[llvm-commits] CVS: llvm/lib/Transforms/Scalar/TailDuplication.cpp

Chris Lattner lattner at cs.uiuc.edu
Sun Jun 22 15:11:10 PDT 2003


Changes in directory llvm/lib/Transforms/Scalar:

TailDuplication.cpp added (r1.1)

---
Log message:

Initial checkin of Tail duplication pass.


---
Diffs of the changes:

Index: llvm/lib/Transforms/Scalar/TailDuplication.cpp
diff -c /dev/null llvm/lib/Transforms/Scalar/TailDuplication.cpp:1.1
*** /dev/null	Sun Jun 22 15:10:38 2003
--- llvm/lib/Transforms/Scalar/TailDuplication.cpp	Sun Jun 22 15:10:28 2003
***************
*** 0 ****
--- 1,324 ----
+ //===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
+ //
+ // This pass performs a limited form of tail duplication, intended to simplify
+ // CFGs by removing some unconditional branches.  This pass is necessary to
+ // straighten out loops created by the C front-end, but also is capable of
+ // making other code nicer.  After this pass is run, the CFG simplify pass
+ // should be run to clean up the mess.
+ //
+ // This pass could be enhanced in the future to use profile information to be
+ // more aggressive.
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #include "llvm/Transforms/Scalar.h"
+ #include "llvm/Function.h"
+ #include "llvm/iPHINode.h"
+ #include "llvm/iTerminators.h"
+ #include "llvm/Pass.h"
+ #include "llvm/Type.h"
+ #include "llvm/Support/CFG.h"
+ #include "llvm/Transforms/Utils/Local.h"
+ #include "Support/Statistic.h"
+ 
+ namespace {
+   Statistic<> NumEliminated("tailduplicate",
+                             "Number of unconditional branches eliminated");
+   Statistic<> NumPHINodes("tailduplicate", "Number of phi nodes inserted");
+ 
+   class TailDup : public FunctionPass {
+     bool runOnFunction(Function &F);
+   private:
+     inline bool shouldEliminateUnconditionalBranch(TerminatorInst *TI);
+     inline void eliminateUnconditionalBranch(BranchInst *BI);
+     inline void InsertPHINodesIfNecessary(Instruction *OrigInst, Value *NewInst,
+                                           BasicBlock *NewBlock);
+     inline Value *GetValueInBlock(BasicBlock *BB, Value *OrigVal,
+                                   std::map<BasicBlock*, Value*> &ValueMap,
+                                   std::map<BasicBlock*, Value*> &OutValueMap);
+     inline Value *GetValueOutBlock(BasicBlock *BB, Value *OrigVal,
+                                    std::map<BasicBlock*, Value*> &ValueMap,
+                                    std::map<BasicBlock*, Value*> &OutValueMap);
+   };
+   RegisterOpt<TailDup> X("tailduplicate", "Tail Duplication");
+ }
+ 
+ Pass *createTailDuplicationPass() { return new TailDup(); }
+ 
+ /// runOnFunction - Top level algorithm - Loop over each unconditional branch in
+ /// the function, eliminating it if it looks attractive enough.
+ ///
+ bool TailDup::runOnFunction(Function &F) {
+   bool Changed = false;
+   for (Function::iterator I = F.begin(), E = F.end(); I != E; )
+     if (shouldEliminateUnconditionalBranch(I->getTerminator())) {
+       eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
+       Changed = true;
+     } else {
+       ++I;
+     }
+   return Changed;
+ }
+ 
+ /// shouldEliminateUnconditionalBranch - Return true if this branch looks
+ /// attractive to eliminate.  We eliminate the branch if the destination basic
+ /// block has <= 5 instructions in it, not counting PHI nodes.  In practice,
+ /// since one of these is a terminator instruction, this means that we will add
+ /// up to 4 instructions to the new block.
+ ///
+ /// We don't count PHI nodes in the count since they will be removed when the
+ /// contents of the block are copied over.
+ ///
+ bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI) {
+   BranchInst *BI = dyn_cast<BranchInst>(TI);
