[llvm-branch-commits] [cfe-branch] r112516 - /cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig
Daniel Dunbar
daniel at zuster.org
Mon Aug 30 13:23:11 PDT 2010
Author: ddunbar
Date: Mon Aug 30 15:23:11 2010
New Revision: 112516
URL: http://llvm.org/viewvc/llvm-project?rev=112516&view=rev
Log:
Remove stray merge files.
Removed:
cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig
Removed: cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig
URL: http://llvm.org/viewvc/llvm-project/cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig?rev=112515&view=auto
==============================================================================
--- cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig (original)
+++ cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig (removed)
@@ -1,2257 +0,0 @@
-//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CodeGenFunction.h"
-#include "CGObjCRuntime.h"
-#include "CodeGenModule.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/DeclObjC.h"
-#include "clang/AST/RecordLayout.h"
-#include "clang/AST/StmtVisitor.h"
-#include "clang/Basic/TargetInfo.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Target/TargetData.h"
-#include <cstdarg>
-
-using namespace clang;
-using namespace CodeGen;
-using llvm::Value;
-
-//===----------------------------------------------------------------------===//
-// Scalar Expression Emitter
-//===----------------------------------------------------------------------===//
-
-struct BinOpInfo {
- Value *LHS;
- Value *RHS;
- QualType Ty; // Computation Type.
- BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
- const Expr *E; // Entire expr, for error unsupported. May not be binop.
-};
-
-namespace {
-class ScalarExprEmitter
- : public StmtVisitor<ScalarExprEmitter, Value*> {
- CodeGenFunction &CGF;
- CGBuilderTy &Builder;
- bool IgnoreResultAssign;
- llvm::LLVMContext &VMContext;
-public:
-
- ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
- : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
- VMContext(cgf.getLLVMContext()) {
- }
-
- //===--------------------------------------------------------------------===//
- // Utilities
- //===--------------------------------------------------------------------===//
-
- bool TestAndClearIgnoreResultAssign() {
- bool I = IgnoreResultAssign;
- IgnoreResultAssign = false;
- return I;
- }
-
- const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
- LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
- LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
-
- Value *EmitLoadOfLValue(LValue LV, QualType T) {
- return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
- }
-
- /// EmitLoadOfLValue - Given an expression with complex type that represents a
- /// value l-value, this method emits the address of the l-value, then loads
- /// and returns the result.
- Value *EmitLoadOfLValue(const Expr *E) {
- return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
- }
-
- /// EmitConversionToBool - Convert the specified expression value to a
- /// boolean (i1) truth value. This is equivalent to "Val != 0".
- Value *EmitConversionToBool(Value *Src, QualType DstTy);
-
- /// EmitScalarConversion - Emit a conversion from the specified type to the
- /// specified destination type, both of which are LLVM scalar types.
- Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
-
- /// EmitComplexToScalarConversion - Emit a conversion from the specified
- /// complex type to the specified destination type, where the destination type
- /// is an LLVM scalar type.
- Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
- QualType SrcTy, QualType DstTy);
-
- /// EmitNullValue - Emit a value that corresponds to null for the given type.
- Value *EmitNullValue(QualType Ty);
-
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
-
- Value *VisitStmt(Stmt *S) {
- S->dump(CGF.getContext().getSourceManager());
- assert(0 && "Stmt can't have complex result type!");
- return 0;
- }
- Value *VisitExpr(Expr *S);
-
- Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
-
- // Leaves.
- Value *VisitIntegerLiteral(const IntegerLiteral *E) {
- return llvm::ConstantInt::get(VMContext, E->getValue());
- }
- Value *VisitFloatingLiteral(const FloatingLiteral *E) {
- return llvm::ConstantFP::get(VMContext, E->getValue());
- }
- Value *VisitCharacterLiteral(const CharacterLiteral *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
- }
- Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitGNUNullExpr(const GNUNullExpr *E) {
- return EmitNullValue(E->getType());
- }
- Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
- return llvm::ConstantInt::get(ConvertType(E->getType()),
- CGF.getContext().typesAreCompatible(
- E->getArgType1(), E->getArgType2()));
- }
- Value *VisitOffsetOfExpr(const OffsetOfExpr *E);
- Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
- Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
- llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
- return Builder.CreateBitCast(V, ConvertType(E->getType()));
- }
-
- // l-values.
- Value *VisitDeclRefExpr(DeclRefExpr *E) {
- Expr::EvalResult Result;
- if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
- assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
- return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
- }
- return EmitLoadOfLValue(E);
- }
- Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
- return CGF.EmitObjCSelectorExpr(E);
- }
- Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
- return CGF.EmitObjCProtocolExpr(E);
- }
- Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
- return EmitLoadOfLValue(E);
- }
- Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
- return EmitLoadOfLValue(E);
- }
- Value *VisitObjCImplicitSetterGetterRefExpr(
- ObjCImplicitSetterGetterRefExpr *E) {
- return EmitLoadOfLValue(E);
- }
- Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
- return CGF.EmitObjCMessageExpr(E).getScalarVal();
- }
-
- Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
- LValue LV = CGF.EmitObjCIsaExpr(E);
- Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
- return V;
- }
-
- Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
- Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
- Value *VisitMemberExpr(MemberExpr *E);
- Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
- Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
- return EmitLoadOfLValue(E);
- }
-
- Value *VisitInitListExpr(InitListExpr *E);
-
- Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
- return CGF.CGM.EmitNullConstant(E->getType());
- }
- Value *VisitCastExpr(CastExpr *E) {
- // Make sure to evaluate VLA bounds now so that we have them for later.
- if (E->getType()->isVariablyModifiedType())
- CGF.EmitVLASize(E->getType());
-
- return EmitCastExpr(E);
- }
- Value *EmitCastExpr(CastExpr *E);
-
- Value *VisitCallExpr(const CallExpr *E) {
- if (E->getCallReturnType()->isReferenceType())
- return EmitLoadOfLValue(E);
-
- return CGF.EmitCallExpr(E).getScalarVal();
- }
-
- Value *VisitStmtExpr(const StmtExpr *E);
-
- Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
-
- // Unary Operators.
- Value *VisitUnaryPostDec(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, false, false);
- }
- Value *VisitUnaryPostInc(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, true, false);
- }
- Value *VisitUnaryPreDec(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, false, true);
- }
- Value *VisitUnaryPreInc(const UnaryOperator *E) {
- LValue LV = EmitLValue(E->getSubExpr());
- return EmitScalarPrePostIncDec(E, LV, true, true);
- }
-
- llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre);
-
-
- Value *VisitUnaryAddrOf(const UnaryOperator *E) {
- return EmitLValue(E->getSubExpr()).getAddress();
- }
- Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
- Value *VisitUnaryPlus(const UnaryOperator *E) {
- // This differs from gcc, though, most likely due to a bug in gcc.
- TestAndClearIgnoreResultAssign();
- return Visit(E->getSubExpr());
- }
- Value *VisitUnaryMinus (const UnaryOperator *E);
- Value *VisitUnaryNot (const UnaryOperator *E);
- Value *VisitUnaryLNot (const UnaryOperator *E);
- Value *VisitUnaryReal (const UnaryOperator *E);
- Value *VisitUnaryImag (const UnaryOperator *E);
- Value *VisitUnaryExtension(const UnaryOperator *E) {
- return Visit(E->getSubExpr());
- }
- Value *VisitUnaryOffsetOf(const UnaryOperator *E);
-
- // C++
- Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
- return Visit(DAE->getExpr());
- }
- Value *VisitCXXThisExpr(CXXThisExpr *TE) {
- return CGF.LoadCXXThis();
- }
-
- Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
- return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
- }
- Value *VisitCXXNewExpr(const CXXNewExpr *E) {
- return CGF.EmitCXXNewExpr(E);
- }
- Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
- CGF.EmitCXXDeleteExpr(E);
- return 0;
- }
- Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
- return llvm::ConstantInt::get(Builder.getInt1Ty(),
- E->EvaluateTrait(CGF.getContext()));
- }
-
- Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
- // C++ [expr.pseudo]p1:
- // The result shall only be used as the operand for the function call
- // operator (), and the result of such a call has type void. The only
- // effect is the evaluation of the postfix-expression before the dot or
- // arrow.
