[llvm-branch-commits] [llvm-branch] r109514 - in /llvm/branches/Apple/williamson/lib: CodeGen/SelectionDAG/TargetLowering.cpp.orig Target/ARM/ARMISelLowering.cpp.orig

Daniel Dunbar daniel at zuster.org
Tue Jul 27 10:44:45 PDT 2010


Author: ddunbar
Date: Tue Jul 27 12:44:45 2010
New Revision: 109514

URL: http://llvm.org/viewvc/llvm-project?rev=109514&view=rev
Log:
Remove stray merge files.

Removed:
    llvm/branches/Apple/williamson/lib/CodeGen/SelectionDAG/TargetLowering.cpp.orig
    llvm/branches/Apple/williamson/lib/Target/ARM/ARMISelLowering.cpp.orig

Removed: llvm/branches/Apple/williamson/lib/CodeGen/SelectionDAG/TargetLowering.cpp.orig
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/williamson/lib/CodeGen/SelectionDAG/TargetLowering.cpp.orig?rev=109513&view=auto
==============================================================================
--- llvm/branches/Apple/williamson/lib/CodeGen/SelectionDAG/TargetLowering.cpp.orig (original)
+++ llvm/branches/Apple/williamson/lib/CodeGen/SelectionDAG/TargetLowering.cpp.orig (removed)
@@ -1,2906 +0,0 @@
-//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This implements the TargetLowering class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/MC/MCAsmInfo.h"
-#include "llvm/MC/MCExpr.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLoweringObjectFile.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/CodeGen/Analysis.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-using namespace llvm;
-
-namespace llvm {
-TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
-  bool isLocal = GV->hasLocalLinkage();
-  bool isDeclaration = GV->isDeclaration();
-  // FIXME: what should we do for protected and internal visibility?
-  // For variables, is internal different from hidden?
-  bool isHidden = GV->hasHiddenVisibility();
-
-  if (reloc == Reloc::PIC_) {
-    if (isLocal || isHidden)
-      return TLSModel::LocalDynamic;
-    else
-      return TLSModel::GeneralDynamic;
-  } else {
-    if (!isDeclaration || isHidden)
-      return TLSModel::LocalExec;
-    else
-      return TLSModel::InitialExec;
-  }
-}
-}
-
-/// InitLibcallNames - Set default libcall names.
-///
-static void InitLibcallNames(const char **Names) {
-  Names[RTLIB::SHL_I16] = "__ashlhi3";
-  Names[RTLIB::SHL_I32] = "__ashlsi3";
-  Names[RTLIB::SHL_I64] = "__ashldi3";
-  Names[RTLIB::SHL_I128] = "__ashlti3";
-  Names[RTLIB::SRL_I16] = "__lshrhi3";
-  Names[RTLIB::SRL_I32] = "__lshrsi3";
-  Names[RTLIB::SRL_I64] = "__lshrdi3";
-  Names[RTLIB::SRL_I128] = "__lshrti3";
-  Names[RTLIB::SRA_I16] = "__ashrhi3";
-  Names[RTLIB::SRA_I32] = "__ashrsi3";
-  Names[RTLIB::SRA_I64] = "__ashrdi3";
-  Names[RTLIB::SRA_I128] = "__ashrti3";
-  Names[RTLIB::MUL_I8] = "__mulqi3";
-  Names[RTLIB::MUL_I16] = "__mulhi3";
-  Names[RTLIB::MUL_I32] = "__mulsi3";
-  Names[RTLIB::MUL_I64] = "__muldi3";
-  Names[RTLIB::MUL_I128] = "__multi3";
-  Names[RTLIB::SDIV_I8] = "__divqi3";
-  Names[RTLIB::SDIV_I16] = "__divhi3";
-  Names[RTLIB::SDIV_I32] = "__divsi3";
-  Names[RTLIB::SDIV_I64] = "__divdi3";
-  Names[RTLIB::SDIV_I128] = "__divti3";
-  Names[RTLIB::UDIV_I8] = "__udivqi3";
-  Names[RTLIB::UDIV_I16] = "__udivhi3";
-  Names[RTLIB::UDIV_I32] = "__udivsi3";
-  Names[RTLIB::UDIV_I64] = "__udivdi3";
-  Names[RTLIB::UDIV_I128] = "__udivti3";
-  Names[RTLIB::SREM_I8] = "__modqi3";
-  Names[RTLIB::SREM_I16] = "__modhi3";
-  Names[RTLIB::SREM_I32] = "__modsi3";
-  Names[RTLIB::SREM_I64] = "__moddi3";
-  Names[RTLIB::SREM_I128] = "__modti3";
-  Names[RTLIB::UREM_I8] = "__umodqi3";
-  Names[RTLIB::UREM_I16] = "__umodhi3";
-  Names[RTLIB::UREM_I32] = "__umodsi3";
-  Names[RTLIB::UREM_I64] = "__umoddi3";
-  Names[RTLIB::UREM_I128] = "__umodti3";
-  Names[RTLIB::NEG_I32] = "__negsi2";
-  Names[RTLIB::NEG_I64] = "__negdi2";
-  Names[RTLIB::ADD_F32] = "__addsf3";
-  Names[RTLIB::ADD_F64] = "__adddf3";
-  Names[RTLIB::ADD_F80] = "__addxf3";
-  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
-  Names[RTLIB::SUB_F32] = "__subsf3";
-  Names[RTLIB::SUB_F64] = "__subdf3";
-  Names[RTLIB::SUB_F80] = "__subxf3";
-  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
-  Names[RTLIB::MUL_F32] = "__mulsf3";
-  Names[RTLIB::MUL_F64] = "__muldf3";
-  Names[RTLIB::MUL_F80] = "__mulxf3";
-  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
-  Names[RTLIB::DIV_F32] = "__divsf3";
-  Names[RTLIB::DIV_F64] = "__divdf3";
-  Names[RTLIB::DIV_F80] = "__divxf3";
-  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
-  Names[RTLIB::REM_F32] = "fmodf";
-  Names[RTLIB::REM_F64] = "fmod";
-  Names[RTLIB::REM_F80] = "fmodl";
-  Names[RTLIB::REM_PPCF128] = "fmodl";
-  Names[RTLIB::POWI_F32] = "__powisf2";
-  Names[RTLIB::POWI_F64] = "__powidf2";
-  Names[RTLIB::POWI_F80] = "__powixf2";
-  Names[RTLIB::POWI_PPCF128] = "__powitf2";
-  Names[RTLIB::SQRT_F32] = "sqrtf";
-  Names[RTLIB::SQRT_F64] = "sqrt";
-  Names[RTLIB::SQRT_F80] = "sqrtl";
-  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
-  Names[RTLIB::LOG_F32] = "logf";
-  Names[RTLIB::LOG_F64] = "log";
-  Names[RTLIB::LOG_F80] = "logl";
-  Names[RTLIB::LOG_PPCF128] = "logl";
-  Names[RTLIB::LOG2_F32] = "log2f";
-  Names[RTLIB::LOG2_F64] = "log2";
-  Names[RTLIB::LOG2_F80] = "log2l";
-  Names[RTLIB::LOG2_PPCF128] = "log2l";
-  Names[RTLIB::LOG10_F32] = "log10f";
-  Names[RTLIB::LOG10_F64] = "log10";
-  Names[RTLIB::LOG10_F80] = "log10l";
-  Names[RTLIB::LOG10_PPCF128] = "log10l";
-  Names[RTLIB::EXP_F32] = "expf";
-  Names[RTLIB::EXP_F64] = "exp";
-  Names[RTLIB::EXP_F80] = "expl";
-  Names[RTLIB::EXP_PPCF128] = "expl";
-  Names[RTLIB::EXP2_F32] = "exp2f";
-  Names[RTLIB::EXP2_F64] = "exp2";
-  Names[RTLIB::EXP2_F80] = "exp2l";
-  Names[RTLIB::EXP2_PPCF128] = "exp2l";
-  Names[RTLIB::SIN_F32] = "sinf";
-  Names[RTLIB::SIN_F64] = "sin";
-  Names[RTLIB::SIN_F80] = "sinl";
-  Names[RTLIB::SIN_PPCF128] = "sinl";
-  Names[RTLIB::COS_F32] = "cosf";
-  Names[RTLIB::COS_F64] = "cos";
-  Names[RTLIB::COS_F80] = "cosl";
-  Names[RTLIB::COS_PPCF128] = "cosl";
-  Names[RTLIB::POW_F32] = "powf";
-  Names[RTLIB::POW_F64] = "pow";
-  Names[RTLIB::POW_F80] = "powl";
-  Names[RTLIB::POW_PPCF128] = "powl";
-  Names[RTLIB::CEIL_F32] = "ceilf";
-  Names[RTLIB::CEIL_F64] = "ceil";
-  Names[RTLIB::CEIL_F80] = "ceill";
-  Names[RTLIB::CEIL_PPCF128] = "ceill";
-  Names[RTLIB::TRUNC_F32] = "truncf";
-  Names[RTLIB::TRUNC_F64] = "trunc";
-  Names[RTLIB::TRUNC_F80] = "truncl";
-  Names[RTLIB::TRUNC_PPCF128] = "truncl";
-  Names[RTLIB::RINT_F32] = "rintf";
-  Names[RTLIB::RINT_F64] = "rint";
-  Names[RTLIB::RINT_F80] = "rintl";
-  Names[RTLIB::RINT_PPCF128] = "rintl";
-  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
-  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
-  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
-  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
-  Names[RTLIB::FLOOR_F32] = "floorf";
-  Names[RTLIB::FLOOR_F64] = "floor";
-  Names[RTLIB::FLOOR_F80] = "floorl";
-  Names[RTLIB::FLOOR_PPCF128] = "floorl";
-  Names[RTLIB::COPYSIGN_F32] = "copysignf";
-  Names[RTLIB::COPYSIGN_F64] = "copysign";
-  Names[RTLIB::COPYSIGN_F80] = "copysignl";
-  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
-  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
-  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
-  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
-  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
-  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
-  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
-  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
-  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
-  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
-  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
-  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
-  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
-  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
-  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
-  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
-  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
-  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
-  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
-  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
-  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
-  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
-  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
-  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
-  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
-  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
-  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
-  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
-  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
-  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
-  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
-  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
-  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
-  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
-  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
-  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
-  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
-  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
-  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
-  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
-  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
-  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
-  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
-  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
-  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
-  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
-  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
-  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
-  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
-  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
-  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
-  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
-  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
-  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
-  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
-  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
-  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
-  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
-  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
-  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
-  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
-  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
-  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
-  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
-  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
-  Names[RTLIB::OEQ_F32] = "__eqsf2";
-  Names[RTLIB::OEQ_F64] = "__eqdf2";
-  Names[RTLIB::UNE_F32] = "__nesf2";
-  Names[RTLIB::UNE_F64] = "__nedf2";
-  Names[RTLIB::OGE_F32] = "__gesf2";
-  Names[RTLIB::OGE_F64] = "__gedf2";
-  Names[RTLIB::OLT_F32] = "__ltsf2";
-  Names[RTLIB::OLT_F64] = "__ltdf2";
-  Names[RTLIB::OLE_F32] = "__lesf2";
-  Names[RTLIB::OLE_F64] = "__ledf2";
-  Names[RTLIB::OGT_F32] = "__gtsf2";
-  Names[RTLIB::OGT_F64] = "__gtdf2";
-  Names[RTLIB::UO_F32] = "__unordsf2";
-  Names[RTLIB::UO_F64] = "__unorddf2";
-  Names[RTLIB::O_F32] = "__unordsf2";
-  Names[RTLIB::O_F64] = "__unorddf2";
-  Names[RTLIB::MEMCPY] = "memcpy";
-  Names[RTLIB::MEMMOVE] = "memmove";
-  Names[RTLIB::MEMSET] = "memset";
-  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
-  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
-  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
-  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
-  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
-  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
-  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
-  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
-  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
-  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
-  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
-  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
-  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
-  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
-  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
-  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
-  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
-  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
-  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
-  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
-  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
-  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
-  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
-  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
-  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
-  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
-  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
-  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
-  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
-  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
-  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
-  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
-  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
-}
-
-/// InitLibcallCallingConvs - Set default libcall CallingConvs.
-///
-static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
-  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
-    CCs[i] = CallingConv::C;
-  }
-}
-
-/// getFPEXT - Return the FPEXT_*_* value for the given types, or
-/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
-  if (OpVT == MVT::f32) {
-    if (RetVT == MVT::f64)
-      return FPEXT_F32_F64;
-  }
-
-  return UNKNOWN_LIBCALL;
-}
-
-/// getFPROUND - Return the FPROUND_*_* value for the given types, or
-/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
-  if (RetVT == MVT::f32) {
-    if (OpVT == MVT::f64)
-      return FPROUND_F64_F32;
-    if (OpVT == MVT::f80)
-      return FPROUND_F80_F32;
-    if (OpVT == MVT::ppcf128)
-      return FPROUND_PPCF128_F32;
-  } else if (RetVT == MVT::f64) {
-    if (OpVT == MVT::f80)
-      return FPROUND_F80_F64;
-    if (OpVT == MVT::ppcf128)
-      return FPROUND_PPCF128_F64;
-  }
-
-  return UNKNOWN_LIBCALL;
-}
-
-/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
-/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
-  if (OpVT == MVT::f32) {
-    if (RetVT == MVT::i8)
-      return FPTOSINT_F32_I8;
-    if (RetVT == MVT::i16)
-      return FPTOSINT_F32_I16;
-    if (RetVT == MVT::i32)
-      return FPTOSINT_F32_I32;
-    if (RetVT == MVT::i64)
-      return FPTOSINT_F32_I64;
-    if (RetVT == MVT::i128)
-      return FPTOSINT_F32_I128;
-  } else if (OpVT == MVT::f64) {
-    if (RetVT == MVT::i8)
-      return FPTOSINT_F64_I8;
-    if (RetVT == MVT::i16)
-      return FPTOSINT_F64_I16;
-    if (RetVT == MVT::i32)
-      return FPTOSINT_F64_I32;
-    if (RetVT == MVT::i64)
-      return FPTOSINT_F64_I64;
-    if (RetVT == MVT::i128)
-      return FPTOSINT_F64_I128;
-  } else if (OpVT == MVT::f80) {
-    if (RetVT == MVT::i32)
-      return FPTOSINT_F80_I32;
-    if (RetVT == MVT::i64)
-      return FPTOSINT_F80_I64;
-    if (RetVT == MVT::i128)
-      return FPTOSINT_F80_I128;
-  } else if (OpVT == MVT::ppcf128) {
-    if (RetVT == MVT::i32)
-      return FPTOSINT_PPCF128_I32;
-    if (RetVT == MVT::i64)
-      return FPTOSINT_PPCF128_I64;
-    if (RetVT == MVT::i128)
-      return FPTOSINT_PPCF128_I128;
-  }
-  return UNKNOWN_LIBCALL;
-}
-
-/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
-/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
-  if (OpVT == MVT::f32) {
-    if (RetVT == MVT::i8)
-      return FPTOUINT_F32_I8;
-    if (RetVT == MVT::i16)
-      return FPTOUINT_F32_I16;
-    if (RetVT == MVT::i32)
-      return FPTOUINT_F32_I32;
-    if (RetVT == MVT::i64)
-      return FPTOUINT_F32_I64;
-    if (RetVT == MVT::i128)
-      return FPTOUINT_F32_I128;
-  } else if (OpVT == MVT::f64) {
-    if (RetVT == MVT::i8)
-      return FPTOUINT_F64_I8;
-    if (RetVT == MVT::i16)
-      return FPTOUINT_F64_I16;
-    if (RetVT == MVT::i32)
-      return FPTOUINT_F64_I32;
-    if (RetVT == MVT::i64)
-      return FPTOUINT_F64_I64;
-    if (RetVT == MVT::i128)
-      return FPTOUINT_F64_I128;
-  } else if (OpVT == MVT::f80) {
-    if (RetVT == MVT::i32)
-      return FPTOUINT_F80_I32;
-    if (RetVT == MVT::i64)
-      return FPTOUINT_F80_I64;
-    if (RetVT == MVT::i128)
-      return FPTOUINT_F80_I128;
-  } else if (OpVT == MVT::ppcf128) {
-    if (RetVT == MVT::i32)
-      return FPTOUINT_PPCF128_I32;
-    if (RetVT == MVT::i64)
-      return FPTOUINT_PPCF128_I64;
-    if (RetVT == MVT::i128)
-      return FPTOUINT_PPCF128_I128;
-  }
-  return UNKNOWN_LIBCALL;
-}
-
-/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
-/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
-  if (OpVT == MVT::i32) {
-    if (RetVT == MVT::f32)
-      return SINTTOFP_I32_F32;
-    else if (RetVT == MVT::f64)
-      return SINTTOFP_I32_F64;
-    else if (RetVT == MVT::f80)
-      return SINTTOFP_I32_F80;
-    else if (RetVT == MVT::ppcf128)
-      return SINTTOFP_I32_PPCF128;
-  } else if (OpVT == MVT::i64) {
-    if (RetVT == MVT::f32)
-      return SINTTOFP_I64_F32;
-    else if (RetVT == MVT::f64)
-      return SINTTOFP_I64_F64;
-    else if (RetVT == MVT::f80)
-      return SINTTOFP_I64_F80;
-    else if (RetVT == MVT::ppcf128)
-      return SINTTOFP_I64_PPCF128;
-  } else if (OpVT == MVT::i128) {
-    if (RetVT == MVT::f32)
-      return SINTTOFP_I128_F32;
-    else if (RetVT == MVT::f64)
-      return SINTTOFP_I128_F64;
-    else if (RetVT == MVT::f80)
-      return SINTTOFP_I128_F80;
-    else if (RetVT == MVT::ppcf128)
-      return SINTTOFP_I128_PPCF128;
-  }
-  return UNKNOWN_LIBCALL;
-}
-
-/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
-/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
-  if (OpVT == MVT::i32) {
-    if (RetVT == MVT::f32)
-      return UINTTOFP_I32_F32;
-    else if (RetVT == MVT::f64)
-      return UINTTOFP_I32_F64;
-    else if (RetVT == MVT::f80)
-      return UINTTOFP_I32_F80;
-    else if (RetVT == MVT::ppcf128)
-      return UINTTOFP_I32_PPCF128;
-  } else if (OpVT == MVT::i64) {
-    if (RetVT == MVT::f32)
-      return UINTTOFP_I64_F32;
-    else if (RetVT == MVT::f64)
-      return UINTTOFP_I64_F64;
-    else if (RetVT == MVT::f80)
-      return UINTTOFP_I64_F80;
-    else if (RetVT == MVT::ppcf128)
-      return UINTTOFP_I64_PPCF128;
-  } else if (OpVT == MVT::i128) {
-    if (RetVT == MVT::f32)
-      return UINTTOFP_I128_F32;
-    else if (RetVT == MVT::f64)
-      return UINTTOFP_I128_F64;
-    else if (RetVT == MVT::f80)
-      return UINTTOFP_I128_F80;
-    else if (RetVT == MVT::ppcf128)
-      return UINTTOFP_I128_PPCF128;
-  }
-  return UNKNOWN_LIBCALL;
-}
-
-/// InitCmpLibcallCCs - Set default comparison libcall CC.
-///
-static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
-  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
-  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
-  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
-  CCs[RTLIB::UNE_F32] = ISD::SETNE;
-  CCs[RTLIB::UNE_F64] = ISD::SETNE;
-  CCs[RTLIB::OGE_F32] = ISD::SETGE;
-  CCs[RTLIB::OGE_F64] = ISD::SETGE;
-  CCs[RTLIB::OLT_F32] = ISD::SETLT;
-  CCs[RTLIB::OLT_F64] = ISD::SETLT;
-  CCs[RTLIB::OLE_F32] = ISD::SETLE;
-  CCs[RTLIB::OLE_F64] = ISD::SETLE;
-  CCs[RTLIB::OGT_F32] = ISD::SETGT;
-  CCs[RTLIB::OGT_F64] = ISD::SETGT;
-  CCs[RTLIB::UO_F32] = ISD::SETNE;
-  CCs[RTLIB::UO_F64] = ISD::SETNE;
-  CCs[RTLIB::O_F32] = ISD::SETEQ;
-  CCs[RTLIB::O_F64] = ISD::SETEQ;
-}
-
-/// NOTE: The constructor takes ownership of TLOF.
-TargetLowering::TargetLowering(const TargetMachine &tm,
-                               const TargetLoweringObjectFile *tlof)
-  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
-  // All operations default to being supported.
-  memset(OpActions, 0, sizeof(OpActions));
-  memset(LoadExtActions, 0, sizeof(LoadExtActions));
-  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
-  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
-  memset(CondCodeActions, 0, sizeof(CondCodeActions));
-
-  // Set default actions for various operations.
-  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
-    // Default all indexed load / store to expand.
-    for (unsigned IM = (unsigned)ISD::PRE_INC;
-         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
-      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
-      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
-    }
-    
-    // These operations default to expand.
-    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
-    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
-  }
-
-  // Most targets ignore the @llvm.prefetch intrinsic.
-  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
-  
-  // ConstantFP nodes default to expand.  Targets can either change this to 
-  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
-  // to optimize expansions for certain constants.
-  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
-  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
-  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
-
-  // These library functions default to expand.
-  setOperationAction(ISD::FLOG , MVT::f64, Expand);
-  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
-  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
-  setOperationAction(ISD::FEXP , MVT::f64, Expand);
-  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
-  setOperationAction(ISD::FLOG , MVT::f32, Expand);
-  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
-  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
-  setOperationAction(ISD::FEXP , MVT::f32, Expand);
-  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
-
-  // Default ISD::TRAP to expand (which turns it into abort).
-  setOperationAction(ISD::TRAP, MVT::Other, Expand);
-    
-  IsLittleEndian = TD->isLittleEndian();
-  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
-  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
-  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
-  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
-  benefitFromCodePlacementOpt = false;
-  UseUnderscoreSetJmp = false;
-  UseUnderscoreLongJmp = false;
-  SelectIsExpensive = false;
-  IntDivIsCheap = false;
-  Pow2DivIsCheap = false;
-  StackPointerRegisterToSaveRestore = 0;
-  ExceptionPointerRegister = 0;
-  ExceptionSelectorRegister = 0;
-  BooleanContents = UndefinedBooleanContent;
-  SchedPreferenceInfo = Sched::Latency;
-  JumpBufSize = 0;
-  JumpBufAlignment = 0;
-  PrefLoopAlignment = 0;
-  MinStackArgumentAlignment = 1;
-  ShouldFoldAtomicFences = false;
-
-  InitLibcallNames(LibcallRoutineNames);
-  InitCmpLibcallCCs(CmpLibcallCCs);
-  InitLibcallCallingConvs(LibcallCallingConvs);
-}
-
-TargetLowering::~TargetLowering() {
-  delete &TLOF;
-}
-
-/// canOpTrap - Returns true if the operation can trap for the value type.
-/// VT must be a legal type.
-bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
-  assert(isTypeLegal(VT));
-  switch (Op) {
-  default:
-    return false;
-  case ISD::FDIV:
-  case ISD::FREM:
-  case ISD::SDIV:
-  case ISD::UDIV:
-  case ISD::SREM:
-  case ISD::UREM:
-    return true;
-  }
-}
-
-
-static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
-                                          unsigned &NumIntermediates,
-                                          EVT &RegisterVT,
-                                          TargetLowering *TLI) {
-  // Figure out the right, legal destination reg to copy into.
-  unsigned NumElts = VT.getVectorNumElements();
-  MVT EltTy = VT.getVectorElementType();
-  
-  unsigned NumVectorRegs = 1;
-  
-  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we 
-  // could break down into LHS/RHS like LegalizeDAG does.
-  if (!isPowerOf2_32(NumElts)) {
-    NumVectorRegs = NumElts;
-    NumElts = 1;
-  }
-  
-  // Divide the input until we get to a supported size.  This will always
-  // end with a scalar if the target doesn't support vectors.
-  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
-    NumElts >>= 1;
-    NumVectorRegs <<= 1;
-  }
-
-  NumIntermediates = NumVectorRegs;
-  
-  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
-  if (!TLI->isTypeLegal(NewVT))
-    NewVT = EltTy;
-  IntermediateVT = NewVT;
-
-  EVT DestVT = TLI->getRegisterType(NewVT);
-  RegisterVT = DestVT;
-  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
-    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
-  
-  // Otherwise, promotion or legal types use the same number of registers as
-  // the vector decimated to the appropriate level.
-  return NumVectorRegs;
-}
-
-/// isLegalRC - Return true if the value types that can be represented by the
-/// specified register class are all legal.
-bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
-  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
-       I != E; ++I) {
-    if (isTypeLegal(*I))
-      return true;
-  }
-  return false;
-}
-
-/// hasLegalSuperRegRegClasses - Return true if the specified register class
-/// has one or more super-reg register classes that are legal.
-bool
-TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
-  if (*RC->superregclasses_begin() == 0)
-    return false;
-  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
-         E = RC->superregclasses_end(); I != E; ++I) {
-    const TargetRegisterClass *RRC = *I;
-    if (isLegalRC(RRC))
-      return true;
-  }
-  return false;
-}
-
-/// findRepresentativeClass - Return the largest legal super-reg register class
-/// of the specified register class.
-const TargetRegisterClass *
-TargetLowering::findRepresentativeClass(const TargetRegisterClass *RC) const {
-  const TargetRegisterClass *BestRC = RC;
-  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
-         E = RC->superregclasses_end(); I != E; ++I) {
-    const TargetRegisterClass *RRC = *I;
-    if (RRC->isASubClass() || !isLegalRC(RRC))
-      continue;
-    if (!hasLegalSuperRegRegClasses(RRC))
-      return RRC;
-    BestRC = RRC;
-  }
-  return BestRC;
-}
-
-/// computeRegisterProperties - Once all of the register classes are added,
-/// this allows us to compute derived properties we expose.
-void TargetLowering::computeRegisterProperties() {
-  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
-         "Too many value types for ValueTypeActions to hold!");
-
-  // Everything defaults to needing one register.
-  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
-    NumRegistersForVT[i] = 1;
-    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
-  }
-  // ...except isVoid, which doesn't need any registers.
-  NumRegistersForVT[MVT::isVoid] = 0;
-
-  // Find the largest integer register class.
-  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
-  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
-    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
-
-  // Every integer value type larger than this largest register takes twice as
-  // many registers to represent as the previous ValueType.
-  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
-    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
-    if (!ExpandedVT.isInteger())
-      break;
-    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
-    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
-    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
-    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
-  }
-
-  // Inspect all of the ValueType's smaller than the largest integer
-  // register to see which ones need promotion.
-  unsigned LegalIntReg = LargestIntReg;
-  for (unsigned IntReg = LargestIntReg - 1;
-       IntReg >= (unsigned)MVT::i1; --IntReg) {
-    EVT IVT = (MVT::SimpleValueType)IntReg;
-    if (isTypeLegal(IVT)) {
-      LegalIntReg = IntReg;
-    } else {
-      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
-        (MVT::SimpleValueType)LegalIntReg;
-      ValueTypeActions.setTypeAction(IVT, Promote);
-    }
-  }
-
-  // ppcf128 type is really two f64's.
-  if (!isTypeLegal(MVT::ppcf128)) {
-    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
-    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
-    TransformToType[MVT::ppcf128] = MVT::f64;
-    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
-  }    
-
-  // Decide how to handle f64. If the target does not have native f64 support,
-  // expand it to i64 and we will be generating soft float library calls.
-  if (!isTypeLegal(MVT::f64)) {
-    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
-    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
-    TransformToType[MVT::f64] = MVT::i64;
-    ValueTypeActions.setTypeAction(MVT::f64, Expand);
-  }
-
-  // Decide how to handle f32. If the target does not have native support for
-  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
-  if (!isTypeLegal(MVT::f32)) {
-    if (isTypeLegal(MVT::f64)) {
-      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
-      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
-      TransformToType[MVT::f32] = MVT::f64;
-      ValueTypeActions.setTypeAction(MVT::f32, Promote);
-    } else {
-      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
-      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
-      TransformToType[MVT::f32] = MVT::i32;
-      ValueTypeActions.setTypeAction(MVT::f32, Expand);
-    }
-  }
-  
-  // Loop over all of the vector value types to see which need transformations.
-  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
-       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
-    MVT VT = (MVT::SimpleValueType)i;
-    if (isTypeLegal(VT)) continue;
-    
-    MVT IntermediateVT;
-    EVT RegisterVT;
-    unsigned NumIntermediates;
-    NumRegistersForVT[i] =
-      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
-                                RegisterVT, this);
-    RegisterTypeForVT[i] = RegisterVT;
-    
-    // Determine if there is a legal wider type.
-    bool IsLegalWiderType = false;
-    EVT EltVT = VT.getVectorElementType();
-    unsigned NElts = VT.getVectorNumElements();
-    for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
-      EVT SVT = (MVT::SimpleValueType)nVT;
-      if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
-          SVT.getVectorNumElements() > NElts && NElts != 1) {
-        TransformToType[i] = SVT;
-        ValueTypeActions.setTypeAction(VT, Promote);
-        IsLegalWiderType = true;
-        break;
-      }
-    }
-    if (!IsLegalWiderType) {
-      EVT NVT = VT.getPow2VectorType();
-      if (NVT == VT) {
-        // Type is already a power of 2.  The default action is to split.
-        TransformToType[i] = MVT::Other;
-        ValueTypeActions.setTypeAction(VT, Expand);
-      } else {
-        TransformToType[i] = NVT;
-        ValueTypeActions.setTypeAction(VT, Promote);
-      }
-    }
-  }
-
-  // Determine the 'representative' register class for each value type.
-  // An representative register class is the largest (meaning one which is
-  // not a sub-register class / subreg register class) legal register class for
-  // a group of value types. For example, on i386, i8, i16, and i32
-  // representative would be GR32; while on x86_64 it's GR64.
-  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
-    const TargetRegisterClass *RC = RegClassForVT[i];
-    RepRegClassForVT[i] = RC ? findRepresentativeClass(RC) : 0;
-  }
-}
-
-const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
-  return NULL;
-}
-
-
-MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
-  return PointerTy.SimpleTy;
-}
-
-MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
-  return MVT::i32; // return the default value
-}
-
-/// getVectorTypeBreakdown - Vector types are broken down into some number of
-/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
-/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
-/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
-///
-/// This method returns the number of registers needed, and the VT for each
-/// register.  It also returns the VT and quantity of the intermediate values
-/// before they are promoted/expanded.
-///
-unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
-                                                EVT &IntermediateVT,
-                                                unsigned &NumIntermediates,
-                                                EVT &RegisterVT) const {
-  // Figure out the right, legal destination reg to copy into.
-  unsigned NumElts = VT.getVectorNumElements();
-  EVT EltTy = VT.getVectorElementType();
-  
-  unsigned NumVectorRegs = 1;
-  
-  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we 
-  // could break down into LHS/RHS like LegalizeDAG does.
-  if (!isPowerOf2_32(NumElts)) {
-    NumVectorRegs = NumElts;
-    NumElts = 1;
-  }
-  
-  // Divide the input until we get to a supported size.  This will always
-  // end with a scalar if the target doesn't support vectors.
-  while (NumElts > 1 && !isTypeLegal(
-                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
-    NumElts >>= 1;
-    NumVectorRegs <<= 1;
-  }
-
-  NumIntermediates = NumVectorRegs;
-  
-  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
-  if (!isTypeLegal(NewVT))
-    NewVT = EltTy;
-  IntermediateVT = NewVT;
-
-  EVT DestVT = getRegisterType(Context, NewVT);
-  RegisterVT = DestVT;
-  if (DestVT.bitsLT(NewVT)) {
-    // Value is expanded, e.g. i64 -> i16.
