that the ConstantRange class knows to do a signed or unsigned
+         // comparison.
+         ConstantInt *CompVal = RHSC->getValue();
+         const Type *RealTy = ExitCond->getOperand(0)->getType();
+         CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
+         if (CompVal) {
+           // Form the constant range.
+           ConstantRange CompRange(Cond, CompVal);
+           
+           // Now that we have it, if it's signed, convert it to an unsigned
+           // range.
+           if (CompRange.getLower()->getType()->isSigned()) {
+             const Type *NewTy = RHSC->getValue()->getType();
+             Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
+             Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
+             CompRange = ConstantRange(NewL, NewU);
+           }
+           
+           SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
+           if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
+         }
+       }
+   
+   switch (Cond) {
+   case Instruction::SetNE:                     // while (X != Y)
+     // Convert to: while (X-Y != 0)
+     if (LHS->getType()->isInteger())
+       return HowFarToZero(getMinusSCEV(LHS, RHS), L);
+     break;
+   case Instruction::SetEQ:
+     // Convert to: while (X-Y == 0)           // while (X == Y)
+     if (LHS->getType()->isInteger())
+       return HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
+     break;
+   default:
+     std::cerr << "ComputeIterationCount ";
+     if (ExitCond->getOperand(0)->getType()->isUnsigned())
+       std::cerr << "[unsigned] ";
+     std::cerr << *LHS << "   "
+               << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
+   }
+   return UnknownValue;
+ }
+ 
+ /// getSCEVAtScope - Compute the value of the specified expression within the
+ /// indicated loop (which may be null to indicate in no loop).  If the
+ /// expression cannot be evaluated, return UnknownValue.
+ SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
+   // FIXME: this should be turned into a virtual method on SCEV!
+ 
+   if (isa<SCEVConstant>(V) || isa<SCEVUnknown>(V)) return V;
+   if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
+     // Avoid performing the look-up in the common case where the specified
+     // expression has no loop-variant portions.
+     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
+       SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+       if (OpAtScope != Comm->getOperand(i)) {
+         if (OpAtScope == UnknownValue) return UnknownValue;
+         // Okay, at least one of these operands is loop variant but might be
+         // foldable.  Build a new instance of the folded commutative expression.
+         std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i-1);
+         NewOps.push_back(OpAtScope);
+ 
+         for (++i; i != e; ++i) {
+           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+           if (OpAtScope == UnknownValue) return UnknownValue;
+           NewOps.push_back(OpAtScope);
+         }
+         if (isa<SCEVAddExpr>(Comm))
+           return SCEVAddExpr::get(NewOps);
+         assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
+         return SCEVMulExpr::get(NewOps);
+       }
+     }
+     // If we got here, all operands are loop invariant.
+     return Comm;
+   }
+ 
+   if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
+     SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
+     if (LHS == UnknownValue) return LHS;
+     SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
+     if (RHS == UnknownValue) return RHS;
+     if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
+       return UDiv;   // must be loop invariant
+     return SCEVUDivExpr::get(LHS, RHS);
+   }
+ 
+   // If this is a loop recurrence for a loop that does not contain L, then we
+   // are dealing with the final value computed by the loop.
+   if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
+     if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
+       // To evaluate this recurrence, we need to know how many times the AddRec
+       // loop iterates.  Compute this now.
+       SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
+       if (IterationCount == UnknownValue) return UnknownValue;
+       IterationCount = getTruncateOrZeroExtend(IterationCount,
+                                                AddRec->getType());
+       
+       // If the value is affine, simplify the expression evaluation to just
+       // Start + Step*IterationCount.
+       if (AddRec->isAffine())
+         return SCEVAddExpr::get(AddRec->getStart(),
+                                 SCEVMulExpr::get(IterationCount,
+                                                  AddRec->getOperand(1)));
+ 
+       // Otherwise, evaluate it the hard way.
+       return AddRec->evaluateAtIteration(IterationCount);
+     }
+     return UnknownValue;
+   }
+ 
+   //assert(0 && "Unknown SCEV type!");
+   return UnknownValue;
+ }
+ 
+ 
+ /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
+ /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
+ /// might be the same) or two SCEVCouldNotCompute objects.