+   if (!BI || !BI->isUnconditional()) return false;  // Not an uncond branch!
+ 
+   BasicBlock *Dest = BI->getSuccessor(0);
+   if (Dest == BI->getParent()) return false;        // Do not loop infinitely!
+ 
+   // Do not bother working on dead blocks...
+   pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
+   if (PI == PE && Dest != Dest->getParent()->begin())
+     return false;   // It's just a dead block, ignore it...
+ 
+   // Also, do not bother with blocks with only a single predecessor: simplify
+   // CFG will fold these two blocks together!
+   ++PI;
+   if (PI == PE) return false;  // Exactly one predecessor!
+ 
+   BasicBlock::iterator I = Dest->begin();
+   while (isa<PHINode>(*I)) ++I;
+ 
+   for (unsigned Size = 0; I != Dest->end(); ++Size, ++I)
+     if (Size == 6) return false;  // The block is too large...
+   return true;  
+ }
+ 
+ 
+ /// eliminateUnconditionalBranch - Clone the instructions from the destination
+ /// block into the source block, eliminating the specified unconditional branch.
+ /// If the destination block defines values used by successors of the dest
+ /// block, we may need to insert PHI nodes.
+ ///
+ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
+   BasicBlock *SourceBlock = Branch->getParent();
+   BasicBlock *DestBlock = Branch->getSuccessor(0);
+   assert(SourceBlock != DestBlock && "Our predicate is broken!");
+ 
+   DEBUG(std::cerr << "TailDuplication[" << SourceBlock->getParent()->getName()
+                   << "]: Eliminating branch: " << *Branch);
+ 
+   // We are going to have to map operands from the original block B to the new
+   // copy of the block B'.  If there are PHI nodes in the DestBlock, these PHI
+   // nodes also define part of this mapping.  Loop over these PHI nodes, adding
+   // them to our mapping.
+   std::map<Value*, Value*> ValueMapping;
+ 
+   BasicBlock::iterator BI = DestBlock->begin();
+   bool HadPHINodes = isa<PHINode>(BI);
+   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
+     ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
+ 
+   // Clone the non-phi instructions of the dest block into the source block,
+   // keeping track of the mapping...
+   //
+   for (; BI != DestBlock->end(); ++BI) {
+     Instruction *New = BI->clone();
+     New->setName(BI->getName());
+     SourceBlock->getInstList().push_back(New);
+     ValueMapping[BI] = New;
+   }
+ 
+   // Now that we have built the mapping information and cloned all of the
+   // instructions (giving us a new terminator, among other things), walk the new
+   // instructions, rewriting references of old instructions to use new
+   // instructions.
+   //
+   BI = Branch; ++BI;  // Get an iterator to the first new instruction
+   for (; BI != SourceBlock->end(); ++BI)
+     for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i)
+       if (Value *Remapped = ValueMapping[BI->getOperand(i)])
+         BI->setOperand(i, Remapped);
+ 
+   // Next we check to see if any of the successors of DestBlock had PHI nodes.
+   // If so, we need to add entries to the PHI nodes for SourceBlock now.
+   for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
+        SI != SE; ++SI) {
+     BasicBlock *Succ = *SI;
+     for (BasicBlock::iterator PNI = Succ->begin();
+          PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
+       // Ok, we have a PHI node.  Figure out what the incoming value was for the
+       // DestBlock.
+       Value *IV = PN->getIncomingValueForBlock(DestBlock);
+       
+       // Remap the value if necessary...
+       if (Value *MappedIV = ValueMapping[IV])
+         IV = MappedIV;
+       PN->addIncoming(IV, SourceBlock);
+     }
+   }
+   
+   // Now that all of the instructions are correctly copied into the SourceBlock,
+   // we have one more minor problem: the successors of the original DestBB may