-    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
-  } else {
-    // Otherwise, promotion or legal types use the same number of registers as
-    // the vector decimated to the appropriate level.
-    return NumVectorRegs;
-  }
-  
-  return 1;
-}
-
-/// Get the EVTs and ArgFlags collections that represent the legalized return 
-/// type of the given function.  This does not require a DAG or a return value,
-/// and is suitable for use before any DAGs for the function are constructed.
-/// TODO: Move this out of TargetLowering.cpp.
-void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
-                         SmallVectorImpl<ISD::OutputArg> &Outs,
-                         const TargetLowering &TLI,
-                         SmallVectorImpl<uint64_t> *Offsets) {
-  SmallVector<EVT, 4> ValueVTs;
-  ComputeValueVTs(TLI, ReturnType, ValueVTs);
-  unsigned NumValues = ValueVTs.size();
-  if (NumValues == 0) return;
-  unsigned Offset = 0;
-
-  for (unsigned j = 0, f = NumValues; j != f; ++j) {
-    EVT VT = ValueVTs[j];
-    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
-
-    if (attr & Attribute::SExt)
-      ExtendKind = ISD::SIGN_EXTEND;
-    else if (attr & Attribute::ZExt)
-      ExtendKind = ISD::ZERO_EXTEND;
-
-    // FIXME: C calling convention requires the return type to be promoted to
-    // at least 32-bit. But this is not necessary for non-C calling
-    // conventions. The frontend should mark functions whose return values
-    // require promoting with signext or zeroext attributes.
-    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
-      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
-      if (VT.bitsLT(MinVT))
-        VT = MinVT;
-    }
-
-    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
-    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
-    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
-                        PartVT.getTypeForEVT(ReturnType->getContext()));
-
-    // 'inreg' on function refers to return value
-    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
-    if (attr & Attribute::InReg)
-      Flags.setInReg();
-
-    // Propagate extension type if any
-    if (attr & Attribute::SExt)
-      Flags.setSExt();
-    else if (attr & Attribute::ZExt)
-      Flags.setZExt();
-
-    for (unsigned i = 0; i < NumParts; ++i) {
-      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
-      if (Offsets) {
-        Offsets->push_back(Offset);
-        Offset += PartSize;
-      }
-    }
-  }
-}
-
-/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
-/// function arguments in the caller parameter area.  This is the actual
-/// alignment, not its logarithm.
-unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
-  return TD->getCallFrameTypeAlignment(Ty);
-}
-
-/// getJumpTableEncoding - Return the entry encoding for a jump table in the
-/// current function.  The returned value is a member of the
-/// MachineJumpTableInfo::JTEntryKind enum.
-unsigned TargetLowering::getJumpTableEncoding() const {
-  // In non-pic modes, just use the address of a block.
-  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
-    return MachineJumpTableInfo::EK_BlockAddress;
-  
-  // In PIC mode, if the target supports a GPRel32 directive, use it.
-  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
-    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
-  
-  // Otherwise, use a label difference.
-  return MachineJumpTableInfo::EK_LabelDifference32;
-}
-
-SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
-                                                 SelectionDAG &DAG) const {
-  // If our PIC model is GP relative, use the global offset table as the base.
-  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
-    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
-  return Table;
-}
-
-/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
-/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
-/// MCExpr.
-const MCExpr *
-TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
-                                             unsigned JTI,MCContext &Ctx) const{
-  // The normal PIC reloc base is the label at the start of the jump table.
-  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
-}
-
-bool
-TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
-  // Assume that everything is safe in static mode.
-  if (getTargetMachine().getRelocationModel() == Reloc::Static)
-    return true;
-
-  // In dynamic-no-pic mode, assume that known defined values are safe.
-  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
-      GA &&
-      !GA->getGlobal()->isDeclaration() &&
-      !GA->getGlobal()->isWeakForLinker())
-    return true;
-
-  // Otherwise assume nothing is safe.
-  return false;
-}
-
-//===----------------------------------------------------------------------===//
-//  Optimization Methods
-//===----------------------------------------------------------------------===//
-
-/// ShrinkDemandedConstant - Check to see if the specified operand of the 
-/// specified instruction is a constant integer.  If so, check to see if there
-/// are any bits set in the constant that are not demanded.  If so, shrink the
-/// constant and return true.
-bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 
-                                                        const APInt &Demanded) {
-  DebugLoc dl = Op.getDebugLoc();
-
-  // FIXME: ISD::SELECT, ISD::SELECT_CC
-  switch (Op.getOpcode()) {
-  default: break;
-  case ISD::XOR:
-  case ISD::AND:
-  case ISD::OR: {
-    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
-    if (!C) return false;
-
-    if (Op.getOpcode() == ISD::XOR &&
-        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
-      return false;
-
-    // if we can expand it to have all bits set, do it
-    if (C->getAPIntValue().intersects(~Demanded)) {
-      EVT VT = Op.getValueType();
-      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
-                                DAG.getConstant(Demanded &
-                                                C->getAPIntValue(), 
-                                                VT));
-      return CombineTo(Op, New);
-    }
-
-    break;
-  }
-  }
-
-  return false;
-}
-
-/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
-/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
-/// cast, but it could be generalized for targets with other types of
-/// implicit widening casts.
-bool
-TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
-                                                    unsigned BitWidth,
-                                                    const APInt &Demanded,
-                                                    DebugLoc dl) {
-  assert(Op.getNumOperands() == 2 &&
-         "ShrinkDemandedOp only supports binary operators!");
-  assert(Op.getNode()->getNumValues() == 1 &&
-         "ShrinkDemandedOp only supports nodes with one result!");
-
-  // Don't do this if the node has another user, which may require the
-  // full value.
-  if (!Op.getNode()->hasOneUse())
-    return false;
-
-  // Search for the smallest integer type with free casts to and from
-  // Op's type. For expedience, just check power-of-2 integer types.
-  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
-  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
-  if (!isPowerOf2_32(SmallVTBits))
-    SmallVTBits = NextPowerOf2(SmallVTBits);
-  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
-    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
-    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
-        TLI.isZExtFree(SmallVT, Op.getValueType())) {
-      // We found a type with free casts.
-      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
-                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
-                                          Op.getNode()->getOperand(0)),
-                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
-                                          Op.getNode()->getOperand(1)));
-      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
-      return CombineTo(Op, Z);
-    }
-  }
-  return false;
-}
-
-/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
-/// DemandedMask bits of the result of Op are ever used downstream.  If we can
-/// use this information to simplify Op, create a new simplified DAG node and
-/// return true, returning the original and new nodes in Old and New. Otherwise,
-/// analyze the expression and return a mask of KnownOne and KnownZero bits for
-/// the expression (used to simplify the caller).  The KnownZero/One bits may
-/// only be accurate for those bits in the DemandedMask.
-bool TargetLowering::SimplifyDemandedBits(SDValue Op,
-                                          const APInt &DemandedMask,
-                                          APInt &KnownZero,
-                                          APInt &KnownOne,
-                                          TargetLoweringOpt &TLO,
-                                          unsigned Depth) const {
-  unsigned BitWidth = DemandedMask.getBitWidth();
-  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
-         "Mask size mismatches value type size!");
-  APInt NewMask = DemandedMask;
-  DebugLoc dl = Op.getDebugLoc();
-
-  // Don't know anything.
-  KnownZero = KnownOne = APInt(BitWidth, 0);
-
-  // Other users may use these bits.
-  if (!Op.getNode()->hasOneUse()) { 
-    if (Depth != 0) {
-      // If not at the root, Just compute the KnownZero/KnownOne bits to 
-      // simplify things downstream.
-      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
-      return false;
-    }
-    // If this is the root being simplified, allow it to have multiple uses,
-    // just set the NewMask to all bits.
-    NewMask = APInt::getAllOnesValue(BitWidth);
-  } else if (DemandedMask == 0) {   
-    // Not demanding any bits from Op.
-    if (Op.getOpcode() != ISD::UNDEF)
-      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
-    return false;
-  } else if (Depth == 6) {        // Limit search depth.
-    return false;
-  }
-
-  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
-  switch (Op.getOpcode()) {
-  case ISD::Constant:
-    // We know all of the bits for a constant!
-    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
-    KnownZero = ~KnownOne & NewMask;
-    return false;   // Don't fall through, will infinitely loop.
-  case ISD::AND:
-    // If the RHS is a constant, check to see if the LHS would be zero without
-    // using the bits from the RHS.  Below, we use knowledge about the RHS to
-    // simplify the LHS, here we're using information from the LHS to simplify
-    // the RHS.
-    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      APInt LHSZero, LHSOne;
-      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
-                                LHSZero, LHSOne, Depth+1);
-      // If the LHS already has zeros where RHSC does, this and is dead.
-      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
-        return TLO.CombineTo(Op, Op.getOperand(0));
-      // If any of the set bits in the RHS are known zero on the LHS, shrink
-      // the constant.
-      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
-        return true;
-    }
-    
-    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
-                             KnownOne, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
-                             KnownZero2, KnownOne2, TLO, Depth+1))
-      return true;
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-      
-    // If all of the demanded bits are known one on one side, return the other.
-    // These bits cannot contribute to the result of the 'and'.
-    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
-      return TLO.CombineTo(Op, Op.getOperand(0));
-    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
-      return TLO.CombineTo(Op, Op.getOperand(1));
-    // If all of the demanded bits in the inputs are known zeros, return zero.
-    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
-      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
-    // If the RHS is a constant, see if we can simplify it.
-    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
-      return true;
-    // If the operation can be done in a smaller type, do so.
-    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
-      return true;
-
-    // Output known-1 bits are only known if set in both the LHS & RHS.
-    KnownOne &= KnownOne2;
-    // Output known-0 are known to be clear if zero in either the LHS | RHS.
-    KnownZero |= KnownZero2;
-    break;
-  case ISD::OR:
-    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 
-                             KnownOne, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
-                             KnownZero2, KnownOne2, TLO, Depth+1))
-      return true;
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // If all of the demanded bits are known zero on one side, return the other.
-    // These bits cannot contribute to the result of the 'or'.
-    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
-      return TLO.CombineTo(Op, Op.getOperand(0));
-    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
-      return TLO.CombineTo(Op, Op.getOperand(1));
-    // If all of the potentially set bits on one side are known to be set on
-    // the other side, just use the 'other' side.
-    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
-      return TLO.CombineTo(Op, Op.getOperand(0));
-    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
-      return TLO.CombineTo(Op, Op.getOperand(1));
-    // If the RHS is a constant, see if we can simplify it.
-    if (TLO.ShrinkDemandedConstant(Op, NewMask))
-      return true;
-    // If the operation can be done in a smaller type, do so.
-    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
-      return true;
-
-    // Output known-0 bits are only known if clear in both the LHS & RHS.
-    KnownZero &= KnownZero2;
-    // Output known-1 are known to be set if set in either the LHS | RHS.
-    KnownOne |= KnownOne2;
-    break;
-  case ISD::XOR:
-    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 
-                             KnownOne, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
-                             KnownOne2, TLO, Depth+1))
-      return true;
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // If all of the demanded bits are known zero on one side, return the other.
-    // These bits cannot contribute to the result of the 'xor'.
-    if ((KnownZero & NewMask) == NewMask)
-      return TLO.CombineTo(Op, Op.getOperand(0));
-    if ((KnownZero2 & NewMask) == NewMask)
-      return TLO.CombineTo(Op, Op.getOperand(1));
-    // If the operation can be done in a smaller type, do so.
-    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
-      return true;
-
-    // If all of the unknown bits are known to be zero on one side or the other
-    // (but not both) turn this into an *inclusive* or.
-    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
-    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
-      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
-                                               Op.getOperand(0),
-                                               Op.getOperand(1)));
-    
-    // Output known-0 bits are known if clear or set in both the LHS & RHS.
-    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
-    // Output known-1 are known to be set if set in only one of the LHS, RHS.
-    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
-    
-    // If all of the demanded bits on one side are known, and all of the set
-    // bits on that side are also known to be set on the other side, turn this
-    // into an AND, as we know the bits will be cleared.
-    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
-    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
-      if ((KnownOne & KnownOne2) == KnownOne) {
-        EVT VT = Op.getValueType();
-        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
-        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 
-                                                 Op.getOperand(0), ANDC));
-      }
-    }
-    
-    // If the RHS is a constant, see if we can simplify it.
-    // for XOR, we prefer to force bits to 1 if they will make a -1.
-    // if we can't force bits, try to shrink constant
-    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      APInt Expanded = C->getAPIntValue() | (~NewMask);
-      // if we can expand it to have all bits set, do it
-      if (Expanded.isAllOnesValue()) {
-        if (Expanded != C->getAPIntValue()) {
-          EVT VT = Op.getValueType();
-          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
-                                          TLO.DAG.getConstant(Expanded, VT));
-          return TLO.CombineTo(Op, New);
-        }
-        // if it already has all the bits set, nothing to change
-        // but don't shrink either!
-      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
-        return true;
-      }
-    }
-
-    KnownZero = KnownZeroOut;
-    KnownOne  = KnownOneOut;
-    break;
-  case ISD::SELECT:
-    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 
-                             KnownOne, TLO, Depth+1))
-      return true;
-    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
-                             KnownOne2, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // If the operands are constants, see if we can simplify them.
-    if (TLO.ShrinkDemandedConstant(Op, NewMask))
-      return true;
-    
-    // Only known if known in both the LHS and RHS.
-    KnownOne &= KnownOne2;
-    KnownZero &= KnownZero2;
-    break;
-  case ISD::SELECT_CC:
-    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 
-                             KnownOne, TLO, Depth+1))
-      return true;
-    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
-                             KnownOne2, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
-    
-    // If the operands are constants, see if we can simplify them.
-    if (TLO.ShrinkDemandedConstant(Op, NewMask))
-      return true;
-      
-    // Only known if known in both the LHS and RHS.
-    KnownOne &= KnownOne2;
-    KnownZero &= KnownZero2;
-    break;
-  case ISD::SHL:
-    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      unsigned ShAmt = SA->getZExtValue();
-      SDValue InOp = Op.getOperand(0);
-
-      // If the shift count is an invalid immediate, don't do anything.
-      if (ShAmt >= BitWidth)
-        break;
-
-      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
-      // single shift.  We can do this if the bottom bits (which are shifted
-      // out) are never demanded.
-      if (InOp.getOpcode() == ISD::SRL &&
-          isa<ConstantSDNode>(InOp.getOperand(1))) {
-        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
-          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
-          unsigned Opc = ISD::SHL;
-          int Diff = ShAmt-C1;
-          if (Diff < 0) {
-            Diff = -Diff;
-            Opc = ISD::SRL;
-          }          
-          
-          SDValue NewSA = 
-            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
-          EVT VT = Op.getValueType();
-          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
-                                                   InOp.getOperand(0), NewSA));
-        }
-      }      
-      
-      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
-                               KnownZero, KnownOne, TLO, Depth+1))
-        return true;
-
-      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
-      // are not demanded. This will likely allow the anyext to be folded away.
-      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
-        SDValue InnerOp = InOp.getNode()->getOperand(0);
-        EVT InnerVT = InnerOp.getValueType();
-        if ((APInt::getHighBitsSet(BitWidth,
-                                   BitWidth - InnerVT.getSizeInBits()) &
-               DemandedMask) == 0 &&
-            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
-          SDValue NarrowShl =
-            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
-                            TLO.DAG.getConstant(ShAmt, InnerVT));
-          return
-            TLO.CombineTo(Op,
-                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
-                                          NarrowShl));
-        }
-      }
-
-      KnownZero <<= SA->getZExtValue();
-      KnownOne  <<= SA->getZExtValue();
-      // low bits known zero.
-      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
-    }
-    break;
-  case ISD::SRL:
-    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      EVT VT = Op.getValueType();
-      unsigned ShAmt = SA->getZExtValue();
-      unsigned VTSize = VT.getSizeInBits();
-      SDValue InOp = Op.getOperand(0);
-      
-      // If the shift count is an invalid immediate, don't do anything.
-      if (ShAmt >= BitWidth)
-        break;
-
-      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
-      // single shift.  We can do this if the top bits (which are shifted out)
-      // are never demanded.
-      if (InOp.getOpcode() == ISD::SHL &&
-          isa<ConstantSDNode>(InOp.getOperand(1))) {
-        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
-          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
-          unsigned Opc = ISD::SRL;
-          int Diff = ShAmt-C1;
-          if (Diff < 0) {
-            Diff = -Diff;
-            Opc = ISD::SHL;
-          }          
-          
-          SDValue NewSA =
-            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
-          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
-                                                   InOp.getOperand(0), NewSA));
-        }
-      }      
-      
-      // Compute the new bits that are at the top now.
-      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
-                               KnownZero, KnownOne, TLO, Depth+1))
-        return true;
-      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-      KnownZero = KnownZero.lshr(ShAmt);
-      KnownOne  = KnownOne.lshr(ShAmt);
-
-      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
-      KnownZero |= HighBits;  // High bits known zero.
-    }
-    break;
-  case ISD::SRA:
-    // If this is an arithmetic shift right and only the low-bit is set, we can
-    // always convert this into a logical shr, even if the shift amount is
-    // variable.  The low bit of the shift cannot be an input sign bit unless
-    // the shift amount is >= the size of the datatype, which is undefined.
-    if (DemandedMask == 1)
-      return TLO.CombineTo(Op,
-                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
-                                           Op.getOperand(0), Op.getOperand(1)));
-
-    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      EVT VT = Op.getValueType();
-      unsigned ShAmt = SA->getZExtValue();
-      
-      // If the shift count is an invalid immediate, don't do anything.
-      if (ShAmt >= BitWidth)
-        break;
-
-      APInt InDemandedMask = (NewMask << ShAmt);
-
-      // If any of the demanded bits are produced by the sign extension, we also
-      // demand the input sign bit.
-      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
-      if (HighBits.intersects(NewMask))
-        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
-      
-      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
-                               KnownZero, KnownOne, TLO, Depth+1))
-        return true;
-      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-      KnownZero = KnownZero.lshr(ShAmt);
-      KnownOne  = KnownOne.lshr(ShAmt);
-      
-      // Handle the sign bit, adjusted to where it is now in the mask.
-      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
-      
-      // If the input sign bit is known to be zero, or if none of the top bits
-      // are demanded, turn this into an unsigned shift right.
-      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
-        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 
-                                                 Op.getOperand(0),
-                                                 Op.getOperand(1)));
-      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
-        KnownOne |= HighBits;
-      }
-    }
-    break;
-  case ISD::SIGN_EXTEND_INREG: {
-    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
-
-    // Sign extension.  Compute the demanded bits in the result that are not 
-    // present in the input.
-    APInt NewBits =
-      APInt::getHighBitsSet(BitWidth,
-                            BitWidth - EVT.getScalarType().getSizeInBits()) &
-      NewMask;
-    
-    // If none of the extended bits are demanded, eliminate the sextinreg.
-    if (NewBits == 0)
-      return TLO.CombineTo(Op, Op.getOperand(0));
-
-    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
-    InSignBit.zext(BitWidth);
-    APInt InputDemandedBits =
-      APInt::getLowBitsSet(BitWidth,
-                           EVT.getScalarType().getSizeInBits()) &
-      NewMask;
-    
-    // Since the sign extended bits are demanded, we know that the sign
-    // bit is demanded.
-    InputDemandedBits |= InSignBit;
-
-    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
-                             KnownZero, KnownOne, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-
-    // If the sign bit of the input is known set or clear, then we know the
-    // top bits of the result.
-    
-    // If the input sign bit is known zero, convert this into a zero extension.
-    if (KnownZero.intersects(InSignBit))
-      return TLO.CombineTo(Op, 
-                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
-    
-    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
-      KnownOne |= NewBits;
-      KnownZero &= ~NewBits;
-    } else {                       // Input sign bit unknown
-      KnownZero &= ~NewBits;
-      KnownOne &= ~NewBits;
-    }
-    break;
-  }
-  case ISD::ZERO_EXTEND: {
-    unsigned OperandBitWidth =
-      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
-    APInt InMask = NewMask;
-    InMask.trunc(OperandBitWidth);
-    
-    // If none of the top bits are demanded, convert this into an any_extend.
-    APInt NewBits =
-      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
-    if (!NewBits.intersects(NewMask))
-      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
-                                               Op.getValueType(), 
-                                               Op.getOperand(0)));
-    
-    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
-                             KnownZero, KnownOne, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    KnownZero.zext(BitWidth);
-    KnownOne.zext(BitWidth);
-    KnownZero |= NewBits;
-    break;
-  }
-  case ISD::SIGN_EXTEND: {
-    EVT InVT = Op.getOperand(0).getValueType();
-    unsigned InBits = InVT.getScalarType().getSizeInBits();
-    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
-    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
-    APInt NewBits   = ~InMask & NewMask;
-    
-    // If none of the top bits are demanded, convert this into an any_extend.
-    if (NewBits == 0)
-      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
-                                              Op.getValueType(),
-                                              Op.getOperand(0)));
-    
-    // Since some of the sign extended bits are demanded, we know that the sign
-    // bit is demanded.
-    APInt InDemandedBits = InMask & NewMask;
-    InDemandedBits |= InSignBit;
-    InDemandedBits.trunc(InBits);
-    
-    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
-                             KnownOne, TLO, Depth+1))
-      return true;
-    KnownZero.zext(BitWidth);
-    KnownOne.zext(BitWidth);
-    
-    // If the sign bit is known zero, convert this to a zero extend.
-    if (KnownZero.intersects(InSignBit))
-      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
-                                               Op.getValueType(), 
-                                               Op.getOperand(0)));
-    
-    // If the sign bit is known one, the top bits match.
-    if (KnownOne.intersects(InSignBit)) {
-      KnownOne  |= NewBits;
-      KnownZero &= ~NewBits;
-    } else {   // Otherwise, top bits aren't known.
-      KnownOne  &= ~NewBits;
-      KnownZero &= ~NewBits;
-    }
-    break;
-  }
-  case ISD::ANY_EXTEND: {
-    unsigned OperandBitWidth =
-      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
-    APInt InMask = NewMask;
-    InMask.trunc(OperandBitWidth);
-    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
-                             KnownZero, KnownOne, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    KnownZero.zext(BitWidth);
-    KnownOne.zext(BitWidth);
-    break;
-  }
-  case ISD::TRUNCATE: {
-    // Simplify the input, using demanded bit information, and compute the known
-    // zero/one bits live out.
-    unsigned OperandBitWidth =
-      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
-    APInt TruncMask = NewMask;
-    TruncMask.zext(OperandBitWidth);
-    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
-                             KnownZero, KnownOne, TLO, Depth+1))
-      return true;
-    KnownZero.trunc(BitWidth);
-    KnownOne.trunc(BitWidth);
-    
-    // If the input is only used by this truncate, see if we can shrink it based
-    // on the known demanded bits.
-    if (Op.getOperand(0).getNode()->hasOneUse()) {
-      SDValue In = Op.getOperand(0);
-      switch (In.getOpcode()) {
-      default: break;
-      case ISD::SRL:
-        // Shrink SRL by a constant if none of the high bits shifted in are
-        // demanded.
-        if (TLO.LegalTypes() &&
-            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
-          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
-          // undesirable.
-          break;
-        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
-        if (!ShAmt)
-          break;
-        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
-                                               OperandBitWidth - BitWidth);
-        HighBits = HighBits.lshr(ShAmt->getZExtValue());
-        HighBits.trunc(BitWidth);
-
-        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
-          // None of the shifted in bits are needed.  Add a truncate of the
-          // shift input, then shift it.
-          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
-                                             Op.getValueType(), 
-                                             In.getOperand(0));
-          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
-                                                   Op.getValueType(),
-                                                   NewTrunc, 
-                                                   In.getOperand(1)));
-        }
-        break;
-      }
-    }
-    
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-    break;
-  }
-  case ISD::AssertZext: {
-    // Demand all the bits of the input that are demanded in the output.
-    // The low bits are obvious; the high bits are demanded because we're
-    // asserting that they're zero here.
-    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
-                             KnownZero, KnownOne, TLO, Depth+1))
-      return true;
-    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
-
-    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
-    APInt InMask = APInt::getLowBitsSet(BitWidth,
-                                        VT.getSizeInBits());
-    KnownZero |= ~InMask & NewMask;
-    break;
-  }
-  case ISD::BIT_CONVERT:
-#if 0
-    // If this is an FP->Int bitcast and if the sign bit is the only thing that
-    // is demanded, turn this into a FGETSIGN.
-    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
-        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
-        !MVT::isVector(Op.getOperand(0).getValueType())) {
-      // Only do this xform if FGETSIGN is valid or if before legalize.
-      if (!TLO.AfterLegalize ||
-          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
-        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
-        // place.  We expect the SHL to be eliminated by other optimizations.
-        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), 
-                                         Op.getOperand(0));
-        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
-        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
-        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
-                                                 Sign, ShAmt));
-      }
-    }
-#endif
-    break;
-  case ISD::ADD:
-  case ISD::MUL:
-  case ISD::SUB: {
-    // Add, Sub, and Mul don't demand any bits in positions beyond that
-    // of the highest bit demanded of them.
-    APInt LoMask = APInt::getLowBitsSet(BitWidth,
-                                        BitWidth - NewMask.countLeadingZeros());
-    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
-                             KnownOne2, TLO, Depth+1))
-      return true;
-    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
-                             KnownOne2, TLO, Depth+1))
-      return true;
-    // See if the operation should be performed at a smaller bit width.
-    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
-      return true;
-  }
-  // FALL THROUGH
-  default:
-    // Just use ComputeMaskedBits to compute output bits.
-    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
-    break;
-  }
-  
-  // If we know the value of all of the demanded bits, return this as a
-  // constant.
-  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
-    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
-  
-  return false;
-}
-
-/// computeMaskedBitsForTargetNode - Determine which of the bits specified 
-/// in Mask are known to be either zero or one and return them in the 
-/// KnownZero/KnownOne bitsets.
-void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 
-                                                    const APInt &Mask,
-                                                    APInt &KnownZero, 
-                                                    APInt &KnownOne,
-                                                    const SelectionDAG &DAG,
-                                                    unsigned Depth) const {
-  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
-          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
-          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
-          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
-         "Should use MaskedValueIsZero if you don't know whether Op"
-         " is a target node!");
-  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
-}
-
-/// ComputeNumSignBitsForTargetNode - This method can be implemented by
-/// targets that want to expose additional information about sign bits to the
-/// DAG Combiner.
-unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
-                                                         unsigned Depth) const {
-  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
-          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
-          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
-          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
-         "Should use ComputeNumSignBits if you don't know whether Op"
-         " is a target node!");
-  return 1;
-}
-
-/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
-/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
-/// determine which bit is set.
-///
-static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
-  // A left-shift of a constant one will have exactly one bit set, because
-  // shifting the bit off the end is undefined.
-  if (Val.getOpcode() == ISD::SHL)
-    if (ConstantSDNode *C =
-         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
-      if (C->getAPIntValue() == 1)
-        return true;
-
-  // Similarly, a right-shift of a constant sign-bit will have exactly
-  // one bit set.
-  if (Val.getOpcode() == ISD::SRL)
-    if (ConstantSDNode *C =
-         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
-      if (C->getAPIntValue().isSignBit())
-        return true;
-
-  // More could be done here, though the above checks are enough
-  // to handle some common cases.
-
-  // Fall back to ComputeMaskedBits to catch other known cases.
-  EVT OpVT = Val.getValueType();
-  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
-  APInt Mask = APInt::getAllOnesValue(BitWidth);
-  APInt KnownZero, KnownOne;
-  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
-  return (KnownZero.countPopulation() == BitWidth - 1) &&
-         (KnownOne.countPopulation() == 1);
-}
-
-/// SimplifySetCC - Try to simplify a setcc built with the specified operands 
-/// and cc. If it is unable to simplify it, return a null SDValue.
-SDValue
-TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
-                              ISD::CondCode Cond, bool foldBooleans,
-                              DAGCombinerInfo &DCI, DebugLoc dl) const {
-  SelectionDAG &DAG = DCI.DAG;
-  LLVMContext &Context = *DAG.getContext();
-
-  // These setcc operations always fold.
-  switch (Cond) {
-  default: break;
-  case ISD::SETFALSE:
-  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
-  case ISD::SETTRUE:
-  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
-  }
-
-  if (isa<ConstantSDNode>(N0.getNode())) {
-    // Ensure that the constant occurs on the RHS, and fold constant
-    // comparisons.
-    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
-  }
-
-  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
-    const APInt &C1 = N1C->getAPIntValue();
-
-    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
-    // equality comparison, then we're just comparing whether X itself is
-    // zero.
-    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
-        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
-        N0.getOperand(1).getOpcode() == ISD::Constant) {
-      const APInt &ShAmt
-        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
-      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
-          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
-        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
-          // (srl (ctlz x), 5) == 0  -> X != 0
-          // (srl (ctlz x), 5) != 1  -> X != 0
-          Cond = ISD::SETNE;
-        } else {
-          // (srl (ctlz x), 5) != 0  -> X == 0
-          // (srl (ctlz x), 5) == 1  -> X == 0
-          Cond = ISD::SETEQ;
-        }
-        SDValue Zero = DAG.getConstant(0, N0.getValueType());
-        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
-                            Zero, Cond);
-      }
-    }
-
-    // If the LHS is '(and load, const)', the RHS is 0,
-    // the test is for equality or unsigned, and all 1 bits of the const are
-    // in the same partial word, see if we can shorten the load.
-    if (DCI.isBeforeLegalize() &&
-        N0.getOpcode() == ISD::AND && C1 == 0 &&
-        N0.getNode()->hasOneUse() &&
-        isa<LoadSDNode>(N0.getOperand(0)) &&
-        N0.getOperand(0).getNode()->hasOneUse() &&
-        isa<ConstantSDNode>(N0.getOperand(1))) {
-      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
-      APInt bestMask;
-      unsigned bestWidth = 0, bestOffset = 0;
-      if (!Lod->isVolatile() && Lod->isUnindexed()) {
-        unsigned origWidth = N0.getValueType().getSizeInBits();
-        unsigned maskWidth = origWidth;
-        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 
-        // 8 bits, but have to be careful...
-        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
-          origWidth = Lod->getMemoryVT().getSizeInBits();
-        const APInt &Mask =
-          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
-        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
-          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
-          for (unsigned offset=0; offset<origWidth/width; offset++) {
-            if ((newMask & Mask) == Mask) {
-              if (!TD->isLittleEndian())
-                bestOffset = (origWidth/width - offset - 1) * (width/8);
-              else
-                bestOffset = (uint64_t)offset * (width/8);
-              bestMask = Mask.lshr(offset * (width/8) * 8);
-              bestWidth = width;
-              break;
-            }
-            newMask = newMask << width;
-          }
-        }
-      }
-      if (bestWidth) {
-        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
-        if (newVT.isRound()) {
-          EVT PtrType = Lod->getOperand(1).getValueType();
-          SDValue Ptr = Lod->getBasePtr();
-          if (bestOffset != 0)
-            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
-                              DAG.getConstant(bestOffset, PtrType));
-          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
-          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
-                                        Lod->getSrcValue(), 
-                                        Lod->getSrcValueOffset() + bestOffset,
-                                        false, false, NewAlign);
-          return DAG.getSetCC(dl, VT, 
-                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
-                                      DAG.getConstant(bestMask.trunc(bestWidth),
-                                                      newVT)),
-                              DAG.getConstant(0LL, newVT), Cond);
-        }
-      }
-    }
-
-    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
-    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
-      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
-
-      // If the comparison constant has bits in the upper part, the
-      // zero-extended value could never match.