- CGF.EmitScalarExpr(E->getBase());
- return 0;
- }
-
- Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
- return EmitNullValue(E->getType());
- }
-
- Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
- CGF.EmitCXXThrowExpr(E);
- return 0;
- }
-
- // Binary Operators.
- Value *EmitMul(const BinOpInfo &Ops) {
- if (Ops.Ty->hasSignedIntegerRepresentation()) {
- switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Undefined:
- return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
- case LangOptions::SOB_Defined:
- return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
- case LangOptions::SOB_Trapping:
- return EmitOverflowCheckedBinOp(Ops);
- }
- }
-
- if (Ops.LHS->getType()->isFPOrFPVectorTy())
- return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
- return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
- }
- /// Create a binary op that checks for overflow.
- /// Currently only supports +, - and *.
- Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
- Value *EmitDiv(const BinOpInfo &Ops);
- Value *EmitRem(const BinOpInfo &Ops);
- Value *EmitAdd(const BinOpInfo &Ops);
- Value *EmitSub(const BinOpInfo &Ops);
- Value *EmitShl(const BinOpInfo &Ops);
- Value *EmitShr(const BinOpInfo &Ops);
- Value *EmitAnd(const BinOpInfo &Ops) {
- return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
- }
- Value *EmitXor(const BinOpInfo &Ops) {
- return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
- }
- Value *EmitOr (const BinOpInfo &Ops) {
- return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
- }
-
- BinOpInfo EmitBinOps(const BinaryOperator *E);
- LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
- Value *&Result);
-
- Value *EmitCompoundAssign(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
-
- // Binary operators and binary compound assignment operators.
-#define HANDLEBINOP(OP) \
- Value *VisitBin ## OP(const BinaryOperator *E) { \
- return Emit ## OP(EmitBinOps(E)); \
- } \
- Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
- return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
- }
- HANDLEBINOP(Mul)
- HANDLEBINOP(Div)
- HANDLEBINOP(Rem)
- HANDLEBINOP(Add)
- HANDLEBINOP(Sub)
- HANDLEBINOP(Shl)
- HANDLEBINOP(Shr)
- HANDLEBINOP(And)
- HANDLEBINOP(Xor)
- HANDLEBINOP(Or)
-#undef HANDLEBINOP
-
- // Comparisons.
- Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
- unsigned SICmpOpc, unsigned FCmpOpc);
-#define VISITCOMP(CODE, UI, SI, FP) \
- Value *VisitBin##CODE(const BinaryOperator *E) { \
- return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
- llvm::FCmpInst::FP); }
- VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
- VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
- VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
- VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
- VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
- VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
-#undef VISITCOMP
-
- Value *VisitBinAssign (const BinaryOperator *E);
-
- Value *VisitBinLAnd (const BinaryOperator *E);
- Value *VisitBinLOr (const BinaryOperator *E);
- Value *VisitBinComma (const BinaryOperator *E);
-
- Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
- Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
-
- // Other Operators.
- Value *VisitBlockExpr(const BlockExpr *BE);
- Value *VisitConditionalOperator(const ConditionalOperator *CO);
- Value *VisitChooseExpr(ChooseExpr *CE);
- Value *VisitVAArgExpr(VAArgExpr *VE);
- Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
- return CGF.EmitObjCStringLiteral(E);
- }
-};
-} // end anonymous namespace.
-
-//===----------------------------------------------------------------------===//
-// Utilities
-//===----------------------------------------------------------------------===//
-
-/// EmitConversionToBool - Convert the specified expression value to a
-/// boolean (i1) truth value. This is equivalent to "Val != 0".
-Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
- assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
-
- if (SrcType->isRealFloatingType()) {
- // Compare against 0.0 for fp scalars.
- llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
- return Builder.CreateFCmpUNE(Src, Zero, "tobool");
- }
-
- if (SrcType->isMemberPointerType()) {
- // Compare against -1.
- llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
- return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
- }
-
- assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
- "Unknown scalar type to convert");
-
- // Because of the type rules of C, we often end up computing a logical value,
- // then zero extending it to int, then wanting it as a logical value again.
- // Optimize this common case.
- if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
- if (ZI->getOperand(0)->getType() ==
- llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
- Value *Result = ZI->getOperand(0);
- // If there aren't any more uses, zap the instruction to save space.
- // Note that there can be more uses, for example if this
- // is the result of an assignment.
- if (ZI->use_empty())
- ZI->eraseFromParent();
- return Result;
- }
- }
-
- // Compare against an integer or pointer null.
- llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
- return Builder.CreateICmpNE(Src, Zero, "tobool");
-}
-
-/// EmitScalarConversion - Emit a conversion from the specified type to the
-/// specified destination type, both of which are LLVM scalar types.
-Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
- QualType DstType) {
- SrcType = CGF.getContext().getCanonicalType(SrcType);
- DstType = CGF.getContext().getCanonicalType(DstType);
- if (SrcType == DstType) return Src;
-
- if (DstType->isVoidType()) return 0;
-
- // Handle conversions to bool first, they are special: comparisons against 0.
- if (DstType->isBooleanType())
- return EmitConversionToBool(Src, SrcType);
-
- const llvm::Type *DstTy = ConvertType(DstType);
-
- // Ignore conversions like int -> uint.
- if (Src->getType() == DstTy)
- return Src;
-
- // Handle pointer conversions next: pointers can only be converted to/from
- // other pointers and integers. Check for pointer types in terms of LLVM, as
- // some native types (like Obj-C id) may map to a pointer type.
- if (isa<llvm::PointerType>(DstTy)) {
- // The source value may be an integer, or a pointer.
- if (isa<llvm::PointerType>(Src->getType()))
- return Builder.CreateBitCast(Src, DstTy, "conv");
-
- assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
- // First, convert to the correct width so that we control the kind of
- // extension.
- const llvm::Type *MiddleTy = CGF.IntPtrTy;
- bool InputSigned = SrcType->isSignedIntegerType();
- llvm::Value* IntResult =
- Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
- // Then, cast to pointer.
- return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
- }
-
- if (isa<llvm::PointerType>(Src->getType())) {
- // Must be an ptr to int cast.
- assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
- return Builder.CreatePtrToInt(Src, DstTy, "conv");
- }
-
- // A scalar can be splatted to an extended vector of the same element type
- if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
- // Cast the scalar to element type
- QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
- llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
-
- // Insert the element in element zero of an undef vector
- llvm::Value *UnV = llvm::UndefValue::get(DstTy);
- llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
- UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
-
- // Splat the element across to all elements
- llvm::SmallVector<llvm::Constant*, 16> Args;
- unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
- for (unsigned i = 0; i < NumElements; i++)
- Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
-
- llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
- llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
- return Yay;
- }
-
- // Allow bitcast from vector to integer/fp of the same size.
- if (isa<llvm::VectorType>(Src->getType()) ||
- isa<llvm::VectorType>(DstTy))
- return Builder.CreateBitCast(Src, DstTy, "conv");
-
- // Finally, we have the arithmetic types: real int/float.
- if (isa<llvm::IntegerType>(Src->getType())) {
- bool InputSigned = SrcType->isSignedIntegerType();
- if (isa<llvm::IntegerType>(DstTy))
- return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
- else if (InputSigned)
- return Builder.CreateSIToFP(Src, DstTy, "conv");
- else
- return Builder.CreateUIToFP(Src, DstTy, "conv");
- }
-
- assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
- if (isa<llvm::IntegerType>(DstTy)) {
- if (DstType->isSignedIntegerType())
- return Builder.CreateFPToSI(Src, DstTy, "conv");
- else
- return Builder.CreateFPToUI(Src, DstTy, "conv");
- }
-
- assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
- if (DstTy->getTypeID() < Src->getType()->getTypeID())
- return Builder.CreateFPTrunc(Src, DstTy, "conv");
- else
- return Builder.CreateFPExt(Src, DstTy, "conv");
-}
-
-/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
-/// type to the specified destination type, where the destination type is an
-/// LLVM scalar type.
-Value *ScalarExprEmitter::
-EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
- QualType SrcTy, QualType DstTy) {
- // Get the source element type.
- SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
-
- // Handle conversions to bool first, they are special: comparisons against 0.
- if (DstTy->isBooleanType()) {
- // Complex != 0 -> (Real != 0) | (Imag != 0)
- Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
- Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
- return Builder.CreateOr(Src.first, Src.second, "tobool");
- }
-
- // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
- // the imaginary part of the complex value is discarded and the value of the
- // real part is converted according to the conversion rules for the
- // corresponding real type.
