[llvm-commits] CVS: llvm/lib/CodeGen/RegAllocLocal.cpp
Chris Lattner
lattner at cs.uiuc.edu
Sun Jan 12 18:27:03 PST 2003
Changes in directory llvm/lib/CodeGen:
RegAllocLocal.cpp updated: 1.10 -> 1.11
---
Log message:
* Convert to use LiveVariable analysis
* Convert to use PHIElimination pass
* Don't spill values which have just been reloaded (big win reducing spills)
* Add experimental support for eliminating spills before TwoAddress
instructions. It currently is broken so it is #ifdef'd out.
* Use new "is terminator" flag on instructions instead of looking for
branches and returns explicitly.
---
Diffs of the changes:
Index: llvm/lib/CodeGen/RegAllocLocal.cpp
diff -u llvm/lib/CodeGen/RegAllocLocal.cpp:1.10 llvm/lib/CodeGen/RegAllocLocal.cpp:1.11
--- llvm/lib/CodeGen/RegAllocLocal.cpp:1.10 Sat Dec 28 15:08:26 2002
+++ llvm/lib/CodeGen/RegAllocLocal.cpp Sun Jan 12 18:25:40 2003
@@ -5,16 +5,17 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include "Support/CommandLine.h"
#include <iostream>
-#include <set>
namespace {
Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
@@ -26,6 +27,7 @@
const TargetMachine *TM;
MachineFunction *MF;
const MRegisterInfo *RegInfo;
+ LiveVariables *LV;
// StackSlotForVirtReg - Maps SSA Regs => frame index where these values are
// spilled
@@ -54,12 +56,26 @@
//
std::vector<unsigned> PhysRegsUseOrder;
- // LastUserOf map - This multimap contains the set of registers that each
- // key instruction is the last user of. If an instruction has an entry in
- // this map, that means that the specified operands are killed after the
- // instruction is executed, thus they don't need to be spilled into memory
+ // VirtRegModified - This bitset contains information about which virtual
+ // registers need to be spilled back to memory when their registers are
+ // scavenged. If a virtual register has simply been rematerialized, there
+ // is no reason to spill it to memory when we need the register back.
//
- std::multimap<MachineInstr*, unsigned> LastUserOf;
+ std::vector<bool> VirtRegModified;
+
+ void markVirtRegModified(unsigned Reg, bool Val = true) {
+ assert(Reg >= MRegisterInfo::FirstVirtualRegister && "Illegal VirtReg!");
+ Reg -= MRegisterInfo::FirstVirtualRegister;
+ if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
+ VirtRegModified[Reg] = Val;
+ }
+
+ bool isVirtRegModified(unsigned Reg) const {
+ assert(Reg >= MRegisterInfo::FirstVirtualRegister && "Illegal VirtReg!");
+ assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
+ && "Illegal virtual register!");
+ return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
+ }
void MarkPhysRegRecentlyUsed(unsigned Reg) {
assert(!PhysRegsUseOrder.empty() && "No registers used!");
@@ -81,6 +97,13 @@
return "Local Register Allocator";
}
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ if (!DisableKill)
+ AU.addRequired<LiveVariables>();
+ AU.addRequiredID(PHIEliminationID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
@@ -88,19 +111,6 @@
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
- /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
- /// in predecessor basic blocks.
- void EliminatePHINodes(MachineBasicBlock &MBB);
-
- /// CalculateLastUseOfVReg - Calculate an approximation of the killing
- /// uses for the virtual registers in the function. Here we try to capture
- /// registers that are defined and only used within the same basic block.
- /// Because we don't have use-def chains yet, we have to do this the hard
- /// way.
- ///
- void CalculateLastUseOfVReg(MachineBasicBlock &MBB,
- std::map<unsigned, MachineInstr*> &LastUseOfVReg) const;
-
/// areRegsEqual - This method returns true if the specified registers are
/// related to each other. To do this, it checks to see if they are equal
@@ -129,39 +139,41 @@
/// spillPhysReg - This method spills the specified physical register into
/// the virtual register slot associated with it.
- //
+ ///
void spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
- unsigned PhysReg) {
- std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
- if (PI != PhysRegsUsed.end()) { // Only spill it if it's used!