-      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
-                                              C1.getBitWidth() - InSize))) {
-        switch (Cond) {
-        case ISD::SETUGT:
-        case ISD::SETUGE:
-        case ISD::SETEQ: return DAG.getConstant(0, VT);
-        case ISD::SETULT:
-        case ISD::SETULE:
-        case ISD::SETNE: return DAG.getConstant(1, VT);
-        case ISD::SETGT:
-        case ISD::SETGE:
-          // True if the sign bit of C1 is set.
-          return DAG.getConstant(C1.isNegative(), VT);
-        case ISD::SETLT:
-        case ISD::SETLE:
-          // True if the sign bit of C1 isn't set.
-          return DAG.getConstant(C1.isNonNegative(), VT);
-        default:
-          break;
-        }
-      }
-
-      // Otherwise, we can perform the comparison with the low bits.
-      switch (Cond) {
-      case ISD::SETEQ:
-      case ISD::SETNE:
-      case ISD::SETUGT:
-      case ISD::SETUGE:
-      case ISD::SETULT:
-      case ISD::SETULE: {
-        EVT newVT = N0.getOperand(0).getValueType();
-        if (DCI.isBeforeLegalizeOps() ||
-            (isOperationLegal(ISD::SETCC, newVT) &&
-              getCondCodeAction(Cond, newVT)==Legal))
-          return DAG.getSetCC(dl, VT, N0.getOperand(0),
-                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
-                              Cond);
-        break;
-      }
-      default:
-        break;   // todo, be more careful with signed comparisons
-      }
-    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
-               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
-      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
-      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
-      EVT ExtDstTy = N0.getValueType();
-      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
-
-      // If the extended part has any inconsistent bits, it cannot ever
-      // compare equal.  In other words, they have to be all ones or all
-      // zeros.
-      APInt ExtBits =
-        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
-      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
-        return DAG.getConstant(Cond == ISD::SETNE, VT);
-      
-      SDValue ZextOp;
-      EVT Op0Ty = N0.getOperand(0).getValueType();
-      if (Op0Ty == ExtSrcTy) {
-        ZextOp = N0.getOperand(0);
-      } else {
-        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
-        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
-                              DAG.getConstant(Imm, Op0Ty));
-      }
-      if (!DCI.isCalledByLegalizer())
-        DCI.AddToWorklist(ZextOp.getNode());
-      // Otherwise, make this a use of a zext.
-      return DAG.getSetCC(dl, VT, ZextOp, 
-                          DAG.getConstant(C1 & APInt::getLowBitsSet(
-                                                              ExtDstTyBits,
-                                                              ExtSrcTyBits), 
-                                          ExtDstTy),
-                          Cond);
-    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
-                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
-      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
-      if (N0.getOpcode() == ISD::SETCC &&
-          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
-        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
-        if (TrueWhenTrue)
-          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);        
-        // Invert the condition.
-        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
-        CC = ISD::getSetCCInverse(CC, 
-                                  N0.getOperand(0).getValueType().isInteger());
-        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
-      }
-
-      if ((N0.getOpcode() == ISD::XOR ||
-           (N0.getOpcode() == ISD::AND && 
-            N0.getOperand(0).getOpcode() == ISD::XOR &&
-            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
-          isa<ConstantSDNode>(N0.getOperand(1)) &&
-          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
-        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
-        // can only do this if the top bits are known zero.
-        unsigned BitWidth = N0.getValueSizeInBits();
-        if (DAG.MaskedValueIsZero(N0,
-                                  APInt::getHighBitsSet(BitWidth,
-                                                        BitWidth-1))) {
-          // Okay, get the un-inverted input value.
-          SDValue Val;
-          if (N0.getOpcode() == ISD::XOR)
-            Val = N0.getOperand(0);
-          else {
-            assert(N0.getOpcode() == ISD::AND && 
-                    N0.getOperand(0).getOpcode() == ISD::XOR);
-            // ((X^1)&1)^1 -> X & 1
-            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
-                              N0.getOperand(0).getOperand(0),
-                              N0.getOperand(1));
-          }
-
-          return DAG.getSetCC(dl, VT, Val, N1,
-                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
-        }
-      } else if (N1C->getAPIntValue() == 1 &&
-                 (VT == MVT::i1 ||
-                  getBooleanContents() == ZeroOrOneBooleanContent)) {
-        SDValue Op0 = N0;
-        if (Op0.getOpcode() == ISD::TRUNCATE)
-          Op0 = Op0.getOperand(0);
-
-        if ((Op0.getOpcode() == ISD::XOR) &&
-            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
-            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
-          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
-          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
-          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
-                              Cond);
-        } else if (Op0.getOpcode() == ISD::AND &&
-                isa<ConstantSDNode>(Op0.getOperand(1)) &&
-                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
-          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
-          if (Op0.getValueType().bitsGT(VT))
-            Op0 = DAG.getNode(ISD::AND, dl, VT,
-                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
-                          DAG.getConstant(1, VT));
-          else if (Op0.getValueType().bitsLT(VT))
-            Op0 = DAG.getNode(ISD::AND, dl, VT,
-                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
-                        DAG.getConstant(1, VT));
-
-          return DAG.getSetCC(dl, VT, Op0,
-                              DAG.getConstant(0, Op0.getValueType()),
-                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
-        }
-      }
-    }
-    
-    APInt MinVal, MaxVal;
-    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
-    if (ISD::isSignedIntSetCC(Cond)) {
-      MinVal = APInt::getSignedMinValue(OperandBitSize);
-      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
-    } else {
-      MinVal = APInt::getMinValue(OperandBitSize);
-      MaxVal = APInt::getMaxValue(OperandBitSize);
-    }
-
-    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
-    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
-      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
-      // X >= C0 --> X > (C0-1)
-      return DAG.getSetCC(dl, VT, N0, 
-                          DAG.getConstant(C1-1, N1.getValueType()),
-                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
-    }
-
-    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
-      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
-      // X <= C0 --> X < (C0+1)
-      return DAG.getSetCC(dl, VT, N0, 
-                          DAG.getConstant(C1+1, N1.getValueType()),
-                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
-    }
-
-    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
-      return DAG.getConstant(0, VT);      // X < MIN --> false
-    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
-      return DAG.getConstant(1, VT);      // X >= MIN --> true
-    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
-      return DAG.getConstant(0, VT);      // X > MAX --> false
-    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
-      return DAG.getConstant(1, VT);      // X <= MAX --> true
-
-    // Canonicalize setgt X, Min --> setne X, Min
-    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
-      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
-    // Canonicalize setlt X, Max --> setne X, Max
-    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
-      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
-
-    // If we have setult X, 1, turn it into seteq X, 0
-    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
-      return DAG.getSetCC(dl, VT, N0, 
-                          DAG.getConstant(MinVal, N0.getValueType()), 
-                          ISD::SETEQ);
-    // If we have setugt X, Max-1, turn it into seteq X, Max
-    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
-      return DAG.getSetCC(dl, VT, N0, 
-                          DAG.getConstant(MaxVal, N0.getValueType()),
-                          ISD::SETEQ);
-
-    // If we have "setcc X, C0", check to see if we can shrink the immediate
-    // by changing cc.
-
-    // SETUGT X, SINTMAX  -> SETLT X, 0
-    if (Cond == ISD::SETUGT && 
-        C1 == APInt::getSignedMaxValue(OperandBitSize))
-      return DAG.getSetCC(dl, VT, N0, 
-                          DAG.getConstant(0, N1.getValueType()),
-                          ISD::SETLT);
-
-    // SETULT X, SINTMIN  -> SETGT X, -1
-    if (Cond == ISD::SETULT &&
-        C1 == APInt::getSignedMinValue(OperandBitSize)) {
-      SDValue ConstMinusOne =
-          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
-                          N1.getValueType());
-      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
-    }
-
-    // Fold bit comparisons when we can.
-    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
-        (VT == N0.getValueType() ||
-         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
-        N0.getOpcode() == ISD::AND)
-      if (ConstantSDNode *AndRHS =
-                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
-        EVT ShiftTy = DCI.isBeforeLegalize() ?
-          getPointerTy() : getShiftAmountTy();
-        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
-          // Perform the xform if the AND RHS is a single bit.
-          if (AndRHS->getAPIntValue().isPowerOf2()) {
-            return DAG.getNode(ISD::TRUNCATE, dl, VT,
-                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
-                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
-          }
-        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
-          // (X & 8) == 8  -->  (X & 8) >> 3
-          // Perform the xform if C1 is a single bit.
-          if (C1.isPowerOf2()) {
-            return DAG.getNode(ISD::TRUNCATE, dl, VT,
-                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
-                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
-          }
-        }
-      }
-  }
-
-  if (isa<ConstantFPSDNode>(N0.getNode())) {
-    // Constant fold or commute setcc.
-    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
-    if (O.getNode()) return O;
-  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
-    // If the RHS of an FP comparison is a constant, simplify it away in
-    // some cases.
-    if (CFP->getValueAPF().isNaN()) {
-      // If an operand is known to be a nan, we can fold it.
-      switch (ISD::getUnorderedFlavor(Cond)) {
-      default: llvm_unreachable("Unknown flavor!");
-      case 0:  // Known false.
-        return DAG.getConstant(0, VT);
-      case 1:  // Known true.
-        return DAG.getConstant(1, VT);
-      case 2:  // Undefined.
-        return DAG.getUNDEF(VT);
-      }
-    }
-    
-    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
-    // constant if knowing that the operand is non-nan is enough.  We prefer to
-    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
-    // materialize 0.0.
-    if (Cond == ISD::SETO || Cond == ISD::SETUO)
-      return DAG.getSetCC(dl, VT, N0, N0, Cond);
-
-    // If the condition is not legal, see if we can find an equivalent one
-    // which is legal.
-    if (!isCondCodeLegal(Cond, N0.getValueType())) {
-      // If the comparison was an awkward floating-point == or != and one of
-      // the comparison operands is infinity or negative infinity, convert the
-      // condition to a less-awkward <= or >=.
-      if (CFP->getValueAPF().isInfinity()) {
-        if (CFP->getValueAPF().isNegative()) {
-          if (Cond == ISD::SETOEQ &&
-              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
-            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
-          if (Cond == ISD::SETUEQ &&
-              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
-            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
-          if (Cond == ISD::SETUNE &&
-              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
-            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
-          if (Cond == ISD::SETONE &&
-              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
-            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
-        } else {
-          if (Cond == ISD::SETOEQ &&
-              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
-            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
-          if (Cond == ISD::SETUEQ &&
-              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
-            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
-          if (Cond == ISD::SETUNE &&
-              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
-            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
-          if (Cond == ISD::SETONE &&
-              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
-            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
-        }
-      }
-    }
-  }
-
-  if (N0 == N1) {
-    // We can always fold X == X for integer setcc's.
-    if (N0.getValueType().isInteger())
-      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
-    unsigned UOF = ISD::getUnorderedFlavor(Cond);
-    if (UOF == 2)   // FP operators that are undefined on NaNs.
-      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
-    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
-      return DAG.getConstant(UOF, VT);
-    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
-    // if it is not already.
-    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
-    if (NewCond != Cond)
-      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
-  }
-
-  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
-      N0.getValueType().isInteger()) {
-    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
-        N0.getOpcode() == ISD::XOR) {
-      // Simplify (X+Y) == (X+Z) -->  Y == Z
-      if (N0.getOpcode() == N1.getOpcode()) {
-        if (N0.getOperand(0) == N1.getOperand(0))
-          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
-        if (N0.getOperand(1) == N1.getOperand(1))
-          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
-        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
-          // If X op Y == Y op X, try other combinations.
-          if (N0.getOperand(0) == N1.getOperand(1))
-            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 
-                                Cond);
-          if (N0.getOperand(1) == N1.getOperand(0))
-            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 
-                                Cond);
-        }
-      }
-      
-      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
-        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
-          // Turn (X+C1) == C2 --> X == C2-C1
-          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
-            return DAG.getSetCC(dl, VT, N0.getOperand(0),
-                                DAG.getConstant(RHSC->getAPIntValue()-
-                                                LHSR->getAPIntValue(),
-                                N0.getValueType()), Cond);
-          }
-          
-          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
-          if (N0.getOpcode() == ISD::XOR)
-            // If we know that all of the inverted bits are zero, don't bother
-            // performing the inversion.
-            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
-              return
-                DAG.getSetCC(dl, VT, N0.getOperand(0),
-                             DAG.getConstant(LHSR->getAPIntValue() ^
-                                               RHSC->getAPIntValue(),
-                                             N0.getValueType()),
-                             Cond);
-        }
-        
-        // Turn (C1-X) == C2 --> X == C1-C2
-        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
-          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
-            return
-              DAG.getSetCC(dl, VT, N0.getOperand(1),
-                           DAG.getConstant(SUBC->getAPIntValue() -
-                                             RHSC->getAPIntValue(),
-                                           N0.getValueType()),
-                           Cond);
-          }
-        }          
-      }
-
-      // Simplify (X+Z) == X -->  Z == 0
-      if (N0.getOperand(0) == N1)
-        return DAG.getSetCC(dl, VT, N0.getOperand(1),
-                        DAG.getConstant(0, N0.getValueType()), Cond);
-      if (N0.getOperand(1) == N1) {
-        if (DAG.isCommutativeBinOp(N0.getOpcode()))
-          return DAG.getSetCC(dl, VT, N0.getOperand(0),
-                          DAG.getConstant(0, N0.getValueType()), Cond);
-        else if (N0.getNode()->hasOneUse()) {
-          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
-          // (Z-X) == X  --> Z == X<<1
-          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
-                                     N1, 
-                                     DAG.getConstant(1, getShiftAmountTy()));
-          if (!DCI.isCalledByLegalizer())
-            DCI.AddToWorklist(SH.getNode());
-          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
-        }
-      }
-    }
-
-    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
-        N1.getOpcode() == ISD::XOR) {
-      // Simplify  X == (X+Z) -->  Z == 0
-      if (N1.getOperand(0) == N0) {
-        return DAG.getSetCC(dl, VT, N1.getOperand(1),
-                        DAG.getConstant(0, N1.getValueType()), Cond);
-      } else if (N1.getOperand(1) == N0) {
-        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
-          return DAG.getSetCC(dl, VT, N1.getOperand(0),
-                          DAG.getConstant(0, N1.getValueType()), Cond);
-        } else if (N1.getNode()->hasOneUse()) {
-          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
-          // X == (Z-X)  --> X<<1 == Z
-          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 
-                                     DAG.getConstant(1, getShiftAmountTy()));
-          if (!DCI.isCalledByLegalizer())
-            DCI.AddToWorklist(SH.getNode());
-          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
-        }
-      }
-    }
-
-    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
-    // Note that where y is variable and is known to have at most
-    // one bit set (for example, if it is z&1) we cannot do this;
-    // the expressions are not equivalent when y==0.
-    if (N0.getOpcode() == ISD::AND)
-      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
-        if (ValueHasExactlyOneBitSet(N1, DAG)) {
-          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
-          SDValue Zero = DAG.getConstant(0, N1.getValueType());
-          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
-        }
-      }
-    if (N1.getOpcode() == ISD::AND)
-      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
-        if (ValueHasExactlyOneBitSet(N0, DAG)) {
-          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
-          SDValue Zero = DAG.getConstant(0, N0.getValueType());
-          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
-        }
-      }
-  }
-
-  // Fold away ALL boolean setcc's.
-  SDValue Temp;
-  if (N0.getValueType() == MVT::i1 && foldBooleans) {
-    switch (Cond) {
-    default: llvm_unreachable("Unknown integer setcc!");
-    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
-      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
-      N0 = DAG.getNOT(dl, Temp, MVT::i1);
-      if (!DCI.isCalledByLegalizer())
-        DCI.AddToWorklist(Temp.getNode());
-      break;
-    case ISD::SETNE:  // X != Y   -->  (X^Y)
-      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
-      break;
-    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
-    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
-      Temp = DAG.getNOT(dl, N0, MVT::i1);
-      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
-      if (!DCI.isCalledByLegalizer())
-        DCI.AddToWorklist(Temp.getNode());
-      break;
-    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
-    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
-      Temp = DAG.getNOT(dl, N1, MVT::i1);
-      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
-      if (!DCI.isCalledByLegalizer())
-        DCI.AddToWorklist(Temp.getNode());
-      break;
-    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
-    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
-      Temp = DAG.getNOT(dl, N0, MVT::i1);
-      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
-      if (!DCI.isCalledByLegalizer())
-        DCI.AddToWorklist(Temp.getNode());
-      break;
-    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
-    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
-      Temp = DAG.getNOT(dl, N1, MVT::i1);
-      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
-      break;
-    }
-    if (VT != MVT::i1) {
-      if (!DCI.isCalledByLegalizer())
-        DCI.AddToWorklist(N0.getNode());
-      // FIXME: If running after legalize, we probably can't do this.
-      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
-    }
-    return N0;
-  }
-
-  // Could not fold it.
-  return SDValue();
-}
-
-/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
-/// node is a GlobalAddress + offset.
-bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
-                                    int64_t &Offset) const {
-  if (isa<GlobalAddressSDNode>(N)) {
-    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
-    GA = GASD->getGlobal();
-    Offset += GASD->getOffset();
-    return true;
-  }
-
-  if (N->getOpcode() == ISD::ADD) {
-    SDValue N1 = N->getOperand(0);
-    SDValue N2 = N->getOperand(1);
-    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
-      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
-      if (V) {
-        Offset += V->getSExtValue();
-        return true;
-      }
-    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
-      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
-      if (V) {
-        Offset += V->getSExtValue();
-        return true;
-      }
-    }
-  }
-  return false;
-}
-
-
-SDValue TargetLowering::
-PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
-  // Default implementation: no optimization.
-  return SDValue();
-}
-
-//===----------------------------------------------------------------------===//
-//  Inline Assembler Implementation Methods
-//===----------------------------------------------------------------------===//
-
-
-TargetLowering::ConstraintType
-TargetLowering::getConstraintType(const std::string &Constraint) const {
-  // FIXME: lots more standard ones to handle.
-  if (Constraint.size() == 1) {
-    switch (Constraint[0]) {
-    default: break;
-    case 'r': return C_RegisterClass;
-    case 'm':    // memory
-    case 'o':    // offsetable
-    case 'V':    // not offsetable
-      return C_Memory;
-    case 'i':    // Simple Integer or Relocatable Constant
-    case 'n':    // Simple Integer
-    case 's':    // Relocatable Constant
-    case 'X':    // Allow ANY value.
-    case 'I':    // Target registers.
-    case 'J':
-    case 'K':
-    case 'L':
-    case 'M':
-    case 'N':
-    case 'O':
-    case 'P':
-      return C_Other;
-    }
-  }
-  
-  if (Constraint.size() > 1 && Constraint[0] == '{' && 
-      Constraint[Constraint.size()-1] == '}')
-    return C_Register;
-  return C_Unknown;
-}
-
-/// LowerXConstraint - try to replace an X constraint, which matches anything,
-/// with another that has more specific requirements based on the type of the
-/// corresponding operand.
-const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
-  if (ConstraintVT.isInteger())
-    return "r";
-  if (ConstraintVT.isFloatingPoint())
-    return "f";      // works for many targets
-  return 0;
-}
-
-/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
-/// vector.  If it is invalid, don't add anything to Ops.
-void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
-                                                  char ConstraintLetter,
-                                                  std::vector<SDValue> &Ops,
-                                                  SelectionDAG &DAG) const {
-  switch (ConstraintLetter) {
-  default: break;
-  case 'X':     // Allows any operand; labels (basic block) use this.
-    if (Op.getOpcode() == ISD::BasicBlock) {
-      Ops.push_back(Op);
-      return;
-    }
-    // fall through
-  case 'i':    // Simple Integer or Relocatable Constant
-  case 'n':    // Simple Integer
-  case 's': {  // Relocatable Constant
-    // These operands are interested in values of the form (GV+C), where C may
-    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
-    // is possible and fine if either GV or C are missing.
-    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
-    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
-    
-    // If we have "(add GV, C)", pull out GV/C
-    if (Op.getOpcode() == ISD::ADD) {
-      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
-      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
-      if (C == 0 || GA == 0) {
-        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
-        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
-      }
-      if (C == 0 || GA == 0)
-        C = 0, GA = 0;
-    }
-    
-    // If we find a valid operand, map to the TargetXXX version so that the
-    // value itself doesn't get selected.
-    if (GA) {   // Either &GV   or   &GV+C
-      if (ConstraintLetter != 'n') {
-        int64_t Offs = GA->getOffset();
-        if (C) Offs += C->getZExtValue();
-        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 
-                                                 C ? C->getDebugLoc() : DebugLoc(),
-                                                 Op.getValueType(), Offs));
-        return;
-      }
-    }
-    if (C) {   // just C, no GV.
-      // Simple constants are not allowed for 's'.
-      if (ConstraintLetter != 's') {
-        // gcc prints these as sign extended.  Sign extend value to 64 bits
-        // now; without this it would get ZExt'd later in
-        // ScheduleDAGSDNodes::EmitNode, which is very generic.
-        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
-                                            MVT::i64));
-        return;
-      }
-    }
-    break;
-  }
-  }
-}
-
-std::vector<unsigned> TargetLowering::
-getRegClassForInlineAsmConstraint(const std::string &Constraint,
-                                  EVT VT) const {
-  return std::vector<unsigned>();
-}
-
-
-std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
-getRegForInlineAsmConstraint(const std::string &Constraint,
-                             EVT VT) const {
-  if (Constraint[0] != '{')
-    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
-  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
-
-  // Remove the braces from around the name.
-  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
-
-  // Figure out which register class contains this reg.
-  const TargetRegisterInfo *RI = TM.getRegisterInfo();
-  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
-       E = RI->regclass_end(); RCI != E; ++RCI) {
-    const TargetRegisterClass *RC = *RCI;
-    
-    // If none of the value types for this register class are valid, we 
-    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
-    bool isLegal = false;
-    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
-         I != E; ++I) {
-      if (isTypeLegal(*I)) {
-        isLegal = true;
-        break;
-      }
-    }
-    
-    if (!isLegal) continue;
-    
-    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 
-         I != E; ++I) {
-      if (RegName.equals_lower(RI->getName(*I)))
-        return std::make_pair(*I, RC);
-    }
-  }
-  
-  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
-}
-
-//===----------------------------------------------------------------------===//
-// Constraint Selection.
-
-/// isMatchingInputConstraint - Return true of this is an input operand that is
-/// a matching constraint like "4".
-bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
-  assert(!ConstraintCode.empty() && "No known constraint!");
-  return isdigit(ConstraintCode[0]);
-}
-
-/// getMatchedOperand - If this is an input matching constraint, this method
-/// returns the output operand it matches.
-unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
-  assert(!ConstraintCode.empty() && "No known constraint!");
-  return atoi(ConstraintCode.c_str());
-}
-
-
-/// getConstraintGenerality - Return an integer indicating how general CT
-/// is.
-static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
-  switch (CT) {
-  default: llvm_unreachable("Unknown constraint type!");
-  case TargetLowering::C_Other:
-  case TargetLowering::C_Unknown:
-    return 0;
-  case TargetLowering::C_Register:
-    return 1;
-  case TargetLowering::C_RegisterClass:
-    return 2;
-  case TargetLowering::C_Memory:
-    return 3;
-  }
-}
-
-/// ChooseConstraint - If there are multiple different constraints that we
-/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
-/// This is somewhat tricky: constraints fall into four classes:
-///    Other         -> immediates and magic values
-///    Register      -> one specific register
-///    RegisterClass -> a group of regs
-///    Memory        -> memory
-/// Ideally, we would pick the most specific constraint possible: if we have
-/// something that fits into a register, we would pick it.  The problem here
-/// is that if we have something that could either be in a register or in
-/// memory that use of the register could cause selection of *other*
-/// operands to fail: they might only succeed if we pick memory.  Because of
-/// this the heuristic we use is:
-///
-///  1) If there is an 'other' constraint, and if the operand is valid for
-///     that constraint, use it.  This makes us take advantage of 'i'
-///     constraints when available.
-///  2) Otherwise, pick the most general constraint present.  This prefers
-///     'm' over 'r', for example.
-///
-static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
-                             const TargetLowering &TLI,
-                             SDValue Op, SelectionDAG *DAG) {
-  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
-  unsigned BestIdx = 0;
-  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
-  int BestGenerality = -1;
-
-  // Loop over the options, keeping track of the most general one.
-  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
-    TargetLowering::ConstraintType CType =
-      TLI.getConstraintType(OpInfo.Codes[i]);
-
-    // If this is an 'other' constraint, see if the operand is valid for it.
-    // For example, on X86 we might have an 'rI' constraint.  If the operand
-    // is an integer in the range [0..31] we want to use I (saving a load
-    // of a register), otherwise we must use 'r'.
-    if (CType == TargetLowering::C_Other && Op.getNode()) {
-      assert(OpInfo.Codes[i].size() == 1 &&
-             "Unhandled multi-letter 'other' constraint");
-      std::vector<SDValue> ResultOps;
-      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
-                                       ResultOps, *DAG);
-      if (!ResultOps.empty()) {
-        BestType = CType;
-        BestIdx = i;
-        break;
-      }
-    }
-    
-    // Things with matching constraints can only be registers, per gcc
-    // documentation.  This mainly affects "g" constraints.
-    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
-      continue;
-    
-    // This constraint letter is more general than the previous one, use it.
-    int Generality = getConstraintGenerality(CType);
-    if (Generality > BestGenerality) {
-      BestType = CType;
-      BestIdx = i;
-      BestGenerality = Generality;
-    }
-  }
-  
-  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
-  OpInfo.ConstraintType = BestType;
-}
-
-/// ComputeConstraintToUse - Determines the constraint code and constraint
-/// type to use for the specific AsmOperandInfo, setting
-/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
-void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
-                                            SDValue Op, 
-                                            SelectionDAG *DAG) const {
-  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
-  
-  // Single-letter constraints ('r') are very common.
-  if (OpInfo.Codes.size() == 1) {
-    OpInfo.ConstraintCode = OpInfo.Codes[0];
-    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
-  } else {
-    ChooseConstraint(OpInfo, *this, Op, DAG);
-  }
-  
-  // 'X' matches anything.
-  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
-    // Labels and constants are handled elsewhere ('X' is the only thing
-    // that matches labels).  For Functions, the type here is the type of
-    // the result, which is not what we want to look at; leave them alone.
-    Value *v = OpInfo.CallOperandVal;
-    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
-      OpInfo.CallOperandVal = v;
-      return;
-    }
-    
-    // Otherwise, try to resolve it to something we know about by looking at
-    // the actual operand type.
-    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
-      OpInfo.ConstraintCode = Repl;
-      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//  Loop Strength Reduction hooks
-//===----------------------------------------------------------------------===//
-
-/// isLegalAddressingMode - Return true if the addressing mode represented
-/// by AM is legal for this target, for a load/store of the specified type.
-bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, 
-                                           const Type *Ty) const {
-  // The default implementation of this implements a conservative RISCy, r+r and
-  // r+i addr mode.
-
-  // Allows a sign-extended 16-bit immediate field.
-  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
-    return false;
-  
-  // No global is ever allowed as a base.
-  if (AM.BaseGV)
-    return false;
-  
-  // Only support r+r, 
-  switch (AM.Scale) {
-  case 0:  // "r+i" or just "i", depending on HasBaseReg.
-    break;
-  case 1:
-    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
-      return false;
-    // Otherwise we have r+r or r+i.
-    break;
-  case 2:
-    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
-      return false;
-    // Allow 2*r as r+r.
-    break;
-  }
-  
-  return true;
-}
-
-/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number.  See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 
-                                  std::vector<SDNode*>* Created) const {
-  EVT VT = N->getValueType(0);
-  DebugLoc dl= N->getDebugLoc();
-  
-  // Check to see if we can do this.
-  // FIXME: We should be more aggressive here.
-  if (!isTypeLegal(VT))
-    return SDValue();
-  
-  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
-  APInt::ms magics = d.magic();
-  
-  // Multiply the numerator (operand 0) by the magic value
-  // FIXME: We should support doing a MUL in a wider type
-  SDValue Q;
-  if (isOperationLegalOrCustom(ISD::MULHS, VT))
-    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
-                    DAG.getConstant(magics.m, VT));
-  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
-    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
-                              N->getOperand(0),
-                              DAG.getConstant(magics.m, VT)).getNode(), 1);
-  else
-    return SDValue();       // No mulhs or equvialent
-  // If d > 0 and m < 0, add the numerator
-  if (d.isStrictlyPositive() && magics.m.isNegative()) { 
-    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
-    if (Created)
-      Created->push_back(Q.getNode());
-  }
-  // If d < 0 and m > 0, subtract the numerator.
-  if (d.isNegative() && magics.m.isStrictlyPositive()) {
-    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
-    if (Created)
-      Created->push_back(Q.getNode());
-  }
-  // Shift right algebraic if shift value is nonzero
-  if (magics.s > 0) {
-    Q = DAG.getNode(ISD::SRA, dl, VT, Q, 
-                    DAG.getConstant(magics.s, getShiftAmountTy()));
-    if (Created)
-      Created->push_back(Q.getNode());
-  }
-  // Extract the sign bit and add it to the quotient
-  SDValue T =
-    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
-                                                 getShiftAmountTy()));
-  if (Created)
-    Created->push_back(T.getNode());
-  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
-}
-
-/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number.  See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
-                                  std::vector<SDNode*>* Created) const {
-  EVT VT = N->getValueType(0);
-  DebugLoc dl = N->getDebugLoc();
-
-  // Check to see if we can do this.
-  // FIXME: We should be more aggressive here.
-  if (!isTypeLegal(VT))
-    return SDValue();
-
-  // FIXME: We should use a narrower constant when the upper
-  // bits are known to be zero.
-  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
-  APInt::mu magics = N1C->getAPIntValue().magicu();
-
-  // Multiply the numerator (operand 0) by the magic value
-  // FIXME: We should support doing a MUL in a wider type
-  SDValue Q;
-  if (isOperationLegalOrCustom(ISD::MULHU, VT))
-    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
-                    DAG.getConstant(magics.m, VT));
-  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
-    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
-                              N->getOperand(0),
-                              DAG.getConstant(magics.m, VT)).getNode(), 1);
-  else
-    return SDValue();       // No mulhu or equvialent
-  if (Created)
-    Created->push_back(Q.getNode());
-
-  if (magics.a == 0) {
-    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
-           "We shouldn't generate an undefined shift!");
-    return DAG.getNode(ISD::SRL, dl, VT, Q, 
-                       DAG.getConstant(magics.s, getShiftAmountTy()));
-  } else {
-    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
-    if (Created)
-      Created->push_back(NPQ.getNode());
-    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 
-                      DAG.getConstant(1, getShiftAmountTy()));
-    if (Created)
-      Created->push_back(NPQ.getNode());
-    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
-    if (Created)
-      Created->push_back(NPQ.getNode());
-    return DAG.getNode(ISD::SRL, dl, VT, NPQ, 
-                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
-  }
-}

Removed: llvm/branches/Apple/williamson/lib/Target/ARM/ARMISelLowering.cpp.orig
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/williamson/lib/Target/ARM/ARMISelLowering.cpp.orig?rev=109513&view=auto
==============================================================================
--- llvm/branches/Apple/williamson/lib/Target/ARM/ARMISelLowering.cpp.orig (original)
+++ llvm/branches/Apple/williamson/lib/Target/ARM/ARMISelLowering.cpp.orig (removed)
@@ -1,5533 +0,0 @@
-//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the interfaces that ARM uses to lower LLVM code into a
-// selection DAG.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "arm-isel"
-#include "ARM.h"
-#include "ARMAddressingModes.h"
-#include "ARMConstantPoolValue.h"
-#include "ARMISelLowering.h"
-#include "ARMMachineFunctionInfo.h"
-#include "ARMPerfectShuffle.h"
-#include "ARMRegisterInfo.h"
-#include "ARMSubtarget.h"
-#include "ARMTargetMachine.h"
-#include "ARMTargetObjectFile.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Instruction.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Type.h"
-#include "llvm/CodeGen/CallingConvLower.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/MC/MCSectionMachO.h"
-#include "llvm/Target/TargetOptions.h"
-#include "llvm/ADT/VectorExtras.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include <sstream>
-using namespace llvm;
-
-STATISTIC(NumTailCalls, "Number of tail calls");
-
-// This option should go away when tail calls fully work.