- return EmitScalarConversion(Src.first, SrcTy, DstTy);
-}
-
-Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
- const llvm::Type *LTy = ConvertType(Ty);
-
- if (!Ty->isMemberPointerType())
- return llvm::Constant::getNullValue(LTy);
-
- assert(!Ty->isMemberFunctionPointerType() &&
- "member function pointers are not scalar!");
-
- // Itanium C++ ABI 2.3:
- // A NULL pointer is represented as -1.
- return llvm::ConstantInt::get(LTy, -1ULL, /*isSigned=*/true);
-}
-
-//===----------------------------------------------------------------------===//
-// Visitor Methods
-//===----------------------------------------------------------------------===//
-
-Value *ScalarExprEmitter::VisitExpr(Expr *E) {
- CGF.ErrorUnsupported(E, "scalar expression");
- if (E->getType()->isVoidType())
- return 0;
- return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
-}
-
-Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
- // Vector Mask Case
- if (E->getNumSubExprs() == 2 ||
- (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
- Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
- Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
- Value *Mask;
-
- const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
- unsigned LHSElts = LTy->getNumElements();
-
- if (E->getNumSubExprs() == 3) {
- Mask = CGF.EmitScalarExpr(E->getExpr(2));
-
- // Shuffle LHS & RHS into one input vector.
- llvm::SmallVector<llvm::Constant*, 32> concat;
- for (unsigned i = 0; i != LHSElts; ++i) {
- concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
- concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
- }
-
- Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
- LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
- LHSElts *= 2;
- } else {
- Mask = RHS;
- }
-
- const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
- llvm::Constant* EltMask;
-
- // Treat vec3 like vec4.
- if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
- EltMask = llvm::ConstantInt::get(MTy->getElementType(),
- (1 << llvm::Log2_32(LHSElts+2))-1);
- else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
- EltMask = llvm::ConstantInt::get(MTy->getElementType(),
- (1 << llvm::Log2_32(LHSElts+1))-1);
- else
- EltMask = llvm::ConstantInt::get(MTy->getElementType(),
- (1 << llvm::Log2_32(LHSElts))-1);
-
- // Mask off the high bits of each shuffle index.
- llvm::SmallVector<llvm::Constant *, 32> MaskV;
- for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
- MaskV.push_back(EltMask);
-
- Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
- Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
-
- // newv = undef
- // mask = mask & maskbits
- // for each elt
- // n = extract mask i
- // x = extract val n
- // newv = insert newv, x, i
- const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
- MTy->getNumElements());
- Value* NewV = llvm::UndefValue::get(RTy);
- for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
- Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
- Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
- Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
-
- // Handle vec3 special since the index will be off by one for the RHS.
- if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
- Value *cmpIndx, *newIndx;
- cmpIndx = Builder.CreateICmpUGT(Indx,
- llvm::ConstantInt::get(CGF.Int32Ty, 3),
- "cmp_shuf_idx");
- newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
- "shuf_idx_adj");
- Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
- }
- Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
- NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
- }
- return NewV;
- }
-
- Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
- Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
-
- // Handle vec3 special since the index will be off by one for the RHS.
- llvm::SmallVector<llvm::Constant*, 32> indices;
- for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
- llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
- const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
- if (VTy->getNumElements() == 3) {
- if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
- uint64_t cVal = CI->getZExtValue();
- if (cVal > 3) {
- C = llvm::ConstantInt::get(C->getType(), cVal-1);
- }
- }
- }
- indices.push_back(C);
- }
-
- Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
- return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
-}
-Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
- Expr::EvalResult Result;
- if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
- if (E->isArrow())
- CGF.EmitScalarExpr(E->getBase());
- else
- EmitLValue(E->getBase());
- return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
- }
- return EmitLoadOfLValue(E);
-}
-
-Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
- TestAndClearIgnoreResultAssign();
-
- // Emit subscript expressions in rvalue context's. For most cases, this just
- // loads the lvalue formed by the subscript expr. However, we have to be
- // careful, because the base of a vector subscript is occasionally an rvalue,
- // so we can't get it as an lvalue.
- if (!E->getBase()->getType()->isVectorType())
- return EmitLoadOfLValue(E);
-
- // Handle the vector case. The base must be a vector, the index must be an
- // integer value.
- Value *Base = Visit(E->getBase());
- Value *Idx = Visit(E->getIdx());
- bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
- Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
- return Builder.CreateExtractElement(Base, Idx, "vecext");
-}
-
-static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
- unsigned Off, const llvm::Type *I32Ty) {
- int MV = SVI->getMaskValue(Idx);
- if (MV == -1)
- return llvm::UndefValue::get(I32Ty);
- return llvm::ConstantInt::get(I32Ty, Off+MV);
-}
-
-Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
- bool Ignore = TestAndClearIgnoreResultAssign();
- (void)Ignore;
- assert (Ignore == false && "init list ignored");
- unsigned NumInitElements = E->getNumInits();
-
- if (E->hadArrayRangeDesignator())
- CGF.ErrorUnsupported(E, "GNU array range designator extension");
-
- const llvm::VectorType *VType =
- dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
-
- // We have a scalar in braces. Just use the first element.
- if (!VType)
- return Visit(E->getInit(0));
-
- unsigned ResElts = VType->getNumElements();
-
- // Loop over initializers collecting the Value for each, and remembering
- // whether the source was swizzle (ExtVectorElementExpr). This will allow
- // us to fold the shuffle for the swizzle into the shuffle for the vector
- // initializer, since LLVM optimizers generally do not want to touch
- // shuffles.
- unsigned CurIdx = 0;
- bool VIsUndefShuffle = false;
- llvm::Value *V = llvm::UndefValue::get(VType);
- for (unsigned i = 0; i != NumInitElements; ++i) {
- Expr *IE = E->getInit(i);
- Value *Init = Visit(IE);
- llvm::SmallVector<llvm::Constant*, 16> Args;
-
- const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
-
- // Handle scalar elements. If the scalar initializer is actually one
- // element of a different vector of the same width, use shuffle instead of
- // extract+insert.
- if (!VVT) {
- if (isa<ExtVectorElementExpr>(IE)) {
- llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
-
- if (EI->getVectorOperandType()->getNumElements() == ResElts) {
- llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
- Value *LHS = 0, *RHS = 0;
- if (CurIdx == 0) {
- // insert into undef -> shuffle (src, undef)
- Args.push_back(C);
- for (unsigned j = 1; j != ResElts; ++j)
- Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-
- LHS = EI->getVectorOperand();
- RHS = V;
- VIsUndefShuffle = true;
- } else if (VIsUndefShuffle) {
- // insert into undefshuffle && size match -> shuffle (v, src)
- llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
- for (unsigned j = 0; j != CurIdx; ++j)
- Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
- Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
- ResElts + C->getZExtValue()));
- for (unsigned j = CurIdx + 1; j != ResElts; ++j)
- Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-
- LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
- RHS = EI->getVectorOperand();
- VIsUndefShuffle = false;
- }
- if (!Args.empty()) {
- llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
- V = Builder.CreateShuffleVector(LHS, RHS, Mask);
- ++CurIdx;
- continue;
- }
- }
- }
- Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
- V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
- VIsUndefShuffle = false;
- ++CurIdx;
- continue;
- }
-
- unsigned InitElts = VVT->getNumElements();
-
- // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
- // input is the same width as the vector being constructed, generate an
- // optimized shuffle of the swizzle input into the result.
- unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
- if (isa<ExtVectorElementExpr>(IE)) {
- llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
- Value *SVOp = SVI->getOperand(0);
- const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
-
- if (OpTy->getNumElements() == ResElts) {
- for (unsigned j = 0; j != CurIdx; ++j) {
- // If the current vector initializer is a shuffle with undef, merge
- // this shuffle directly into it.
- if (VIsUndefShuffle) {
- Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
- CGF.Int32Ty));
- } else {
- Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
- }
- }
- for (unsigned j = 0, je = InitElts; j != je; ++j)
- Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
- for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
- Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-
- if (VIsUndefShuffle)
- V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
-
- Init = SVOp;
- }
- }
-
- // Extend init to result vector length, and then shuffle its contribution
- // to the vector initializer into V.