+ ///
+ static std::pair<SCEVHandle,SCEVHandle>
+ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
+   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
+   SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
+   SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
+   SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
+   
+   // We currently can only solve this if the coefficients are constants.
+   if (!L || !M || !N) {
+     SCEV *CNC = new SCEVCouldNotCompute();
+     return std::make_pair(CNC, CNC);
+   }
+ 
+   Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
+   
+   // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
+   Constant *C = L->getValue();
+   // The B coefficient is M-N/2
+   Constant *B = ConstantExpr::getSub(M->getValue(),
+                                      ConstantExpr::getDiv(N->getValue(),
+                                                           Two));
+   // The A coefficient is N/2
+   Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
+         
+   // Compute the B^2-4ac term.
+   Constant *SqrtTerm =
+     ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
+                          ConstantExpr::getMul(A, C));
+   SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
+ 
+   // Compute floor(sqrt(B^2-4ac))
+   ConstantUInt *SqrtVal =
+     cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
+                                    SqrtTerm->getType()->getUnsignedVersion()));
+   uint64_t SqrtValV = SqrtVal->getValue();
+   uint64_t SqrtValV2 = (uint64_t)sqrtl(SqrtValV);
+   // The square root might not be precise for arbitrary 64-bit integer
+   // values.  Do some sanity checks to ensure it's correct.
+   if (SqrtValV2*SqrtValV2 > SqrtValV ||
+       (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
+     SCEV *CNC = new SCEVCouldNotCompute();
+     return std::make_pair(CNC, CNC);
+   }
+ 
+   SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
+   SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
+   
+   Constant *NegB = ConstantExpr::getNeg(B);
+   Constant *TwoA = ConstantExpr::getMul(A, Two);
+   
+   // The divisions must be performed as signed divisions.
+   const Type *SignedTy = NegB->getType()->getSignedVersion();
+   NegB = ConstantExpr::getCast(NegB, SignedTy);
+   TwoA = ConstantExpr::getCast(TwoA, SignedTy);
+   SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
+   
+   Constant *Solution1 =
+     ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
+   Constant *Solution2 =
+     ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
+   return std::make_pair(SCEVUnknown::get(Solution1),
+                         SCEVUnknown::get(Solution2));
+ }
+ 
+ /// HowFarToZero - Return the number of times a backedge comparing the specified
+ /// value to zero will execute.  If not computable, return UnknownValue
+ SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
+   // If the value is a constant
+   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
+     // If the value is already zero, the branch will execute zero times.
+     if (C->getValue()->isNullValue()) return C;
+     return UnknownValue;  // Otherwise it will loop infinitely.
+   }
+ 
+   SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
+   if (!AddRec || AddRec->getLoop() != L)
+     return UnknownValue;
+ 
+   if (AddRec->isAffine()) {
+     // If this is an affine expression the execution count of this branch is
+     // equal to:
+     //
+     //     (0 - Start/Step)    iff   Start % Step == 0
+     //
+     // Get the initial value for the loop.
+     SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
+     SCEVHandle Step = AddRec->getOperand(1);
+ 
+     Step = getSCEVAtScope(Step, L->getParentLoop());
+ 
+     // Figure out if Start % Step == 0.
+     // FIXME: We should add DivExpr and RemExpr operations to our AST.
+     if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
+       if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
+         return getNegativeSCEV(Start);  // 0 - Start/1 == -Start
+       if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
+         return Start;                   // 0 - Start/-1 == Start
+ 
+       // Check to see if Start is divisible by SC with no remainder.
+       if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
+         ConstantInt *StartCC = StartC->getValue();
+         Constant *StartNegC = ConstantExpr::getNeg(StartCC);
+         Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
+         if (Rem->isNullValue()) {
+           Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
+           return SCEVUnknown::get(Result);
+         }
+       }
+     }
+   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
+     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
+     // the quadratic equation to solve it.
+     std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
+     SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
+     SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
+     if (R1) {
+       std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
+                 << "  sol#2: " << *R2 << "\n";
+       // Pick the smallest positive root value.
+       assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
+       if (ConstantBool *CB =
+           dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
+                                                         R2->getValue()))) {
+         if (CB != ConstantBool::True)
+           std::swap(R1, R2);   // R1 is the minimum root now.