-static cl::opt<bool>
-EnableARMTailCalls("arm-tail-calls", cl::Hidden,
-  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
-  cl::init(true));
-
-static cl::opt<bool>
-EnableARMLongCalls("arm-long-calls", cl::Hidden,
-  cl::desc("Generate calls via indirect call instructions"),
-  cl::init(false));
-
-static cl::opt<bool>
-ARMInterworking("arm-interworking", cl::Hidden,
-  cl::desc("Enable / disable ARM interworking (for debugging only)"),
-  cl::init(true));
-
-static cl::opt<bool>
-EnableARMCodePlacement("arm-code-placement", cl::Hidden,
-  cl::desc("Enable code placement pass for ARM"),
-  cl::init(false));
-
-static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                                   CCValAssign::LocInfo &LocInfo,
-                                   ISD::ArgFlagsTy &ArgFlags,
-                                   CCState &State);
-static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                                    CCValAssign::LocInfo &LocInfo,
-                                    ISD::ArgFlagsTy &ArgFlags,
-                                    CCState &State);
-static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                                      CCValAssign::LocInfo &LocInfo,
-                                      ISD::ArgFlagsTy &ArgFlags,
-                                      CCState &State);
-static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                                       CCValAssign::LocInfo &LocInfo,
-                                       ISD::ArgFlagsTy &ArgFlags,
-                                       CCState &State);
-
-void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
-                                       EVT PromotedBitwiseVT) {
-  if (VT != PromotedLdStVT) {
-    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
-    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
-                       PromotedLdStVT.getSimpleVT());
-
-    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
-    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
-                       PromotedLdStVT.getSimpleVT());
-  }
-
-  EVT ElemTy = VT.getVectorElementType();
-  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
-    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
-  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
-    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
-  if (ElemTy != MVT::i32) {
-    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
-    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
-    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
-    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
-  }
-  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
-  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
-  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
-  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
-  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
-  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
-  if (VT.isInteger()) {
-    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
-    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
-    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
-  }
-
-  // Promote all bit-wise operations.
-  if (VT.isInteger() && VT != PromotedBitwiseVT) {
-    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
-    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
-                       PromotedBitwiseVT.getSimpleVT());
-    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
-    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
-                       PromotedBitwiseVT.getSimpleVT());
-    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
-    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
-                       PromotedBitwiseVT.getSimpleVT());
-  }
-
-  // Neon does not support vector divide/remainder operations.
-  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
-  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
-  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
-  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
-  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
-  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
-}
-
-void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
-  addRegisterClass(VT, ARM::DPRRegisterClass);
-  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
-}
-
-void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
-  addRegisterClass(VT, ARM::QPRRegisterClass);
-  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
-}
-
-static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
-  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
-    return new TargetLoweringObjectFileMachO();
-
-  return new ARMElfTargetObjectFile();
-}
-
-ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
-    : TargetLowering(TM, createTLOF(TM)) {
-  Subtarget = &TM.getSubtarget<ARMSubtarget>();
-
-  if (Subtarget->isTargetDarwin()) {
-    // Uses VFP for Thumb libfuncs if available.
-    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
-      // Single-precision floating-point arithmetic.
-      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
-      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
-      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
-      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
-
-      // Double-precision floating-point arithmetic.
-      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
-      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
-      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
-      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
-
-      // Single-precision comparisons.
-      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
-      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
-      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
-      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
-      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
-      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
-      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
-      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
-
-      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
-      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
-
-      // Double-precision comparisons.
-      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
-      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
-      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
-      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
-      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
-      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
-      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
-      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
-
-      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
-      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
-      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
-
-      // Floating-point to integer conversions.
-      // i64 conversions are done via library routines even when generating VFP
-      // instructions, so use the same ones.
-      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
-      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
-      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
-      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
-
-      // Conversions between floating types.
-      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
-      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
-
-      // Integer to floating-point conversions.
-      // i64 conversions are done via library routines even when generating VFP
-      // instructions, so use the same ones.
-      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
-      // e.g., __floatunsidf vs. __floatunssidfvfp.
-      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
-      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
-      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
-      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
-    }
-  }
-
-  // These libcalls are not available in 32-bit.
-  setLibcallName(RTLIB::SHL_I128, 0);
-  setLibcallName(RTLIB::SRL_I128, 0);
-  setLibcallName(RTLIB::SRA_I128, 0);
-
-  // Libcalls should use the AAPCS base standard ABI, even if hard float
-  // is in effect, as per the ARM RTABI specification, section 4.1.2.
-  if (Subtarget->isAAPCS_ABI()) {
-    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
-      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
-                            CallingConv::ARM_AAPCS);
-    }
-  }
-
-  if (Subtarget->isThumb1Only())
-    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
-  else
-    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
-  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
-    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
-    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
-
-    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
-  }
-
-  if (Subtarget->hasNEON()) {
-    addDRTypeForNEON(MVT::v2f32);
-    addDRTypeForNEON(MVT::v8i8);
-    addDRTypeForNEON(MVT::v4i16);
-    addDRTypeForNEON(MVT::v2i32);
-    addDRTypeForNEON(MVT::v1i64);
-
-    addQRTypeForNEON(MVT::v4f32);
-    addQRTypeForNEON(MVT::v2f64);
-    addQRTypeForNEON(MVT::v16i8);
-    addQRTypeForNEON(MVT::v8i16);
-    addQRTypeForNEON(MVT::v4i32);
-    addQRTypeForNEON(MVT::v2i64);
-
-    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
-    // neither Neon nor VFP support any arithmetic operations on it.
-    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
-    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
-    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
-    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
-    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
-    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
-    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
-    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
-    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
-    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
-    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
-    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
-    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
-    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
-    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
-    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
-    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
-    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
-    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
-    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
-    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
-    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
-    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
-    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
-
-    // Neon does not support some operations on v1i64 and v2i64 types.
-    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
-    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
-    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
-    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
-
-    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
-    setTargetDAGCombine(ISD::SHL);
-    setTargetDAGCombine(ISD::SRL);
-    setTargetDAGCombine(ISD::SRA);
-    setTargetDAGCombine(ISD::SIGN_EXTEND);
-    setTargetDAGCombine(ISD::ZERO_EXTEND);
-    setTargetDAGCombine(ISD::ANY_EXTEND);
-    setTargetDAGCombine(ISD::SELECT_CC);
-  }
-
-  computeRegisterProperties();
-
-  // ARM does not have f32 extending load.
-  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
-
-  // ARM does not have i1 sign extending load.
-  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
-
-  // ARM supports all 4 flavors of integer indexed load / store.
-  if (!Subtarget->isThumb1Only()) {
-    for (unsigned im = (unsigned)ISD::PRE_INC;
-         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
-      setIndexedLoadAction(im,  MVT::i1,  Legal);
-      setIndexedLoadAction(im,  MVT::i8,  Legal);
-      setIndexedLoadAction(im,  MVT::i16, Legal);
-      setIndexedLoadAction(im,  MVT::i32, Legal);
-      setIndexedStoreAction(im, MVT::i1,  Legal);
-      setIndexedStoreAction(im, MVT::i8,  Legal);
-      setIndexedStoreAction(im, MVT::i16, Legal);
-      setIndexedStoreAction(im, MVT::i32, Legal);
-    }
-  }
-
-  // i64 operation support.
-  if (Subtarget->isThumb1Only()) {
-    setOperationAction(ISD::MUL,     MVT::i64, Expand);
-    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
-    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
-    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
-    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
-  } else {
-    setOperationAction(ISD::MUL,     MVT::i64, Expand);
-    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
-    if (!Subtarget->hasV6Ops())
-      setOperationAction(ISD::MULHS, MVT::i32, Expand);
-  }
-  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
-  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
-  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
-  setOperationAction(ISD::SRL,       MVT::i64, Custom);
-  setOperationAction(ISD::SRA,       MVT::i64, Custom);
-
-  // ARM does not have ROTL.
-  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
-  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
-  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
-  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
-    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
-
-  // Only ARMv6 has BSWAP.
-  if (!Subtarget->hasV6Ops())
-    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
-
-  // These are expanded into libcalls.
-  if (!Subtarget->hasDivide()) {
-    // v7M has a hardware divider
-    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
-    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
-  }
-  setOperationAction(ISD::SREM,  MVT::i32, Expand);
-  setOperationAction(ISD::UREM,  MVT::i32, Expand);
-  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
-  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
-
-  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
-  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
-  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
-  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
-  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
-
-  setOperationAction(ISD::TRAP, MVT::Other, Legal);
-
-  // Use the default implementation.
-  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
-  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
-  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
-  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
-  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
-  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
-  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
-  // FIXME: Shouldn't need this, since no register is used, but the legalizer
-  // doesn't yet know how to not do that for SjLj.
-  setExceptionSelectorRegister(ARM::R0);
-  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
-  // Handle atomics directly for ARMv[67] (except for Thumb1), otherwise
-  // use the default expansion.
-  bool canHandleAtomics =
-    (Subtarget->hasV7Ops() ||
-      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only()));
-  if (canHandleAtomics) {
-    // membarrier needs custom lowering; the rest are legal and handled
-    // normally.
-    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
-  } else {
-    // Set them all for expansion, which will force libcalls.
-    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
-    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
-    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
-    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
-    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
-    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
-    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
-    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
-    // Since the libcalls include locking, fold in the fences
-    setShouldFoldAtomicFences(true);
-  }
-  // 64-bit versions are always libcalls (for now)
-  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
-  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
-  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
-  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
-  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
-  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
-  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
-  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
-
-  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
-  if (!Subtarget->hasV6Ops()) {
-    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
-    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
-  }
-  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
-
-  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
-    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
-    // iff target supports vfp2.
-    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
-
-  // We want to custom lower some of our intrinsics.
-  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
-  if (Subtarget->isTargetDarwin()) {
-    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
-    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
-  }
-
-  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
-  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
-  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
-  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
-  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
-  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
-  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
-  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
-  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
-
-  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
-  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
-  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
-  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
-  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
-
-  // We don't support sin/cos/fmod/copysign/pow
-  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
-  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
-  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
-  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
-  setOperationAction(ISD::FREM,      MVT::f64, Expand);
-  setOperationAction(ISD::FREM,      MVT::f32, Expand);
-  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
-    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
-    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
-  }
-  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
-  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
-
-  // Various VFP goodness
-  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
-    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
-    if (Subtarget->hasVFP2()) {
-      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
-      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
-      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
-      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
-    }
-    // Special handling for half-precision FP.
-    if (!Subtarget->hasFP16()) {
-      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
-      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
-    }
-  }
-
-  // We have target-specific dag combine patterns for the following nodes:
-  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
-  setTargetDAGCombine(ISD::ADD);
-  setTargetDAGCombine(ISD::SUB);
-  setTargetDAGCombine(ISD::MUL);
-
-  if (Subtarget->hasV6T2Ops())
-    setTargetDAGCombine(ISD::OR);
-
-  setStackPointerRegisterToSaveRestore(ARM::SP);
-
-  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
-    setSchedulingPreference(Sched::RegPressure);
-  else
-    setSchedulingPreference(Sched::Hybrid);
-
-  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
-
-  // On ARM arguments smaller than 4 bytes are extended, so all arguments
-  // are at least 4 bytes aligned.
-  setMinStackArgumentAlignment(4);
-
-  if (EnableARMCodePlacement)
-    benefitFromCodePlacementOpt = true;
-}
-
-const TargetRegisterClass *
-ARMTargetLowering::findRepresentativeClass(const TargetRegisterClass *RC) const{
-  switch (RC->getID()) {
-  default:
-    return RC;
-  case ARM::tGPRRegClassID:
-  case ARM::GPRRegClassID:
-    return ARM::GPRRegisterClass;
-  case ARM::SPRRegClassID:
-  case ARM::DPRRegClassID:
-    return ARM::DPRRegisterClass;
-  case ARM::QPRRegClassID:
-    return ARM::QPRRegisterClass;
-  }
-}
-
-const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
-  switch (Opcode) {
-  default: return 0;
-  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
-  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
-  case ARMISD::CALL:          return "ARMISD::CALL";
-  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
-  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
-  case ARMISD::tCALL:         return "ARMISD::tCALL";
-  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
-  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
-  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
-  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
-  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
-  case ARMISD::CMP:           return "ARMISD::CMP";
-  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
-  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
-  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
-  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
-  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
-  case ARMISD::CMOV:          return "ARMISD::CMOV";
-  case ARMISD::CNEG:          return "ARMISD::CNEG";
-
-  case ARMISD::RBIT:          return "ARMISD::RBIT";
-
-  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
-  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
-  case ARMISD::SITOF:         return "ARMISD::SITOF";
-  case ARMISD::UITOF:         return "ARMISD::UITOF";
-
-  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
-  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
-  case ARMISD::RRX:           return "ARMISD::RRX";
-
-  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
-  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
-
-  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
-  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
-
-  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
-  
-  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
-
-  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
-
-  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
-  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
-
-  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
-  case ARMISD::VCGE:          return "ARMISD::VCGE";
-  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
-  case ARMISD::VCGT:          return "ARMISD::VCGT";
-  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
-  case ARMISD::VTST:          return "ARMISD::VTST";
-
-  case ARMISD::VSHL:          return "ARMISD::VSHL";
-  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
-  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
-  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
-  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
-  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
-  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
-  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
-  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
-  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
-  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
-  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
-  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
-  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
-  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
-  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
-  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
-  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
-  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
-  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
-  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
-  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
-  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
-  case ARMISD::VDUP:          return "ARMISD::VDUP";
-  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
-  case ARMISD::VEXT:          return "ARMISD::VEXT";
-  case ARMISD::VREV64:        return "ARMISD::VREV64";
-  case ARMISD::VREV32:        return "ARMISD::VREV32";
-  case ARMISD::VREV16:        return "ARMISD::VREV16";
-  case ARMISD::VZIP:          return "ARMISD::VZIP";
-  case ARMISD::VUZP:          return "ARMISD::VUZP";
-  case ARMISD::VTRN:          return "ARMISD::VTRN";
-  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
-  case ARMISD::FMAX:          return "ARMISD::FMAX";
-  case ARMISD::FMIN:          return "ARMISD::FMIN";
-  case ARMISD::BFI:           return "ARMISD::BFI";
-  }
-}
-
-/// getRegClassFor - Return the register class that should be used for the
-/// specified value type.
-TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
-  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
-  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
-  // load / store 4 to 8 consecutive D registers.
-  if (Subtarget->hasNEON()) {
-    if (VT == MVT::v4i64)
-      return ARM::QQPRRegisterClass;
-    else if (VT == MVT::v8i64)
-      return ARM::QQQQPRRegisterClass;
-  }
-  return TargetLowering::getRegClassFor(VT);
-}
-
-/// getFunctionAlignment - Return the Log2 alignment of this function.
-unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
-  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
-}
-
-Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
-  unsigned NumVals = N->getNumValues();
-  if (!NumVals)
-    return Sched::RegPressure;
-
-  for (unsigned i = 0; i != NumVals; ++i) {
-    EVT VT = N->getValueType(i);
-    if (VT.isFloatingPoint() || VT.isVector())
-      return Sched::Latency;
-  }
-
-  if (!N->isMachineOpcode())
-    return Sched::RegPressure;
-
-  // Load are scheduled for latency even if there instruction itinerary
-  // is not available.
-  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
-  if (TID.mayLoad())
-    return Sched::Latency;
-
-  const InstrItineraryData &Itins = getTargetMachine().getInstrItineraryData();
-  if (!Itins.isEmpty() && Itins.getStageLatency(TID.getSchedClass()) > 2)
-    return Sched::Latency;
-  return Sched::RegPressure;
-}
-
-//===----------------------------------------------------------------------===//
-// Lowering Code
-//===----------------------------------------------------------------------===//
-
-/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
-static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
-  switch (CC) {
-  default: llvm_unreachable("Unknown condition code!");
-  case ISD::SETNE:  return ARMCC::NE;
-  case ISD::SETEQ:  return ARMCC::EQ;
-  case ISD::SETGT:  return ARMCC::GT;
-  case ISD::SETGE:  return ARMCC::GE;
-  case ISD::SETLT:  return ARMCC::LT;
-  case ISD::SETLE:  return ARMCC::LE;
-  case ISD::SETUGT: return ARMCC::HI;
-  case ISD::SETUGE: return ARMCC::HS;
-  case ISD::SETULT: return ARMCC::LO;
-  case ISD::SETULE: return ARMCC::LS;
-  }
-}
-
-/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
-static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
-                        ARMCC::CondCodes &CondCode2) {
-  CondCode2 = ARMCC::AL;
-  switch (CC) {
-  default: llvm_unreachable("Unknown FP condition!");
-  case ISD::SETEQ:
-  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
-  case ISD::SETGT:
-  case ISD::SETOGT: CondCode = ARMCC::GT; break;
-  case ISD::SETGE:
-  case ISD::SETOGE: CondCode = ARMCC::GE; break;
-  case ISD::SETOLT: CondCode = ARMCC::MI; break;
-  case ISD::SETOLE: CondCode = ARMCC::LS; break;
-  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
-  case ISD::SETO:   CondCode = ARMCC::VC; break;
-  case ISD::SETUO:  CondCode = ARMCC::VS; break;
-  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
-  case ISD::SETUGT: CondCode = ARMCC::HI; break;
-  case ISD::SETUGE: CondCode = ARMCC::PL; break;
-  case ISD::SETLT:
-  case ISD::SETULT: CondCode = ARMCC::LT; break;
-  case ISD::SETLE:
-  case ISD::SETULE: CondCode = ARMCC::LE; break;
-  case ISD::SETNE:
-  case ISD::SETUNE: CondCode = ARMCC::NE; break;
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//                      Calling Convention Implementation
-//===----------------------------------------------------------------------===//
-
-#include "ARMGenCallingConv.inc"
-
-// APCS f64 is in register pairs, possibly split to stack
-static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                          CCValAssign::LocInfo &LocInfo,
-                          CCState &State, bool CanFail) {
-  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
-
-  // Try to get the first register.
-  if (unsigned Reg = State.AllocateReg(RegList, 4))
-    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
-  else {
-    // For the 2nd half of a v2f64, do not fail.
-    if (CanFail)
-      return false;
-
-    // Put the whole thing on the stack.
-    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
-                                           State.AllocateStack(8, 4),
-                                           LocVT, LocInfo));
-    return true;
-  }
-
-  // Try to get the second register.
-  if (unsigned Reg = State.AllocateReg(RegList, 4))
-    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
-  else
-    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
-                                           State.AllocateStack(4, 4),
-                                           LocVT, LocInfo));
-  return true;
-}
-
-static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                                   CCValAssign::LocInfo &LocInfo,
-                                   ISD::ArgFlagsTy &ArgFlags,
-                                   CCState &State) {
-  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
-    return false;
-  if (LocVT == MVT::v2f64 &&
-      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
-    return false;
-  return true;  // we handled it
-}
-
-// AAPCS f64 is in aligned register pairs
-static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                           CCValAssign::LocInfo &LocInfo,
-                           CCState &State, bool CanFail) {
-  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
-  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
-
-  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
-  if (Reg == 0) {
-    // For the 2nd half of a v2f64, do not just fail.
-    if (CanFail)
-      return false;
-
-    // Put the whole thing on the stack.
-    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
-                                           State.AllocateStack(8, 8),
-                                           LocVT, LocInfo));
-    return true;
-  }
-
-  unsigned i;
-  for (i = 0; i < 2; ++i)
-    if (HiRegList[i] == Reg)
-      break;
-
-  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
-  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
-                                         LocVT, LocInfo));
-  return true;
-}
-
-static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                                    CCValAssign::LocInfo &LocInfo,
-                                    ISD::ArgFlagsTy &ArgFlags,
-                                    CCState &State) {
-  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
-    return false;
-  if (LocVT == MVT::v2f64 &&
-      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
-    return false;
-  return true;  // we handled it
-}
-
-static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                         CCValAssign::LocInfo &LocInfo, CCState &State) {
-  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
-  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
-
-  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
-  if (Reg == 0)
-    return false; // we didn't handle it
-
-  unsigned i;
-  for (i = 0; i < 2; ++i)
-    if (HiRegList[i] == Reg)
-      break;
-
-  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
-  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
-                                         LocVT, LocInfo));
-  return true;
-}
-
-static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                                      CCValAssign::LocInfo &LocInfo,
-                                      ISD::ArgFlagsTy &ArgFlags,
-                                      CCState &State) {
-  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
-    return false;
-  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
-    return false;
-  return true;  // we handled it
-}
-
-static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
-                                       CCValAssign::LocInfo &LocInfo,
-                                       ISD::ArgFlagsTy &ArgFlags,
-                                       CCState &State) {
-  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
-                                   State);
-}
-
-/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
-/// given CallingConvention value.
-CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
-                                                 bool Return,
-                                                 bool isVarArg) const {
-  switch (CC) {
-  default:
-    llvm_unreachable("Unsupported calling convention");
-  case CallingConv::C:
-  case CallingConv::Fast:
-    // Use target triple & subtarget features to do actual dispatch.
-    if (Subtarget->isAAPCS_ABI()) {
-      if (Subtarget->hasVFP2() &&
-          FloatABIType == FloatABI::Hard && !isVarArg)
-        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
-      else
-        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
-    } else
-        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
-  case CallingConv::ARM_AAPCS_VFP:
-    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
-  case CallingConv::ARM_AAPCS:
-    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
-  case CallingConv::ARM_APCS:
-    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
-  }
-}
-
-/// LowerCallResult - Lower the result values of a call into the
-/// appropriate copies out of appropriate physical registers.
-SDValue
-ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
-                                   CallingConv::ID CallConv, bool isVarArg,
-                                   const SmallVectorImpl<ISD::InputArg> &Ins,
-                                   DebugLoc dl, SelectionDAG &DAG,
-                                   SmallVectorImpl<SDValue> &InVals) const {
-
-  // Assign locations to each value returned by this call.
-  SmallVector<CCValAssign, 16> RVLocs;
-  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
-                 RVLocs, *DAG.getContext());
-  CCInfo.AnalyzeCallResult(Ins,
-                           CCAssignFnForNode(CallConv, /* Return*/ true,
-                                             isVarArg));
-
-  // Copy all of the result registers out of their specified physreg.
-  for (unsigned i = 0; i != RVLocs.size(); ++i) {
-    CCValAssign VA = RVLocs[i];
-
-    SDValue Val;
-    if (VA.needsCustom()) {
-      // Handle f64 or half of a v2f64.
-      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
-                                      InFlag);
-      Chain = Lo.getValue(1);
-      InFlag = Lo.getValue(2);
-      VA = RVLocs[++i]; // skip ahead to next loc
-      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
-                                      InFlag);
-      Chain = Hi.getValue(1);
-      InFlag = Hi.getValue(2);
-      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
-
-      if (VA.getLocVT() == MVT::v2f64) {
-        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
-        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
-                          DAG.getConstant(0, MVT::i32));
-
-        VA = RVLocs[++i]; // skip ahead to next loc
-        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
-        Chain = Lo.getValue(1);
-        InFlag = Lo.getValue(2);
-        VA = RVLocs[++i]; // skip ahead to next loc
-        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
-        Chain = Hi.getValue(1);
-        InFlag = Hi.getValue(2);
-        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
-        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
-                          DAG.getConstant(1, MVT::i32));
-      }
-    } else {
-      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
-                               InFlag);
-      Chain = Val.getValue(1);
-      InFlag = Val.getValue(2);
-    }
-
-    switch (VA.getLocInfo()) {
-    default: llvm_unreachable("Unknown loc info!");
-    case CCValAssign::Full: break;
-    case CCValAssign::BCvt:
-      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
-      break;
-    }
-
-    InVals.push_back(Val);
-  }
-
-  return Chain;
-}
-
-/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
-/// by "Src" to address "Dst" of size "Size".  Alignment information is
-/// specified by the specific parameter attribute.  The copy will be passed as
-/// a byval function parameter.
-/// Sometimes what we are copying is the end of a larger object, the part that
-/// does not fit in registers.
-static SDValue
-CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
-                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
-                          DebugLoc dl) {
-  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
-  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
-                       /*isVolatile=*/false, /*AlwaysInline=*/false,
-                       NULL, 0, NULL, 0);
-}
-
-/// LowerMemOpCallTo - Store the argument to the stack.
-SDValue
-ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
-                                    SDValue StackPtr, SDValue Arg,
-                                    DebugLoc dl, SelectionDAG &DAG,
-                                    const CCValAssign &VA,
-                                    ISD::ArgFlagsTy Flags) const {
-  unsigned LocMemOffset = VA.getLocMemOffset();
-  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
-  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
-  if (Flags.isByVal()) {
-    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
-  }
-  return DAG.getStore(Chain, dl, Arg, PtrOff,
-                      PseudoSourceValue::getStack(), LocMemOffset,
-                      false, false, 0);
-}
-
-void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
-                                         SDValue Chain, SDValue &Arg,
-                                         RegsToPassVector &RegsToPass,
-                                         CCValAssign &VA, CCValAssign &NextVA,
-                                         SDValue &StackPtr,
-                                         SmallVector<SDValue, 8> &MemOpChains,
-                                         ISD::ArgFlagsTy Flags) const {
-
-  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
-                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
-  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
-
-  if (NextVA.isRegLoc())
-    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
-  else {
-    assert(NextVA.isMemLoc());
-    if (StackPtr.getNode() == 0)
-      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
-
-    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
-                                           dl, DAG, NextVA,
-                                           Flags));
-  }
-}
-
-/// LowerCall - Lowering a call into a callseq_start <-
-/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
-/// nodes.
-SDValue
-ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
-                             CallingConv::ID CallConv, bool isVarArg,
-                             bool &isTailCall,
-                             const SmallVectorImpl<ISD::OutputArg> &Outs,
-                             const SmallVectorImpl<SDValue> &OutVals,
-                             const SmallVectorImpl<ISD::InputArg> &Ins,
-                             DebugLoc dl, SelectionDAG &DAG,
-                             SmallVectorImpl<SDValue> &InVals) const {
-  MachineFunction &MF = DAG.getMachineFunction();
-  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
-  bool IsSibCall = false;
-  // Temporarily disable tail calls so things don't break.
-  if (!EnableARMTailCalls)
-    isTailCall = false;
-  if (isTailCall) {
-    // Check if it's really possible to do a tail call.
-    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
-                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
-                                                   Outs, OutVals, Ins, DAG);
-    // We don't support GuaranteedTailCallOpt for ARM, only automatically
-    // detected sibcalls.
-    if (isTailCall) {
-      ++NumTailCalls;
-      IsSibCall = true;
-    }
-  }
-
-  // Analyze operands of the call, assigning locations to each operand.
-  SmallVector<CCValAssign, 16> ArgLocs;
-  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
-                 *DAG.getContext());
-  CCInfo.AnalyzeCallOperands(Outs,
-                             CCAssignFnForNode(CallConv, /* Return*/ false,
-                                               isVarArg));
-
-  // Get a count of how many bytes are to be pushed on the stack.
-  unsigned NumBytes = CCInfo.getNextStackOffset();
-
-  // For tail calls, memory operands are available in our caller's stack.
-  if (IsSibCall)
-    NumBytes = 0;
-
-  // Adjust the stack pointer for the new arguments...
-  // These operations are automatically eliminated by the prolog/epilog pass
-  if (!IsSibCall)
-    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
-
-  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
-
-  RegsToPassVector RegsToPass;
-  SmallVector<SDValue, 8> MemOpChains;
-
-  // Walk the register/memloc assignments, inserting copies/loads.  In the case
-  // of tail call optimization, arguments are handled later.
-  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
-       i != e;
-       ++i, ++realArgIdx) {
-    CCValAssign &VA = ArgLocs[i];
-    SDValue Arg = OutVals[realArgIdx];
-    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
-
-    // Promote the value if needed.
-    switch (VA.getLocInfo()) {
-    default: llvm_unreachable("Unknown loc info!");
-    case CCValAssign::Full: break;
-    case CCValAssign::SExt:
-      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
-      break;
-    case CCValAssign::ZExt:
-      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
-      break;
-    case CCValAssign::AExt:
-      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
-      break;
-    case CCValAssign::BCvt:
-      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
-      break;
-    }
-
-    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
-    if (VA.needsCustom()) {
-      if (VA.getLocVT() == MVT::v2f64) {
-        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
-                                  DAG.getConstant(0, MVT::i32));
-        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
-                                  DAG.getConstant(1, MVT::i32));
-
-        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
-                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
-
-        VA = ArgLocs[++i]; // skip ahead to next loc
-        if (VA.isRegLoc()) {
-          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
-                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
-        } else {
-          assert(VA.isMemLoc());
-
-          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
-                                                 dl, DAG, VA, Flags));
-        }
-      } else {
-        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
-                         StackPtr, MemOpChains, Flags);
-      }
-    } else if (VA.isRegLoc()) {
-      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
-    } else if (!IsSibCall) {
-      assert(VA.isMemLoc());
-
-      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
-                                             dl, DAG, VA, Flags));
-    }
-  }
-
-  if (!MemOpChains.empty())
-    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
-                        &MemOpChains[0], MemOpChains.size());
-
-  // Build a sequence of copy-to-reg nodes chained together with token chain
-  // and flag operands which copy the outgoing args into the appropriate regs.
-  SDValue InFlag;
-  // Tail call byval lowering might overwrite argument registers so in case of
-  // tail call optimization the copies to registers are lowered later.
-  if (!isTailCall)
-    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
-      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
-                               RegsToPass[i].second, InFlag);
-      InFlag = Chain.getValue(1);
-    }
-
-  // For tail calls lower the arguments to the 'real' stack slot.
-  if (isTailCall) {
-    // Force all the incoming stack arguments to be loaded from the stack
-    // before any new outgoing arguments are stored to the stack, because the
-    // outgoing stack slots may alias the incoming argument stack slots, and
-    // the alias isn't otherwise explicit. This is slightly more conservative
-    // than necessary, because it means that each store effectively depends
-    // on every argument instead of just those arguments it would clobber.
-
-    // Do not flag preceeding copytoreg stuff together with the following stuff.
-    InFlag = SDValue();
-    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
-      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
-                               RegsToPass[i].second, InFlag);
-      InFlag = Chain.getValue(1);
-    }
-    InFlag =SDValue();
-  }
-
-  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
-  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
-  // node so that legalize doesn't hack it.
-  bool isDirect = false;
-  bool isARMFunc = false;
-  bool isLocalARMFunc = false;
-  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-
-  if (EnableARMLongCalls) {
-    assert (getTargetMachine().getRelocationModel() == Reloc::Static
-            && "long-calls with non-static relocation model!");
-    // Handle a global address or an external symbol. If it's not one of
-    // those, the target's already in a register, so we don't need to do
-    // anything extra.