- if (Args.empty()) {
- for (unsigned j = 0; j != InitElts; ++j)
- Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
- for (unsigned j = InitElts; j != ResElts; ++j)
- Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
- llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
- Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
- Mask, "vext");
-
- Args.clear();
- for (unsigned j = 0; j != CurIdx; ++j)
- Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
- for (unsigned j = 0; j != InitElts; ++j)
- Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
- for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
- Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
- }
-
- // If V is undef, make sure it ends up on the RHS of the shuffle to aid
- // merging subsequent shuffles into this one.
- if (CurIdx == 0)
- std::swap(V, Init);
- llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
- V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
- VIsUndefShuffle = isa<llvm::UndefValue>(Init);
- CurIdx += InitElts;
- }
-
- // FIXME: evaluate codegen vs. shuffling against constant null vector.
- // Emit remaining default initializers.
- const llvm::Type *EltTy = VType->getElementType();
-
- // Emit remaining default initializers
- for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
- Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
- llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
- V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
- }
- return V;
-}
-
-static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
- const Expr *E = CE->getSubExpr();
-
- if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
- return false;
-
- if (isa<CXXThisExpr>(E)) {
- // We always assume that 'this' is never null.
- return false;
- }
-
- if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
- // And that glvalue casts are never null.
- if (ICE->getCategory() != ImplicitCastExpr::RValue)
- return false;
- }
-
- return true;
-}
-
-// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
-// have to handle a more broad range of conversions than explicit casts, as they
-// handle things like function to ptr-to-function decay etc.
-Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
- Expr *E = CE->getSubExpr();
- QualType DestTy = CE->getType();
- CastExpr::CastKind Kind = CE->getCastKind();
-
- if (!DestTy->isVoidType())
- TestAndClearIgnoreResultAssign();
-
- // Since almost all cast kinds apply to scalars, this switch doesn't have
- // a default case, so the compiler will warn on a missing case. The cases
- // are in the same order as in the CastKind enum.
- switch (Kind) {
- case CastExpr::CK_Unknown:
- // FIXME: All casts should have a known kind!
- //assert(0 && "Unknown cast kind!");
- break;
-
- case CastExpr::CK_LValueBitCast: {
- Value *V = EmitLValue(E).getAddress();
- V = Builder.CreateBitCast(V,
- ConvertType(CGF.getContext().getPointerType(DestTy)));
- // FIXME: Are the qualifiers correct here?
- return EmitLoadOfLValue(LValue::MakeAddr(V, CGF.MakeQualifiers(DestTy)),
- DestTy);
- }
-
- case CastExpr::CK_AnyPointerToObjCPointerCast:
- case CastExpr::CK_AnyPointerToBlockPointerCast:
- case CastExpr::CK_BitCast: {
- Value *Src = Visit(const_cast<Expr*>(E));
- return Builder.CreateBitCast(Src, ConvertType(DestTy));
- }
- case CastExpr::CK_NoOp:
- case CastExpr::CK_UserDefinedConversion:
- return Visit(const_cast<Expr*>(E));
-
- case CastExpr::CK_BaseToDerived: {
- const CXXRecordDecl *DerivedClassDecl =
- DestTy->getCXXRecordDeclForPointerType();
-
- return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
- CE->getBasePath(),
- ShouldNullCheckClassCastValue(CE));
- }
- case CastExpr::CK_UncheckedDerivedToBase:
- case CastExpr::CK_DerivedToBase: {
- const RecordType *DerivedClassTy =
- E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
- CXXRecordDecl *DerivedClassDecl =
- cast<CXXRecordDecl>(DerivedClassTy->getDecl());
-
- return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
- CE->getBasePath(),
- ShouldNullCheckClassCastValue(CE));
- }
- case CastExpr::CK_Dynamic: {
- Value *V = Visit(const_cast<Expr*>(E));
- const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
- return CGF.EmitDynamicCast(V, DCE);
- }
- case CastExpr::CK_ToUnion:
- assert(0 && "Should be unreachable!");
- break;
-
- case CastExpr::CK_ArrayToPointerDecay: {
- assert(E->getType()->isArrayType() &&
- "Array to pointer decay must have array source type!");
-
- Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
-
- // Note that VLA pointers are always decayed, so we don't need to do
- // anything here.
- if (!E->getType()->isVariableArrayType()) {
- assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
- assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
- ->getElementType()) &&
- "Expected pointer to array");
- V = Builder.CreateStructGEP(V, 0, "arraydecay");
- }
-
- return V;
- }
- case CastExpr::CK_FunctionToPointerDecay:
- return EmitLValue(E).getAddress();
-
- case CastExpr::CK_NullToMemberPointer:
- return CGF.CGM.EmitNullConstant(DestTy);
-
- case CastExpr::CK_BaseToDerivedMemberPointer:
- case CastExpr::CK_DerivedToBaseMemberPointer: {
- Value *Src = Visit(E);
-
- // See if we need to adjust the pointer.
- const CXXRecordDecl *BaseDecl =
- cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
- getClass()->getAs<RecordType>()->getDecl());
- const CXXRecordDecl *DerivedDecl =
- cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
- getClass()->getAs<RecordType>()->getDecl());
- if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
- std::swap(DerivedDecl, BaseDecl);
-
- if (llvm::Constant *Adj =
- CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, CE->getBasePath())){
- if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
- Src = Builder.CreateNSWSub(Src, Adj, "adj");
- else
- Src = Builder.CreateNSWAdd(Src, Adj, "adj");
- }
-
- return Src;
- }
-
- case CastExpr::CK_ConstructorConversion:
- assert(0 && "Should be unreachable!");
- break;
-
- case CastExpr::CK_IntegralToPointer: {
- Value *Src = Visit(const_cast<Expr*>(E));
-
- // First, convert to the correct width so that we control the kind of
- // extension.
- const llvm::Type *MiddleTy = CGF.IntPtrTy;
- bool InputSigned = E->getType()->isSignedIntegerType();
- llvm::Value* IntResult =
- Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
-
- return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
- }
- case CastExpr::CK_PointerToIntegral: {
- Value *Src = Visit(const_cast<Expr*>(E));
- return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
- }
- case CastExpr::CK_ToVoid: {
- CGF.EmitAnyExpr(E, 0, false, true);
- return 0;
- }
- case CastExpr::CK_VectorSplat: {
- const llvm::Type *DstTy = ConvertType(DestTy);
- Value *Elt = Visit(const_cast<Expr*>(E));
-
- // Insert the element in element zero of an undef vector
- llvm::Value *UnV = llvm::UndefValue::get(DstTy);
- llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
- UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
-
- // Splat the element across to all elements
- llvm::SmallVector<llvm::Constant*, 16> Args;
- unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
- for (unsigned i = 0; i < NumElements; i++)
- Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
-
- llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
- llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
- return Yay;
- }
- case CastExpr::CK_IntegralCast:
- case CastExpr::CK_IntegralToFloating:
- case CastExpr::CK_FloatingToIntegral:
- case CastExpr::CK_FloatingCast:
- return EmitScalarConversion(Visit(E), E->getType(), DestTy);
-
- case CastExpr::CK_MemberPointerToBoolean:
- return CGF.EvaluateExprAsBool(E);
- }
-
- // Handle cases where the source is an non-complex type.
-
- if (!CGF.hasAggregateLLVMType(E->getType())) {
- Value *Src = Visit(const_cast<Expr*>(E));
-
- // Use EmitScalarConversion to perform the conversion.
- return EmitScalarConversion(Src, E->getType(), DestTy);
- }
-
- if (E->getType()->isAnyComplexType()) {
- // Handle cases where the source is a complex type.
- bool IgnoreImag = true;
- bool IgnoreImagAssign = true;
- bool IgnoreReal = IgnoreResultAssign;
- bool IgnoreRealAssign = IgnoreResultAssign;
- if (DestTy->isBooleanType())
- IgnoreImagAssign = IgnoreImag = false;
- else if (DestTy->isVoidType()) {
- IgnoreReal = IgnoreImag = false;
- IgnoreRealAssign = IgnoreImagAssign = true;
- }
- CodeGenFunction::ComplexPairTy V
- = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
- IgnoreImagAssign);
- return EmitComplexToScalarConversion(V, E->getType(), DestTy);
- }
-
- // Okay, this is a cast from an aggregate. It must be a cast to void. Just
- // evaluate the result and return.