+           
+         // We can only use this value if the chrec ends up with an exact zero
+         // value at this index.  When solving for "X*X != 5", for example, we
+         // should not accept a root of 2.
+         SCEVHandle Val = AddRec->evaluateAtIteration(R1);
+         if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
+           if (EvalVal->getValue()->isNullValue())
+             return R1;  // We found a quadratic root!
+       }
+     }
+   }
+   
+   return UnknownValue;
+ }
+ 
+ /// HowFarToNonZero - Return the number of times a backedge checking the
+ /// specified value for nonzero will execute.  If not computable, return
+ /// UnknownValue
+ SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
+   // Loops that look like: while (X == 0) are very strange indeed.  We don't
+   // handle them yet except for the trivial case.  This could be expanded in the
+   // future as needed.
+  
+   // If the value is a constant, check to see if it is known to be non-zero
+   // already.  If so, the backedge will execute zero times.
+   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
+     Constant *Zero = Constant::getNullValue(C->getValue()->getType());
+     Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
+     if (NonZero == ConstantBool::True)
+       return getSCEV(Zero);
+     return UnknownValue;  // Otherwise it will loop infinitely.
+   }
+   
+   // We could implement others, but I really doubt anyone writes loops like
+   // this, and if they did, they would already be constant folded.
+   return UnknownValue;
+ }
+ 
+ static ConstantInt *
+ EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
+   SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
+   SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
+   assert(isa<SCEVConstant>(Val) &&
+          "Evaluation of SCEV at constant didn't fold correctly?");
+   return cast<SCEVConstant>(Val)->getValue();
+ }
+ 
+ 
+ /// getNumIterationsInRange - Return the number of iterations of this loop that
+ /// produce values in the specified constant range.  Another way of looking at
+ /// this is that it returns the first iteration number where the value is not in
+ /// the condition, thus computing the exit count. If the iteration count can't
+ /// be computed, an instance of SCEVCouldNotCompute is returned.
+ SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
+   if (Range.isFullSet())  // Infinite loop.
+     return new SCEVCouldNotCompute();
+ 
+   // If the start is a non-zero constant, shift the range to simplify things.
+   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
+     if (!SC->getValue()->isNullValue()) {
+       std::vector<SCEVHandle> Operands(op_begin(), op_end());
+       Operands[0] = getIntegerSCEV(0, SC->getType());
+       SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
+       if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
+         return ShiftedAddRec->getNumIterationsInRange(
+                                               Range.subtract(SC->getValue()));
+       // This is strange and shouldn't happen.
+       return new SCEVCouldNotCompute();
+     }
+ 
+   // The only time we can solve this is when we have all constant indices.
+   // Otherwise, we cannot determine the overflow conditions.
+   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+     if (!isa<SCEVConstant>(getOperand(i)))
+       return new SCEVCouldNotCompute();
+ 
+ 
+   // Okay at this point we know that all elements of the chrec are constants and
+   // that the start element is zero.
+ 
+   // First check to see if the range contains zero.  If not, the first
+   // iteration exits.
+   ConstantInt *Zero = ConstantInt::get(getType(), 0);
+   if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
+   
+   if (isAffine()) {
+     // If this is an affine expression then we have this situation:
+     //   Solve {0,+,A} in Range  ===  Ax in Range
+ 
+     // Since we know that zero is in the range, we know that the upper value of
+     // the range must be the first possible exit value.  Also note that we
+     // already checked for a full range.
+     ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
+     ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
+     ConstantInt *One   = ConstantInt::get(getType(), 1);
+ 
+     // The exit value should be (Upper+A-1)/A.
+     Constant *ExitValue = Upper;
+     if (A != One) {
+       ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
+       ExitValue = ConstantExpr::getDiv(ExitValue, A);
+     }
+     assert(isa<ConstantInt>(ExitValue) &&
+            "Constant folding of integers not implemented?");
+ 
+     // Evaluate at the exit value.  If we really did fall out of the valid
+     // range, then we computed our trip count, otherwise wrap around or other
+     // things must have happened.