- spillVirtReg(MBB, I, PI->second, PhysReg);
- } else if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg)) {
- // If the selected register aliases any other registers, we must make
- // sure that one of the aliases isn't alive...
- for (unsigned i = 0; AliasSet[i]; ++i) {
- PI = PhysRegsUsed.find(AliasSet[i]);
- if (PI != PhysRegsUsed.end()) // Spill aliased register...
- spillVirtReg(MBB, I, PI->second, AliasSet[i]);
- }
- }
- }
+ unsigned PhysReg);
+
+ /// assignVirtToPhysReg - This method updates local state so that we know
+ /// that PhysReg is the proper container for VirtReg now. The physical
+ /// register must not be used for anything else when this is called.
+ ///
+ void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
- void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
+ /// liberatePhysReg - Make sure the specified physical register is available
+ /// for use. If there is currently a value in it, it is either moved out of
+ /// the way or spilled to memory.
+ ///
+ void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+ unsigned PhysReg);
/// isPhysRegAvailable - Return true if the specified physical register is
/// free and available for use. This also includes checking to see if
/// aliased registers are all free...
///
bool isPhysRegAvailable(unsigned PhysReg) const;
+
+ /// getFreeReg - Look to see if there is a free register available in the
+ /// specified register class. If not, return 0.
+ ///
+ unsigned getFreeReg(const TargetRegisterClass *RC);
- /// getFreeReg - Find a physical register to hold the specified virtual
+ /// getReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method
/// spills the last used virtual register to the stack, and uses that
/// register.
///
- unsigned getFreeReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &I,
- unsigned virtualReg);
+ unsigned getReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+ unsigned VirtReg);
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates
@@ -186,8 +198,7 @@
return I->second; // Already has space allocated?
// Allocate a new stack object for this spill location...
- int FrameIdx =
- MF->getFrameInfo()->CreateStackObject(RC->getSize(), RC->getAlignment());
+ int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC);
// Assign the slot...
StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
@@ -208,6 +219,7 @@
PhysRegsUseOrder.erase(It);
}
+
/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg. It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
@@ -220,9 +232,12 @@
MF->getSSARegMap()->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RegClass);
- // Add move instruction(s)
- RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RegClass);
- ++NumSpilled; // Update statistics
+ // If we need to spill this value, do so now...
+ if (isVirtRegModified(VirtReg)) {
+ // Add move instruction(s)
+ RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RegClass);
+ ++NumSpilled; // Update statistics
+ }
Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available
}
@@ -230,6 +245,41 @@
}
+/// spillPhysReg - This method spills the specified physical register into the
+/// virtual register slot associated with it.
+///
+void RA::spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+ unsigned PhysReg) {
+ std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
+ if (PI != PhysRegsUsed.end()) { // Only spill it if it's used!
+ spillVirtReg(MBB, I, PI->second, PhysReg);
+ } else if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg)) {
+ // If the selected register aliases any other registers, we must make
+ // sure that one of the aliases isn't alive...
+ for (unsigned i = 0; AliasSet[i]; ++i) {
+ PI = PhysRegsUsed.find(AliasSet[i]);
+ if (PI != PhysRegsUsed.end()) // Spill aliased register...
+ spillVirtReg(MBB, I, PI->second, AliasSet[i]);
+ }
+ }
+}
+
+
+/// assignVirtToPhysReg - This method updates local state so that we know
+/// that PhysReg is the proper container for VirtReg now. The physical
+/// register must not be used for anything else when this is called.
+///
+void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
+ assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
+ "Phys reg already assigned!");
+ // Update information to note the fact that this register was just used, and
+ // it holds VirtReg.
+ PhysRegsUsed[PhysReg] = VirtReg;
+ Virt2PhysRegMap[VirtReg] = PhysReg;
+ PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
+}
+
+
/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use. This also includes checking to see if aliased
/// registers are all free...
@@ -247,31 +297,77 @@
}
-
-/// getFreeReg - Find a physical register to hold the specified virtual
-/// register. If all compatible physical registers are used, this method spills
-/// the last used virtual register to the stack, and uses that register.
+/// getFreeReg - Look to see if there is a free register available in the
+/// specified register class. If not, return 0.
///
-unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
- unsigned VirtReg) {
- const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
-
+unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
// Get iterators defining the range of registers that are valid to allocate in
// this class, which also specifies the preferred allocation order.
TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
- // First check to see if we have a free register of the requested type...
- unsigned PhysReg = 0;
- for (; RI != RE; ++RI) {
- unsigned R = *RI;
- if (isPhysRegAvailable(R)) { // Is reg unused?
- // Found an unused register!
- PhysReg = R;
- assert(PhysReg != 0 && "Cannot use register!");
- break;
+ for (; RI != RE; ++RI)
+ if (isPhysRegAvailable(*RI)) { // Is reg unused?
+ assert(*RI != 0 && "Cannot use register!");
+ return *RI; // Found an unused register!
+ }
+ return 0;
+}
+
+
+/// liberatePhysReg - Make sure the specified physical register is available for
+/// use. If there is currently a value in it, it is either moved out of the way
+/// or spilled to memory.
+///
+void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+ unsigned PhysReg) {
+ // FIXME: This code checks to see if a register is available, but it really
+ // wants to know if a reg is available BEFORE the instruction executes. If
+ // called after killed operands are freed, it runs the risk of reallocating a
+ // used operand...
+#if 0
+ if (isPhysRegAvailable(PhysReg)) return; // Already available...
+
+ // Check to see if the register is directly used, not indirectly used through
+ // aliases. If aliased registers are the ones actually used, we cannot be
+ // sure that we will be able to save the whole thing if we do a reg-reg copy.
+ std::map<unsigned, unsigned>::iterator PRUI = PhysRegsUsed.find(PhysReg);
+ if (PRUI != PhysRegsUsed.end()) {
+ unsigned VirtReg = PRUI->second; // The virtual register held...
+
+ // Check to see if there is a compatible register available. If so, we can
+ // move the value into the new register...
+ //
+ const TargetRegisterClass *RC = RegInfo->getRegClass(PhysReg);
+ if (unsigned NewReg = getFreeReg(RC)) {
+ // Emit the code to copy the value...
+ RegInfo->copyRegToReg(MBB, I, NewReg, PhysReg, RC);
+
+ // Update our internal state to indicate that PhysReg is available and Reg
+ // isn't.
+ Virt2PhysRegMap.erase(VirtReg);
+ removePhysReg(PhysReg); // Free the physreg
+
+ // Move reference over to new register...
+ assignVirtToPhysReg(VirtReg, NewReg);
+ return;
}
}
+#endif
+ spillPhysReg(MBB, I, PhysReg);
+}
+
+
+/// getReg - Find a physical register to hold the specified virtual
+/// register. If all compatible physical registers are used, this method spills
+/// the last used virtual register to the stack, and uses that register.
+///
+unsigned RA::getReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+ unsigned VirtReg) {
+ const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+
+ // First check to see if we have a free register of the requested type...
+ unsigned PhysReg = getFreeReg(RC);
// If we didn't find an unused register, scavenge one now!
if (PhysReg == 0) {
@@ -309,22 +405,11 @@
}
// Now that we know which register we need to assign this to, do it now!
- AssignVirtToPhysReg(VirtReg, PhysReg);
+ assignVirtToPhysReg(VirtReg, PhysReg);
return PhysReg;
}
-void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
- assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
- "Phys reg already assigned!");
- // Update information to note the fact that this register was just used, and
- // it holds VirtReg.
- PhysRegsUsed[PhysReg] = VirtReg;
- Virt2PhysRegMap[VirtReg] = PhysReg;
- PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
-}
-
-
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates the
/// regalloc data structures to reflect the fact that the virtual reg is now
@@ -339,187 +424,109 @@
return It->second; // Already have this value available!
}
- unsigned PhysReg = getFreeReg(MBB, I, VirtReg);
+ unsigned PhysReg = getReg(MBB, I, VirtReg);
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
+ markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
+
// Add move instruction(s)
RegInfo->loadRegFromStackSlot(MBB, I, PhysReg, FrameIndex, RC);
++NumReloaded; // Update statistics
return PhysReg;
}
-/// CalculateLastUseOfVReg - Calculate an approximation of the killing uses for
-/// the virtual registers in the function. Here we try to capture registers
-/// that are defined and only used within the same basic block. Because we
-/// don't have use-def chains yet, we have to do this the hard way.