- CGF.EmitAggExpr(E, 0, false, true);
- return 0;
-}
-
-Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
- return CGF.EmitCompoundStmt(*E->getSubStmt(),
- !E->getType()->isVoidType()).getScalarVal();
-}
-
-Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
- llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
- if (E->getType().isObjCGCWeak())
- return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
- return Builder.CreateLoad(V, "tmp");
-}
-
-//===----------------------------------------------------------------------===//
-// Unary Operators
-//===----------------------------------------------------------------------===//
-
-llvm::Value *ScalarExprEmitter::
-EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre) {
-
- QualType ValTy = E->getSubExpr()->getType();
- llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
-
- int AmountVal = isInc ? 1 : -1;
-
- if (ValTy->isPointerType() &&
- ValTy->getAs<PointerType>()->isVariableArrayType()) {
- // The amount of the addition/subtraction needs to account for the VLA size
- CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
- }
-
- llvm::Value *NextVal;
- if (const llvm::PointerType *PT =
- dyn_cast<llvm::PointerType>(InVal->getType())) {
- llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
- if (!isa<llvm::FunctionType>(PT->getElementType())) {
- QualType PTEE = ValTy->getPointeeType();
- if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
- // Handle interface types, which are not represented with a concrete
- // type.
- int size = CGF.getContext().getTypeSize(OIT) / 8;
- if (!isInc)
- size = -size;
- Inc = llvm::ConstantInt::get(Inc->getType(), size);
- const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
- InVal = Builder.CreateBitCast(InVal, i8Ty);
- NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
- llvm::Value *lhs = LV.getAddress();
- lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
- LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
- } else
- NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
- } else {
- const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
- NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
- NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
- NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
- }
- } else if (InVal->getType()->isIntegerTy(1) && isInc) {
- // Bool++ is an interesting case, due to promotion rules, we get:
- // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
- // Bool = ((int)Bool+1) != 0
- // An interesting aspect of this is that increment is always true.
- // Decrement does not have this property.
- NextVal = llvm::ConstantInt::getTrue(VMContext);
- } else if (isa<llvm::IntegerType>(InVal->getType())) {
- NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
-
- if (!ValTy->isSignedIntegerType())
- // Unsigned integer inc is always two's complement.
- NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
- else {
- switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Undefined:
- NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
- break;
- case LangOptions::SOB_Defined:
- NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
- break;
- case LangOptions::SOB_Trapping:
- BinOpInfo BinOp;
- BinOp.LHS = InVal;
- BinOp.RHS = NextVal;
- BinOp.Ty = E->getType();
- BinOp.Opcode = BinaryOperator::Add;
- BinOp.E = E;
- return EmitOverflowCheckedBinOp(BinOp);
- }
- }
- } else {
- // Add the inc/dec to the real part.
- if (InVal->getType()->isFloatTy())
- NextVal =
- llvm::ConstantFP::get(VMContext,
- llvm::APFloat(static_cast<float>(AmountVal)));
- else if (InVal->getType()->isDoubleTy())
- NextVal =
- llvm::ConstantFP::get(VMContext,
- llvm::APFloat(static_cast<double>(AmountVal)));
- else {
- llvm::APFloat F(static_cast<float>(AmountVal));
- bool ignored;
- F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
- &ignored);
- NextVal = llvm::ConstantFP::get(VMContext, F);
- }
- NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
- }
-
- // Store the updated result through the lvalue.
- if (LV.isBitField())
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
- else
- CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
-
- // If this is a postinc, return the value read from memory, otherwise use the
- // updated value.
- return isPre ? NextVal : InVal;
-}
-
-
-
-Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- // Emit unary minus with EmitSub so we handle overflow cases etc.
- BinOpInfo BinOp;
- BinOp.RHS = Visit(E->getSubExpr());
-
- if (BinOp.RHS->getType()->isFPOrFPVectorTy())
- BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
- else
- BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
- BinOp.Ty = E->getType();
- BinOp.Opcode = BinaryOperator::Sub;
- BinOp.E = E;
- return EmitSub(BinOp);
-}
-
-Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- Value *Op = Visit(E->getSubExpr());
- return Builder.CreateNot(Op, "neg");
-}
-
-Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
- // Compare operand to zero.
- Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
-
- // Invert value.
- // TODO: Could dynamically modify easy computations here. For example, if
- // the operand is an icmp ne, turn into icmp eq.
- BoolVal = Builder.CreateNot(BoolVal, "lnot");
-
- // ZExt result to the expr type.
- return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
-}
-
-Value *ScalarExprEmitter::VisitOffsetOfExpr(const OffsetOfExpr *E) {
- Expr::EvalResult Result;
- if(E->Evaluate(Result, CGF.getContext()))
- return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
-
- // FIXME: Cannot support code generation for non-constant offsetof.
- unsigned DiagID = CGF.CGM.getDiags().getCustomDiagID(Diagnostic::Error,
- "cannot compile non-constant __builtin_offsetof");
- CGF.CGM.getDiags().Report(CGF.getContext().getFullLoc(E->getLocStart()),
- DiagID)
- << E->getSourceRange();
-
- return llvm::Constant::getNullValue(ConvertType(E->getType()));
-}
-
-/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
-/// argument of the sizeof expression as an integer.
-Value *
-ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
- QualType TypeToSize = E->getTypeOfArgument();
- if (E->isSizeOf()) {
- if (const VariableArrayType *VAT =
- CGF.getContext().getAsVariableArrayType(TypeToSize)) {
- if (E->isArgumentType()) {
- // sizeof(type) - make sure to emit the VLA size.
- CGF.EmitVLASize(TypeToSize);
- } else {
- // C99 6.5.3.4p2: If the argument is an expression of type
- // VLA, it is evaluated.
- CGF.EmitAnyExpr(E->getArgumentExpr());
- }
-
- return CGF.GetVLASize(VAT);
- }
- }
-
- // If this isn't sizeof(vla), the result must be constant; use the constant
- // folding logic so we don't have to duplicate it here.
- Expr::EvalResult Result;
- E->Evaluate(Result, CGF.getContext());
- return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
-}
-
-Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
- Expr *Op = E->getSubExpr();
- if (Op->getType()->isAnyComplexType())
- return CGF.EmitComplexExpr(Op, false, true, false, true).first;
- return Visit(Op);
-}
-Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
- Expr *Op = E->getSubExpr();
- if (Op->getType()->isAnyComplexType())
- return CGF.EmitComplexExpr(Op, true, false, true, false).second;
-
- // __imag on a scalar returns zero. Emit the subexpr to ensure side
- // effects are evaluated, but not the actual value.
- if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
- CGF.EmitLValue(Op);
- else
- CGF.EmitScalarExpr(Op, true);
- return llvm::Constant::getNullValue(ConvertType(E->getType()));
-}
-
-Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
- Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
- const llvm::Type* ResultType = ConvertType(E->getType());
- return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
-}
-
-//===----------------------------------------------------------------------===//
-// Binary Operators
-//===----------------------------------------------------------------------===//
-
-BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
- TestAndClearIgnoreResultAssign();
- BinOpInfo Result;
- Result.LHS = Visit(E->getLHS());
- Result.RHS = Visit(E->getRHS());
- Result.Ty = E->getType();
- Result.Opcode = E->getOpcode();
- Result.E = E;
- return Result;
-}
-
-LValue ScalarExprEmitter::EmitCompoundAssignLValue(
- const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
- Value *&Result) {
- QualType LHSTy = E->getLHS()->getType();
- BinOpInfo OpInfo;
-
- if (E->getComputationResultType()->isAnyComplexType()) {
- // This needs to go through the complex expression emitter, but it's a tad
- // complicated to do that... I'm leaving it out for now. (Note that we do
- // actually need the imaginary part of the RHS for multiplication and
- // division.)
- CGF.ErrorUnsupported(E, "complex compound assignment");
- Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
- return LValue();
- }
-
- // Emit the RHS first. __block variables need to have the rhs evaluated
- // first, plus this should improve codegen a little.
- OpInfo.RHS = Visit(E->getRHS());
- OpInfo.Ty = E->getComputationResultType();
- OpInfo.Opcode = E->getOpcode();
- OpInfo.E = E;
- // Load/convert the LHS.
- LValue LHSLV = EmitCheckedLValue(E->getLHS());
- OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
- OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
- E->getComputationLHSType());
-
- // Expand the binary operator.
