[llvm-branch-commits] [cfe-branch] r112516 - /cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig

Daniel Dunbar daniel at zuster.org
Mon Aug 30 13:23:11 PDT 2010


Author: ddunbar
Date: Mon Aug 30 15:23:11 2010
New Revision: 112516

URL: http://llvm.org/viewvc/llvm-project?rev=112516&view=rev
Log:
Remove stray merge files.

Removed:
    cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig

Removed: cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig
URL: http://llvm.org/viewvc/llvm-project/cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig?rev=112515&view=auto
==============================================================================
--- cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig (original)
+++ cfe/branches/Apple/williamson/lib/CodeGen/CGExprScalar.cpp.orig (removed)
@@ -1,2257 +0,0 @@
-//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CodeGenFunction.h"
-#include "CGObjCRuntime.h"
-#include "CodeGenModule.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/DeclObjC.h"
-#include "clang/AST/RecordLayout.h"
-#include "clang/AST/StmtVisitor.h"
-#include "clang/Basic/TargetInfo.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Module.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Target/TargetData.h"
-#include <cstdarg>
-
-using namespace clang;
-using namespace CodeGen;
-using llvm::Value;
-
-//===----------------------------------------------------------------------===//
-//                         Scalar Expression Emitter
-//===----------------------------------------------------------------------===//
-
-struct BinOpInfo {
-  Value *LHS;
-  Value *RHS;
-  QualType Ty;  // Computation Type.
-  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
-  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
-};
-
-namespace {
-class ScalarExprEmitter
-  : public StmtVisitor<ScalarExprEmitter, Value*> {
-  CodeGenFunction &CGF;
-  CGBuilderTy &Builder;
-  bool IgnoreResultAssign;
-  llvm::LLVMContext &VMContext;
-public:
-
-  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
-    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
-      VMContext(cgf.getLLVMContext()) {
-  }
-
-  //===--------------------------------------------------------------------===//
-  //                               Utilities
-  //===--------------------------------------------------------------------===//
-
-  bool TestAndClearIgnoreResultAssign() {
-    bool I = IgnoreResultAssign;
-    IgnoreResultAssign = false;
-    return I;
-  }
-
-  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
-  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
-  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
-
-  Value *EmitLoadOfLValue(LValue LV, QualType T) {
-    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
-  }
-
-  /// EmitLoadOfLValue - Given an expression with complex type that represents a
-  /// value l-value, this method emits the address of the l-value, then loads
-  /// and returns the result.
-  Value *EmitLoadOfLValue(const Expr *E) {
-    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
-  }
-
-  /// EmitConversionToBool - Convert the specified expression value to a
-  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
-  Value *EmitConversionToBool(Value *Src, QualType DstTy);
-
-  /// EmitScalarConversion - Emit a conversion from the specified type to the
-  /// specified destination type, both of which are LLVM scalar types.
-  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
-
-  /// EmitComplexToScalarConversion - Emit a conversion from the specified
-  /// complex type to the specified destination type, where the destination type
-  /// is an LLVM scalar type.
-  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
-                                       QualType SrcTy, QualType DstTy);
-
-  /// EmitNullValue - Emit a value that corresponds to null for the given type.
-  Value *EmitNullValue(QualType Ty);
-
-  //===--------------------------------------------------------------------===//
-  //                            Visitor Methods
-  //===--------------------------------------------------------------------===//
-
-  Value *VisitStmt(Stmt *S) {
-    S->dump(CGF.getContext().getSourceManager());
-    assert(0 && "Stmt can't have complex result type!");
-    return 0;
-  }
-  Value *VisitExpr(Expr *S);
-  
-  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
-
-  // Leaves.
-  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
-    return llvm::ConstantInt::get(VMContext, E->getValue());
-  }
-  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
-    return llvm::ConstantFP::get(VMContext, E->getValue());
-  }
-  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
-    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
-  }
-  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
-    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
-  }
-  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
-    return EmitNullValue(E->getType());
-  }
-  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
-    return EmitNullValue(E->getType());
-  }
-  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
-    return llvm::ConstantInt::get(ConvertType(E->getType()),
-                                  CGF.getContext().typesAreCompatible(
-                                    E->getArgType1(), E->getArgType2()));
-  }
-  Value *VisitOffsetOfExpr(const OffsetOfExpr *E);
-  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
-  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
-    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
-    return Builder.CreateBitCast(V, ConvertType(E->getType()));
-  }
-
-  // l-values.