-///
-void RA::CalculateLastUseOfVReg(MachineBasicBlock &MBB,
- std::map<unsigned, MachineInstr*> &LastUseOfVReg) const {
- // Calculate the last machine instruction in this basic block that uses the
- // specified virtual register defined in this basic block.
- std::map<unsigned, MachineInstr*> LastLocalUses;
-
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;++I){
+void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
+ // loop over each instruction
+ MachineBasicBlock::iterator I = MBB.begin();
+ for (; I != MBB.end(); ++I) {
MachineInstr *MI = *I;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &Op = MI->getOperand(i);
- if (Op.isVirtualRegister()) {
- if (Op.opIsDef()) { // Definition of a new virtual reg?
- LastLocalUses[Op.getAllocatedRegNum()] = 0; // Record it
- } else { // Use of a virtual reg.
- std::map<unsigned, MachineInstr*>::iterator It =
- LastLocalUses.find(Op.getAllocatedRegNum());
- if (It != LastLocalUses.end()) // Local use?
- It->second = MI; // Update last use
- else
- LastUseOfVReg[Op.getAllocatedRegNum()] = 0;
- }
- }
- }
- }
-
- // Move local uses over... if there are any uses of a local already in the
- // lastuse map, the newly inserted entry is ignored.
- LastUseOfVReg.insert(LastLocalUses.begin(), LastLocalUses.end());
-}
-
-
-/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
-/// predecessor basic blocks.
-///
-void RA::EliminatePHINodes(MachineBasicBlock &MBB) {
- const MachineInstrInfo &MII = TM->getInstrInfo();
+ const MachineInstrDescriptor &MID = TM->getInstrInfo().get(MI->getOpcode());
- while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
- MachineInstr *MI = MBB.front();
- // Unlink the PHI node from the basic block... but don't delete the PHI yet
- MBB.erase(MBB.begin());
-
- assert(MI->getOperand(0).isVirtualRegister() &&
- "PHI node doesn't write virt reg?");
+ // Loop over the implicit uses, making sure that they are at the head of the
+ // use order list, so they don't get reallocated.
+ if (const unsigned *ImplicitUses = MID.ImplicitUses)
+ for (unsigned i = 0; ImplicitUses[i]; ++i)
+ MarkPhysRegRecentlyUsed(ImplicitUses[i]);
- unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
+ // Get the used operands into registers. This has the potiential to spill
+ // incoming values if we are out of registers.
+ //
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
+ if (MI->getOperand(i).opIsUse() &&
+ MI->getOperand(i).isVirtualRegister()) {
+ unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
+ unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
+ MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register
+ }
- for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
- MachineOperand &opVal = MI->getOperand(i-1);
-
- // Get the MachineBasicBlock equivalent of the BasicBlock that is the
- // source path the phi
- MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
-
- // Check to make sure we haven't already emitted the copy for this block.
- // This can happen because PHI nodes may have multiple entries for the
- // same basic block. It doesn't matter which entry we use though, because
- // all incoming values are guaranteed to be the same for a particular bb.
- //
- // Note that this is N^2 in the number of phi node entries, but since the
- // # of entries is tiny, this is not a problem.
+ if (!DisableKill) {
+ // If this instruction is the last user of anything in registers, kill the
+ // value, freeing the register being used, so it doesn't need to be
+ // spilled to memory.
//
- bool HaveNotEmitted = true;
- for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
- if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
- HaveNotEmitted = false;
- break;
- }
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ KE = LV->killed_end(MI); KI != KE; ++KI) {
+ unsigned VirtReg = KI->second;
+ unsigned PhysReg = VirtReg;
+ if (VirtReg >= MRegisterInfo::FirstVirtualRegister) {
+ std::map<unsigned, unsigned>::iterator I =
+ Virt2PhysRegMap.find(VirtReg);
+ assert(I != Virt2PhysRegMap.end());
+ PhysReg = I->second;
+ Virt2PhysRegMap.erase(I);
+ }
- if (HaveNotEmitted) {
- MachineBasicBlock::iterator opI = opBlock.end();
- MachineInstr *opMI = *--opI;
-
- // must backtrack over ALL the branches in the previous block
- while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
- opMI = *--opI;
-
- // move back to the first branch instruction so new instructions
- // are inserted right in front of it and not in front of a non-branch
- if (!MII.isBranch(opMI->getOpcode()))
- ++opI;
-
- const TargetRegisterClass *RC =
- MF->getSSARegMap()->getRegClass(virtualReg);
-
- assert(opVal.isVirtualRegister() &&
- "Machine PHI Operands must all be virtual registers!");
- RegInfo->copyRegToReg(opBlock, opI, virtualReg, opVal.getReg(), RC);
+ if (PhysReg) {
+ DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg
+ << " Killed by: " << *MI);
+ removePhysReg(PhysReg);
+ }
}
}
-
- // really delete the PHI instruction now!
