[llvm-commits] CVS: llvm/lib/Transforms/Scalar/LoopPreheaders.cpp
Chris Lattner
lattner at cs.uiuc.edu
Thu Feb 27 14:28:01 PST 2003
Changes in directory llvm/lib/Transforms/Scalar:
LoopPreheaders.cpp updated: 1.4 -> 1.5
---
Log message:
* Significant changes to the preheader insertion pass:
- Now we perform loop exit-block splitting to ensure exit blocks are
always dominated by the loop header.
- We now preserve dominance frontier information
- This fixes bug: LICM/2003-02-26-LoopExitNotDominated.ll
---
Diffs of the changes:
Index: llvm/lib/Transforms/Scalar/LoopPreheaders.cpp
diff -u llvm/lib/Transforms/Scalar/LoopPreheaders.cpp:1.4 llvm/lib/Transforms/Scalar/LoopPreheaders.cpp:1.5
--- llvm/lib/Transforms/Scalar/LoopPreheaders.cpp:1.4 Tue Oct 1 17:38:41 2002
+++ llvm/lib/Transforms/Scalar/LoopPreheaders.cpp Thu Feb 27 14:27:08 2003
@@ -1,7 +1,20 @@
//===- LoopPreheaders.cpp - Loop Preheader Insertion Pass -----------------===//
//
-// Insert Loop pre-headers into the CFG for each function in the module. This
-// pass updates loop information and dominator information.
+// Insert Loop pre-headers and exit blocks into the CFG for each function in the
+// module. This pass updates loop information and dominator information.
+//
+// Loop pre-header insertion guarantees that there is a single, non-critical
+// entry edge from outside of the loop to the loop header. This simplifies a
+// number of analyses and transformations, such as LICM.
+//
+// Loop exit-block insertion guarantees that all exit blocks from the loop
+// (blocks which are outside of the loop that have predecessors inside of the
+// loop) are dominated by the loop header. This simplifies transformations such
+// as store-sinking that is built into LICM.
+//
+// Note that the simplifycfg pass will clean up blocks which are split out but
+// end up being unneccesary, so usage of this pass does not neccesarily
+// pessimize generated code.
//
//===----------------------------------------------------------------------===//
@@ -13,6 +26,7 @@
#include "llvm/iPHINode.h"
#include "llvm/Constant.h"
#include "llvm/Support/CFG.h"
+#include "Support/SetOperations.h"
#include "Support/Statistic.h"
namespace {
@@ -24,15 +38,20 @@
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
// We need loop information to identify the loops...
AU.addRequired<LoopInfo>();
+ AU.addRequired<DominatorSet>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorSet>();
AU.addPreserved<ImmediateDominators>();
AU.addPreserved<DominatorTree>();
+ AU.addPreserved<DominanceFrontier>();
AU.addPreservedID(BreakCriticalEdgesID); // No crit edges added....
}
private:
bool ProcessLoop(Loop *L);
+ BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
+ const std::vector<BasicBlock*> &Preds);
+ void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
void InsertPreheaderForLoop(Loop *L);
};
@@ -71,53 +90,54 @@
Changed = true;
}
+ DominatorSet &DS = getAnalysis<DominatorSet>();
+ BasicBlock *Header = L->getHeader();
+ for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i)
+ if (!DS.dominates(Header, L->getExitBlocks()[i])) {
+ RewriteLoopExitBlock(L, L->getExitBlocks()[i]);
+ NumInserted++;
+ Changed = true;
+ }
+
const std::vector<Loop*> &SubLoops = L->getSubLoops();
for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
Changed |= ProcessLoop(SubLoops[i]);
return Changed;
}
-
-/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
-/// preheader, this method is called to insert one. This method has two phases:
-/// preheader insertion and analysis updating.
+/// SplitBlockPredecessors - Split the specified block into two blocks. We want
+/// to move the predecessors specified in the Preds list to point to the new
+/// block, leaving the remaining predecessors pointing to BB. This method
+/// updates the SSA PHINode's, but no other analyses.
///
-void Preheaders::InsertPreheaderForLoop(Loop *L) {
- BasicBlock *Header = L->getHeader();
-
- // Compute the set of predecessors of the loop that are not in the loop.
- std::vector<BasicBlock*> OutsideBlocks;
- for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
- PI != PE; ++PI)
- if (!L->contains(*PI)) // Coming in from outside the loop?
- OutsideBlocks.push_back(*PI); // Keep track of it...
-
- assert(OutsideBlocks.size() != 1 && "Loop already has a preheader!");
+BasicBlock *Preheaders::SplitBlockPredecessors(BasicBlock *BB,
+ const char *Suffix,
+ const std::vector<BasicBlock*> &Preds) {
- // Create new basic block, insert right before the header of the loop...
- BasicBlock *NewBB = new BasicBlock(Header->getName()+".preheader", Header);
+ // Create new basic block, insert right before the original block...
+ BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);
// The preheader first gets an unconditional branch to the loop header...