-  Value *VisitDeclRefExpr(DeclRefExpr *E) {
-    Expr::EvalResult Result;
-    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
-      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
-      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
-    }
-    return EmitLoadOfLValue(E);
-  }
-  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
-    return CGF.EmitObjCSelectorExpr(E);
-  }
-  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
-    return CGF.EmitObjCProtocolExpr(E);
-  }
-  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
-    return EmitLoadOfLValue(E);
-  }
-  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
-    return EmitLoadOfLValue(E);
-  }
-  Value *VisitObjCImplicitSetterGetterRefExpr(
-                        ObjCImplicitSetterGetterRefExpr *E) {
-    return EmitLoadOfLValue(E);
-  }
-  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
-    return CGF.EmitObjCMessageExpr(E).getScalarVal();
-  }
-
-  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
-    LValue LV = CGF.EmitObjCIsaExpr(E);
-    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
-    return V;
-  }
-
-  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
-  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
-  Value *VisitMemberExpr(MemberExpr *E);
-  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
-  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
-    return EmitLoadOfLValue(E);
-  }
-
-  Value *VisitInitListExpr(InitListExpr *E);
-
-  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
-    return CGF.CGM.EmitNullConstant(E->getType());
-  }
-  Value *VisitCastExpr(CastExpr *E) {
-    // Make sure to evaluate VLA bounds now so that we have them for later.
-    if (E->getType()->isVariablyModifiedType())
-      CGF.EmitVLASize(E->getType());
-
-    return EmitCastExpr(E);
-  }
-  Value *EmitCastExpr(CastExpr *E);
-
-  Value *VisitCallExpr(const CallExpr *E) {
-    if (E->getCallReturnType()->isReferenceType())
-      return EmitLoadOfLValue(E);
-
-    return CGF.EmitCallExpr(E).getScalarVal();
-  }
-
-  Value *VisitStmtExpr(const StmtExpr *E);
-
-  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
-
-  // Unary Operators.
-  Value *VisitUnaryPostDec(const UnaryOperator *E) {
-    LValue LV = EmitLValue(E->getSubExpr());
-    return EmitScalarPrePostIncDec(E, LV, false, false);
-  }
-  Value *VisitUnaryPostInc(const UnaryOperator *E) {
-    LValue LV = EmitLValue(E->getSubExpr());
-    return EmitScalarPrePostIncDec(E, LV, true, false);
-  }
-  Value *VisitUnaryPreDec(const UnaryOperator *E) {
-    LValue LV = EmitLValue(E->getSubExpr());
-    return EmitScalarPrePostIncDec(E, LV, false, true);
-  }
-  Value *VisitUnaryPreInc(const UnaryOperator *E) {
-    LValue LV = EmitLValue(E->getSubExpr());
-    return EmitScalarPrePostIncDec(E, LV, true, true);
-  }
-
-  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
-                                       bool isInc, bool isPre);
-
-    
-  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
-    return EmitLValue(E->getSubExpr()).getAddress();
-  }
-  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
-  Value *VisitUnaryPlus(const UnaryOperator *E) {
-    // This differs from gcc, though, most likely due to a bug in gcc.