+   // use the values computed in DestBB either directly (if DestBB dominated the
+   // block), or through a PHI node.  In either case, we need to insert PHI nodes
+   // into any successors of DestBB (which are now our successors) for each value
+   // that is computed in DestBB, but is used outside of it.  All of these uses
+   // we have to rewrite with the new PHI node.
+   //
+   if (succ_begin(SourceBlock) != succ_end(SourceBlock)) // Avoid wasting time...
+     for (BI = DestBlock->begin(); BI != DestBlock->end(); ++BI)
+       if (BI->getType() != Type::VoidTy)
+         InsertPHINodesIfNecessary(BI, ValueMapping[BI], SourceBlock);
+ 
+   // Final step: now that we have finished everything up, walk the cloned
+   // instructions one last time, constant propagating and DCE'ing them, because
+   // they may not be needed anymore.
+   //
+   BI = Branch; ++BI;  // Get an iterator to the first new instruction
+   if (HadPHINodes)
+     while (BI != SourceBlock->end())
+       if (!dceInstruction(BI) && !doConstantPropagation(BI))
+         ++BI;
+ 
+   DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
+   SourceBlock->getInstList().erase(Branch);  // Destroy the uncond branch...
+   
+   ++NumEliminated;  // We just killed a branch!
+ }
+ 
+ /// InsertPHINodesIfNecessary - So at this point, we cloned the OrigInst
+ /// instruction into the NewBlock with the value of NewInst.  If OrigInst was
+ /// used outside of its defining basic block, we need to insert a PHI nodes into
+ /// the successors.
+ ///
+ void TailDup::InsertPHINodesIfNecessary(Instruction *OrigInst, Value *NewInst,
+                                         BasicBlock *NewBlock) {
+   // Loop over all of the uses of OrigInst, rewriting them to be newly inserted
+   // PHI nodes, unless they are in the same basic block as OrigInst.
+   BasicBlock *OrigBlock = OrigInst->getParent();
+   std::vector<Instruction*> Users;
+   Users.reserve(OrigInst->use_size());
+   for (Value::use_iterator I = OrigInst->use_begin(), E = OrigInst->use_end();
+        I != E; ++I) {
+     Instruction *In = cast<Instruction>(*I);
+     if (In->getParent() != OrigBlock)  // Don't modify uses in the orig block!
+       Users.push_back(In);
+   }
+ 
+   // The common case is that the instruction is only used within the block that
+   // defines it.  If we have this case, quick exit.
+   //
+   if (Users.empty()) return; 
+ 
+   // Otherwise, we have a more complex case, handle it now.  This requires the
+   // construction of a mapping between a basic block and the value to use when
+   // in the scope of that basic block.  This map will map to the original and
+   // new values when in the original or new block, but will map to inserted PHI
+   // nodes when in other blocks.
+   //
+   std::map<BasicBlock*, Value*> ValueMap;
+   std::map<BasicBlock*, Value*> OutValueMap;   // The outgoing value map
+   OutValueMap[OrigBlock] = OrigInst;
+   OutValueMap[NewBlock ] = NewInst;    // Seed the initial values...
+ 
+   DEBUG(std::cerr << "  ** Inserting PHI nodes for " << OrigInst);
+   while (!Users.empty()) {
+     Instruction *User = Users.back(); Users.pop_back();
+ 
+     if (PHINode *PN = dyn_cast<PHINode>(User)) {
+       // PHI nodes must be handled specially here, because their operands are
+       // actually defined in predecessor basic blocks, NOT in the block that the
+       // PHI node lives in.  Note that we have already added entries to PHI nods
+       // which are in blocks that are immediate successors of OrigBlock, so
+       // don't modify them again.
+       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+         if (PN->getIncomingValue(i) == OrigInst &&
+             PN->getIncomingBlock(i) != OrigBlock) {