- Result = (this->*Func)(OpInfo);
-
- // Convert the result back to the LHS type.
- Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
-
- // Store the result value into the LHS lvalue. Bit-fields are handled
- // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
- // 'An assignment expression has the value of the left operand after the
- // assignment...'.
- if (LHSLV.isBitField())
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
- &Result);
- else
- CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
-
- return LHSLV;
-}
-
-Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
- Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
- bool Ignore = TestAndClearIgnoreResultAssign();
- Value *RHS;
- LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
-
- // If the result is clearly ignored, return now.
- if (Ignore)
- return 0;
-
- // Objective-C property assignment never reloads the value following a store.
- if (LHS.isPropertyRef() || LHS.isKVCRef())
- return RHS;
-
- // If the lvalue is non-volatile, return the computed value of the assignment.
- if (!LHS.isVolatileQualified())
- return RHS;
-
- // Otherwise, reload the value.
- return EmitLoadOfLValue(LHS, E->getType());
-}
-
-
-Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
- if (Ops.LHS->getType()->isFPOrFPVectorTy())
- return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
- else if (Ops.Ty->hasUnsignedIntegerRepresentation())
- return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
- else
- return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
-}
-
-Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
- // Rem in C can't be a floating point type: C99 6.5.5p2.
- if (Ops.Ty->isUnsignedIntegerType())
- return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
- else
- return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
-}
-
-Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
- unsigned IID;
- unsigned OpID = 0;
-
- switch (Ops.Opcode) {
- case BinaryOperator::Add:
- case BinaryOperator::AddAssign:
- OpID = 1;
- IID = llvm::Intrinsic::sadd_with_overflow;
- break;
- case BinaryOperator::Sub:
- case BinaryOperator::SubAssign:
- OpID = 2;
- IID = llvm::Intrinsic::ssub_with_overflow;
- break;
- case BinaryOperator::Mul:
- case BinaryOperator::MulAssign:
- OpID = 3;
- IID = llvm::Intrinsic::smul_with_overflow;
- break;
- default:
- assert(false && "Unsupported operation for overflow detection");
- IID = 0;
- }
- OpID <<= 1;
- OpID |= 1;
-
- const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
-
- llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
-
- Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
- Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
- Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
-
- // Branch in case of overflow.
- llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
- llvm::BasicBlock *overflowBB =
- CGF.createBasicBlock("overflow", CGF.CurFn);
- llvm::BasicBlock *continueBB =
- CGF.createBasicBlock("overflow.continue", CGF.CurFn);
-
- Builder.CreateCondBr(overflow, overflowBB, continueBB);
-
- // Handle overflow
-
- Builder.SetInsertPoint(overflowBB);
-
- // Handler is:
- // long long *__overflow_handler)(long long a, long long b, char op,
- // char width)
- std::vector<const llvm::Type*> handerArgTypes;
- handerArgTypes.push_back(CGF.Int64Ty);
- handerArgTypes.push_back(CGF.Int64Ty);
- handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
- handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
- llvm::FunctionType *handlerTy =
- llvm::FunctionType::get(CGF.Int64Ty, handerArgTypes, false);
- llvm::Value *handlerFunction =
- CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
- llvm::PointerType::getUnqual(handlerTy));
- handlerFunction = Builder.CreateLoad(handlerFunction);
-
- llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
- Builder.CreateSExt(Ops.LHS, CGF.Int64Ty),
- Builder.CreateSExt(Ops.RHS, CGF.Int64Ty),
- llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
- llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
- cast<llvm::IntegerType>(opTy)->getBitWidth()));
-
- handlerResult = Builder.CreateTrunc(handlerResult, opTy);
-
- Builder.CreateBr(continueBB);
-
- // Set up the continuation
- Builder.SetInsertPoint(continueBB);
- // Get the correct result
- llvm::PHINode *phi = Builder.CreatePHI(opTy);
- phi->reserveOperandSpace(2);
- phi->addIncoming(result, initialBB);
- phi->addIncoming(handlerResult, overflowBB);
-
- return phi;
-}
-
-Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
- if (!Ops.Ty->isAnyPointerType()) {
- if (Ops.Ty->hasSignedIntegerRepresentation()) {
- switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Undefined:
- return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
- case LangOptions::SOB_Defined:
- return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
- case LangOptions::SOB_Trapping:
- return EmitOverflowCheckedBinOp(Ops);
- }
- }
-
- if (Ops.LHS->getType()->isFPOrFPVectorTy())
- return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
-
- return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
- }
-
- // Must have binary (not unary) expr here. Unary pointer decrement doesn't
- // use this path.
- const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
-
- if (Ops.Ty->isPointerType() &&
- Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
- // The amount of the addition needs to account for the VLA size
- CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
- }
-
- Value *Ptr, *Idx;
- Expr *IdxExp;
- const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
- const ObjCObjectPointerType *OPT =
- BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
- if (PT || OPT) {
- Ptr = Ops.LHS;
- Idx = Ops.RHS;
- IdxExp = BinOp->getRHS();
- } else { // int + pointer
- PT = BinOp->getRHS()->getType()->getAs<PointerType>();
- OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
- assert((PT || OPT) && "Invalid add expr");
- Ptr = Ops.RHS;
- Idx = Ops.LHS;
- IdxExp = BinOp->getLHS();
- }
-
- unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
- if (Width < CGF.LLVMPointerWidth) {
- // Zero or sign extend the pointer value based on whether the index is
- // signed or not.
- const llvm::Type *IdxType = CGF.IntPtrTy;
- if (IdxExp->getType()->isSignedIntegerType())
- Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
- else
- Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
- }
- const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
- // Handle interface types, which are not represented with a concrete type.
- if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
- llvm::Value *InterfaceSize =
- llvm::ConstantInt::get(Idx->getType(),
- CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
- Idx = Builder.CreateMul(Idx, InterfaceSize);
- const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
- Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
- Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
- return Builder.CreateBitCast(Res, Ptr->getType());
- }
-
- // Explicitly handle GNU void* and function pointer arithmetic extensions. The
- // GNU void* casts amount to no-ops since our void* type is i8*, but this is
- // future proof.
- if (ElementType->isVoidType() || ElementType->isFunctionType()) {
- const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
- Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
- Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
- return Builder.CreateBitCast(Res, Ptr->getType());
- }
-
- return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
-}
-
-Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
- if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
- if (Ops.Ty->hasSignedIntegerRepresentation()) {
- switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
- case LangOptions::SOB_Undefined:
- return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
- case LangOptions::SOB_Defined:
- return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
- case LangOptions::SOB_Trapping:
- return EmitOverflowCheckedBinOp(Ops);
- }
- }
-
- if (Ops.LHS->getType()->isFPOrFPVectorTy())
- return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
-
- return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
- }
-
- // Must have binary (not unary) expr here. Unary pointer increment doesn't
- // use this path.
- const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
-
- if (BinOp->getLHS()->getType()->isPointerType() &&
- BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
- // The amount of the addition needs to account for the VLA size for
- // ptr-int
- // The amount of the division needs to account for the VLA size for
- // ptr-ptr.
- CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
- }
-
- const QualType LHSType = BinOp->getLHS()->getType();
- const QualType LHSElementType = LHSType->getPointeeType();
- if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
- // pointer - int
- Value *Idx = Ops.RHS;
- unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
- if (Width < CGF.LLVMPointerWidth) {
- // Zero or sign extend the pointer value based on whether the index is
- // signed or not.
- const llvm::Type *IdxType = CGF.IntPtrTy;
- if (BinOp->getRHS()->getType()->isSignedIntegerType())
- Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
- else
- Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
- }
- Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
-
- // Handle interface types, which are not represented with a concrete type.
- if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
- llvm::Value *InterfaceSize =
- llvm::ConstantInt::get(Idx->getType(),
- CGF.getContext().
- getTypeSizeInChars(OIT).getQuantity());
- Idx = Builder.CreateMul(Idx, InterfaceSize);
- const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
- Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
- Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
- return Builder.CreateBitCast(Res, Ops.LHS->getType());
- }
-
- // Explicitly handle GNU void* and function pointer arithmetic
- // extensions. The GNU void* casts amount to no-ops since our void* type is
- // i8*, but this is future proof.