- delete MI;
- }
-}
-
-
-void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
- // loop over each instruction
- MachineBasicBlock::iterator I = MBB.begin();
- for (; I != MBB.end(); ++I) {
- MachineInstr *MI = *I;
- const MachineInstrDescriptor &MID = TM->getInstrInfo().get(MI->getOpcode());
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
-
- // FIXME: We don't need to spill a register if this is the last use of the
- // value!
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
- if (MI->getOperand(i).opIsDef() &&
+ if ((MI->getOperand(i).opIsDef() || MI->getOperand(i).opIsDefAndUse()) &&
MI->getOperand(i).isPhysicalRegister()) {
unsigned Reg = MI->getOperand(i).getAllocatedRegNum();
- spillPhysReg(MBB, I, Reg);
+ spillPhysReg(MBB, I, Reg); // Spill any existing value in the reg
PhysRegsUsed[Reg] = 0; // It is free and reserved now
PhysRegsUseOrder.push_back(Reg);
}
- // Loop over the implicit defs, spilling them, as above.
+ // Loop over the implicit defs, spilling them as well.
if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
for (unsigned i = 0; ImplicitDefs[i]; ++i) {
unsigned Reg = ImplicitDefs[i];
-
- // We don't want to spill implicit definitions if they were explicitly
- // chosen. For this reason, check to see now if the register we are
- // to spill has a vreg of 0.
- if (PhysRegsUsed.count(Reg) && PhysRegsUsed[Reg] != 0)
- spillPhysReg(MBB, I, Reg);
- else if (PhysRegsUsed.count(Reg)) {
- // Remove the entry from PhysRegsUseOrder to avoid having two entries!
- removePhysReg(Reg);
- }
+ spillPhysReg(MBB, I, Reg);
PhysRegsUseOrder.push_back(Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
}
- // Loop over the implicit uses, making sure that they are at the head of the
- // use order list, so they don't get reallocated.
- if (const unsigned *ImplicitUses = MID.ImplicitUses)
- for (unsigned i = 0; ImplicitUses[i]; ++i)
- MarkPhysRegRecentlyUsed(ImplicitUses[i]);
-
- // Loop over all of the operands again, getting the used operands into
- // registers. This has the potiential to spill incoming values if we are
- // out of registers.
- //
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
- if (MI->getOperand(i).opIsUse() &&
- MI->getOperand(i).isVirtualRegister()) {
- unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
- unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
- MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register
- }
-
// Okay, we have allocated all of the source operands and spilled any values
// that would be destroyed by defs of this instruction. Loop over the
- // implicit defs and assign them to a register, spilling the incoming value
- // if we need to scavange a register.
+ // implicit defs and assign them to a register, spilling incoming values if
+ // we need to scavenge a register.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
- !MI->getOperand(i).isPhysicalRegister()) {
+ MI->getOperand(i).isVirtualRegister()) {
unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
unsigned DestPhysReg;
+ // If DestVirtReg already has a value, forget about it. Why doesn't
+ // getReg do this right?
+ std::map<unsigned, unsigned>::iterator DestI =
+ Virt2PhysRegMap.find(DestVirtReg);
+ if (DestI != Virt2PhysRegMap.end()) {
+ unsigned PhysReg = DestI->second;
+ Virt2PhysRegMap.erase(DestI);
+ removePhysReg(PhysReg);
+ }
+
if (TM->getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
@@ -529,51 +536,56 @@
"Two address instruction invalid!");
DestPhysReg = MI->getOperand(1).getAllocatedRegNum();
- // Spill the incoming value, because we are about to change the
- // register contents.