-    TestAndClearIgnoreResultAssign();
-    return Visit(E->getSubExpr());
-  }
-  Value *VisitUnaryMinus    (const UnaryOperator *E);
-  Value *VisitUnaryNot      (const UnaryOperator *E);
-  Value *VisitUnaryLNot     (const UnaryOperator *E);
-  Value *VisitUnaryReal     (const UnaryOperator *E);
-  Value *VisitUnaryImag     (const UnaryOperator *E);
-  Value *VisitUnaryExtension(const UnaryOperator *E) {
-    return Visit(E->getSubExpr());
-  }
-  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
-    
-  // C++
-  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
-    return Visit(DAE->getExpr());
-  }
-  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
-    return CGF.LoadCXXThis();
-  }
-
-  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
-    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
-  }
-  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
-    return CGF.EmitCXXNewExpr(E);
-  }
-  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
-    CGF.EmitCXXDeleteExpr(E);
-    return 0;
-  }
-  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
-    return llvm::ConstantInt::get(Builder.getInt1Ty(),
-                                  E->EvaluateTrait(CGF.getContext()));
-  }
-
-  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
-    // C++ [expr.pseudo]p1:
-    //   The result shall only be used as the operand for the function call
-    //   operator (), and the result of such a call has type void. The only
-    //   effect is the evaluation of the postfix-expression before the dot or
-    //   arrow.
-    CGF.EmitScalarExpr(E->getBase());
-    return 0;
-  }
-
-  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
-    return EmitNullValue(E->getType());
-  }
-
-  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
-    CGF.EmitCXXThrowExpr(E);
-    return 0;
-  }
-
-  // Binary Operators.
-  Value *EmitMul(const BinOpInfo &Ops) {
-    if (Ops.Ty->hasSignedIntegerRepresentation()) {
-      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
-      case LangOptions::SOB_Undefined:
-        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
-      case LangOptions::SOB_Defined:
-        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
-      case LangOptions::SOB_Trapping:
-        return EmitOverflowCheckedBinOp(Ops);
-      }
-    }
-    
-    if (Ops.LHS->getType()->isFPOrFPVectorTy())
-      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
-    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
-  }
-  /// Create a binary op that checks for overflow.
-  /// Currently only supports +, - and *.
-  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
-  Value *EmitDiv(const BinOpInfo &Ops);
-  Value *EmitRem(const BinOpInfo &Ops);
-  Value *EmitAdd(const BinOpInfo &Ops);
-  Value *EmitSub(const BinOpInfo &Ops);
-  Value *EmitShl(const BinOpInfo &Ops);
-  Value *EmitShr(const BinOpInfo &Ops);
-  Value *EmitAnd(const BinOpInfo &Ops) {
-    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
-  }
-  Value *EmitXor(const BinOpInfo &Ops) {
-    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
-  }
-  Value *EmitOr (const BinOpInfo &Ops) {
-    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
-  }
-
-  BinOpInfo EmitBinOps(const BinaryOperator *E);
-  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
-                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
-                                  Value *&Result);
-
-  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
-                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
-
-  // Binary operators and binary compound assignment operators.
-#define HANDLEBINOP(OP) \
-  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
-    return Emit ## OP(EmitBinOps(E));                                      \
-  }                                                                        \
-  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
-    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
-  }
-  HANDLEBINOP(Mul)
-  HANDLEBINOP(Div)
-  HANDLEBINOP(Rem)
-  HANDLEBINOP(Add)
-  HANDLEBINOP(Sub)
-  HANDLEBINOP(Shl)
-  HANDLEBINOP(Shr)
-  HANDLEBINOP(And)
-  HANDLEBINOP(Xor)
-  HANDLEBINOP(Or)
-#undef HANDLEBINOP
-
-  // Comparisons.
-  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
-                     unsigned SICmpOpc, unsigned FCmpOpc);
-#define VISITCOMP(CODE, UI, SI, FP) \
-    Value *VisitBin##CODE(const BinaryOperator *E) { \
-      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
-                         llvm::FCmpInst::FP); }
-  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
-  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
-  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
-  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
-  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
-  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
-#undef VISITCOMP
-
-  Value *VisitBinAssign     (const BinaryOperator *E);
-
-  Value *VisitBinLAnd       (const BinaryOperator *E);
-  Value *VisitBinLOr        (const BinaryOperator *E);
-  Value *VisitBinComma      (const BinaryOperator *E);
-
-  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
-  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
-
-  // Other Operators.
-  Value *VisitBlockExpr(const BlockExpr *BE);
-  Value *VisitConditionalOperator(const ConditionalOperator *CO);
-  Value *VisitChooseExpr(ChooseExpr *CE);
-  Value *VisitVAArgExpr(VAArgExpr *VE);
-  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
-    return CGF.EmitObjCStringLiteral(E);
-  }
-};
-}  // end anonymous namespace.