- BranchInst *BI = new BranchInst(Header);
+ BranchInst *BI = new BranchInst(BB);
NewBB->getInstList().push_back(BI);
- // For every PHI node in the loop body, insert a PHI node into NewBB where
- // the incoming values from the out of loop edges are moved to NewBB. We
- // have two possible cases here. If the loop is dead, we just insert dummy
- // entries into the PHI nodes for the new edge. If the loop is not dead, we
- // move the incoming edges in Header into new PHI nodes in NewBB.
+ // For every PHI node in the block, insert a PHI node into NewBB where the
+ // incoming values from the out of loop edges are moved to NewBB. We have two
+ // possible cases here. If the loop is dead, we just insert dummy entries
+ // into the PHI nodes for the new edge. If the loop is not dead, we move the
+ // incoming edges in BB into new PHI nodes in NewBB.
//
- if (!OutsideBlocks.empty()) { // Is the loop not obviously dead?
- for (BasicBlock::iterator I = Header->begin();
+ if (!Preds.empty()) { // Is the loop not obviously dead?
+ for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
// Create the new PHI node, insert it into NewBB at the end of the block
PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
// Move all of the edges from blocks outside the loop to the new PHI
- for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
- Value *V = PN->removeIncomingValue(OutsideBlocks[i]);
- NewPHI->addIncoming(V, OutsideBlocks[i]);
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ Value *V = PN->removeIncomingValue(Preds[i]);
+ NewPHI->addIncoming(V, Preds[i]);
}
// Add an incoming value to the PHI node in the loop for the preheader
@@ -126,23 +146,45 @@
}
// Now that the PHI nodes are updated, actually move the edges from
- // OutsideBlocks to point to NewBB instead of Header.
+ // Preds to point to NewBB instead of BB.
//
- for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
- TerminatorInst *TI = OutsideBlocks[i]->getTerminator();
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ TerminatorInst *TI = Preds[i]->getTerminator();
for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
- if (TI->getSuccessor(s) == Header)
+ if (TI->getSuccessor(s) == BB)
TI->setSuccessor(s, NewBB);
}
} else { // Otherwise the loop is dead...
- for (BasicBlock::iterator I = Header->begin();
+ for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(&*I); ++I)
// Insert dummy values as the incoming value...
PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
- }
+ }
+ return NewBB;
+}
+
+/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
+/// preheader, this method is called to insert one. This method has two phases:
+/// preheader insertion and analysis updating.
+///
+void Preheaders::InsertPreheaderForLoop(Loop *L) {
+ BasicBlock *Header = L->getHeader();
+ // Compute the set of predecessors of the loop that are not in the loop.
+ std::vector<BasicBlock*> OutsideBlocks;
+ for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
+ PI != PE; ++PI)
+ if (!L->contains(*PI)) // Coming in from outside the loop?
+ OutsideBlocks.push_back(*PI); // Keep track of it...
+
+ assert(OutsideBlocks.size() != 1 && "Loop already has a preheader!");
+
+ // Split out the loop pre-header
+ BasicBlock *NewBB =
+ SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
+
//===--------------------------------------------------------------------===//
// Update analysis results now that we have preformed the transformation
//
@@ -151,20 +193,20 @@
if (Loop *Parent = L->getParentLoop())
Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
- // Update dominator information if it is around...
- if (DominatorSet *DS = getAnalysisToUpdate<DominatorSet>()) {
+ DominatorSet &DS = getAnalysis<DominatorSet>(); // Update dominator info
+ {
// The blocks that dominate NewBB are the blocks that dominate Header,
// minus Header, plus NewBB.
- DominatorSet::DomSetType DomSet = DS->getDominators(Header);
+ DominatorSet::DomSetType DomSet = DS.getDominators(Header);
DomSet.insert(NewBB); // We dominate ourself
DomSet.erase(Header); // Header does not dominate us...
- DS->addBasicBlock(NewBB, DomSet);
+ DS.addBasicBlock(NewBB, DomSet);
// The newly created basic block dominates all nodes dominated by Header.
for (Function::iterator I = Header->getParent()->begin(),
E = Header->getParent()->end(); I != E; ++I)
- if (DS->dominates(Header, I))
- DS->addDominator(I, NewBB);
+ if (DS.dominates(Header, I))
+ DS.addDominator(I, NewBB);
}
// Update immediate dominator information if we have it...
@@ -187,5 +229,140 @@
// Change the header node so that PNHode is the new immediate dominator
DT->changeImmediateDominator(HeaderNode, PHNode);
+ }
+
+ // Update dominance frontier information...
+ if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
+ // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
+ // everything that Header does, and it strictly dominates Header in
+ // addition.
+ assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
+ DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
+ NewDFSet.erase(Header);
+ DF->addBasicBlock(NewBB, NewDFSet);
+
+ // Now we must loop over all of the dominance frontiers in the function,
+ // replacing occurances of Header with NewBB in some cases. If a block
+ // dominates a (now) predecessor of NewBB, but did not strictly dominate
+ // Header, it will have Header in it's DF set, but should now have NewBB in
+ // its set.
+ for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
+ // Get all of the dominators of the predecessor...