-    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
-      const GlobalValue *GV = G->getGlobal();
-      // Create a constant pool entry for the callee address
-      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
-                                                           ARMPCLabelIndex,
-                                                           ARMCP::CPValue, 0);
-      // Get the address of the callee into a register
-      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
-      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-      Callee = DAG.getLoad(getPointerTy(), dl,
-                           DAG.getEntryNode(), CPAddr,
-                           PseudoSourceValue::getConstantPool(), 0,
-                           false, false, 0);
-    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
-      const char *Sym = S->getSymbol();
-
-      // Create a constant pool entry for the callee address
-      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
-                                                       Sym, ARMPCLabelIndex, 0);
-      // Get the address of the callee into a register
-      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
-      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-      Callee = DAG.getLoad(getPointerTy(), dl,
-                           DAG.getEntryNode(), CPAddr,
-                           PseudoSourceValue::getConstantPool(), 0,
-                           false, false, 0);
-    }
-  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
-    const GlobalValue *GV = G->getGlobal();
-    isDirect = true;
-    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
-    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
-                   getTargetMachine().getRelocationModel() != Reloc::Static;
-    isARMFunc = !Subtarget->isThumb() || isStub;
-    // ARM call to a local ARM function is predicable.
-    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
-    // tBX takes a register source operand.
-    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
-      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
-                                                           ARMPCLabelIndex,
-                                                           ARMCP::CPValue, 4);
-      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
-      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-      Callee = DAG.getLoad(getPointerTy(), dl,
-                           DAG.getEntryNode(), CPAddr,
-                           PseudoSourceValue::getConstantPool(), 0,
-                           false, false, 0);
-      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
-      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
-                           getPointerTy(), Callee, PICLabel);
-    } else
-      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
-  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
-    isDirect = true;
-    bool isStub = Subtarget->isTargetDarwin() &&
-                  getTargetMachine().getRelocationModel() != Reloc::Static;
-    isARMFunc = !Subtarget->isThumb() || isStub;
-    // tBX takes a register source operand.
-    const char *Sym = S->getSymbol();
-    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
-      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
-                                                       Sym, ARMPCLabelIndex, 4);
-      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
-      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-      Callee = DAG.getLoad(getPointerTy(), dl,
-                           DAG.getEntryNode(), CPAddr,
-                           PseudoSourceValue::getConstantPool(), 0,
-                           false, false, 0);
-      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
-      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
-                           getPointerTy(), Callee, PICLabel);
-    } else
-      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
-  }
-
-  // FIXME: handle tail calls differently.
-  unsigned CallOpc;
-  if (Subtarget->isThumb()) {
-    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
-      CallOpc = ARMISD::CALL_NOLINK;
-    else
-      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
-  } else {
-    CallOpc = (isDirect || Subtarget->hasV5TOps())
-      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
-      : ARMISD::CALL_NOLINK;
-  }
-
-  std::vector<SDValue> Ops;
-  Ops.push_back(Chain);
-  Ops.push_back(Callee);
-
-  // Add argument registers to the end of the list so that they are known live
-  // into the call.
-  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
-    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
-                                  RegsToPass[i].second.getValueType()));
-
-  if (InFlag.getNode())
-    Ops.push_back(InFlag);
-
-  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
-  if (isTailCall)
-    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
-
-  // Returns a chain and a flag for retval copy to use.
-  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
-  InFlag = Chain.getValue(1);
-
-  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
-                             DAG.getIntPtrConstant(0, true), InFlag);
-  if (!Ins.empty())
-    InFlag = Chain.getValue(1);
-
-  // Handle result values, copying them out of physregs into vregs that we
-  // return.
-  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
-                         dl, DAG, InVals);
-}
-
-/// MatchingStackOffset - Return true if the given stack call argument is
-/// already available in the same position (relatively) of the caller's
-/// incoming argument stack.
-static
-bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
-                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
-                         const ARMInstrInfo *TII) {
-  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
-  int FI = INT_MAX;
-  if (Arg.getOpcode() == ISD::CopyFromReg) {
-    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
-    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
-      return false;
-    MachineInstr *Def = MRI->getVRegDef(VR);
-    if (!Def)
-      return false;
-    if (!Flags.isByVal()) {
-      if (!TII->isLoadFromStackSlot(Def, FI))
-        return false;
-    } else {
-      return false;
-    }
-  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
-    if (Flags.isByVal())
-      // ByVal argument is passed in as a pointer but it's now being
-      // dereferenced. e.g.
-      // define @foo(%struct.X* %A) {
-      //   tail call @bar(%struct.X* byval %A)
-      // }
-      return false;
-    SDValue Ptr = Ld->getBasePtr();
-    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
-    if (!FINode)
-      return false;
-    FI = FINode->getIndex();
-  } else
-    return false;
-
-  assert(FI != INT_MAX);
-  if (!MFI->isFixedObjectIndex(FI))
-    return false;
-  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
-}
-
-/// IsEligibleForTailCallOptimization - Check whether the call is eligible
-/// for tail call optimization. Targets which want to do tail call
-/// optimization should implement this function.
-bool
-ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
-                                                     CallingConv::ID CalleeCC,
-                                                     bool isVarArg,
-                                                     bool isCalleeStructRet,
-                                                     bool isCallerStructRet,
-                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
-                                    const SmallVectorImpl<SDValue> &OutVals,
-                                    const SmallVectorImpl<ISD::InputArg> &Ins,
-                                                     SelectionDAG& DAG) const {
-  const Function *CallerF = DAG.getMachineFunction().getFunction();
-  CallingConv::ID CallerCC = CallerF->getCallingConv();
-  bool CCMatch = CallerCC == CalleeCC;
-
-  // Look for obvious safe cases to perform tail call optimization that do not
-  // require ABI changes. This is what gcc calls sibcall.
-
-  // Do not sibcall optimize vararg calls unless the call site is not passing
-  // any arguments.
-  if (isVarArg && !Outs.empty())
-    return false;
-
-  // Also avoid sibcall optimization if either caller or callee uses struct
-  // return semantics.
-  if (isCalleeStructRet || isCallerStructRet)
-    return false;
-
-  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
-  // emitEpilogue is not ready for them.
-  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
-  // LR.  This means if we need to reload LR, it takes an extra instructions,
-  // which outweighs the value of the tail call; but here we don't know yet
-  // whether LR is going to be used.  Probably the right approach is to
-  // generate the tail call here and turn it back into CALL/RET in 
-  // emitEpilogue if LR is used.
-  if (Subtarget->isThumb1Only())
-    return false;
-
-  // For the moment, we can only do this to functions defined in this
-  // compilation, or to indirect calls.  A Thumb B to an ARM function,
-  // or vice versa, is not easily fixed up in the linker unlike BL.
-  // (We could do this by loading the address of the callee into a register;
-  // that is an extra instruction over the direct call and burns a register
-  // as well, so is not likely to be a win.)
-
-  // It might be safe to remove this restriction on non-Darwin.
-
-  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
-  // but we need to make sure there are enough registers; the only valid
-  // registers are the 4 used for parameters.  We don't currently do this
-  // case.
-  if (isa<ExternalSymbolSDNode>(Callee))
-      return false;
-
-  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
-    const GlobalValue *GV = G->getGlobal();
-    if (GV->isDeclaration() || GV->isWeakForLinker())
-      return false;
-  }
-
-  // If the calling conventions do not match, then we'd better make sure the
-  // results are returned in the same way as what the caller expects.
-  if (!CCMatch) {
-    SmallVector<CCValAssign, 16> RVLocs1;
-    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
-                    RVLocs1, *DAG.getContext());
-    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
-
-    SmallVector<CCValAssign, 16> RVLocs2;
-    CCState CCInfo2(CallerCC, false, getTargetMachine(),
-                    RVLocs2, *DAG.getContext());
-    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
-
-    if (RVLocs1.size() != RVLocs2.size())
-      return false;
-    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
-      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
-        return false;
-      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
-        return false;
-      if (RVLocs1[i].isRegLoc()) {
-        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
-          return false;
-      } else {
-        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
-          return false;
-      }
-    }
-  }
-
-  // If the callee takes no arguments then go on to check the results of the
-  // call.
-  if (!Outs.empty()) {
-    // Check if stack adjustment is needed. For now, do not do this if any
-    // argument is passed on the stack.
-    SmallVector<CCValAssign, 16> ArgLocs;
-    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
-                   ArgLocs, *DAG.getContext());
-    CCInfo.AnalyzeCallOperands(Outs,
-                               CCAssignFnForNode(CalleeCC, false, isVarArg));
-    if (CCInfo.getNextStackOffset()) {
-      MachineFunction &MF = DAG.getMachineFunction();
-
-      // Check if the arguments are already laid out in the right way as
-      // the caller's fixed stack objects.
-      MachineFrameInfo *MFI = MF.getFrameInfo();
-      const MachineRegisterInfo *MRI = &MF.getRegInfo();
-      const ARMInstrInfo *TII =
-        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
-      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
-           i != e;
-           ++i, ++realArgIdx) {
-        CCValAssign &VA = ArgLocs[i];
-        EVT RegVT = VA.getLocVT();
-        SDValue Arg = OutVals[realArgIdx];
-        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
-        if (VA.getLocInfo() == CCValAssign::Indirect)
-          return false;
-        if (VA.needsCustom()) {
-          // f64 and vector types are split into multiple registers or
-          // register/stack-slot combinations.  The types will not match
-          // the registers; give up on memory f64 refs until we figure
-          // out what to do about this.
-          if (!VA.isRegLoc())
-            return false;
-          if (!ArgLocs[++i].isRegLoc())
-            return false; 
-          if (RegVT == MVT::v2f64) {
-            if (!ArgLocs[++i].isRegLoc())
-              return false;
-            if (!ArgLocs[++i].isRegLoc())
-              return false;
-          }
-        } else if (!VA.isRegLoc()) {
-          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
-                                   MFI, MRI, TII))
-            return false;
-        }
-      }
-    }
-  }
-
-  return true;
-}
-
-SDValue
-ARMTargetLowering::LowerReturn(SDValue Chain,
-                               CallingConv::ID CallConv, bool isVarArg,
-                               const SmallVectorImpl<ISD::OutputArg> &Outs,
-                               const SmallVectorImpl<SDValue> &OutVals,
-                               DebugLoc dl, SelectionDAG &DAG) const {
-
-  // CCValAssign - represent the assignment of the return value to a location.
-  SmallVector<CCValAssign, 16> RVLocs;
-
-  // CCState - Info about the registers and stack slots.
-  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
-                 *DAG.getContext());
-
-  // Analyze outgoing return values.
-  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
-                                               isVarArg));
-
-  // If this is the first return lowered for this function, add
-  // the regs to the liveout set for the function.
-  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
-    for (unsigned i = 0; i != RVLocs.size(); ++i)
-      if (RVLocs[i].isRegLoc())
-        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
-  }
-
-  SDValue Flag;
-
-  // Copy the result values into the output registers.
-  for (unsigned i = 0, realRVLocIdx = 0;
-       i != RVLocs.size();
-       ++i, ++realRVLocIdx) {
-    CCValAssign &VA = RVLocs[i];
-    assert(VA.isRegLoc() && "Can only return in registers!");
-
-    SDValue Arg = OutVals[realRVLocIdx];
-
-    switch (VA.getLocInfo()) {
-    default: llvm_unreachable("Unknown loc info!");
-    case CCValAssign::Full: break;
-    case CCValAssign::BCvt:
-      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
-      break;
-    }
-
-    if (VA.needsCustom()) {
-      if (VA.getLocVT() == MVT::v2f64) {
-        // Extract the first half and return it in two registers.
-        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
-                                   DAG.getConstant(0, MVT::i32));
-        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
-                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
-
-        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
-        Flag = Chain.getValue(1);
-        VA = RVLocs[++i]; // skip ahead to next loc
-        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
-                                 HalfGPRs.getValue(1), Flag);
-        Flag = Chain.getValue(1);
-        VA = RVLocs[++i]; // skip ahead to next loc
-
-        // Extract the 2nd half and fall through to handle it as an f64 value.
-        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
-                          DAG.getConstant(1, MVT::i32));
-      }
-      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
-      // available.
-      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
-                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
-      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
-      Flag = Chain.getValue(1);
-      VA = RVLocs[++i]; // skip ahead to next loc
-      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
-                               Flag);
-    } else
-      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
-
-    // Guarantee that all emitted copies are
-    // stuck together, avoiding something bad.
-    Flag = Chain.getValue(1);
-  }
-
-  SDValue result;
-  if (Flag.getNode())
-    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
-  else // Return Void
-    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
-
-  return result;
-}
-
-// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
-// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
-// one of the above mentioned nodes. It has to be wrapped because otherwise
-// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
-// be used to form addressing mode. These wrapped nodes will be selected
-// into MOVi.
-static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
-  EVT PtrVT = Op.getValueType();
-  // FIXME there is no actual debug info here
-  DebugLoc dl = Op.getDebugLoc();
-  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
-  SDValue Res;
-  if (CP->isMachineConstantPoolEntry())
-    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
-                                    CP->getAlignment());
-  else
-    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
-                                    CP->getAlignment());
-  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
-}
-
-unsigned ARMTargetLowering::getJumpTableEncoding() const {
-  return MachineJumpTableInfo::EK_Inline;
-}
-
-SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
-                                             SelectionDAG &DAG) const {
-  MachineFunction &MF = DAG.getMachineFunction();
-  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-  unsigned ARMPCLabelIndex = 0;
-  DebugLoc DL = Op.getDebugLoc();
-  EVT PtrVT = getPointerTy();
-  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
-  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
-  SDValue CPAddr;
-  if (RelocM == Reloc::Static) {
-    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
-  } else {
-    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
-    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
-                                                         ARMCP::CPBlockAddress,
-                                                         PCAdj);
-    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
-  }
-  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
-  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
-                               PseudoSourceValue::getConstantPool(), 0,
-                               false, false, 0);
-  if (RelocM == Reloc::Static)
-    return Result;
-  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
-  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
-}
-
-// Lower ISD::GlobalTLSAddress using the "general dynamic" model
-SDValue
-ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
-                                                 SelectionDAG &DAG) const {
-  DebugLoc dl = GA->getDebugLoc();
-  EVT PtrVT = getPointerTy();
-  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
-  MachineFunction &MF = DAG.getMachineFunction();
-  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-  ARMConstantPoolValue *CPV =
-    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
-                             ARMCP::CPValue, PCAdj, "tlsgd", true);
-  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
-  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
-  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
-                         PseudoSourceValue::getConstantPool(), 0,
-                         false, false, 0);
-  SDValue Chain = Argument.getValue(1);
-
-  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
-  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
-
-  // call __tls_get_addr.
-  ArgListTy Args;
-  ArgListEntry Entry;
-  Entry.Node = Argument;
-  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
-  Args.push_back(Entry);
-  // FIXME: is there useful debug info available here?
-  std::pair<SDValue, SDValue> CallResult =
-    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
-                false, false, false, false,
-                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
-                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
-  return CallResult.first;
-}
-
-// Lower ISD::GlobalTLSAddress using the "initial exec" or
-// "local exec" model.
-SDValue
-ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
-                                        SelectionDAG &DAG) const {
-  const GlobalValue *GV = GA->getGlobal();
-  DebugLoc dl = GA->getDebugLoc();
-  SDValue Offset;
-  SDValue Chain = DAG.getEntryNode();
-  EVT PtrVT = getPointerTy();
-  // Get the Thread Pointer
-  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
-
-  if (GV->isDeclaration()) {
-    MachineFunction &MF = DAG.getMachineFunction();
-    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-    // Initial exec model.
-    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
-    ARMConstantPoolValue *CPV =
-      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
-                               ARMCP::CPValue, PCAdj, "gottpoff", true);
-    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
-    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
-    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
-                         PseudoSourceValue::getConstantPool(), 0,
-                         false, false, 0);
-    Chain = Offset.getValue(1);
-
-    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
-    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
-
-    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
-                         PseudoSourceValue::getConstantPool(), 0,
-                         false, false, 0);
-  } else {
-    // local exec model
-    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
-    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
-    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
-    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
-                         PseudoSourceValue::getConstantPool(), 0,
-                         false, false, 0);
-  }
-
-  // The address of the thread local variable is the add of the thread
-  // pointer with the offset of the variable.
-  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
-}
-
-SDValue
-ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
-  // TODO: implement the "local dynamic" model
-  assert(Subtarget->isTargetELF() &&
-         "TLS not implemented for non-ELF targets");
-  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
-  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
-  // otherwise use the "Local Exec" TLS Model
-  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
-    return LowerToTLSGeneralDynamicModel(GA, DAG);
-  else
-    return LowerToTLSExecModels(GA, DAG);
-}
-
-SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
-                                                 SelectionDAG &DAG) const {
-  EVT PtrVT = getPointerTy();
-  DebugLoc dl = Op.getDebugLoc();
-  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
-  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
-  if (RelocM == Reloc::PIC_) {
-    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
-    ARMConstantPoolValue *CPV =
-      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
-    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
-    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
-                                 CPAddr,
-                                 PseudoSourceValue::getConstantPool(), 0,
-                                 false, false, 0);
-    SDValue Chain = Result.getValue(1);
-    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
-    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
-    if (!UseGOTOFF)
-      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
-                           PseudoSourceValue::getGOT(), 0,
-                           false, false, 0);
-    return Result;
-  } else {
-    // If we have T2 ops, we can materialize the address directly via movt/movw
-    // pair. This is always cheaper.
-    if (Subtarget->useMovt()) {
-      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
-                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
-    } else {
-      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
-      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
-                         PseudoSourceValue::getConstantPool(), 0,
-                         false, false, 0);
-    }
-  }
-}
-
-SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
-                                                    SelectionDAG &DAG) const {
-  MachineFunction &MF = DAG.getMachineFunction();
-  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-  unsigned ARMPCLabelIndex = 0;
-  EVT PtrVT = getPointerTy();
-  DebugLoc dl = Op.getDebugLoc();
-  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
-  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
-  SDValue CPAddr;
-  if (RelocM == Reloc::Static)
-    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
-  else {
-    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
-    ARMConstantPoolValue *CPV =
-      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
-    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
-  }
-  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-
-  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
-                               PseudoSourceValue::getConstantPool(), 0,
-                               false, false, 0);
-  SDValue Chain = Result.getValue(1);
-
-  if (RelocM == Reloc::PIC_) {
-    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
-    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
-  }
-
-  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
-    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
-                         PseudoSourceValue::getGOT(), 0,
-                         false, false, 0);
-
-  return Result;
-}
-
-SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
-                                                    SelectionDAG &DAG) const {
-  assert(Subtarget->isTargetELF() &&
-         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
-  MachineFunction &MF = DAG.getMachineFunction();
-  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-  EVT PtrVT = getPointerTy();
-  DebugLoc dl = Op.getDebugLoc();
-  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
-  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
-                                                       "_GLOBAL_OFFSET_TABLE_",
-                                                       ARMPCLabelIndex, PCAdj);
-  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
-  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
-                               PseudoSourceValue::getConstantPool(), 0,
-                               false, false, 0);
-  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
-  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
-}
-
-SDValue
-ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
-  DebugLoc dl = Op.getDebugLoc();
-  SDValue Val = DAG.getConstant(0, MVT::i32);
-  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
-                     Op.getOperand(1), Val);
-}
-
-SDValue
-ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
-  DebugLoc dl = Op.getDebugLoc();
-  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
-                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
-}
-
-SDValue
-ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
-                                          const ARMSubtarget *Subtarget) const {
-  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
-  DebugLoc dl = Op.getDebugLoc();
-  switch (IntNo) {
-  default: return SDValue();    // Don't custom lower most intrinsics.
-  case Intrinsic::arm_thread_pointer: {
-    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
-    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
-  }
-  case Intrinsic::eh_sjlj_lsda: {
-    MachineFunction &MF = DAG.getMachineFunction();
-    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
-    EVT PtrVT = getPointerTy();
-    DebugLoc dl = Op.getDebugLoc();
-    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
-    SDValue CPAddr;
-    unsigned PCAdj = (RelocM != Reloc::PIC_)
-      ? 0 : (Subtarget->isThumb() ? 4 : 8);
-    ARMConstantPoolValue *CPV =
-      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
-                               ARMCP::CPLSDA, PCAdj);
-    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
-    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
-    SDValue Result =
-      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
-                  PseudoSourceValue::getConstantPool(), 0,
-                  false, false, 0);
-
-    if (RelocM == Reloc::PIC_) {
-      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
-      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
-    }
-    return Result;
-  }
-  }
-}
-
-static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
-                               const ARMSubtarget *Subtarget) {
-  DebugLoc dl = Op.getDebugLoc();
-  SDValue Op5 = Op.getOperand(5);
-  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
-  // v6 and v7 can both handle barriers directly, but need handled a bit
-  // differently. Thumb1 and pre-v6 ARM mode use a libcall instead and should
-  // never get here.
-  unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
-  if (Subtarget->hasV7Ops())
-    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
-  else if (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())
-    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
-                       DAG.getConstant(0, MVT::i32));
-  assert(0 && "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
-  return SDValue();
-}
-
-static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
-  MachineFunction &MF = DAG.getMachineFunction();
-  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
-
-  // vastart just stores the address of the VarArgsFrameIndex slot into the
-  // memory location argument.
-  DebugLoc dl = Op.getDebugLoc();
-  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
-  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
-  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
-  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
-                      false, false, 0);
-}
-
-SDValue
-ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
-                                           SelectionDAG &DAG) const {
-  SDNode *Node = Op.getNode();
-  DebugLoc dl = Node->getDebugLoc();
-  EVT VT = Node->getValueType(0);
-  SDValue Chain = Op.getOperand(0);
-  SDValue Size  = Op.getOperand(1);
-  SDValue Align = Op.getOperand(2);
-
-  // Chain the dynamic stack allocation so that it doesn't modify the stack
-  // pointer when other instructions are using the stack.
-  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
-
-  unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
-  unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
-  if (AlignVal > StackAlign)
-    // Do this now since selection pass cannot introduce new target
-    // independent node.
-    Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
-
-  // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
-  // using a "add r, sp, r" instead. Negate the size now so we don't have to
-  // do even more horrible hack later.
-  MachineFunction &MF = DAG.getMachineFunction();
-  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-  if (AFI->isThumb1OnlyFunction()) {
-    bool Negate = true;
-    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
-    if (C) {
-      uint32_t Val = C->getZExtValue();
-      if (Val <= 508 && ((Val & 3) == 0))
-        Negate = false;
-    }
-    if (Negate)
-      Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
-  }
-
-  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
-  SDValue Ops1[] = { Chain, Size, Align };
-  SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
-  Chain = Res.getValue(1);
-  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
-                             DAG.getIntPtrConstant(0, true), SDValue());
-  SDValue Ops2[] = { Res, Chain };
-  return DAG.getMergeValues(Ops2, 2, dl);
-}
-
-SDValue
-ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
-                                        SDValue &Root, SelectionDAG &DAG,
-                                        DebugLoc dl) const {
-  MachineFunction &MF = DAG.getMachineFunction();
-  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-
-  TargetRegisterClass *RC;
-  if (AFI->isThumb1OnlyFunction())
-    RC = ARM::tGPRRegisterClass;
-  else
-    RC = ARM::GPRRegisterClass;
-
-  // Transform the arguments stored in physical registers into virtual ones.
-  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 
-  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
-
-  SDValue ArgValue2;
-  if (NextVA.isMemLoc()) {
-    MachineFrameInfo *MFI = MF.getFrameInfo();
-    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
-
-    // Create load node to retrieve arguments from the stack.
-    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
-    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
-                            PseudoSourceValue::getFixedStack(FI), 0,
-                            false, false, 0);
-  } else {
-    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
-    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
-  }
-
-  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
-}
-
-SDValue
-ARMTargetLowering::LowerFormalArguments(SDValue Chain,
-                                        CallingConv::ID CallConv, bool isVarArg,
-                                        const SmallVectorImpl<ISD::InputArg>
-                                          &Ins,
-                                        DebugLoc dl, SelectionDAG &DAG,
-                                        SmallVectorImpl<SDValue> &InVals)
-                                          const {
-
-  MachineFunction &MF = DAG.getMachineFunction();
-  MachineFrameInfo *MFI = MF.getFrameInfo();
-
-  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-
-  // Assign locations to all of the incoming arguments.
-  SmallVector<CCValAssign, 16> ArgLocs;
-  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
-                 *DAG.getContext());
-  CCInfo.AnalyzeFormalArguments(Ins,
-                                CCAssignFnForNode(CallConv, /* Return*/ false,
-                                                  isVarArg));
-
-  SmallVector<SDValue, 16> ArgValues;
-
-  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
-    CCValAssign &VA = ArgLocs[i];
-
-    // Arguments stored in registers.
-    if (VA.isRegLoc()) {
-      EVT RegVT = VA.getLocVT();
-
-      SDValue ArgValue;
-      if (VA.needsCustom()) {
-        // f64 and vector types are split up into multiple registers or
-        // combinations of registers and stack slots.
-        if (VA.getLocVT() == MVT::v2f64) {
-          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
-                                                   Chain, DAG, dl);
-          VA = ArgLocs[++i]; // skip ahead to next loc
-          SDValue ArgValue2;
-          if (VA.isMemLoc()) {
-            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
-            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
-            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
-                                    PseudoSourceValue::getFixedStack(FI), 0,
-                                    false, false, 0);
-          } else {
-            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
-                                             Chain, DAG, dl);
-          }
-          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
-          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
-                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
-          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
-                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
-        } else
-          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
-
-      } else {
-        TargetRegisterClass *RC;
-
-        if (RegVT == MVT::f32)
-          RC = ARM::SPRRegisterClass;
-        else if (RegVT == MVT::f64)
-          RC = ARM::DPRRegisterClass;
-        else if (RegVT == MVT::v2f64)
-          RC = ARM::QPRRegisterClass;
-        else if (RegVT == MVT::i32)
-          RC = (AFI->isThumb1OnlyFunction() ?
-                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
-        else
-          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
-
-        // Transform the arguments in physical registers into virtual ones.
-        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
-        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
-      }
-
-      // If this is an 8 or 16-bit value, it is really passed promoted
-      // to 32 bits.  Insert an assert[sz]ext to capture this, then
-      // truncate to the right size.
-      switch (VA.getLocInfo()) {
-      default: llvm_unreachable("Unknown loc info!");
-      case CCValAssign::Full: break;
-      case CCValAssign::BCvt:
-        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
-        break;
-      case CCValAssign::SExt:
-        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
-                               DAG.getValueType(VA.getValVT()));
-        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
-        break;
-      case CCValAssign::ZExt:
-        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
-                               DAG.getValueType(VA.getValVT()));
-        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
-        break;
-      }
-
-      InVals.push_back(ArgValue);
-
-    } else { // VA.isRegLoc()
-
-      // sanity check
-      assert(VA.isMemLoc());
-      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
-
-      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
-      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
-
-      // Create load nodes to retrieve arguments from the stack.
-      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
-      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
-                                   PseudoSourceValue::getFixedStack(FI), 0,
-                                   false, false, 0));
-    }
-  }
-
-  // varargs
-  if (isVarArg) {
-    static const unsigned GPRArgRegs[] = {
-      ARM::R0, ARM::R1, ARM::R2, ARM::R3
-    };
-
-    unsigned NumGPRs = CCInfo.getFirstUnallocated
-      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
-
-    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
-    unsigned VARegSize = (4 - NumGPRs) * 4;
-    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
-    unsigned ArgOffset = CCInfo.getNextStackOffset();
-    if (VARegSaveSize) {
-      // If this function is vararg, store any remaining integer argument regs
-      // to their spots on the stack so that they may be loaded by deferencing
-      // the result of va_next.
-      AFI->setVarArgsRegSaveSize(VARegSaveSize);
-      AFI->setVarArgsFrameIndex(
-        MFI->CreateFixedObject(VARegSaveSize,
-                               ArgOffset + VARegSaveSize - VARegSize,
-                               true));
-      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
-                                      getPointerTy());
-
-      SmallVector<SDValue, 4> MemOps;
-      for (; NumGPRs < 4; ++NumGPRs) {
-        TargetRegisterClass *RC;
-        if (AFI->isThumb1OnlyFunction())
-          RC = ARM::tGPRRegisterClass;
-        else
-          RC = ARM::GPRRegisterClass;
-
-        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
-        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
-        SDValue Store =
-          DAG.getStore(Val.getValue(1), dl, Val, FIN,
-               PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()),
-               0, false, false, 0);
-        MemOps.push_back(Store);
-        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
-                          DAG.getConstant(4, getPointerTy()));
-      }
-      if (!MemOps.empty())
-        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
-                            &MemOps[0], MemOps.size());
-    } else
-      // This will point to the next argument passed via stack.
-      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
-  }
-
-  return Chain;
-}
-
-/// isFloatingPointZero - Return true if this is +0.0.
-static bool isFloatingPointZero(SDValue Op) {
-  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
-    return CFP->getValueAPF().isPosZero();
-  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
-    // Maybe this has already been legalized into the constant pool?
-    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
-      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
-      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
-        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
-          return CFP->getValueAPF().isPosZero();
-    }
-  }
-  return false;
-}
-
-/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
-/// the given operands.
-SDValue
-ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
-                             SDValue &ARMcc, SelectionDAG &DAG,
-                             DebugLoc dl) const {
-  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
-    unsigned C = RHSC->getZExtValue();
-    if (!isLegalICmpImmediate(C)) {
-      // Constant does not fit, try adjusting it by one?
-      switch (CC) {
-      default: break;
-      case ISD::SETLT:
-      case ISD::SETGE:
-        if (isLegalICmpImmediate(C-1)) {
-          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
-          RHS = DAG.getConstant(C-1, MVT::i32);
-        }
-        break;
-      case ISD::SETULT:
-      case ISD::SETUGE:
-        if (C > 0 && isLegalICmpImmediate(C-1)) {
-          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
-          RHS = DAG.getConstant(C-1, MVT::i32);
-        }
-        break;
-      case ISD::SETLE:
-      case ISD::SETGT:
-        if (isLegalICmpImmediate(C+1)) {
-          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
-          RHS = DAG.getConstant(C+1, MVT::i32);
-        }
-        break;
-      case ISD::SETULE:
-      case ISD::SETUGT:
-        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
-          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
-          RHS = DAG.getConstant(C+1, MVT::i32);
-        }
-        break;
-      }
-    }
-  }
-
-  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
-  ARMISD::NodeType CompareType;
-  switch (CondCode) {
-  default:
-    CompareType = ARMISD::CMP;
-    break;
-  case ARMCC::EQ:
-  case ARMCC::NE:
-    // Uses only Z Flag
-    CompareType = ARMISD::CMPZ;
-    break;
-  }
-  ARMcc = DAG.getConstant(CondCode, MVT::i32);
-  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
-}
-
-/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
-SDValue
-ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
-                             DebugLoc dl) const {
-  SDValue Cmp;
-  if (!isFloatingPointZero(RHS))
-    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
-  else
-    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
-  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
-}
-
-SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
-  EVT VT = Op.getValueType();
-  SDValue LHS = Op.getOperand(0);
-  SDValue RHS = Op.getOperand(1);
-  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
-  SDValue TrueVal = Op.getOperand(2);
-  SDValue FalseVal = Op.getOperand(3);
-  DebugLoc dl = Op.getDebugLoc();
-
-  if (LHS.getValueType() == MVT::i32) {
-    SDValue ARMcc;
-    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
-    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
-    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
-  }
-
-  ARMCC::CondCodes CondCode, CondCode2;
-  FPCCToARMCC(CC, CondCode, CondCode2);
-
-  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
-  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
-  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
-  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
-                               ARMcc, CCR, Cmp);
-  if (CondCode2 != ARMCC::AL) {
-    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
-    // FIXME: Needs another CMP because flag can have but one use.