+     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
+     if (Range.contains(Val))
+       return new SCEVCouldNotCompute();  // Something strange happened
+ 
+     // Ensure that the previous value is in the range.  This is a sanity check.
+     assert(Range.contains(EvaluateConstantChrecAtConstant(this,
+                               ConstantExpr::getSub(ExitValue, One))) &&
+            "Linear scev computation is off in a bad way!");
+     return SCEVConstant::get(cast<ConstantInt>(ExitValue));
+   } else if (isQuadratic()) {
+     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
+     // quadratic equation to solve it.  To do this, we must frame our problem in
+     // terms of figuring out when zero is crossed, instead of when
+     // Range.getUpper() is crossed.
+     std::vector<SCEVHandle> NewOps(op_begin(), op_end());
+     NewOps[0] = getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
+     SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
+ 
+     // Next, solve the constructed addrec
+     std::pair<SCEVHandle,SCEVHandle> Roots =
+       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
+     SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
+     SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
+     if (R1) {
+       // Pick the smallest positive root value.
+       assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
+       if (ConstantBool *CB =
+           dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
+                                                         R2->getValue()))) {
+         if (CB != ConstantBool::True)
+           std::swap(R1, R2);   // R1 is the minimum root now.
+           
+         // Make sure the root is not off by one.  The returned iteration should
+         // not be in the range, but the previous one should be.  When solving
+         // for "X*X < 5", for example, we should not return a root of 2.
+         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
+                                                              R1->getValue());
+         if (Range.contains(R1Val)) {
+           // The next iteration must be out of the range...
+           Constant *NextVal =
+             ConstantExpr::getAdd(R1->getValue(),
+                                  ConstantInt::get(R1->getType(), 1));
+           
+           R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
+           if (!Range.contains(R1Val))
+             return SCEVUnknown::get(NextVal);
+           return new SCEVCouldNotCompute();  // Something strange happened
+         }
+    
+         // If R1 was not in the range, then it is a good return value.  Make
+         // sure that R1-1 WAS in the range though, just in case.
+         Constant *NextVal =
+           ConstantExpr::getSub(R1->getValue(),
+                                ConstantInt::get(R1->getType(), 1));
+         R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
+         if (Range.contains(R1Val))
+           return R1;
+         return new SCEVCouldNotCompute();  // Something strange happened
+       }
+     }
+   }
+ 
+   // Fallback, if this is a general polynomial, figure out the progression
+   // through brute force: evaluate until we find an iteration that fails the
+   // test.  This is likely to be slow, but getting an accurate trip count is
+   // incredibly important, we will be able to simplify the exit test a lot, and
+   // we are almost guaranteed to get a trip count in this case.
+   ConstantInt *TestVal = ConstantInt::get(getType(), 0);
+   ConstantInt *One     = ConstantInt::get(getType(), 1);
+   ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
+   do {
+     ++NumBruteForceEvaluations;
+     SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
+     if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
+       return new SCEVCouldNotCompute();
+ 
+     // Check to see if we found the value!
+     if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
+       return SCEVConstant::get(TestVal);
+ 
+     // Increment to test the next index.
+     TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
+   } while (TestVal != EndVal);
+   
+   return new SCEVCouldNotCompute();
+ }
+ 
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                   ScalarEvolution Class Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ bool ScalarEvolution::runOnFunction(Function &F) {
+   Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
+   return false;
+ }
+ 
+ void ScalarEvolution::releaseMemory() {
+   delete (ScalarEvolutionsImpl*)Impl;
+   Impl = 0;
+ }
+ 
+ void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
+   AU.setPreservesAll();
+   AU.addRequiredID(LoopSimplifyID);
+   AU.addRequiredTransitive<LoopInfo>();
+ }
+ 
+ SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
+   return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
+ }
+ 
+ SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
+   return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
+ }
+ 
+ bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
+   return !isa<SCEVCouldNotCompute>(getIterationCount(L));
+ }
+ 
+ SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
+   return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
+ }
+ 
+ void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
+   return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
+ }
+ 
+ 
+ /// shouldSubstituteIndVar - Return true if we should perform induction variable
+ /// substitution for this variable.  This is a hack because we don't have a
+ /// strength reduction pass yet.  When we do we will promote all vars, because
+ /// we can strength reduce them later as desired.