- if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
- const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
- Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
- Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
- return Builder.CreateBitCast(Res, Ops.LHS->getType());
- }
-
- return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
- } else {
- // pointer - pointer
- Value *LHS = Ops.LHS;
- Value *RHS = Ops.RHS;
-
- CharUnits ElementSize;
-
- // Handle GCC extension for pointer arithmetic on void* and function pointer
- // types.
- if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
- ElementSize = CharUnits::One();
- } else {
- ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
- }
-
- const llvm::Type *ResultType = ConvertType(Ops.Ty);
- LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
- RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
- Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
-
- // Optimize out the shift for element size of 1.
- if (ElementSize.isOne())
- return BytesBetween;
-
- // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
- // pointer difference in C is only defined in the case where both operands
- // are pointing to elements of an array.
- Value *BytesPerElt =
- llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
- return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
- }
-}
-
-Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
- // LLVM requires the LHS and RHS to be the same type: promote or truncate the
- // RHS to the same size as the LHS.
- Value *RHS = Ops.RHS;
- if (Ops.LHS->getType() != RHS->getType())
- RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
-
- if (CGF.CatchUndefined
- && isa<llvm::IntegerType>(Ops.LHS->getType())) {
- unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
- llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
- CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
- llvm::ConstantInt::get(RHS->getType(), Width)),
- Cont, CGF.getTrapBB());
- CGF.EmitBlock(Cont);
- }
-
- return Builder.CreateShl(Ops.LHS, RHS, "shl");
-}
-
-Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
- // LLVM requires the LHS and RHS to be the same type: promote or truncate the
- // RHS to the same size as the LHS.
- Value *RHS = Ops.RHS;
- if (Ops.LHS->getType() != RHS->getType())
- RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
-
- if (CGF.CatchUndefined
- && isa<llvm::IntegerType>(Ops.LHS->getType())) {
- unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
- llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
- CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
- llvm::ConstantInt::get(RHS->getType(), Width)),
- Cont, CGF.getTrapBB());
- CGF.EmitBlock(Cont);
- }
-
- if (Ops.Ty->hasUnsignedIntegerRepresentation())
- return Builder.CreateLShr(Ops.LHS, RHS, "shr");
- return Builder.CreateAShr(Ops.LHS, RHS, "shr");
-}
-
-Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
- unsigned SICmpOpc, unsigned FCmpOpc) {
- TestAndClearIgnoreResultAssign();
- Value *Result;
- QualType LHSTy = E->getLHS()->getType();
- if (LHSTy->isMemberFunctionPointerType()) {
- Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
- Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
- llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
- LHSFunc = Builder.CreateLoad(LHSFunc);
- llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
- RHSFunc = Builder.CreateLoad(RHSFunc);
- Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHSFunc, RHSFunc, "cmp.func");
- Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
- Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHSFunc, NullPtr, "cmp.null");
- llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
- LHSAdj = Builder.CreateLoad(LHSAdj);
- llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
- RHSAdj = Builder.CreateLoad(RHSAdj);
- Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHSAdj, RHSAdj, "cmp.adj");
- if (E->getOpcode() == BinaryOperator::EQ) {
- Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
- Result = Builder.CreateAnd(Result, ResultF, "and.f");
- } else {
- assert(E->getOpcode() == BinaryOperator::NE &&
- "Member pointer comparison other than == or != ?");
- Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
- Result = Builder.CreateOr(Result, ResultF, "or.f");
- }
- } else if (!LHSTy->isAnyComplexType()) {
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
-
- if (LHS->getType()->isFPOrFPVectorTy()) {
- Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
- LHS, RHS, "cmp");
- } else if (LHSTy->hasSignedIntegerRepresentation()) {
- Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
- LHS, RHS, "cmp");
- } else {
- // Unsigned integers and pointers.
- Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHS, RHS, "cmp");
- }
-
- // If this is a vector comparison, sign extend the result to the appropriate
- // vector integer type and return it (don't convert to bool).
- if (LHSTy->isVectorType())
- return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
-
- } else {
- // Complex Comparison: can only be an equality comparison.
- CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
- CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
-
- QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
-
- Value *ResultR, *ResultI;
- if (CETy->isRealFloatingType()) {
- ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
- LHS.first, RHS.first, "cmp.r");
- ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
- LHS.second, RHS.second, "cmp.i");
- } else {
- // Complex comparisons can only be equality comparisons. As such, signed
- // and unsigned opcodes are the same.
- ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHS.first, RHS.first, "cmp.r");
- ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
- LHS.second, RHS.second, "cmp.i");
- }
-
- if (E->getOpcode() == BinaryOperator::EQ) {
- Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
- } else {
- assert(E->getOpcode() == BinaryOperator::NE &&
- "Complex comparison other than == or != ?");
- Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
- }
- }
-
- return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
-}
-
-Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
- bool Ignore = TestAndClearIgnoreResultAssign();
-
- // __block variables need to have the rhs evaluated first, plus this should
- // improve codegen just a little.
- Value *RHS = Visit(E->getRHS());
- LValue LHS = EmitCheckedLValue(E->getLHS());
-
- // Store the value into the LHS. Bit-fields are handled specially
- // because the result is altered by the store, i.e., [C99 6.5.16p1]
- // 'An assignment expression has the value of the left operand after
- // the assignment...'.
- if (LHS.isBitField())
- CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
- &RHS);
- else
- CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
-
- // If the result is clearly ignored, return now.
- if (Ignore)
- return 0;
-
- // Objective-C property assignment never reloads the value following a store.
- if (LHS.isPropertyRef() || LHS.isKVCRef())
- return RHS;
-
- // If the lvalue is non-volatile, return the computed value of the assignment.
- if (!LHS.isVolatileQualified())
- return RHS;
-
- // Otherwise, reload the value.
- return EmitLoadOfLValue(LHS, E->getType());
-}
-
-Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
- const llvm::Type *ResTy = ConvertType(E->getType());
-
- // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
- // If we have 1 && X, just emit X without inserting the control flow.
- if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
- if (Cond == 1) { // If we have 1 && X, just emit X.
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- // ZExt result to int or bool.
- return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
- }
-
- // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
- if (!CGF.ContainsLabel(E->getRHS()))
- return llvm::Constant::getNullValue(ResTy);
- }
-
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
-
- // Branch on the LHS first. If it is false, go to the failure (cont) block.
- CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
-
- // Any edges into the ContBlock are now from an (indeterminate number of)
- // edges from this first condition. All of these values will be false. Start
- // setting up the PHI node in the Cont Block for this.
- llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
- "", ContBlock);
- PN->reserveOperandSpace(2); // Normal case, two inputs.
- for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
- PI != PE; ++PI)
- PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
-
- CGF.BeginConditionalBranch();
- CGF.EmitBlock(RHSBlock);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- CGF.EndConditionalBranch();
-
- // Reaquire the RHS block, as there may be subblocks inserted.
- RHSBlock = Builder.GetInsertBlock();
-
- // Emit an unconditional branch from this block to ContBlock. Insert an entry
- // into the phi node for the edge with the value of RHSCond.
- CGF.EmitBlock(ContBlock);
- PN->addIncoming(RHSCond, RHSBlock);
-
- // ZExt result to int.
- return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
-}
-
-Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
- const llvm::Type *ResTy = ConvertType(E->getType());
-
- // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
- // If we have 0 || X, just emit X without inserting the control flow.
- if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
- if (Cond == -1) { // If we have 0 || X, just emit X.
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
- // ZExt result to int or bool.
- return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
- }
-
- // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
- if (!CGF.ContainsLabel(E->getRHS()))
- return llvm::ConstantInt::get(ResTy, 1);
- }
-
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
-
- // Branch on the LHS first. If it is true, go to the success (cont) block.
- CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
-
- // Any edges into the ContBlock are now from an (indeterminate number of)
- // edges from this first condition. All of these values will be true. Start
- // setting up the PHI node in the Cont Block for this.
- llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
- "", ContBlock);
- PN->reserveOperandSpace(2); // Normal case, two inputs.
- for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
- PI != PE; ++PI)
- PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
-
- CGF.BeginConditionalBranch();
-
- // Emit the RHS condition as a bool value.
- CGF.EmitBlock(RHSBlock);
- Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
-
- CGF.EndConditionalBranch();
-
- // Reaquire the RHS block, as there may be subblocks inserted.
- RHSBlock = Builder.GetInsertBlock();
-
- // Emit an unconditional branch from this block to ContBlock. Insert an entry
- // into the phi node for the edge with the value of RHSCond.