-    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
-    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
-                         Result, TrueVal, ARMcc2, CCR, Cmp2);
-  }
-  return Result;
-}
-
-/// canChangeToInt - Given the fp compare operand, return true if it is suitable
-/// to morph to an integer compare sequence.
-static bool canChangeToInt(SDValue Op, bool &SeenZero,
-                           const ARMSubtarget *Subtarget) {
-  SDNode *N = Op.getNode();
-  if (!N->hasOneUse())
-    // Otherwise it requires moving the value from fp to integer registers.
-    return false;
-  if (!N->getNumValues())
-    return false;
-  EVT VT = Op.getValueType();
-  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
-    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
-    // vmrs are very slow, e.g. cortex-a8.
-    return false;
-
-  if (isFloatingPointZero(Op)) {
-    SeenZero = true;
-    return true;
-  }
-  return ISD::isNormalLoad(N);
-}
-
-static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
-  if (isFloatingPointZero(Op))
-    return DAG.getConstant(0, MVT::i32);
-
-  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
-    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
-                       Ld->getChain(), Ld->getBasePtr(),
-                       Ld->getSrcValue(), Ld->getSrcValueOffset(),
-                       Ld->isVolatile(), Ld->isNonTemporal(),
-                       Ld->getAlignment());
-
-  llvm_unreachable("Unknown VFP cmp argument!");
-}
-
-static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
-                           SDValue &RetVal1, SDValue &RetVal2) {
-  if (isFloatingPointZero(Op)) {
-    RetVal1 = DAG.getConstant(0, MVT::i32);
-    RetVal2 = DAG.getConstant(0, MVT::i32);
-    return;
-  }
-
-  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
-    SDValue Ptr = Ld->getBasePtr();
-    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
-                          Ld->getChain(), Ptr,
-                          Ld->getSrcValue(), Ld->getSrcValueOffset(),
-                          Ld->isVolatile(), Ld->isNonTemporal(),
-                          Ld->getAlignment());
-
-    EVT PtrType = Ptr.getValueType();
-    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
-    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
-                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
-    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
-                          Ld->getChain(), NewPtr,
-                          Ld->getSrcValue(), Ld->getSrcValueOffset() + 4,
-                          Ld->isVolatile(), Ld->isNonTemporal(),
-                          NewAlign);
-    return;
-  }
-
-  llvm_unreachable("Unknown VFP cmp argument!");
-}
-
-/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
-/// f32 and even f64 comparisons to integer ones.
-SDValue
-ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
-  SDValue Chain = Op.getOperand(0);
-  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
-  SDValue LHS = Op.getOperand(2);
-  SDValue RHS = Op.getOperand(3);
-  SDValue Dest = Op.getOperand(4);
-  DebugLoc dl = Op.getDebugLoc();
-
-  bool SeenZero = false;
-  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
-      canChangeToInt(RHS, SeenZero, Subtarget) &&
-      // If one of the operand is zero, it's safe to ignore the NaN case since
-      // we only care about equality comparisons.
-      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
-    // If unsafe fp math optimization is enabled and there are no othter uses of
-    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
-    // to an integer comparison.
-    if (CC == ISD::SETOEQ)
-      CC = ISD::SETEQ;
-    else if (CC == ISD::SETUNE)
-      CC = ISD::SETNE;
-
-    SDValue ARMcc;
-    if (LHS.getValueType() == MVT::f32) {
-      LHS = bitcastf32Toi32(LHS, DAG);
-      RHS = bitcastf32Toi32(RHS, DAG);
-      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
-      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
-      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
-                         Chain, Dest, ARMcc, CCR, Cmp);
-    }
-
-    SDValue LHS1, LHS2;
-    SDValue RHS1, RHS2;
-    expandf64Toi32(LHS, DAG, LHS1, LHS2);
-    expandf64Toi32(RHS, DAG, RHS1, RHS2);
-    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
-    ARMcc = DAG.getConstant(CondCode, MVT::i32);
-    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
-    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
-    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
-  }
-
-  return SDValue();
-}
-
-SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
-  SDValue Chain = Op.getOperand(0);
-  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
-  SDValue LHS = Op.getOperand(2);
-  SDValue RHS = Op.getOperand(3);
-  SDValue Dest = Op.getOperand(4);
-  DebugLoc dl = Op.getDebugLoc();
-
-  if (LHS.getValueType() == MVT::i32) {
-    SDValue ARMcc;
-    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
-    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
-    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
-                       Chain, Dest, ARMcc, CCR, Cmp);
-  }
-
-  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
-
-  if (UnsafeFPMath &&
-      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
-       CC == ISD::SETNE || CC == ISD::SETUNE)) {
-    SDValue Result = OptimizeVFPBrcond(Op, DAG);
-    if (Result.getNode())
-      return Result;
-  }
-
-  ARMCC::CondCodes CondCode, CondCode2;
-  FPCCToARMCC(CC, CondCode, CondCode2);
-
-  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
-  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
-  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
-  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
-  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
-  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
-  if (CondCode2 != ARMCC::AL) {
-    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
-    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
-    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
-  }
-  return Res;
-}
-
-SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
-  SDValue Chain = Op.getOperand(0);
-  SDValue Table = Op.getOperand(1);
-  SDValue Index = Op.getOperand(2);
-  DebugLoc dl = Op.getDebugLoc();
-
-  EVT PTy = getPointerTy();
-  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
-  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
-  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
-  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
-  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
-  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
-  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
-  if (Subtarget->isThumb2()) {
-    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
-    // which does another jump to the destination. This also makes it easier
-    // to translate it to TBB / TBH later.
-    // FIXME: This might not work if the function is extremely large.
-    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
-                       Addr, Op.getOperand(2), JTI, UId);
-  }
-  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
-    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
-                       PseudoSourceValue::getJumpTable(), 0,
-                       false, false, 0);
-    Chain = Addr.getValue(1);
-    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
-    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
-  } else {
-    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
-                       PseudoSourceValue::getJumpTable(), 0, false, false, 0);
-    Chain = Addr.getValue(1);
-    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
-  }
-}
-
-static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
-  DebugLoc dl = Op.getDebugLoc();
-  unsigned Opc;
-
-  switch (Op.getOpcode()) {
-  default:
-    assert(0 && "Invalid opcode!");
-  case ISD::FP_TO_SINT:
-    Opc = ARMISD::FTOSI;
-    break;
-  case ISD::FP_TO_UINT:
-    Opc = ARMISD::FTOUI;
-    break;
-  }
-  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
-  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
-}
-
-static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
-  EVT VT = Op.getValueType();
-  DebugLoc dl = Op.getDebugLoc();
-  unsigned Opc;
-
-  switch (Op.getOpcode()) {
-  default:
-    assert(0 && "Invalid opcode!");
-  case ISD::SINT_TO_FP:
-    Opc = ARMISD::SITOF;
-    break;
-  case ISD::UINT_TO_FP:
-    Opc = ARMISD::UITOF;
-    break;
-  }
-
-  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
-  return DAG.getNode(Opc, dl, VT, Op);
-}
-
-SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
-  // Implement fcopysign with a fabs and a conditional fneg.
-  SDValue Tmp0 = Op.getOperand(0);
-  SDValue Tmp1 = Op.getOperand(1);
-  DebugLoc dl = Op.getDebugLoc();
-  EVT VT = Op.getValueType();
-  EVT SrcVT = Tmp1.getValueType();
-  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
-  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
-  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
-  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
-  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
-  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
-}
-
-SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
-  MachineFunction &MF = DAG.getMachineFunction();
-  MachineFrameInfo *MFI = MF.getFrameInfo();
-  MFI->setReturnAddressIsTaken(true);
-
-  EVT VT = Op.getValueType();
-  DebugLoc dl = Op.getDebugLoc();
-  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
-  if (Depth) {
-    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
-    SDValue Offset = DAG.getConstant(4, MVT::i32);
-    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
-                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
-                       NULL, 0, false, false, 0);
-  }
-
-  // Return LR, which contains the return address. Mark it an implicit live-in.
-  unsigned Reg = MF.addLiveIn(ARM::LR, ARM::GPRRegisterClass); 
-  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
-}
-
-SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
-  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
-  MFI->setFrameAddressIsTaken(true);
-
-  EVT VT = Op.getValueType();
-  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
-  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
-  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
-    ? ARM::R7 : ARM::R11;
-  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
-  while (Depth--)
-    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
-                            false, false, 0);
-  return FrameAddr;
-}
-
-/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
-/// expand a bit convert where either the source or destination type is i64 to
-/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
-/// operand type is illegal (e.g., v2f32 for a target that doesn't support
-/// vectors), since the legalizer won't know what to do with that.
-static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
-  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
-  DebugLoc dl = N->getDebugLoc();
-  SDValue Op = N->getOperand(0);
-
-  // This function is only supposed to be called for i64 types, either as the
-  // source or destination of the bit convert.
-  EVT SrcVT = Op.getValueType();
-  EVT DstVT = N->getValueType(0);
-  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
-         "ExpandBIT_CONVERT called for non-i64 type");
-
-  // Turn i64->f64 into VMOVDRR.
-  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
-    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
-                             DAG.getConstant(0, MVT::i32));
-    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
-                             DAG.getConstant(1, MVT::i32));
-    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
-                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
-  }
-
-  // Turn f64->i64 into VMOVRRD.
-  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
-    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
-                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
-    // Merge the pieces into a single i64 value.
-    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
-  }
-
-  return SDValue();
-}
-
-/// getZeroVector - Returns a vector of specified type with all zero elements.
-/// Zero vectors are used to represent vector negation and in those cases
-/// will be implemented with the NEON VNEG instruction.  However, VNEG does
-/// not support i64 elements, so sometimes the zero vectors will need to be
-/// explicitly constructed.  Regardless, use a canonical VMOV to create the
-/// zero vector.
-static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
-  assert(VT.isVector() && "Expected a vector type");
-  // The canonical modified immediate encoding of a zero vector is....0!
-  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
-  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
-  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
-  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
-}
-
-/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
-/// i32 values and take a 2 x i32 value to shift plus a shift amount.
-SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
-                                                SelectionDAG &DAG) const {
-  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
-  EVT VT = Op.getValueType();
-  unsigned VTBits = VT.getSizeInBits();
-  DebugLoc dl = Op.getDebugLoc();
-  SDValue ShOpLo = Op.getOperand(0);
-  SDValue ShOpHi = Op.getOperand(1);
-  SDValue ShAmt  = Op.getOperand(2);
-  SDValue ARMcc;
-  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
-
-  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
-
-  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
-                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
-  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
-  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
-                                   DAG.getConstant(VTBits, MVT::i32));
-  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
-  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
-  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
-
-  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
-  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
-                          ARMcc, DAG, dl);
-  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
-  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
-                           CCR, Cmp);
-
-  SDValue Ops[2] = { Lo, Hi };
-  return DAG.getMergeValues(Ops, 2, dl);
-}
-
-/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
-/// i32 values and take a 2 x i32 value to shift plus a shift amount.
-SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
-                                               SelectionDAG &DAG) const {
-  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
-  EVT VT = Op.getValueType();
-  unsigned VTBits = VT.getSizeInBits();
-  DebugLoc dl = Op.getDebugLoc();
-  SDValue ShOpLo = Op.getOperand(0);
-  SDValue ShOpHi = Op.getOperand(1);
-  SDValue ShAmt  = Op.getOperand(2);
-  SDValue ARMcc;
-
-  assert(Op.getOpcode() == ISD::SHL_PARTS);
-  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
-                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
-  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
-  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
-                                   DAG.getConstant(VTBits, MVT::i32));
-  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
-  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
-
-  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
-  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
-  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
-                          ARMcc, DAG, dl);
-  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
-  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
-                           CCR, Cmp);
-
-  SDValue Ops[2] = { Lo, Hi };
-  return DAG.getMergeValues(Ops, 2, dl);
-}
-
-static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
-                         const ARMSubtarget *ST) {
-  EVT VT = N->getValueType(0);
-  DebugLoc dl = N->getDebugLoc();
-
-  if (!ST->hasV6T2Ops())
-    return SDValue();
-
-  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
-  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
-}
-
-static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
-                          const ARMSubtarget *ST) {
-  EVT VT = N->getValueType(0);
-  DebugLoc dl = N->getDebugLoc();
-
-  // Lower vector shifts on NEON to use VSHL.
-  if (VT.isVector()) {
-    assert(ST->hasNEON() && "unexpected vector shift");
-
-    // Left shifts translate directly to the vshiftu intrinsic.
-    if (N->getOpcode() == ISD::SHL)
-      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
-                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
-                         N->getOperand(0), N->getOperand(1));
-
-    assert((N->getOpcode() == ISD::SRA ||
-            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
-
-    // NEON uses the same intrinsics for both left and right shifts.  For
-    // right shifts, the shift amounts are negative, so negate the vector of
-    // shift amounts.
-    EVT ShiftVT = N->getOperand(1).getValueType();
-    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
-                                       getZeroVector(ShiftVT, DAG, dl),
-                                       N->getOperand(1));
-    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
-                               Intrinsic::arm_neon_vshifts :
-                               Intrinsic::arm_neon_vshiftu);
-    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
-                       DAG.getConstant(vshiftInt, MVT::i32),
-                       N->getOperand(0), NegatedCount);
-  }
-
-  // We can get here for a node like i32 = ISD::SHL i32, i64
-  if (VT != MVT::i64)
-    return SDValue();
-
-  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
-         "Unknown shift to lower!");
-
-  // We only lower SRA, SRL of 1 here, all others use generic lowering.
-  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
-      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
-    return SDValue();
-
-  // If we are in thumb mode, we don't have RRX.
-  if (ST->isThumb1Only()) return SDValue();
-
-  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
-  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
-                           DAG.getConstant(0, MVT::i32));
-  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
-                           DAG.getConstant(1, MVT::i32));
-
-  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
-  // captures the result into a carry flag.
-  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
-  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
-
-  // The low part is an ARMISD::RRX operand, which shifts the carry in.
-  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
-
-  // Merge the pieces into a single i64 value.
- return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
-}
-
-static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
-  SDValue TmpOp0, TmpOp1;
-  bool Invert = false;
-  bool Swap = false;
-  unsigned Opc = 0;
-
-  SDValue Op0 = Op.getOperand(0);
-  SDValue Op1 = Op.getOperand(1);
-  SDValue CC = Op.getOperand(2);
-  EVT VT = Op.getValueType();
-  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
-  DebugLoc dl = Op.getDebugLoc();
-
-  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
-    switch (SetCCOpcode) {
-    default: llvm_unreachable("Illegal FP comparison"); break;
-    case ISD::SETUNE:
-    case ISD::SETNE:  Invert = true; // Fallthrough
-    case ISD::SETOEQ:
-    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
-    case ISD::SETOLT:
-    case ISD::SETLT: Swap = true; // Fallthrough
-    case ISD::SETOGT:
-    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
-    case ISD::SETOLE:
-    case ISD::SETLE:  Swap = true; // Fallthrough
-    case ISD::SETOGE:
-    case ISD::SETGE: Opc = ARMISD::VCGE; break;
-    case ISD::SETUGE: Swap = true; // Fallthrough
-    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
-    case ISD::SETUGT: Swap = true; // Fallthrough
-    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
-    case ISD::SETUEQ: Invert = true; // Fallthrough
-    case ISD::SETONE:
-      // Expand this to (OLT | OGT).
-      TmpOp0 = Op0;
-      TmpOp1 = Op1;
-      Opc = ISD::OR;
-      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
-      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
-      break;
-    case ISD::SETUO: Invert = true; // Fallthrough
-    case ISD::SETO:
-      // Expand this to (OLT | OGE).
-      TmpOp0 = Op0;
-      TmpOp1 = Op1;
-      Opc = ISD::OR;
-      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
-      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
-      break;
-    }
-  } else {
-    // Integer comparisons.
-    switch (SetCCOpcode) {
-    default: llvm_unreachable("Illegal integer comparison"); break;
-    case ISD::SETNE:  Invert = true;
-    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
-    case ISD::SETLT:  Swap = true;
-    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
-    case ISD::SETLE:  Swap = true;
-    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
-    case ISD::SETULT: Swap = true;
-    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
-    case ISD::SETULE: Swap = true;
-    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
-    }
-
-    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
-    if (Opc == ARMISD::VCEQ) {
-
-      SDValue AndOp;
-      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
-        AndOp = Op0;
-      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
-        AndOp = Op1;
-
-      // Ignore bitconvert.
-      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
-        AndOp = AndOp.getOperand(0);
-
-      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
-        Opc = ARMISD::VTST;
-        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
-        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
-        Invert = !Invert;
-      }
-    }
-  }
-
-  if (Swap)
-    std::swap(Op0, Op1);
-
-  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
-
-  if (Invert)
-    Result = DAG.getNOT(dl, Result, VT);
-
-  return Result;
-}
-
-/// isNEONModifiedImm - Check if the specified splat value corresponds to a
-/// valid vector constant for a NEON instruction with a "modified immediate"
-/// operand (e.g., VMOV).  If so, return the encoded value.
-static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
-                                 unsigned SplatBitSize, SelectionDAG &DAG,
-                                 EVT &VT, bool is128Bits, bool isVMOV) {
-  unsigned OpCmode, Imm;
-
-  // SplatBitSize is set to the smallest size that splats the vector, so a
-  // zero vector will always have SplatBitSize == 8.  However, NEON modified
-  // immediate instructions others than VMOV do not support the 8-bit encoding
-  // of a zero vector, and the default encoding of zero is supposed to be the
-  // 32-bit version.
-  if (SplatBits == 0)
-    SplatBitSize = 32;
-
-  switch (SplatBitSize) {
-  case 8:
-    if (!isVMOV)
-      return SDValue();
-    // Any 1-byte value is OK.  Op=0, Cmode=1110.
-    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
-    OpCmode = 0xe;
-    Imm = SplatBits;
-    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
-    break;
-
-  case 16:
-    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
-    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
-    if ((SplatBits & ~0xff) == 0) {
-      // Value = 0x00nn: Op=x, Cmode=100x.
-      OpCmode = 0x8;
-      Imm = SplatBits;
-      break;
-    }
-    if ((SplatBits & ~0xff00) == 0) {
-      // Value = 0xnn00: Op=x, Cmode=101x.
-      OpCmode = 0xa;
-      Imm = SplatBits >> 8;
-      break;
-    }
-    return SDValue();
-
-  case 32:
-    // NEON's 32-bit VMOV supports splat values where:
-    // * only one byte is nonzero, or
-    // * the least significant byte is 0xff and the second byte is nonzero, or
-    // * the least significant 2 bytes are 0xff and the third is nonzero.
-    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
-    if ((SplatBits & ~0xff) == 0) {
-      // Value = 0x000000nn: Op=x, Cmode=000x.
-      OpCmode = 0;
-      Imm = SplatBits;
-      break;
-    }
-    if ((SplatBits & ~0xff00) == 0) {
-      // Value = 0x0000nn00: Op=x, Cmode=001x.
-      OpCmode = 0x2;
-      Imm = SplatBits >> 8;
-      break;
-    }
-    if ((SplatBits & ~0xff0000) == 0) {
-      // Value = 0x00nn0000: Op=x, Cmode=010x.
-      OpCmode = 0x4;
-      Imm = SplatBits >> 16;
-      break;
-    }
-    if ((SplatBits & ~0xff000000) == 0) {
-      // Value = 0xnn000000: Op=x, Cmode=011x.
-      OpCmode = 0x6;
-      Imm = SplatBits >> 24;
-      break;
-    }
-
-    if ((SplatBits & ~0xffff) == 0 &&
-        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
-      // Value = 0x0000nnff: Op=x, Cmode=1100.
-      OpCmode = 0xc;
-      Imm = SplatBits >> 8;
-      SplatBits |= 0xff;
-      break;
-    }
-
-    if ((SplatBits & ~0xffffff) == 0 &&
-        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
-      // Value = 0x00nnffff: Op=x, Cmode=1101.
-      OpCmode = 0xd;
-      Imm = SplatBits >> 16;
-      SplatBits |= 0xffff;
-      break;
-    }
-
-    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
-    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
-    // VMOV.I32.  A (very) minor optimization would be to replicate the value
-    // and fall through here to test for a valid 64-bit splat.  But, then the
-    // caller would also need to check and handle the change in size.
-    return SDValue();
-
-  case 64: {
-    if (!isVMOV)
-      return SDValue();
-    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
-    uint64_t BitMask = 0xff;
-    uint64_t Val = 0;
-    unsigned ImmMask = 1;
-    Imm = 0;
-    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
-      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
-        Val |= BitMask;
-        Imm |= ImmMask;
-      } else if ((SplatBits & BitMask) != 0) {
-        return SDValue();
-      }
-      BitMask <<= 8;
-      ImmMask <<= 1;
-    }
-    // Op=1, Cmode=1110.
-    OpCmode = 0x1e;
-    SplatBits = Val;
-    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
-    break;
-  }
-
-  default:
-    llvm_unreachable("unexpected size for isNEONModifiedImm");
-    return SDValue();
-  }
-
-  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
-  return DAG.getTargetConstant(EncodedVal, MVT::i32);
-}
-
-static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
-                       bool &ReverseVEXT, unsigned &Imm) {
-  unsigned NumElts = VT.getVectorNumElements();
-  ReverseVEXT = false;
-  Imm = M[0];
-
-  // If this is a VEXT shuffle, the immediate value is the index of the first
-  // element.  The other shuffle indices must be the successive elements after
-  // the first one.
-  unsigned ExpectedElt = Imm;
-  for (unsigned i = 1; i < NumElts; ++i) {
-    // Increment the expected index.  If it wraps around, it may still be
-    // a VEXT but the source vectors must be swapped.
-    ExpectedElt += 1;
-    if (ExpectedElt == NumElts * 2) {
-      ExpectedElt = 0;
-      ReverseVEXT = true;
-    }
-
-    if (ExpectedElt != static_cast<unsigned>(M[i]))
-      return false;
-  }
-
-  // Adjust the index value if the source operands will be swapped.
-  if (ReverseVEXT)
-    Imm -= NumElts;
-
-  return true;
-}
-
-/// isVREVMask - Check if a vector shuffle corresponds to a VREV
-/// instruction with the specified blocksize.  (The order of the elements
-/// within each block of the vector is reversed.)
-static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
-                       unsigned BlockSize) {
-  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
-         "Only possible block sizes for VREV are: 16, 32, 64");
-
-  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
-  if (EltSz == 64)
-    return false;
-
-  unsigned NumElts = VT.getVectorNumElements();
-  unsigned BlockElts = M[0] + 1;
-
-  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
-    return false;
-
-  for (unsigned i = 0; i < NumElts; ++i) {
-    if ((unsigned) M[i] !=
-        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
-      return false;
-  }
-
-  return true;
-}
-
-static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
-                       unsigned &WhichResult) {
-  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
-  if (EltSz == 64)
-    return false;
-
-  unsigned NumElts = VT.getVectorNumElements();
-  WhichResult = (M[0] == 0 ? 0 : 1);
-  for (unsigned i = 0; i < NumElts; i += 2) {
-    if ((unsigned) M[i] != i + WhichResult ||
-        (unsigned) M[i+1] != i + NumElts + WhichResult)
-      return false;
-  }
-  return true;
-}
-
-/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
-/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
-/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
-static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
-                                unsigned &WhichResult) {
-  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
-  if (EltSz == 64)
-    return false;
-
-  unsigned NumElts = VT.getVectorNumElements();
-  WhichResult = (M[0] == 0 ? 0 : 1);
-  for (unsigned i = 0; i < NumElts; i += 2) {
-    if ((unsigned) M[i] != i + WhichResult ||
-        (unsigned) M[i+1] != i + WhichResult)
-      return false;
-  }
-  return true;
-}
-
-static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
-                       unsigned &WhichResult) {
-  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
-  if (EltSz == 64)
-    return false;
-
-  unsigned NumElts = VT.getVectorNumElements();
-  WhichResult = (M[0] == 0 ? 0 : 1);
-  for (unsigned i = 0; i != NumElts; ++i) {
-    if ((unsigned) M[i] != 2 * i + WhichResult)
-      return false;
-  }
-
-  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
-  if (VT.is64BitVector() && EltSz == 32)
-    return false;
-
-  return true;
-}
-
-/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
-/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
-/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
-static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
-                                unsigned &WhichResult) {
-  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
-  if (EltSz == 64)
-    return false;
-
-  unsigned Half = VT.getVectorNumElements() / 2;
-  WhichResult = (M[0] == 0 ? 0 : 1);
-  for (unsigned j = 0; j != 2; ++j) {
-    unsigned Idx = WhichResult;
-    for (unsigned i = 0; i != Half; ++i) {
-      if ((unsigned) M[i + j * Half] != Idx)
-        return false;
-      Idx += 2;
-    }
-  }
-
-  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
-  if (VT.is64BitVector() && EltSz == 32)
-    return false;
-
-  return true;
-}
-
-static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
-                       unsigned &WhichResult) {
-  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
-  if (EltSz == 64)
-    return false;
-
-  unsigned NumElts = VT.getVectorNumElements();
-  WhichResult = (M[0] == 0 ? 0 : 1);
-  unsigned Idx = WhichResult * NumElts / 2;
-  for (unsigned i = 0; i != NumElts; i += 2) {
-    if ((unsigned) M[i] != Idx ||
-        (unsigned) M[i+1] != Idx + NumElts)
-      return false;
-    Idx += 1;
-  }
-
-  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
-  if (VT.is64BitVector() && EltSz == 32)
-    return false;
-
-  return true;
-}
-
-/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
-/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
-/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
-static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
-                                unsigned &WhichResult) {
-  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
-  if (EltSz == 64)
-    return false;
-
-  unsigned NumElts = VT.getVectorNumElements();
-  WhichResult = (M[0] == 0 ? 0 : 1);
-  unsigned Idx = WhichResult * NumElts / 2;
-  for (unsigned i = 0; i != NumElts; i += 2) {
-    if ((unsigned) M[i] != Idx ||
-        (unsigned) M[i+1] != Idx)
-      return false;
-    Idx += 1;
-  }
-
-  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
-  if (VT.is64BitVector() && EltSz == 32)
-    return false;
-
-  return true;
-}
-
-// If this is a case we can't handle, return null and let the default
-// expansion code take care of it.
-static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
-  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
-  DebugLoc dl = Op.getDebugLoc();
-  EVT VT = Op.getValueType();
-
-  APInt SplatBits, SplatUndef;
-  unsigned SplatBitSize;
-  bool HasAnyUndefs;
-  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
-    if (SplatBitSize <= 64) {
-      // Check if an immediate VMOV works.
-      EVT VmovVT;
-      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
-                                      SplatUndef.getZExtValue(), SplatBitSize,
-                                      DAG, VmovVT, VT.is128BitVector(), true);
-      if (Val.getNode()) {
-        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
-        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
-      }
-
-      // Try an immediate VMVN.
-      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
-                             ((1LL << SplatBitSize) - 1));
-      Val = isNEONModifiedImm(NegatedImm,
-                                      SplatUndef.getZExtValue(), SplatBitSize,
-                                      DAG, VmovVT, VT.is128BitVector(), false);
-      if (Val.getNode()) {
-        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
-        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
-      }
-    }
-  }
-
-  // Scan through the operands to see if only one value is used.
-  unsigned NumElts = VT.getVectorNumElements();
-  bool isOnlyLowElement = true;
-  bool usesOnlyOneValue = true;
-  bool isConstant = true;
-  SDValue Value;
-  for (unsigned i = 0; i < NumElts; ++i) {
-    SDValue V = Op.getOperand(i);
-    if (V.getOpcode() == ISD::UNDEF)
-      continue;
-    if (i > 0)
-      isOnlyLowElement = false;
-    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
-      isConstant = false;
-
-    if (!Value.getNode())
-      Value = V;
-    else if (V != Value)
-      usesOnlyOneValue = false;
-  }
-
-  if (!Value.getNode())
-    return DAG.getUNDEF(VT);
-
-  if (isOnlyLowElement)
-    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
-
-  // If all elements are constants, fall back to the default expansion, which
-  // will generate a load from the constant pool.
-  if (isConstant)
-    return SDValue();
-
-  // Use VDUP for non-constant splats.
-  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
-  if (usesOnlyOneValue && EltSize <= 32)
-    return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
-
-  // Vectors with 32- or 64-bit elements can be built by directly assigning
-  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
-  // will be legalized.
-  if (EltSize >= 32) {
-    // Do the expansion with floating-point types, since that is what the VFP
-    // registers are defined to use, and since i64 is not legal.
-    EVT EltVT = EVT::getFloatingPointVT(EltSize);
-    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
-    SmallVector<SDValue, 8> Ops;
-    for (unsigned i = 0; i < NumElts; ++i)
-      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
-    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
-    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
-  }
-
-  return SDValue();
-}
-
-/// isShuffleMaskLegal - Targets can use this to indicate that they only
-/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
-/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
-/// are assumed to be legal.
-bool
-ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
-                                      EVT VT) const {
-  if (VT.getVectorNumElements() == 4 &&
-      (VT.is128BitVector() || VT.is64BitVector())) {
-    unsigned PFIndexes[4];
-    for (unsigned i = 0; i != 4; ++i) {
-      if (M[i] < 0)
-        PFIndexes[i] = 8;
-      else
-        PFIndexes[i] = M[i];
-    }
-
-    // Compute the index in the perfect shuffle table.
-    unsigned PFTableIndex =
-      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
-    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
-    unsigned Cost = (PFEntry >> 30);
-
-    if (Cost <= 4)
-      return true;
-  }
-
-  bool ReverseVEXT;
-  unsigned Imm, WhichResult;
-
-  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
-  return (EltSize >= 32 ||
-          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
-          isVREVMask(M, VT, 64) ||
-          isVREVMask(M, VT, 32) ||
-          isVREVMask(M, VT, 16) ||
-          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
-          isVTRNMask(M, VT, WhichResult) ||
-          isVUZPMask(M, VT, WhichResult) ||
-          isVZIPMask(M, VT, WhichResult) ||
-          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
-          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
-          isVZIP_v_undef_Mask(M, VT, WhichResult));
-}
-
-/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
-/// the specified operations to build the shuffle.
-static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
-                                      SDValue RHS, SelectionDAG &DAG,
-                                      DebugLoc dl) {
-  unsigned OpNum = (PFEntry >> 26) & 0x0F;
-  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
-  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
-
-  enum {
-    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
-    OP_VREV,
-    OP_VDUP0,
-    OP_VDUP1,
-    OP_VDUP2,
-    OP_VDUP3,
-    OP_VEXT1,
-    OP_VEXT2,
-    OP_VEXT3,
-    OP_VUZPL, // VUZP, left result
-    OP_VUZPR, // VUZP, right result
-    OP_VZIPL, // VZIP, left result
-    OP_VZIPR, // VZIP, right result
-    OP_VTRNL, // VTRN, left result
-    OP_VTRNR  // VTRN, right result
-  };
-
-  if (OpNum == OP_COPY) {
-    if (LHSID == (1*9+2)*9+3) return LHS;
-    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
-    return RHS;
-  }
-
-  SDValue OpLHS, OpRHS;
-  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
-  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
-  EVT VT = OpLHS.getValueType();
-
-  switch (OpNum) {
-  default: llvm_unreachable("Unknown shuffle opcode!");
-  case OP_VREV:
-    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
-  case OP_VDUP0:
-  case OP_VDUP1:
-  case OP_VDUP2:
-  case OP_VDUP3:
-    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
-                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
-  case OP_VEXT1:
-  case OP_VEXT2:
-  case OP_VEXT3:
-    return DAG.getNode(ARMISD::VEXT, dl, VT,
-                       OpLHS, OpRHS,
-                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
-  case OP_VUZPL:
-  case OP_VUZPR:
-    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
-                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
-  case OP_VZIPL:
-  case OP_VZIPR:
-    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
-                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
-  case OP_VTRNL:
-  case OP_VTRNR:
-    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
-                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
-  }
-}
-
-static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
-  SDValue V1 = Op.getOperand(0);
-  SDValue V2 = Op.getOperand(1);
-  DebugLoc dl = Op.getDebugLoc();
-  EVT VT = Op.getValueType();
-  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
-  SmallVector<int, 8> ShuffleMask;
-
-  // Convert shuffles that are directly supported on NEON to target-specific
-  // DAG nodes, instead of keeping them as shuffles and matching them again
-  // during code selection.  This is more efficient and avoids the possibility
-  // of inconsistencies between legalization and selection.