+           Value *V = GetValueOutBlock(PN->getIncomingBlock(i), OrigInst,
+                                       ValueMap, OutValueMap);
+           PN->setIncomingValue(i, V);
+         }
+       
+     } else {
+       // Any other user of the instruction can just replace any uses with the
+       // new value defined in the block it resides in.
+       Value *V = GetValueInBlock(User->getParent(), OrigInst, ValueMap,
+                                  OutValueMap);
+       User->replaceUsesOfWith(OrigInst, V);
+     }
+   }
+ }
+ 
+ /// GetValueInBlock - This is a recursive method which inserts PHI nodes into
+ /// the function until there is a value available in basic block BB.
+ ///
+ Value *TailDup::GetValueInBlock(BasicBlock *BB, Value *OrigVal,
+                                 std::map<BasicBlock*, Value*> &ValueMap,
+                                 std::map<BasicBlock*, Value*> &OutValueMap) {
+   Value*& BBVal = ValueMap[BB];
+   if (BBVal) return BBVal;       // Value already computed for this block?
+ 
+   assert(pred_begin(BB) != pred_end(BB) &&
+          "Propagating PHI nodes to unreachable blocks?");
+ 
+   // If there is no value already available in this basic block, we need to
+   // either reuse a value from an incoming, dominating, basic block, or we need
+   // to create a new PHI node to merge in different incoming values.  Because we
+   // don't know if we're part of a loop at this point or not, we create a PHI
+   // node, even if we will ultimately eliminate it.
+   PHINode *PN = new PHINode(OrigVal->getType(), OrigVal->getName()+".pn",
+                             BB->begin());
+   BBVal = PN;   // Insert this into the BBVal slot in case of cycles...
+ 
+   Value*& BBOutVal = OutValueMap[BB];
+   if (BBOutVal == 0) BBOutVal = PN;
+ 
+   // Now that we have created the PHI node, loop over all of the predecessors of
+   // this block, computing an incoming value for the predecessor.
+   std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
+   for (unsigned i = 0, e = Preds.size(); i != e; ++i)
+     PN->addIncoming(GetValueOutBlock(Preds[i], OrigVal, ValueMap, OutValueMap),
+                     Preds[i]);
+ 
+   // The PHI node is complete.  In many cases, however the PHI node was
+   // ultimately unnecessary: we could have just reused a dominating incoming
+   // value.  If this is the case, nuke the PHI node and replace the map entry
+   // with the dominating value.
+   //
+   assert(PN->getNumIncomingValues() > 0 && "No predecessors?");
+ 
+   // Check to see if all of the elements in the PHI node are either the PHI node
+   // itself or ONE particular value.
+   unsigned i = 0;
+   Value *ReplVal = PN->getIncomingValue(i);
+   for (; ReplVal == PN && i != PN->getNumIncomingValues(); ++i)
+     ReplVal = PN->getIncomingValue(i);  // Skip values equal to the PN
+ 
+   for (; i != PN->getNumIncomingValues(); ++i)
+     if (PN->getIncomingValue(i) != PN && PN->getIncomingValue(i) != ReplVal) {
+       ReplVal = 0;
+       break;
+     }
+ 
+   // Found a value to replace the PHI node with?
+   if (ReplVal) {
+     PN->replaceAllUsesWith(ReplVal);
+     BBVal = ReplVal;
+     if (BBOutVal == PN) BBOutVal = ReplVal;
+     BB->getInstList().erase(PN);   // Erase the PHI node...
+   } else {
+     ++NumPHINodes;
+   }
+ 
+   return BBVal;
+ }
+ 
+ Value *TailDup::GetValueOutBlock(BasicBlock *BB, Value *OrigVal,
+                                  std::map<BasicBlock*, Value*> &ValueMap,
+                                  std::map<BasicBlock*, Value*> &OutValueMap) {
+   Value*& BBVal = OutValueMap[BB];
+   if (BBVal) return BBVal;       // Value already computed for this block?
+ 
+   return BBVal = GetValueInBlock(BB, OrigVal, ValueMap, OutValueMap);
+ }





More information about the llvm-commits mailing list