- spillPhysReg(MBB, I, DestPhysReg);
- AssignVirtToPhysReg(DestVirtReg, DestPhysReg);
+ liberatePhysReg(MBB, I, DestPhysReg);
+ assignVirtToPhysReg(DestVirtReg, DestPhysReg);
} else {
- DestPhysReg = getFreeReg(MBB, I, DestVirtReg);
+ DestPhysReg = getReg(MBB, I, DestVirtReg);
}
+ markVirtRegModified(DestVirtReg);
MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register
}
if (!DisableKill) {
- // If this instruction is the last user of anything in registers, kill the
- // value, freeing the register being used, so it doesn't need to be
- // spilled to memory at the end of the block.
- std::multimap<MachineInstr*, unsigned>::iterator LUOI =
- LastUserOf.lower_bound(MI);
- for (; LUOI != LastUserOf.end() && LUOI->first == MI; ++MI) {
- unsigned VirtReg = LUOI->second; // entry found?
- unsigned PhysReg = Virt2PhysRegMap[VirtReg];
- if (PhysReg) {
- DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg
- << " Last use of: " << *MI);
- removePhysReg(PhysReg);
- }
- Virt2PhysRegMap.erase(VirtReg);
+ // If this instruction defines any registers that are immediately dead,
+ // kill them now.
+ //
+ for (LiveVariables::killed_iterator KI = LV->dead_begin(MI),
+ KE = LV->dead_end(MI); KI != KE; ++KI) {
+ unsigned VirtReg = KI->second;
+ unsigned PhysReg = VirtReg;
+ if (VirtReg >= MRegisterInfo::FirstVirtualRegister) {
+ std::map<unsigned, unsigned>::iterator I =
+ Virt2PhysRegMap.find(VirtReg);
+ assert(I != Virt2PhysRegMap.end());
+ PhysReg = I->second;
+ Virt2PhysRegMap.erase(I);
+ }
+
+ if (PhysReg) {
+ DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg
+ << " dead after: " << *MI);
+ removePhysReg(PhysReg);
+ }
}
}
}
// Rewind the iterator to point to the first flow control instruction...
const MachineInstrInfo &MII = TM->getInstrInfo();
- I = MBB.end();
- do {
+ I = MBB.end()-1;
+ while (I != MBB.begin() && MII.isTerminatorInstr((*(I-1))->getOpcode()))
--I;
- } while ((MII.isReturn((*I)->getOpcode()) ||
- MII.isBranch((*I)->getOpcode())) && I != MBB.begin());
-
- if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode()))
- ++I;
// Spill all physical registers holding virtual registers now.
while (!PhysRegsUsed.empty())
spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
PhysRegsUsed.begin()->first);
+ for (std::map<unsigned, unsigned>::iterator I = Virt2PhysRegMap.begin(),
+ E = Virt2PhysRegMap.end(); I != E; ++I)
+ std::cerr << "Register still mapped: " << I->first << " -> "
+ << I->second << "\n";
+
assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
}
@@ -587,38 +599,16 @@
TM = &Fn.getTarget();
RegInfo = TM->getRegisterInfo();
- // First pass: eliminate PHI instructions by inserting copies into predecessor
- // blocks, and calculate a simple approximation of killing uses for virtual
- // registers.
- //
- std::map<unsigned, MachineInstr*> LastUseOfVReg;
- for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
- MBB != MBBe; ++MBB) {
- if (!DisableKill)
- CalculateLastUseOfVReg(*MBB, LastUseOfVReg);
- EliminatePHINodes(*MBB);
- }
-
- // At this point LastUseOfVReg has been filled in to contain the last
- // MachineInstr user of the specified virtual register, if that user is
- // within the same basic block as the definition (otherwise it contains
- // null). Invert this mapping now:
if (!DisableKill)
- for (std::map<unsigned, MachineInstr*>::iterator I = LastUseOfVReg.begin(),
- E = LastUseOfVReg.end(); I != E; ++I)
- if (I->second)
- LastUserOf.insert(std::make_pair(I->second, I->first));
-
- // We're done with the temporary list now.
- LastUseOfVReg.clear();
+ LV = &getAnalysis<LiveVariables>();
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
- LastUserOf.clear();
StackSlotForVirtReg.clear();
+ VirtRegModified.clear();
return true;
}
More information about the llvm-commits
mailing list