-  // FIXME: floating-point vectors should be canonicalized to integer vectors
-  // of the same time so that they get CSEd properly.
-  SVN->getMask(ShuffleMask);
-
-  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
-  if (EltSize <= 32) {
-    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
-      int Lane = SVN->getSplatIndex();
-      // If this is undef splat, generate it via "just" vdup, if possible.
-      if (Lane == -1) Lane = 0;
-
-      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
-        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
-      }
-      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
-                         DAG.getConstant(Lane, MVT::i32));
-    }
-
-    bool ReverseVEXT;
-    unsigned Imm;
-    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
-      if (ReverseVEXT)
-        std::swap(V1, V2);
-      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
-                         DAG.getConstant(Imm, MVT::i32));
-    }
-
-    if (isVREVMask(ShuffleMask, VT, 64))
-      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
-    if (isVREVMask(ShuffleMask, VT, 32))
-      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
-    if (isVREVMask(ShuffleMask, VT, 16))
-      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
-
-    // Check for Neon shuffles that modify both input vectors in place.
-    // If both results are used, i.e., if there are two shuffles with the same
-    // source operands and with masks corresponding to both results of one of
-    // these operations, DAG memoization will ensure that a single node is
-    // used for both shuffles.
-    unsigned WhichResult;
-    if (isVTRNMask(ShuffleMask, VT, WhichResult))
-      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
-                         V1, V2).getValue(WhichResult);
-    if (isVUZPMask(ShuffleMask, VT, WhichResult))
-      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
-                         V1, V2).getValue(WhichResult);
-    if (isVZIPMask(ShuffleMask, VT, WhichResult))
-      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
-                         V1, V2).getValue(WhichResult);
-
-    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
-      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
-                         V1, V1).getValue(WhichResult);
-    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
-      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
-                         V1, V1).getValue(WhichResult);
-    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
-      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
-                         V1, V1).getValue(WhichResult);
-  }
-
-  // If the shuffle is not directly supported and it has 4 elements, use
-  // the PerfectShuffle-generated table to synthesize it from other shuffles.
-  unsigned NumElts = VT.getVectorNumElements();
-  if (NumElts == 4) {
-    unsigned PFIndexes[4];
-    for (unsigned i = 0; i != 4; ++i) {
-      if (ShuffleMask[i] < 0)
-        PFIndexes[i] = 8;
-      else
-        PFIndexes[i] = ShuffleMask[i];
-    }
-
-    // Compute the index in the perfect shuffle table.
-    unsigned PFTableIndex =
-      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
-    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
-    unsigned Cost = (PFEntry >> 30);
-
-    if (Cost <= 4)
-      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
-  }
-
-  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
-  if (EltSize >= 32) {
-    // Do the expansion with floating-point types, since that is what the VFP
-    // registers are defined to use, and since i64 is not legal.
-    EVT EltVT = EVT::getFloatingPointVT(EltSize);
-    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
-    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
-    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
-    SmallVector<SDValue, 8> Ops;
-    for (unsigned i = 0; i < NumElts; ++i) {
-      if (ShuffleMask[i] < 0)
-        Ops.push_back(DAG.getUNDEF(EltVT));
-      else
-        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
-                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
-                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
-                                                  MVT::i32)));
-    }
-    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
-    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
-  }
-
-  return SDValue();
-}
-
-static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
-  EVT VT = Op.getValueType();
-  DebugLoc dl = Op.getDebugLoc();
-  SDValue Vec = Op.getOperand(0);
-  SDValue Lane = Op.getOperand(1);
-  assert(VT == MVT::i32 &&
-         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
-         "unexpected type for custom-lowering vector extract");
-  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
-}
-
-static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
-  // The only time a CONCAT_VECTORS operation can have legal types is when
-  // two 64-bit vectors are concatenated to a 128-bit vector.
-  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
-         "unexpected CONCAT_VECTORS");
-  DebugLoc dl = Op.getDebugLoc();
-  SDValue Val = DAG.getUNDEF(MVT::v2f64);
-  SDValue Op0 = Op.getOperand(0);
-  SDValue Op1 = Op.getOperand(1);
-  if (Op0.getOpcode() != ISD::UNDEF)
-    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
-                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
-                      DAG.getIntPtrConstant(0));
-  if (Op1.getOpcode() != ISD::UNDEF)
-    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
-                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
-                      DAG.getIntPtrConstant(1));
-  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
-}
-
-SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
-  switch (Op.getOpcode()) {
-  default: llvm_unreachable("Don't know how to custom lower this!");
-  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
-  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
-  case ISD::GlobalAddress:
-    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
-      LowerGlobalAddressELF(Op, DAG);
-  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
-  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
-  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
-  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
-  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
-  case ISD::VASTART:       return LowerVASTART(Op, DAG);
-  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
-  case ISD::SINT_TO_FP:
-  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
-  case ISD::FP_TO_SINT:
-  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
-  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
-  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
-  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
-  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
-  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
-  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
-  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
-                                                               Subtarget);
-  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
-  case ISD::SHL:
-  case ISD::SRL:
-  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
-  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
-  case ISD::SRL_PARTS:
-  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
-  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
-  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
-  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
-  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
-  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
-  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
-  }
-  return SDValue();
-}
-
-/// ReplaceNodeResults - Replace the results of node with an illegal result
-/// type with new values built out of custom code.
-void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
-                                           SmallVectorImpl<SDValue>&Results,
-                                           SelectionDAG &DAG) const {
-  SDValue Res;
-  switch (N->getOpcode()) {
-  default:
-    llvm_unreachable("Don't know how to custom expand this!");
-    break;
-  case ISD::BIT_CONVERT:
-    Res = ExpandBIT_CONVERT(N, DAG);
-    break;
-  case ISD::SRL:
-  case ISD::SRA:
-    Res = LowerShift(N, DAG, Subtarget);
-    break;
-  }
-  if (Res.getNode())
-    Results.push_back(Res);
-}
-
-//===----------------------------------------------------------------------===//
-//                           ARM Scheduler Hooks
-//===----------------------------------------------------------------------===//
-
-MachineBasicBlock *
-ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
-                                     MachineBasicBlock *BB,
-                                     unsigned Size) const {
-  unsigned dest    = MI->getOperand(0).getReg();
-  unsigned ptr     = MI->getOperand(1).getReg();
-  unsigned oldval  = MI->getOperand(2).getReg();
-  unsigned newval  = MI->getOperand(3).getReg();
-  unsigned scratch = BB->getParent()->getRegInfo()
-    .createVirtualRegister(ARM::GPRRegisterClass);
-  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-  DebugLoc dl = MI->getDebugLoc();
-  bool isThumb2 = Subtarget->isThumb2();
-
-  unsigned ldrOpc, strOpc;
-  switch (Size) {
-  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
-  case 1:
-    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
-    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
-    break;
-  case 2:
-    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
-    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
-    break;
-  case 4:
-    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
-    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
-    break;
-  }
-
-  MachineFunction *MF = BB->getParent();
-  const BasicBlock *LLVM_BB = BB->getBasicBlock();
-  MachineFunction::iterator It = BB;
-  ++It; // insert the new blocks after the current block
-
-  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
-  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
-  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
-  MF->insert(It, loop1MBB);
-  MF->insert(It, loop2MBB);
-  MF->insert(It, exitMBB);
-
-  // Transfer the remainder of BB and its successor edges to exitMBB.
-  exitMBB->splice(exitMBB->begin(), BB,
-                  llvm::next(MachineBasicBlock::iterator(MI)),
-                  BB->end());
-  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
-  //  thisMBB:
-  //   ...
-  //   fallthrough --> loop1MBB
-  BB->addSuccessor(loop1MBB);
-
-  // loop1MBB:
-  //   ldrex dest, [ptr]
-  //   cmp dest, oldval
-  //   bne exitMBB
-  BB = loop1MBB;
-  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
-  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
-                 .addReg(dest).addReg(oldval));
-  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
-    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
-  BB->addSuccessor(loop2MBB);
-  BB->addSuccessor(exitMBB);
-
-  // loop2MBB:
-  //   strex scratch, newval, [ptr]
-  //   cmp scratch, #0
-  //   bne loop1MBB
-  BB = loop2MBB;
-  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
-                 .addReg(ptr));
-  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
-                 .addReg(scratch).addImm(0));
-  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
-    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
-  BB->addSuccessor(loop1MBB);
-  BB->addSuccessor(exitMBB);
-
-  //  exitMBB:
-  //   ...
-  BB = exitMBB;
-
-  MI->eraseFromParent();   // The instruction is gone now.
-
-  return BB;
-}
-
-MachineBasicBlock *
-ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
-                                    unsigned Size, unsigned BinOpcode) const {
-  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
-  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-
-  const BasicBlock *LLVM_BB = BB->getBasicBlock();
-  MachineFunction *MF = BB->getParent();
-  MachineFunction::iterator It = BB;
-  ++It;
-
-  unsigned dest = MI->getOperand(0).getReg();
-  unsigned ptr = MI->getOperand(1).getReg();
-  unsigned incr = MI->getOperand(2).getReg();
-  DebugLoc dl = MI->getDebugLoc();
-
-  bool isThumb2 = Subtarget->isThumb2();
-  unsigned ldrOpc, strOpc;
-  switch (Size) {
-  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
-  case 1:
-    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
-    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
-    break;
-  case 2:
-    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
-    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
-    break;
-  case 4:
-    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
-    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
-    break;
-  }
-
-  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
-  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
-  MF->insert(It, loopMBB);
-  MF->insert(It, exitMBB);
-
-  // Transfer the remainder of BB and its successor edges to exitMBB.
-  exitMBB->splice(exitMBB->begin(), BB,
-                  llvm::next(MachineBasicBlock::iterator(MI)),
-                  BB->end());
-  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
-  MachineRegisterInfo &RegInfo = MF->getRegInfo();
-  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
-  unsigned scratch2 = (!BinOpcode) ? incr :
-    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
-
-  //  thisMBB:
-  //   ...
-  //   fallthrough --> loopMBB
-  BB->addSuccessor(loopMBB);
-
-  //  loopMBB:
-  //   ldrex dest, ptr
-  //   <binop> scratch2, dest, incr
-  //   strex scratch, scratch2, ptr
-  //   cmp scratch, #0
-  //   bne- loopMBB
-  //   fallthrough --> exitMBB
-  BB = loopMBB;
-  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
-  if (BinOpcode) {
-    // operand order needs to go the other way for NAND
-    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
-      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
-                     addReg(incr).addReg(dest)).addReg(0);
-    else
-      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
-                     addReg(dest).addReg(incr)).addReg(0);
-  }
-
-  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
-                 .addReg(ptr));
-  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
-                 .addReg(scratch).addImm(0));
-  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
-    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
-
-  BB->addSuccessor(loopMBB);
-  BB->addSuccessor(exitMBB);
-
-  //  exitMBB:
-  //   ...
-  BB = exitMBB;
-
-  MI->eraseFromParent();   // The instruction is gone now.
-
-  return BB;
-}
-
-static
-MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
-  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
-       E = MBB->succ_end(); I != E; ++I)
-    if (*I != Succ)
-      return *I;
-  llvm_unreachable("Expecting a BB with two successors!");
-}
-
-MachineBasicBlock *
-ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
-                                               MachineBasicBlock *BB) const {
-  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
-  DebugLoc dl = MI->getDebugLoc();
-  bool isThumb2 = Subtarget->isThumb2();
-  switch (MI->getOpcode()) {
-  default:
-    MI->dump();
-    llvm_unreachable("Unexpected instr type to insert");
-
-  case ARM::ATOMIC_LOAD_ADD_I8:
-     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
-  case ARM::ATOMIC_LOAD_ADD_I16:
-     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
-  case ARM::ATOMIC_LOAD_ADD_I32:
-     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
-
-  case ARM::ATOMIC_LOAD_AND_I8:
-     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
-  case ARM::ATOMIC_LOAD_AND_I16:
-     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
-  case ARM::ATOMIC_LOAD_AND_I32:
-     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
-
-  case ARM::ATOMIC_LOAD_OR_I8:
-     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
-  case ARM::ATOMIC_LOAD_OR_I16:
-     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
-  case ARM::ATOMIC_LOAD_OR_I32:
-     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
-
-  case ARM::ATOMIC_LOAD_XOR_I8:
-     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
-  case ARM::ATOMIC_LOAD_XOR_I16:
-     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
-  case ARM::ATOMIC_LOAD_XOR_I32:
-     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
-
-  case ARM::ATOMIC_LOAD_NAND_I8:
-     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
-  case ARM::ATOMIC_LOAD_NAND_I16:
-     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
-  case ARM::ATOMIC_LOAD_NAND_I32:
-     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
-
-  case ARM::ATOMIC_LOAD_SUB_I8:
-     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
-  case ARM::ATOMIC_LOAD_SUB_I16:
-     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
-  case ARM::ATOMIC_LOAD_SUB_I32:
-     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
-
-  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
-  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
-  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
-
-  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
-  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
-  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
-
-  case ARM::tMOVCCr_pseudo: {
-    // To "insert" a SELECT_CC instruction, we actually have to insert the
-    // diamond control-flow pattern.  The incoming instruction knows the
-    // destination vreg to set, the condition code register to branch on, the
-    // true/false values to select between, and a branch opcode to use.
-    const BasicBlock *LLVM_BB = BB->getBasicBlock();
-    MachineFunction::iterator It = BB;
-    ++It;
-
-    //  thisMBB:
-    //  ...
-    //   TrueVal = ...
-    //   cmpTY ccX, r1, r2
-    //   bCC copy1MBB
-    //   fallthrough --> copy0MBB
-    MachineBasicBlock *thisMBB  = BB;
-    MachineFunction *F = BB->getParent();
-    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
-    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
-    F->insert(It, copy0MBB);
-    F->insert(It, sinkMBB);
-
-    // Transfer the remainder of BB and its successor edges to sinkMBB.
-    sinkMBB->splice(sinkMBB->begin(), BB,
-                    llvm::next(MachineBasicBlock::iterator(MI)),
-                    BB->end());
-    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
-
-    BB->addSuccessor(copy0MBB);
-    BB->addSuccessor(sinkMBB);
-
-    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
-      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
-
-    //  copy0MBB:
-    //   %FalseValue = ...
-    //   # fallthrough to sinkMBB
-    BB = copy0MBB;
-
-    // Update machine-CFG edges
-    BB->addSuccessor(sinkMBB);
-
-    //  sinkMBB:
-    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
-    //  ...
-    BB = sinkMBB;
-    BuildMI(*BB, BB->begin(), dl,
-            TII->get(ARM::PHI), MI->getOperand(0).getReg())
-      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
-      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
-
-    MI->eraseFromParent();   // The pseudo instruction is gone now.
-    return BB;
-  }
-
-  case ARM::BCCi64:
-  case ARM::BCCZi64: {
-    // Compare both parts that make up the double comparison separately for
-    // equality.
-    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
-
-    unsigned LHS1 = MI->getOperand(1).getReg();
-    unsigned LHS2 = MI->getOperand(2).getReg();
-    if (RHSisZero) {
-      AddDefaultPred(BuildMI(BB, dl,
-                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
-                     .addReg(LHS1).addImm(0));
-      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
-        .addReg(LHS2).addImm(0)
-        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
-    } else {
-      unsigned RHS1 = MI->getOperand(3).getReg();
-      unsigned RHS2 = MI->getOperand(4).getReg();
-      AddDefaultPred(BuildMI(BB, dl,
-                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
-                     .addReg(LHS1).addReg(RHS1));
-      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
-        .addReg(LHS2).addReg(RHS2)
-        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
-    }
-
-    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
-    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
-    if (MI->getOperand(0).getImm() == ARMCC::NE)
-      std::swap(destMBB, exitMBB);
-
-    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
-      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
-    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
-      .addMBB(exitMBB);
-
-    MI->eraseFromParent();   // The pseudo instruction is gone now.
-    return BB;
-  }
-
-  case ARM::tANDsp:
-  case ARM::tADDspr_:
-  case ARM::tSUBspi_:
-  case ARM::t2SUBrSPi_:
-  case ARM::t2SUBrSPi12_:
-  case ARM::t2SUBrSPs_: {
-    MachineFunction *MF = BB->getParent();
-    unsigned DstReg = MI->getOperand(0).getReg();
-    unsigned SrcReg = MI->getOperand(1).getReg();
-    bool DstIsDead = MI->getOperand(0).isDead();
-    bool SrcIsKill = MI->getOperand(1).isKill();
-
-    if (SrcReg != ARM::SP) {
-      // Copy the source to SP from virtual register.
-      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
-      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
-        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
-      BuildMI(*BB, MI, dl, TII->get(CopyOpc), ARM::SP)
-        .addReg(SrcReg, getKillRegState(SrcIsKill));
-    }
-
-    unsigned OpOpc = 0;
-    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
-    switch (MI->getOpcode()) {
-    default:
-      llvm_unreachable("Unexpected pseudo instruction!");
-    case ARM::tANDsp:
-      OpOpc = ARM::tAND;
-      NeedPred = true;
-      break;
-    case ARM::tADDspr_:
-      OpOpc = ARM::tADDspr;
-      break;
-    case ARM::tSUBspi_:
-      OpOpc = ARM::tSUBspi;
-      break;
-    case ARM::t2SUBrSPi_:
-      OpOpc = ARM::t2SUBrSPi;
-      NeedPred = true; NeedCC = true;
-      break;
-    case ARM::t2SUBrSPi12_:
-      OpOpc = ARM::t2SUBrSPi12;
-      NeedPred = true;
-      break;
-    case ARM::t2SUBrSPs_:
-      OpOpc = ARM::t2SUBrSPs;
-      NeedPred = true; NeedCC = true; NeedOp3 = true;
-      break;
-    }
-    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(OpOpc), ARM::SP);
-    if (OpOpc == ARM::tAND)
-      AddDefaultT1CC(MIB);
-    MIB.addReg(ARM::SP);
-    MIB.addOperand(MI->getOperand(2));
-    if (NeedOp3)
-      MIB.addOperand(MI->getOperand(3));
-    if (NeedPred)
-      AddDefaultPred(MIB);
-    if (NeedCC)
-      AddDefaultCC(MIB);
-
-    // Copy the result from SP to virtual register.
-    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
-    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
-      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
-    BuildMI(*BB, MI, dl, TII->get(CopyOpc))
-      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
-      .addReg(ARM::SP);
-    MI->eraseFromParent();   // The pseudo instruction is gone now.
-    return BB;
-  }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//                           ARM Optimization Hooks
-//===----------------------------------------------------------------------===//
-
-static
-SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
-                            TargetLowering::DAGCombinerInfo &DCI) {
-  SelectionDAG &DAG = DCI.DAG;
-  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
-  EVT VT = N->getValueType(0);
-  unsigned Opc = N->getOpcode();
-  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
-  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
-  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
-  ISD::CondCode CC = ISD::SETCC_INVALID;
-
-  if (isSlctCC) {
-    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
-  } else {
-    SDValue CCOp = Slct.getOperand(0);
-    if (CCOp.getOpcode() == ISD::SETCC)
-      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
-  }
-
-  bool DoXform = false;
-  bool InvCC = false;
-  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
-          "Bad input!");
-
-  if (LHS.getOpcode() == ISD::Constant &&
-      cast<ConstantSDNode>(LHS)->isNullValue()) {
-    DoXform = true;
-  } else if (CC != ISD::SETCC_INVALID &&
-             RHS.getOpcode() == ISD::Constant &&
-             cast<ConstantSDNode>(RHS)->isNullValue()) {
-    std::swap(LHS, RHS);
-    SDValue Op0 = Slct.getOperand(0);
-    EVT OpVT = isSlctCC ? Op0.getValueType() :
-                          Op0.getOperand(0).getValueType();
-    bool isInt = OpVT.isInteger();
-    CC = ISD::getSetCCInverse(CC, isInt);
-
-    if (!TLI.isCondCodeLegal(CC, OpVT))
-      return SDValue();         // Inverse operator isn't legal.
-
-    DoXform = true;
-    InvCC = true;
-  }
-
-  if (DoXform) {
-    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
-    if (isSlctCC)
-      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
-                             Slct.getOperand(0), Slct.getOperand(1), CC);
-    SDValue CCOp = Slct.getOperand(0);
-    if (InvCC)
-      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
-                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
-    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
-                       CCOp, OtherOp, Result);
-  }
-  return SDValue();
-}
-
-/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
-static SDValue PerformADDCombine(SDNode *N,
-                                 TargetLowering::DAGCombinerInfo &DCI) {
-  // added by evan in r37685 with no testcase.
-  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
-
-  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
-  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
-    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
-    if (Result.getNode()) return Result;
-  }
-  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
-    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
-    if (Result.getNode()) return Result;
-  }
-
-  return SDValue();
-}
-
-/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
-static SDValue PerformSUBCombine(SDNode *N,
-                                 TargetLowering::DAGCombinerInfo &DCI) {
-  // added by evan in r37685 with no testcase.
-  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
-
-  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
-  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
-    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
-    if (Result.getNode()) return Result;
-  }
-
-  return SDValue();
-}
-
-static SDValue PerformMULCombine(SDNode *N,
-                                 TargetLowering::DAGCombinerInfo &DCI,
-                                 const ARMSubtarget *Subtarget) {
-  SelectionDAG &DAG = DCI.DAG;
-
-  if (Subtarget->isThumb1Only())
-    return SDValue();
-
-  if (DAG.getMachineFunction().
-      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
-    return SDValue();
-
-  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
-    return SDValue();
-
-  EVT VT = N->getValueType(0);
-  if (VT != MVT::i32)
-    return SDValue();
-
-  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
-  if (!C)
-    return SDValue();
-
-  uint64_t MulAmt = C->getZExtValue();
-  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
-  ShiftAmt = ShiftAmt & (32 - 1);
-  SDValue V = N->getOperand(0);
-  DebugLoc DL = N->getDebugLoc();
-
-  SDValue Res;
-  MulAmt >>= ShiftAmt;
-  if (isPowerOf2_32(MulAmt - 1)) {
-    // (mul x, 2^N + 1) => (add (shl x, N), x)
-    Res = DAG.getNode(ISD::ADD, DL, VT,
-                      V, DAG.getNode(ISD::SHL, DL, VT,
-                                     V, DAG.getConstant(Log2_32(MulAmt-1),
-                                                        MVT::i32)));
-  } else if (isPowerOf2_32(MulAmt + 1)) {
-    // (mul x, 2^N - 1) => (sub (shl x, N), x)
-    Res = DAG.getNode(ISD::SUB, DL, VT,
-                      DAG.getNode(ISD::SHL, DL, VT,
-                                  V, DAG.getConstant(Log2_32(MulAmt+1),
-                                                     MVT::i32)),
-                                                     V);
-  } else
-    return SDValue();
-
-  if (ShiftAmt != 0)
-    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
-                      DAG.getConstant(ShiftAmt, MVT::i32));
-
-  // Do not add new nodes to DAG combiner worklist.
-  DCI.CombineTo(N, Res, false);
-  return SDValue();
-}
-
-/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
-static SDValue PerformORCombine(SDNode *N,
-                                TargetLowering::DAGCombinerInfo &DCI,
-                                const ARMSubtarget *Subtarget) {
-  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
-  // reasonable.
-
-  // BFI is only available on V6T2+
-  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
-    return SDValue();
-
-  SelectionDAG &DAG = DCI.DAG;
-  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
-  DebugLoc DL = N->getDebugLoc();
-  // 1) or (and A, mask), val => ARMbfi A, val, mask
-  //      iff (val & mask) == val
-  //
-  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
-  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
-  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
-  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
-  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
-  //  (i.e., copy a bitfield value into another bitfield of the same width)
-  if (N0.getOpcode() != ISD::AND)
-    return SDValue();
-
-  EVT VT = N->getValueType(0);
-  if (VT != MVT::i32)
-    return SDValue();
-
-
-  // The value and the mask need to be constants so we can verify this is
-  // actually a bitfield set. If the mask is 0xffff, we can do better
-  // via a movt instruction, so don't use BFI in that case.
-  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
-  if (!C)
-    return SDValue();
-  unsigned Mask = C->getZExtValue();
-  if (Mask == 0xffff)
-    return SDValue();
-  SDValue Res;
-  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
-  if ((C = dyn_cast<ConstantSDNode>(N1))) {
-    unsigned Val = C->getZExtValue();
-    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
-      return SDValue();
-    Val >>= CountTrailingZeros_32(~Mask);
-
-    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
-                      DAG.getConstant(Val, MVT::i32),
-                      DAG.getConstant(Mask, MVT::i32));
-
-    // Do not add new nodes to DAG combiner worklist.
-    DCI.CombineTo(N, Res, false);
-  } else if (N1.getOpcode() == ISD::AND) {
-    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
-    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
-    if (!C)
-      return SDValue();
-    unsigned Mask2 = C->getZExtValue();
-
-    if (ARM::isBitFieldInvertedMask(Mask) &&
-        ARM::isBitFieldInvertedMask(~Mask2) &&
-        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
-      // The pack halfword instruction works better for masks that fit it,
-      // so use that when it's available.
-      if (Subtarget->hasT2ExtractPack() &&
-          (Mask == 0xffff || Mask == 0xffff0000))
-        return SDValue();
-      // 2a
-      unsigned lsb = CountTrailingZeros_32(Mask2);
-      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
-                        DAG.getConstant(lsb, MVT::i32));
-      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
-                        DAG.getConstant(Mask, MVT::i32));
-      // Do not add new nodes to DAG combiner worklist.
-      DCI.CombineTo(N, Res, false);
-    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
-               ARM::isBitFieldInvertedMask(Mask2) &&
-               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
-      // The pack halfword instruction works better for masks that fit it,
-      // so use that when it's available.
-      if (Subtarget->hasT2ExtractPack() &&
-          (Mask2 == 0xffff || Mask2 == 0xffff0000))
-        return SDValue();
-      // 2b
-      unsigned lsb = CountTrailingZeros_32(Mask);
-      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
-                        DAG.getConstant(lsb, MVT::i32));
-      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
-                                DAG.getConstant(Mask2, MVT::i32));
-      // Do not add new nodes to DAG combiner worklist.
-      DCI.CombineTo(N, Res, false);
-    }
-  }
-
-  return SDValue();
-}
-
-/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
-/// ARMISD::VMOVRRD.
-static SDValue PerformVMOVRRDCombine(SDNode *N,
-                                   TargetLowering::DAGCombinerInfo &DCI) {
-  // fmrrd(fmdrr x, y) -> x,y
-  SDValue InDouble = N->getOperand(0);
-  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
-    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
-  return SDValue();
-}
-
-/// PerformVDUPLANECombine - Target-specific dag combine xforms for
-/// ARMISD::VDUPLANE.
-static SDValue PerformVDUPLANECombine(SDNode *N,
-                                      TargetLowering::DAGCombinerInfo &DCI) {
-  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
-  // redundant.
-  SDValue Op = N->getOperand(0);
-  EVT VT = N->getValueType(0);
-
-  // Ignore bit_converts.
-  while (Op.getOpcode() == ISD::BIT_CONVERT)
-    Op = Op.getOperand(0);
-  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
-    return SDValue();
-
-  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
-  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
-  // The canonical VMOV for a zero vector uses a 32-bit element size.
-  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
-  unsigned EltBits;
-  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
-    EltSize = 8;
-  if (EltSize > VT.getVectorElementType().getSizeInBits())
-    return SDValue();
-
-  SDValue Res = DCI.DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
-  return DCI.CombineTo(N, Res, false);
-}
-
-/// getVShiftImm - Check if this is a valid build_vector for the immediate
-/// operand of a vector shift operation, where all the elements of the
-/// build_vector must have the same constant integer value.
-static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
-  // Ignore bit_converts.
-  while (Op.getOpcode() == ISD::BIT_CONVERT)
-    Op = Op.getOperand(0);
-  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
-  APInt SplatBits, SplatUndef;
-  unsigned SplatBitSize;
-  bool HasAnyUndefs;
-  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
-                                      HasAnyUndefs, ElementBits) ||
-      SplatBitSize > ElementBits)
-    return false;
-  Cnt = SplatBits.getSExtValue();
-  return true;
-}
-
-/// isVShiftLImm - Check if this is a valid build_vector for the immediate
-/// operand of a vector shift left operation.  That value must be in the range:
-///   0 <= Value < ElementBits for a left shift; or
-///   0 <= Value <= ElementBits for a long left shift.
-static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
-  assert(VT.isVector() && "vector shift count is not a vector type");
-  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
-  if (! getVShiftImm(Op, ElementBits, Cnt))
-    return false;
-  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
-}
-
-/// isVShiftRImm - Check if this is a valid build_vector for the immediate
-/// operand of a vector shift right operation.  For a shift opcode, the value
-/// is positive, but for an intrinsic the value count must be negative. The
-/// absolute value must be in the range:
-///   1 <= |Value| <= ElementBits for a right shift; or
-///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
-static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
-                         int64_t &Cnt) {
-  assert(VT.isVector() && "vector shift count is not a vector type");
-  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
-  if (! getVShiftImm(Op, ElementBits, Cnt))
-    return false;
-  if (isIntrinsic)
-    Cnt = -Cnt;
-  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
-}
-
-/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
-static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
-  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
-  switch (IntNo) {
-  default:
-    // Don't do anything for most intrinsics.
-    break;
-
-  // Vector shifts: check for immediate versions and lower them.
-  // Note: This is done during DAG combining instead of DAG legalizing because
-  // the build_vectors for 64-bit vector element shift counts are generally
-  // not legal, and it is hard to see their values after they get legalized to
-  // loads from a constant pool.