- CGF.EmitBlock(ContBlock);
- PN->addIncoming(RHSCond, RHSBlock);
-
- // ZExt result to int.
- return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
-}
-
-Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
- CGF.EmitStmt(E->getLHS());
- CGF.EnsureInsertPoint();
- return Visit(E->getRHS());
-}
-
-//===----------------------------------------------------------------------===//
-// Other Operators
-//===----------------------------------------------------------------------===//
-
-/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
-/// expression is cheap enough and side-effect-free enough to evaluate
-/// unconditionally instead of conditionally. This is used to convert control
-/// flow into selects in some cases.
-static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
- CodeGenFunction &CGF) {
- if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
- return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
-
- // TODO: Allow anything we can constant fold to an integer or fp constant.
- if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
- isa<FloatingLiteral>(E))
- return true;
-
- // Non-volatile automatic variables too, to get "cond ? X : Y" where
- // X and Y are local variables.
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
- if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
- if (VD->hasLocalStorage() && !(CGF.getContext()
- .getCanonicalType(VD->getType())
- .isVolatileQualified()))
- return true;
-
- return false;
-}
-
-
-Value *ScalarExprEmitter::
-VisitConditionalOperator(const ConditionalOperator *E) {
- TestAndClearIgnoreResultAssign();
- // If the condition constant folds and can be elided, try to avoid emitting
- // the condition and the dead arm.
- if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
- Expr *Live = E->getLHS(), *Dead = E->getRHS();
- if (Cond == -1)
- std::swap(Live, Dead);
-
- // If the dead side doesn't have labels we need, and if the Live side isn't
- // the gnu missing ?: extension (which we could handle, but don't bother
- // to), just emit the Live part.
- if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
- Live) // Live part isn't missing.
- return Visit(Live);
- }
-
-
- // If this is a really simple expression (like x ? 4 : 5), emit this as a
- // select instead of as control flow. We can only do this if it is cheap and
- // safe to evaluate the LHS and RHS unconditionally.
- if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
- CGF) &&
- isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
- llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
- llvm::Value *LHS = Visit(E->getLHS());
- llvm::Value *RHS = Visit(E->getRHS());
- return Builder.CreateSelect(CondV, LHS, RHS, "cond");
- }
-
-
- llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
- Value *CondVal = 0;
-
- // If we don't have the GNU missing condition extension, emit a branch on bool
- // the normal way.
- if (E->getLHS()) {
- // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
- // the branch on bool.
- CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
- } else {
- // Otherwise, for the ?: extension, evaluate the conditional and then
- // convert it to bool the hard way. We do this explicitly because we need
- // the unconverted value for the missing middle value of the ?:.
- CondVal = CGF.EmitScalarExpr(E->getCond());
-
- // In some cases, EmitScalarConversion will delete the "CondVal" expression
- // if there are no extra uses (an optimization). Inhibit this by making an
- // extra dead use, because we're going to add a use of CondVal later. We
- // don't use the builder for this, because we don't want it to get optimized
- // away. This leaves dead code, but the ?: extension isn't common.
- new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
- Builder.GetInsertBlock());
-
- Value *CondBoolVal =
- CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
- CGF.getContext().BoolTy);
- Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
- }
-
- CGF.BeginConditionalBranch();
- CGF.EmitBlock(LHSBlock);
-
- // Handle the GNU extension for missing LHS.
- Value *LHS;
- if (E->getLHS())
- LHS = Visit(E->getLHS());
- else // Perform promotions, to handle cases like "short ?: int"
- LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
-
- CGF.EndConditionalBranch();
- LHSBlock = Builder.GetInsertBlock();
- CGF.EmitBranch(ContBlock);
-
- CGF.BeginConditionalBranch();
- CGF.EmitBlock(RHSBlock);
-
- Value *RHS = Visit(E->getRHS());
- CGF.EndConditionalBranch();
- RHSBlock = Builder.GetInsertBlock();
- CGF.EmitBranch(ContBlock);
-
- CGF.EmitBlock(ContBlock);
-
- // If the LHS or RHS is a throw expression, it will be legitimately null.
- if (!LHS)
- return RHS;
- if (!RHS)
- return LHS;
-
- // Create a PHI node for the real part.
- llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
- PN->reserveOperandSpace(2);
- PN->addIncoming(LHS, LHSBlock);
- PN->addIncoming(RHS, RHSBlock);
- return PN;
-}
-
-Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
- return Visit(E->getChosenSubExpr(CGF.getContext()));
-}
-
-Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
- llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
- llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
-
- // If EmitVAArg fails, we fall back to the LLVM instruction.
- if (!ArgPtr)
- return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
-
- // FIXME Volatility.
- return Builder.CreateLoad(ArgPtr);
-}
-
-Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
- return CGF.BuildBlockLiteralTmp(BE);
-}
-
-//===----------------------------------------------------------------------===//
-// Entry Point into this File
-//===----------------------------------------------------------------------===//
-
-/// EmitScalarExpr - Emit the computation of the specified expression of scalar
-/// type, ignoring the result.
-Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
- assert(E && !hasAggregateLLVMType(E->getType()) &&
- "Invalid scalar expression to emit");
-
- return ScalarExprEmitter(*this, IgnoreResultAssign)
- .Visit(const_cast<Expr*>(E));
-}
-
-/// EmitScalarConversion - Emit a conversion from the specified type to the
-/// specified destination type, both of which are LLVM scalar types.
-Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
- QualType DstTy) {
- assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
- "Invalid scalar expression to emit");
- return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
-}
-
-/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
-/// type to the specified destination type, where the destination type is an
-/// LLVM scalar type.
-Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
- QualType SrcTy,
- QualType DstTy) {
- assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
- "Invalid complex -> scalar conversion");
- return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
- DstTy);
-}
-
-
-llvm::Value *CodeGenFunction::
-EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre) {
- return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
-}
-
-LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
- llvm::Value *V;
- // object->isa or (*object).isa
- // Generate code as for: *(Class*)object
- // build Class* type
- const llvm::Type *ClassPtrTy = ConvertType(E->getType());
-
- Expr *BaseExpr = E->getBase();
- if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
- V = CreateTempAlloca(ClassPtrTy, "resval");
- llvm::Value *Src = EmitScalarExpr(BaseExpr);
- Builder.CreateStore(Src, V);
- LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
- V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType());
- }
- else {
- if (E->isArrow())
- V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
- else
- V = EmitLValue(BaseExpr).getAddress();
- }
-
- // build Class* type
- ClassPtrTy = ClassPtrTy->getPointerTo();
- V = Builder.CreateBitCast(V, ClassPtrTy);
- LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
- return LV;
-}
-
-
-LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
- const CompoundAssignOperator *E) {
- ScalarExprEmitter Scalar(*this);
- Value *Result = 0;
- switch (E->getOpcode()) {
-#define COMPOUND_OP(Op) \
- case BinaryOperator::Op##Assign: \
- return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
- Result)
- COMPOUND_OP(Mul);
- COMPOUND_OP(Div);
- COMPOUND_OP(Rem);
- COMPOUND_OP(Add);
- COMPOUND_OP(Sub);
- COMPOUND_OP(Shl);
- COMPOUND_OP(Shr);
- COMPOUND_OP(And);
- COMPOUND_OP(Xor);
- COMPOUND_OP(Or);
-#undef COMPOUND_OP
-
- case BinaryOperator::PtrMemD:
- case BinaryOperator::PtrMemI:
- case BinaryOperator::Mul:
- case BinaryOperator::Div:
- case BinaryOperator::Rem:
- case BinaryOperator::Add:
- case BinaryOperator::Sub:
- case BinaryOperator::Shl:
- case BinaryOperator::Shr:
- case BinaryOperator::LT:
- case BinaryOperator::GT:
- case BinaryOperator::LE:
- case BinaryOperator::GE:
- case BinaryOperator::EQ:
- case BinaryOperator::NE:
- case BinaryOperator::And:
- case BinaryOperator::Xor:
- case BinaryOperator::Or:
- case BinaryOperator::LAnd:
- case BinaryOperator::LOr:
- case BinaryOperator::Assign:
- case BinaryOperator::Comma:
- assert(false && "Not valid compound assignment operators");
- break;
- }
-
- llvm_unreachable("Unhandled compound assignment operator");
-}
More information about the llvm-branch-commits
mailing list