+ const DominatorSet::DomSetType &PredDoms =
+ DS.getDominators(OutsideBlocks[i]);
+ for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
+ PDE = PredDoms.end(); PDI != PDE; ++PDI) {
+ BasicBlock *PredDom = *PDI;
+ // If the loop header is in DF(PredDom), then PredDom didn't dominate
+ // the header but did dominate a predecessor outside of the loop. Now
+ // we change this entry to include the preheader in the DF instead of
+ // the header.
+ DominanceFrontier::iterator DFI = DF->find(PredDom);
+ assert(DFI != DF->end() && "No dominance frontier for node?");
+ if (DFI->second.count(Header)) {
+ DF->removeFromFrontier(DFI, Header);
+ DF->addToFrontier(DFI, NewBB);
+ }
+ }
+ }
+ }
+}
+
+void Preheaders::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
+ DominatorSet &DS = getAnalysis<DominatorSet>();
+ assert(!DS.dominates(L->getHeader(), Exit) &&
+ "Loop already dominates exit block??");
+
+ std::vector<BasicBlock*> LoopBlocks;
+ for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
+ if (L->contains(*I))
+ LoopBlocks.push_back(*I);
+
+ BasicBlock *NewBB =
+ SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
+
+ // Update dominator information... The blocks that dominate NewBB are the
+ // intersection of the dominators of predecessors, plus the block itself.
+ // The newly created basic block does not dominate anything except itself.
+ //
+ DominatorSet::DomSetType NewBBDomSet = DS.getDominators(LoopBlocks[0]);
+ for (unsigned i = 1, e = LoopBlocks.size(); i != e; ++i)
+ set_intersect(NewBBDomSet, DS.getDominators(LoopBlocks[i]));
+ NewBBDomSet.insert(NewBB); // All blocks dominate themselves...
+ DS.addBasicBlock(NewBB, NewBBDomSet);
+
+ // Update immediate dominator information if we have it...
+ BasicBlock *NewBBIDom = 0;
+ if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
+ // This block does not strictly dominate anything, so it is not an immediate
+ // dominator. To find the immediate dominator of the new exit node, we
+ // trace up the immediate dominators of a predecessor until we find a basic
+ // block that dominates the exit block.
+ //
+ BasicBlock *Dom = LoopBlocks[0]; // Some random predecessor...
+ while (!NewBBDomSet.count(Dom)) { // Loop until we find a dominator...
+ assert(Dom != 0 && "No shared dominator found???");
+ Dom = ID->get(Dom);
+ }
+
+ // Set the immediate dominator now...
+ ID->addNewBlock(NewBB, Dom);
+ NewBBIDom = Dom; // Reuse this if calculating DominatorTree info...
+ }
+
+ // Update DominatorTree information if it is active.
+ if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
+ // NewBB doesn't dominate anything, so just create a node and link it into
+ // its immediate dominator. If we don't have ImmediateDominator info
+ // around, calculate the idom as above.
+ DominatorTree::Node *NewBBIDomNode;
+ if (NewBBIDom) {
+ NewBBIDomNode = DT->getNode(NewBBIDom);
+ } else {
+ NewBBIDomNode = DT->getNode(LoopBlocks[0]); // Random pred
+ while (!NewBBDomSet.count(NewBBIDomNode->getNode())) {
+ NewBBIDomNode = NewBBIDomNode->getIDom();
+ assert(NewBBIDomNode && "No shared dominator found??");
+ }
+ }
+
+ // Create the new dominator tree node...
+ DT->createNewNode(NewBB, NewBBIDomNode);
+ }
+
+ // Update dominance frontier information...
+ if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
+ // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
+ // does dominate itself (and there is an edge (NewBB -> Exit)).
+ DominanceFrontier::DomSetType NewDFSet;
+ NewDFSet.insert(Exit);
+ DF->addBasicBlock(NewBB, NewDFSet);
+
+ // Now we must loop over all of the dominance frontiers in the function,
+ // replacing occurances of Exit with NewBB in some cases. If a block
+ // dominates a (now) predecessor of NewBB, but did not strictly dominate
+ // Exit, it will have Exit in it's DF set, but should now have NewBB in its
+ // set.
+ for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
+ // Get all of the dominators of the predecessor...
+ const DominatorSet::DomSetType &PredDoms =DS.getDominators(LoopBlocks[i]);
+ for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
+ PDE = PredDoms.end(); PDI != PDE; ++PDI) {
+ BasicBlock *PredDom = *PDI;
+ // Make sure to only rewrite blocks that are part of the loop...
+ if (L->contains(PredDom)) {
+ // If the exit node is in DF(PredDom), then PredDom didn't dominate
+ // Exit but did dominate a predecessor inside of the loop. Now we
+ // change this entry to include NewBB in the DF instead of Exit.
+ DominanceFrontier::iterator DFI = DF->find(PredDom);
+ assert(DFI != DF->end() && "No dominance frontier for node?");
+ if (DFI->second.count(Exit)) {
+ DF->removeFromFrontier(DFI, Exit);
+ DF->addToFrontier(DFI, NewBB);
+ }
+ }
+ }
+ }
+
}
}
More information about the llvm-commits
mailing list