-  case Intrinsic::arm_neon_vshifts:
-  case Intrinsic::arm_neon_vshiftu:
-  case Intrinsic::arm_neon_vshiftls:
-  case Intrinsic::arm_neon_vshiftlu:
-  case Intrinsic::arm_neon_vshiftn:
-  case Intrinsic::arm_neon_vrshifts:
-  case Intrinsic::arm_neon_vrshiftu:
-  case Intrinsic::arm_neon_vrshiftn:
-  case Intrinsic::arm_neon_vqshifts:
-  case Intrinsic::arm_neon_vqshiftu:
-  case Intrinsic::arm_neon_vqshiftsu:
-  case Intrinsic::arm_neon_vqshiftns:
-  case Intrinsic::arm_neon_vqshiftnu:
-  case Intrinsic::arm_neon_vqshiftnsu:
-  case Intrinsic::arm_neon_vqrshiftns:
-  case Intrinsic::arm_neon_vqrshiftnu:
-  case Intrinsic::arm_neon_vqrshiftnsu: {
-    EVT VT = N->getOperand(1).getValueType();
-    int64_t Cnt;
-    unsigned VShiftOpc = 0;
-
-    switch (IntNo) {
-    case Intrinsic::arm_neon_vshifts:
-    case Intrinsic::arm_neon_vshiftu:
-      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
-        VShiftOpc = ARMISD::VSHL;
-        break;
-      }
-      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
-        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
-                     ARMISD::VSHRs : ARMISD::VSHRu);
-        break;
-      }
-      return SDValue();
-
-    case Intrinsic::arm_neon_vshiftls:
-    case Intrinsic::arm_neon_vshiftlu:
-      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
-        break;
-      llvm_unreachable("invalid shift count for vshll intrinsic");
-
-    case Intrinsic::arm_neon_vrshifts:
-    case Intrinsic::arm_neon_vrshiftu:
-      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
-        break;
-      return SDValue();
-
-    case Intrinsic::arm_neon_vqshifts:
-    case Intrinsic::arm_neon_vqshiftu:
-      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
-        break;
-      return SDValue();
-
-    case Intrinsic::arm_neon_vqshiftsu:
-      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
-        break;
-      llvm_unreachable("invalid shift count for vqshlu intrinsic");
-
-    case Intrinsic::arm_neon_vshiftn:
-    case Intrinsic::arm_neon_vrshiftn:
-    case Intrinsic::arm_neon_vqshiftns:
-    case Intrinsic::arm_neon_vqshiftnu:
-    case Intrinsic::arm_neon_vqshiftnsu:
-    case Intrinsic::arm_neon_vqrshiftns:
-    case Intrinsic::arm_neon_vqrshiftnu:
-    case Intrinsic::arm_neon_vqrshiftnsu:
-      // Narrowing shifts require an immediate right shift.
-      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
-        break;
-      llvm_unreachable("invalid shift count for narrowing vector shift "
-                       "intrinsic");
-
-    default:
-      llvm_unreachable("unhandled vector shift");
-    }
-
-    switch (IntNo) {
-    case Intrinsic::arm_neon_vshifts:
-    case Intrinsic::arm_neon_vshiftu:
-      // Opcode already set above.
-      break;
-    case Intrinsic::arm_neon_vshiftls:
-    case Intrinsic::arm_neon_vshiftlu:
-      if (Cnt == VT.getVectorElementType().getSizeInBits())
-        VShiftOpc = ARMISD::VSHLLi;
-      else
-        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
-                     ARMISD::VSHLLs : ARMISD::VSHLLu);
-      break;
-    case Intrinsic::arm_neon_vshiftn:
-      VShiftOpc = ARMISD::VSHRN; break;
-    case Intrinsic::arm_neon_vrshifts:
-      VShiftOpc = ARMISD::VRSHRs; break;
-    case Intrinsic::arm_neon_vrshiftu:
-      VShiftOpc = ARMISD::VRSHRu; break;
-    case Intrinsic::arm_neon_vrshiftn:
-      VShiftOpc = ARMISD::VRSHRN; break;
-    case Intrinsic::arm_neon_vqshifts:
-      VShiftOpc = ARMISD::VQSHLs; break;
-    case Intrinsic::arm_neon_vqshiftu:
-      VShiftOpc = ARMISD::VQSHLu; break;
-    case Intrinsic::arm_neon_vqshiftsu:
-      VShiftOpc = ARMISD::VQSHLsu; break;
-    case Intrinsic::arm_neon_vqshiftns:
-      VShiftOpc = ARMISD::VQSHRNs; break;
-    case Intrinsic::arm_neon_vqshiftnu:
-      VShiftOpc = ARMISD::VQSHRNu; break;
-    case Intrinsic::arm_neon_vqshiftnsu:
-      VShiftOpc = ARMISD::VQSHRNsu; break;
-    case Intrinsic::arm_neon_vqrshiftns:
-      VShiftOpc = ARMISD::VQRSHRNs; break;
-    case Intrinsic::arm_neon_vqrshiftnu:
-      VShiftOpc = ARMISD::VQRSHRNu; break;
-    case Intrinsic::arm_neon_vqrshiftnsu:
-      VShiftOpc = ARMISD::VQRSHRNsu; break;
-    }
-
-    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
-                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
-  }
-
-  case Intrinsic::arm_neon_vshiftins: {
-    EVT VT = N->getOperand(1).getValueType();
-    int64_t Cnt;
-    unsigned VShiftOpc = 0;
-
-    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
-      VShiftOpc = ARMISD::VSLI;
-    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
-      VShiftOpc = ARMISD::VSRI;
-    else {
-      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
-    }
-
-    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
-                       N->getOperand(1), N->getOperand(2),
-                       DAG.getConstant(Cnt, MVT::i32));
-  }
-
-  case Intrinsic::arm_neon_vqrshifts:
-  case Intrinsic::arm_neon_vqrshiftu:
-    // No immediate versions of these to check for.
-    break;
-  }
-
-  return SDValue();
-}
-
-/// PerformShiftCombine - Checks for immediate versions of vector shifts and
-/// lowers them.  As with the vector shift intrinsics, this is done during DAG
-/// combining instead of DAG legalizing because the build_vectors for 64-bit
-/// vector element shift counts are generally not legal, and it is hard to see
-/// their values after they get legalized to loads from a constant pool.
-static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
-                                   const ARMSubtarget *ST) {
-  EVT VT = N->getValueType(0);
-
-  // Nothing to be done for scalar shifts.
-  if (! VT.isVector())
-    return SDValue();
-
-  assert(ST->hasNEON() && "unexpected vector shift");
-  int64_t Cnt;
-
-  switch (N->getOpcode()) {
-  default: llvm_unreachable("unexpected shift opcode");
-
-  case ISD::SHL:
-    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
-      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
-                         DAG.getConstant(Cnt, MVT::i32));
-    break;
-
-  case ISD::SRA:
-  case ISD::SRL:
-    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
-      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
-                            ARMISD::VSHRs : ARMISD::VSHRu);
-      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
-                         DAG.getConstant(Cnt, MVT::i32));
-    }
-  }
-  return SDValue();
-}
-
-/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
-/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
-static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
-                                    const ARMSubtarget *ST) {
-  SDValue N0 = N->getOperand(0);
-
-  // Check for sign- and zero-extensions of vector extract operations of 8-
-  // and 16-bit vector elements.  NEON supports these directly.  They are
-  // handled during DAG combining because type legalization will promote them
-  // to 32-bit types and it is messy to recognize the operations after that.
-  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
-    SDValue Vec = N0.getOperand(0);
-    SDValue Lane = N0.getOperand(1);
-    EVT VT = N->getValueType(0);
-    EVT EltVT = N0.getValueType();
-    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
-
-    if (VT == MVT::i32 &&
-        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
-        TLI.isTypeLegal(Vec.getValueType())) {
-
-      unsigned Opc = 0;
-      switch (N->getOpcode()) {
-      default: llvm_unreachable("unexpected opcode");
-      case ISD::SIGN_EXTEND:
-        Opc = ARMISD::VGETLANEs;
-        break;
-      case ISD::ZERO_EXTEND:
-      case ISD::ANY_EXTEND:
-        Opc = ARMISD::VGETLANEu;
-        break;
-      }
-      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
-    }
-  }
-
-  return SDValue();
-}
-
-/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
-/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
-static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
-                                       const ARMSubtarget *ST) {
-  // If the target supports NEON, try to use vmax/vmin instructions for f32
-  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
-  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
-  // a NaN; only do the transformation when it matches that behavior.
-
-  // For now only do this when using NEON for FP operations; if using VFP, it
-  // is not obvious that the benefit outweighs the cost of switching to the
-  // NEON pipeline.
-  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
-      N->getValueType(0) != MVT::f32)
-    return SDValue();
-
-  SDValue CondLHS = N->getOperand(0);
-  SDValue CondRHS = N->getOperand(1);
-  SDValue LHS = N->getOperand(2);
-  SDValue RHS = N->getOperand(3);
-  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
-
-  unsigned Opcode = 0;
-  bool IsReversed;
-  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
-    IsReversed = false; // x CC y ? x : y
-  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
-    IsReversed = true ; // x CC y ? y : x
-  } else {
-    return SDValue();
-  }
-
-  bool IsUnordered;
-  switch (CC) {
-  default: break;
-  case ISD::SETOLT:
-  case ISD::SETOLE:
-  case ISD::SETLT:
-  case ISD::SETLE:
-  case ISD::SETULT:
-  case ISD::SETULE:
-    // If LHS is NaN, an ordered comparison will be false and the result will
-    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
-    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
-    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
-    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
-      break;
-    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
-    // will return -0, so vmin can only be used for unsafe math or if one of
-    // the operands is known to be nonzero.
-    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
-        !UnsafeFPMath &&
-        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
-      break;
-    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
-    break;
-
-  case ISD::SETOGT:
-  case ISD::SETOGE:
-  case ISD::SETGT:
-  case ISD::SETGE:
-  case ISD::SETUGT:
-  case ISD::SETUGE:
-    // If LHS is NaN, an ordered comparison will be false and the result will
-    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
-    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
-    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
-    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
-      break;
-    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
-    // will return +0, so vmax can only be used for unsafe math or if one of
-    // the operands is known to be nonzero.
-    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
-        !UnsafeFPMath &&
-        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
-      break;
-    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
-    break;
-  }
-
-  if (!Opcode)
-    return SDValue();
-  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
-}
-
-SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
-                                             DAGCombinerInfo &DCI) const {
-  switch (N->getOpcode()) {
-  default: break;
-  case ISD::ADD:        return PerformADDCombine(N, DCI);
-  case ISD::SUB:        return PerformSUBCombine(N, DCI);
-  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
-  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
-  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
-  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
-  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
-  case ISD::SHL:
-  case ISD::SRA:
-  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
-  case ISD::SIGN_EXTEND:
-  case ISD::ZERO_EXTEND:
-  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
-  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
-  }
-  return SDValue();
-}
-
-bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
-  if (!Subtarget->hasV6Ops())
-    // Pre-v6 does not support unaligned mem access.
-    return false;
-
-  // v6+ may or may not support unaligned mem access depending on the system
-  // configuration.
-  // FIXME: This is pretty conservative. Should we provide cmdline option to
-  // control the behaviour?
-  if (!Subtarget->isTargetDarwin())
-    return false;
-
-  switch (VT.getSimpleVT().SimpleTy) {
-  default:
-    return false;
-  case MVT::i8:
-  case MVT::i16:
-  case MVT::i32:
-    return true;
-  // FIXME: VLD1 etc with standard alignment is legal.
-  }
-}
-
-static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
-  if (V < 0)
-    return false;
-
-  unsigned Scale = 1;
-  switch (VT.getSimpleVT().SimpleTy) {
-  default: return false;
-  case MVT::i1:
-  case MVT::i8:
-    // Scale == 1;
-    break;
-  case MVT::i16:
-    // Scale == 2;
-    Scale = 2;
-    break;
-  case MVT::i32:
-    // Scale == 4;
-    Scale = 4;
-    break;
-  }
-
-  if ((V & (Scale - 1)) != 0)
-    return false;
-  V /= Scale;
-  return V == (V & ((1LL << 5) - 1));
-}
-
-static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
-                                      const ARMSubtarget *Subtarget) {
-  bool isNeg = false;
-  if (V < 0) {
-    isNeg = true;
-    V = - V;
-  }
-
-  switch (VT.getSimpleVT().SimpleTy) {
-  default: return false;
-  case MVT::i1:
-  case MVT::i8:
-  case MVT::i16:
-  case MVT::i32:
-    // + imm12 or - imm8
-    if (isNeg)
-      return V == (V & ((1LL << 8) - 1));
-    return V == (V & ((1LL << 12) - 1));
-  case MVT::f32:
-  case MVT::f64:
-    // Same as ARM mode. FIXME: NEON?
-    if (!Subtarget->hasVFP2())
-      return false;
-    if ((V & 3) != 0)
-      return false;
-    V >>= 2;
-    return V == (V & ((1LL << 8) - 1));
-  }
-}
-
-/// isLegalAddressImmediate - Return true if the integer value can be used
-/// as the offset of the target addressing mode for load / store of the
-/// given type.
-static bool isLegalAddressImmediate(int64_t V, EVT VT,
-                                    const ARMSubtarget *Subtarget) {
-  if (V == 0)
-    return true;
-
-  if (!VT.isSimple())
-    return false;
-
-  if (Subtarget->isThumb1Only())
-    return isLegalT1AddressImmediate(V, VT);
-  else if (Subtarget->isThumb2())
-    return isLegalT2AddressImmediate(V, VT, Subtarget);
-
-  // ARM mode.
-  if (V < 0)
-    V = - V;
-  switch (VT.getSimpleVT().SimpleTy) {
-  default: return false;
-  case MVT::i1:
-  case MVT::i8:
-  case MVT::i32:
-    // +- imm12
-    return V == (V & ((1LL << 12) - 1));
-  case MVT::i16:
-    // +- imm8
-    return V == (V & ((1LL << 8) - 1));
-  case MVT::f32:
-  case MVT::f64:
-    if (!Subtarget->hasVFP2()) // FIXME: NEON?
-      return false;
-    if ((V & 3) != 0)
-      return false;
-    V >>= 2;
-    return V == (V & ((1LL << 8) - 1));
-  }
-}
-
-bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
-                                                      EVT VT) const {
-  int Scale = AM.Scale;
-  if (Scale < 0)
-    return false;
-
-  switch (VT.getSimpleVT().SimpleTy) {
-  default: return false;
-  case MVT::i1:
-  case MVT::i8:
-  case MVT::i16:
-  case MVT::i32:
-    if (Scale == 1)
-      return true;
-    // r + r << imm
-    Scale = Scale & ~1;
-    return Scale == 2 || Scale == 4 || Scale == 8;
-  case MVT::i64:
-    // r + r
-    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
-      return true;
-    return false;
-  case MVT::isVoid:
-    // Note, we allow "void" uses (basically, uses that aren't loads or
-    // stores), because arm allows folding a scale into many arithmetic
-    // operations.  This should be made more precise and revisited later.
-
-    // Allow r << imm, but the imm has to be a multiple of two.
-    if (Scale & 1) return false;
-    return isPowerOf2_32(Scale);
-  }
-}
-
-/// isLegalAddressingMode - Return true if the addressing mode represented
-/// by AM is legal for this target, for a load/store of the specified type.
-bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
-                                              const Type *Ty) const {
-  EVT VT = getValueType(Ty, true);
-  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
-    return false;
-
-  // Can never fold addr of global into load/store.
-  if (AM.BaseGV)
-    return false;
-
-  switch (AM.Scale) {
-  case 0:  // no scale reg, must be "r+i" or "r", or "i".
-    break;
-  case 1:
-    if (Subtarget->isThumb1Only())
-      return false;
-    // FALL THROUGH.
-  default:
-    // ARM doesn't support any R+R*scale+imm addr modes.
-    if (AM.BaseOffs)
-      return false;
-
-    if (!VT.isSimple())
-      return false;
-
-    if (Subtarget->isThumb2())
-      return isLegalT2ScaledAddressingMode(AM, VT);
-
-    int Scale = AM.Scale;
-    switch (VT.getSimpleVT().SimpleTy) {
-    default: return false;
-    case MVT::i1:
-    case MVT::i8:
-    case MVT::i32:
-      if (Scale < 0) Scale = -Scale;
-      if (Scale == 1)
-        return true;
-      // r + r << imm
-      return isPowerOf2_32(Scale & ~1);
-    case MVT::i16:
-    case MVT::i64:
-      // r + r
-      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
-        return true;
-      return false;
-
-    case MVT::isVoid:
-      // Note, we allow "void" uses (basically, uses that aren't loads or
-      // stores), because arm allows folding a scale into many arithmetic
-      // operations.  This should be made more precise and revisited later.
-
-      // Allow r << imm, but the imm has to be a multiple of two.
-      if (Scale & 1) return false;
-      return isPowerOf2_32(Scale);
-    }
-    break;
-  }
-  return true;
-}
-
-/// isLegalICmpImmediate - Return true if the specified immediate is legal
-/// icmp immediate, that is the target has icmp instructions which can compare
-/// a register against the immediate without having to materialize the
-/// immediate into a register.
-bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
-  if (!Subtarget->isThumb())
-    return ARM_AM::getSOImmVal(Imm) != -1;
-  if (Subtarget->isThumb2())
-    return ARM_AM::getT2SOImmVal(Imm) != -1; 
-  return Imm >= 0 && Imm <= 255;
-}
-
-static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
-                                      bool isSEXTLoad, SDValue &Base,
-                                      SDValue &Offset, bool &isInc,
-                                      SelectionDAG &DAG) {
-  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
-    return false;
-
-  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
-    // AddressingMode 3
-    Base = Ptr->getOperand(0);
-    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
-      int RHSC = (int)RHS->getZExtValue();
-      if (RHSC < 0 && RHSC > -256) {
-        assert(Ptr->getOpcode() == ISD::ADD);
-        isInc = false;
-        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
-        return true;
-      }
-    }
-    isInc = (Ptr->getOpcode() == ISD::ADD);
-    Offset = Ptr->getOperand(1);
-    return true;
-  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
-    // AddressingMode 2
-    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
-      int RHSC = (int)RHS->getZExtValue();
-      if (RHSC < 0 && RHSC > -0x1000) {
-        assert(Ptr->getOpcode() == ISD::ADD);
-        isInc = false;
-        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
-        Base = Ptr->getOperand(0);
-        return true;
-      }
-    }
-
-    if (Ptr->getOpcode() == ISD::ADD) {
-      isInc = true;
-      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
-      if (ShOpcVal != ARM_AM::no_shift) {
-        Base = Ptr->getOperand(1);
-        Offset = Ptr->getOperand(0);
-      } else {
-        Base = Ptr->getOperand(0);
-        Offset = Ptr->getOperand(1);
-      }
-      return true;
-    }
-
-    isInc = (Ptr->getOpcode() == ISD::ADD);
-    Base = Ptr->getOperand(0);
-    Offset = Ptr->getOperand(1);
-    return true;
-  }
-
-  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
-  return false;
-}
-
-static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
-                                     bool isSEXTLoad, SDValue &Base,
-                                     SDValue &Offset, bool &isInc,
-                                     SelectionDAG &DAG) {
-  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
-    return false;
-
-  Base = Ptr->getOperand(0);
-  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
-    int RHSC = (int)RHS->getZExtValue();
-    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
-      assert(Ptr->getOpcode() == ISD::ADD);
-      isInc = false;
-      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
-      return true;
-    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
-      isInc = Ptr->getOpcode() == ISD::ADD;
-      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
-      return true;
-    }
-  }
-
-  return false;
-}
-
-/// getPreIndexedAddressParts - returns true by value, base pointer and
-/// offset pointer and addressing mode by reference if the node's address
-/// can be legally represented as pre-indexed load / store address.
-bool
-ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
-                                             SDValue &Offset,
-                                             ISD::MemIndexedMode &AM,
-                                             SelectionDAG &DAG) const {
-  if (Subtarget->isThumb1Only())
-    return false;
-
-  EVT VT;
-  SDValue Ptr;
-  bool isSEXTLoad = false;
-  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
-    Ptr = LD->getBasePtr();
-    VT  = LD->getMemoryVT();
-    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
-  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
-    Ptr = ST->getBasePtr();
-    VT  = ST->getMemoryVT();
-  } else
-    return false;
-
-  bool isInc;
-  bool isLegal = false;
-  if (Subtarget->isThumb2())
-    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
-                                       Offset, isInc, DAG);
-  else
-    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
-                                        Offset, isInc, DAG);
-  if (!isLegal)
-    return false;
-
-  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
-  return true;
-}
-
-/// getPostIndexedAddressParts - returns true by value, base pointer and
-/// offset pointer and addressing mode by reference if this node can be
-/// combined with a load / store to form a post-indexed load / store.
-bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
-                                                   SDValue &Base,
-                                                   SDValue &Offset,
-                                                   ISD::MemIndexedMode &AM,
-                                                   SelectionDAG &DAG) const {
-  if (Subtarget->isThumb1Only())
-    return false;
-
-  EVT VT;
-  SDValue Ptr;
-  bool isSEXTLoad = false;
-  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
-    VT  = LD->getMemoryVT();
-    Ptr = LD->getBasePtr();
-    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
-  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
-    VT  = ST->getMemoryVT();
-    Ptr = ST->getBasePtr();
-  } else
-    return false;
-
-  bool isInc;
-  bool isLegal = false;
-  if (Subtarget->isThumb2())
-    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
-                                       isInc, DAG);
-  else
-    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
-                                        isInc, DAG);
-  if (!isLegal)
-    return false;
-
-  if (Ptr != Base) {
-    // Swap base ptr and offset to catch more post-index load / store when
-    // it's legal. In Thumb2 mode, offset must be an immediate.
-    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
-        !Subtarget->isThumb2())
-      std::swap(Base, Offset);
-
-    // Post-indexed load / store update the base pointer.
-    if (Ptr != Base)
-      return false;
-  }
-
-  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
-  return true;
-}
-
-void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
-                                                       const APInt &Mask,
-                                                       APInt &KnownZero,
-                                                       APInt &KnownOne,
-                                                       const SelectionDAG &DAG,
-                                                       unsigned Depth) const {
-  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
-  switch (Op.getOpcode()) {
-  default: break;
-  case ARMISD::CMOV: {
-    // Bits are known zero/one if known on the LHS and RHS.
-    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
-    if (KnownZero == 0 && KnownOne == 0) return;
-
-    APInt KnownZeroRHS, KnownOneRHS;
-    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
-                          KnownZeroRHS, KnownOneRHS, Depth+1);
-    KnownZero &= KnownZeroRHS;
-    KnownOne  &= KnownOneRHS;
-    return;
-  }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//                           ARM Inline Assembly Support
-//===----------------------------------------------------------------------===//
-
-/// getConstraintType - Given a constraint letter, return the type of
-/// constraint it is for this target.
-ARMTargetLowering::ConstraintType
-ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
-  if (Constraint.size() == 1) {
-    switch (Constraint[0]) {
-    default:  break;
-    case 'l': return C_RegisterClass;
-    case 'w': return C_RegisterClass;
-    }
-  }
-  return TargetLowering::getConstraintType(Constraint);
-}
-
-std::pair<unsigned, const TargetRegisterClass*>
-ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
-                                                EVT VT) const {
-  if (Constraint.size() == 1) {
-    // GCC ARM Constraint Letters
-    switch (Constraint[0]) {
-    case 'l':
-      if (Subtarget->isThumb())
-        return std::make_pair(0U, ARM::tGPRRegisterClass);
-      else
-        return std::make_pair(0U, ARM::GPRRegisterClass);
-    case 'r':
-      return std::make_pair(0U, ARM::GPRRegisterClass);
-    case 'w':
-      if (VT == MVT::f32)
-        return std::make_pair(0U, ARM::SPRRegisterClass);
-      if (VT.getSizeInBits() == 64)
-        return std::make_pair(0U, ARM::DPRRegisterClass);
-      if (VT.getSizeInBits() == 128)
-        return std::make_pair(0U, ARM::QPRRegisterClass);
-      break;
-    }
-  }
-  if (StringRef("{cc}").equals_lower(Constraint))
-    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
-
-  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
-}
-
-std::vector<unsigned> ARMTargetLowering::
-getRegClassForInlineAsmConstraint(const std::string &Constraint,
-                                  EVT VT) const {
-  if (Constraint.size() != 1)
-    return std::vector<unsigned>();
-
-  switch (Constraint[0]) {      // GCC ARM Constraint Letters
-  default: break;
-  case 'l':
-    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
-                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
-                                 0);
-  case 'r':
-    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
-                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
-                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
-                                 ARM::R12, ARM::LR, 0);
-  case 'w':
-    if (VT == MVT::f32)
-      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
-                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
-                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
-                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
-                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
-                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
-                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
-                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
-    if (VT.getSizeInBits() == 64)
-      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
-                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
-                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
-                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
-    if (VT.getSizeInBits() == 128)
-      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
-                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
-      break;
-  }
-
-  return std::vector<unsigned>();
-}
-
-/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
-/// vector.  If it is invalid, don't add anything to Ops.
-void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
-                                                     char Constraint,
-                                                     std::vector<SDValue>&Ops,
-                                                     SelectionDAG &DAG) const {
-  SDValue Result(0, 0);
-
-  switch (Constraint) {
-  default: break;
-  case 'I': case 'J': case 'K': case 'L':
-  case 'M': case 'N': case 'O':
-    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
-    if (!C)
-      return;
-
-    int64_t CVal64 = C->getSExtValue();
-    int CVal = (int) CVal64;
-    // None of these constraints allow values larger than 32 bits.  Check
-    // that the value fits in an int.
-    if (CVal != CVal64)
-      return;
-
-    switch (Constraint) {
-      case 'I':
-        if (Subtarget->isThumb1Only()) {
-          // This must be a constant between 0 and 255, for ADD
-          // immediates.
-          if (CVal >= 0 && CVal <= 255)
-            break;
-        } else if (Subtarget->isThumb2()) {
-          // A constant that can be used as an immediate value in a
-          // data-processing instruction.
-          if (ARM_AM::getT2SOImmVal(CVal) != -1)
-            break;
-        } else {
-          // A constant that can be used as an immediate value in a
-          // data-processing instruction.
-          if (ARM_AM::getSOImmVal(CVal) != -1)
-            break;
-        }
-        return;
-
-      case 'J':
-        if (Subtarget->isThumb()) {  // FIXME thumb2
-          // This must be a constant between -255 and -1, for negated ADD
-          // immediates. This can be used in GCC with an "n" modifier that
-          // prints the negated value, for use with SUB instructions. It is
-          // not useful otherwise but is implemented for compatibility.
-          if (CVal >= -255 && CVal <= -1)
-            break;
-        } else {
-          // This must be a constant between -4095 and 4095. It is not clear
-          // what this constraint is intended for. Implemented for
-          // compatibility with GCC.
-          if (CVal >= -4095 && CVal <= 4095)
-            break;
-        }
-        return;
-
-      case 'K':
-        if (Subtarget->isThumb1Only()) {
-          // A 32-bit value where only one byte has a nonzero value. Exclude
-          // zero to match GCC. This constraint is used by GCC internally for
-          // constants that can be loaded with a move/shift combination.
-          // It is not useful otherwise but is implemented for compatibility.
-          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
-            break;
-        } else if (Subtarget->isThumb2()) {
-          // A constant whose bitwise inverse can be used as an immediate
-          // value in a data-processing instruction. This can be used in GCC
-          // with a "B" modifier that prints the inverted value, for use with
-          // BIC and MVN instructions. It is not useful otherwise but is
-          // implemented for compatibility.
-          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
-            break;
-        } else {
-          // A constant whose bitwise inverse can be used as an immediate
-          // value in a data-processing instruction. This can be used in GCC
-          // with a "B" modifier that prints the inverted value, for use with
-          // BIC and MVN instructions. It is not useful otherwise but is
-          // implemented for compatibility.
-          if (ARM_AM::getSOImmVal(~CVal) != -1)
-            break;
-        }
-        return;
-
-      case 'L':
-        if (Subtarget->isThumb1Only()) {
-          // This must be a constant between -7 and 7,
-          // for 3-operand ADD/SUB immediate instructions.
-          if (CVal >= -7 && CVal < 7)
-            break;
-        } else if (Subtarget->isThumb2()) {
-          // A constant whose negation can be used as an immediate value in a
-          // data-processing instruction. This can be used in GCC with an "n"
-          // modifier that prints the negated value, for use with SUB
-          // instructions. It is not useful otherwise but is implemented for
-          // compatibility.
-          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
-            break;
-        } else {
-          // A constant whose negation can be used as an immediate value in a
-          // data-processing instruction. This can be used in GCC with an "n"
-          // modifier that prints the negated value, for use with SUB
-          // instructions. It is not useful otherwise but is implemented for
-          // compatibility.
-          if (ARM_AM::getSOImmVal(-CVal) != -1)
-            break;
-        }
-        return;
-
-      case 'M':
-        if (Subtarget->isThumb()) { // FIXME thumb2
-          // This must be a multiple of 4 between 0 and 1020, for
-          // ADD sp + immediate.
-          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
-            break;
-        } else {
-          // A power of two or a constant between 0 and 32.  This is used in
-          // GCC for the shift amount on shifted register operands, but it is
-          // useful in general for any shift amounts.
-          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
-            break;
-        }
-        return;
-
-      case 'N':
-        if (Subtarget->isThumb()) {  // FIXME thumb2
-          // This must be a constant between 0 and 31, for shift amounts.
-          if (CVal >= 0 && CVal <= 31)
-            break;
-        }
-        return;
-
-      case 'O':
-        if (Subtarget->isThumb()) {  // FIXME thumb2
-          // This must be a multiple of 4 between -508 and 508, for
-          // ADD/SUB sp = sp + immediate.
-          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
-            break;
-        }
-        return;
-    }
-    Result = DAG.getTargetConstant(CVal, Op.getValueType());
-    break;
-  }
-
-  if (Result.getNode()) {
-    Ops.push_back(Result);
-    return;
-  }
-  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
-}
-
-bool
-ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
-  // The ARM target isn't yet aware of offsets.
-  return false;
-}
-
-int ARM::getVFPf32Imm(const APFloat &FPImm) {
-  APInt Imm = FPImm.bitcastToAPInt();
-  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
-  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
-  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
-
-  // We can handle 4 bits of mantissa.
-  // mantissa = (16+UInt(e:f:g:h))/16.
-  if (Mantissa & 0x7ffff)
-    return -1;
-  Mantissa >>= 19;
-  if ((Mantissa & 0xf) != Mantissa)
-    return -1;
-
-  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
-  if (Exp < -3 || Exp > 4)
-    return -1;
-  Exp = ((Exp+3) & 0x7) ^ 4;
-
-  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
-}
-
-int ARM::getVFPf64Imm(const APFloat &FPImm) {
-  APInt Imm = FPImm.bitcastToAPInt();
-  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
-  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
-  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
-
-  // We can handle 4 bits of mantissa.
-  // mantissa = (16+UInt(e:f:g:h))/16.
-  if (Mantissa & 0xffffffffffffLL)
-    return -1;
-  Mantissa >>= 48;
-  if ((Mantissa & 0xf) != Mantissa)
-    return -1;
-
-  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
-  if (Exp < -3 || Exp > 4)
-    return -1;
-  Exp = ((Exp+3) & 0x7) ^ 4;
-
-  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
-}
-
-bool ARM::isBitFieldInvertedMask(unsigned v) {
-  if (v == 0xffffffff)
-    return 0;
-  // there can be 1's on either or both "outsides", all the "inside"
-  // bits must be 0's
-  unsigned int lsb = 0, msb = 31;
-  while (v & (1 << msb)) --msb;
-  while (v & (1 << lsb)) ++lsb;
-  for (unsigned int i = lsb; i <= msb; ++i) {
-    if (v & (1 << i))
-      return 0;
-  }
-  return 1;
-}
-
-/// isFPImmLegal - Returns true if the target can instruction select the
-/// specified FP immediate natively. If false, the legalizer will
-/// materialize the FP immediate as a load from a constant pool.
-bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
-  if (!Subtarget->hasVFP3())
-    return false;
-  if (VT == MVT::f32)
-    return ARM::getVFPf32Imm(Imm) != -1;
-  if (VT == MVT::f64)
-    return ARM::getVFPf64Imm(Imm) != -1;
-  return false;
-}





More information about the llvm-branch-commits mailing list