+ bool ScalarEvolution::shouldSubstituteIndVar(const SCEV *S) const {
+   // Don't substitute high degree polynomials.
+   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
+     if (AddRec->getNumOperands() > 3) return false;
+   return true;
+ }
+ 
+ 
+ static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 
+                           const Loop *L) {
+   // Print all inner loops first
+   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+     PrintLoopInfo(OS, SE, *I);
+   
+   std::cerr << "Loop " << L->getHeader()->getName() << ": ";
+   if (L->getExitBlocks().size() != 1)
+     std::cerr << "<multiple exits> ";
+ 
+   if (SE->hasLoopInvariantIterationCount(L)) {
+     std::cerr << *SE->getIterationCount(L) << " iterations! ";
+   } else {
+     std::cerr << "Unpredictable iteration count. ";
+   }
+ 
+   std::cerr << "\n";
+ }
+ 
+ void ScalarEvolution::print(std::ostream &OS) const {
+   Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
+   LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
+ 
+   OS << "Classifying expressions for: " << F.getName() << "\n";
+   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
+     if ((*I)->getType()->isInteger()) {
+       OS << **I;
+       OS << "  --> ";
+       SCEVHandle SV = getSCEV(*I);
+       SV->print(OS);
+       OS << "\t\t";
+       
+       if ((*I)->getType()->isIntegral()) {
+         ConstantRange Bounds = SV->getValueRange();
+         if (!Bounds.isFullSet())
+           OS << "Bounds: " << Bounds << " ";
+       }
+ 
+       if (const Loop *L = LI.getLoopFor((*I)->getParent())) {
+         OS << "Exits: ";
+         SCEVHandle ExitValue = getSCEVAtScope(*I, L->getParentLoop());
+         if (isa<SCEVCouldNotCompute>(ExitValue)) {
+           OS << "<<Unknown>>";
+         } else {
+           OS << *ExitValue;
+         }
+       }
+ 
+ 
+       OS << "\n";
+     }
+ 
+   OS << "Determining loop execution counts for: " << F.getName() << "\n";
+   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
+     PrintLoopInfo(OS, this, *I);
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                ScalarEvolutionRewriter Class Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ Value *ScalarEvolutionRewriter::
+ GetOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty) {
+   assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
+          "Can only insert integer or floating point induction variables!");
+ 
+   // Check to see if we already inserted one.
+   SCEVHandle H = SCEVAddRecExpr::get(getIntegerSCEV(0, Ty),
+                                      getIntegerSCEV(1, Ty), L);
+   return ExpandCodeFor(H, 0, Ty);
+ }
+ 
+ /// ExpandCodeFor - Insert code to directly compute the specified SCEV
+ /// expression into the program.  The inserted code is inserted into the
+ /// specified block.
+ Value *ScalarEvolutionRewriter::ExpandCodeFor(SCEVHandle SH,
+                                               Instruction *InsertPt,
+                                               const Type *Ty) {
+   std::map<SCEVHandle, Value*>::iterator ExistVal =InsertedExpressions.find(SH);
+   Value *V;
+   if (ExistVal != InsertedExpressions.end()) {
+     V = ExistVal->second;
+   } else {
+     // Ask the recurrence object to expand the code for itself.
+     V = SH->expandCodeFor(*this, InsertPt);
+     // Cache the generated result.
+     InsertedExpressions.insert(std::make_pair(SH, V));
+   }
+ 
+   if (Ty == 0 || V->getType() == Ty)
+     return V;
+   if (Constant *C = dyn_cast<Constant>(V))
+     return ConstantExpr::getCast(C, Ty);
+   else if (Instruction *I = dyn_cast<Instruction>(V)) {
+     // FIXME: check to see if there is already a cast!
+     BasicBlock::iterator IP = I; ++IP;
+     while (isa<PHINode>(IP)) ++IP;
+     return new CastInst(V, Ty, V->getName(), IP);
+   } else {
+     // FIXME: check to see if there is already a cast!
+     return new CastInst(V, Ty, V->getName(), InsertPt);
+   }
+ }





More information about the llvm-commits mailing list