-
-//===----------------------------------------------------------------------===//
-//                                Utilities
-//===----------------------------------------------------------------------===//
-
-/// EmitConversionToBool - Convert the specified expression value to a
-/// boolean (i1) truth value.  This is equivalent to "Val != 0".
-Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
-  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
-
-  if (SrcType->isRealFloatingType()) {
-    // Compare against 0.0 for fp scalars.
-    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
-    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
-  }
-
-  if (SrcType->isMemberPointerType()) {
-    // Compare against -1.
-    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
-    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
-  }
-
-  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
-         "Unknown scalar type to convert");
-
-  // Because of the type rules of C, we often end up computing a logical value,
-  // then zero extending it to int, then wanting it as a logical value again.
-  // Optimize this common case.
-  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
-    if (ZI->getOperand(0)->getType() ==
-        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
-      Value *Result = ZI->getOperand(0);
-      // If there aren't any more uses, zap the instruction to save space.
-      // Note that there can be more uses, for example if this
-      // is the result of an assignment.
-      if (ZI->use_empty())
-        ZI->eraseFromParent();
-      return Result;
-    }
-  }
-
-  // Compare against an integer or pointer null.
-  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
-  return Builder.CreateICmpNE(Src, Zero, "tobool");
-}
-
-/// EmitScalarConversion - Emit a conversion from the specified type to the
-/// specified destination type, both of which are LLVM scalar types.
-Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
-                                               QualType DstType) {
-  SrcType = CGF.getContext().getCanonicalType(SrcType);
-  DstType = CGF.getContext().getCanonicalType(DstType);
-  if (SrcType == DstType) return Src;
-
-  if (DstType->isVoidType()) return 0;
-
-  // Handle conversions to bool first, they are special: comparisons against 0.
-  if (DstType->isBooleanType())
-    return EmitConversionToBool(Src, SrcType);
-
-  const llvm::Type *DstTy = ConvertType(DstType);
-
-  // Ignore conversions like int -> uint.
-  if (Src->getType() == DstTy)
-    return Src;
-
-  // Handle pointer conversions next: pointers can only be converted to/from
-  // other pointers and integers. Check for pointer types in terms of LLVM, as
-  // some native types (like Obj-C id) may map to a pointer type.
-  if (isa<llvm::PointerType>(DstTy)) {
-    // The source value may be an integer, or a pointer.
-    if (isa<llvm::PointerType>(Src->getType()))
-      return Builder.CreateBitCast(Src, DstTy, "conv");
-
-    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
-    // First, convert to the correct width so that we control the kind of
-    // extension.
-    const llvm::Type *MiddleTy = CGF.IntPtrTy;
-    bool InputSigned = SrcType->isSignedIntegerType();
-    llvm::Value* IntResult =
-        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
-    // Then, cast to pointer.
-    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
-  }
-
-  if (isa<llvm::PointerType>(Src->getType())) {
-    // Must be an ptr to int cast.
-    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
-    return Builder.CreatePtrToInt(Src, DstTy, "conv");
-  }
-
-  // A scalar can be splatted to an extended vector of the same element type
-  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
-    // Cast the scalar to element type
-    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
-    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
-
-    // Insert the element in element zero of an undef vector
-    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
-    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
-    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
-
-    // Splat the element across to all elements
-    llvm::SmallVector<llvm::Constant*, 16> Args;
-    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
-    for (unsigned i = 0; i < NumElements; i++)
-      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
-
-    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
-    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
-    return Yay;
-  }
-
-  // Allow bitcast from vector to integer/fp of the same size.
-  if (isa<llvm::VectorType>(Src->getType()) ||
-      isa<llvm::VectorType>(DstTy))
-    return Builder.CreateBitCast(Src, DstTy, "conv");
-
-  // Finally, we have the arithmetic types: real int/float.
-  if (isa<llvm::IntegerType>(Src->getType())) {
-    bool InputSigned = SrcType->isSignedIntegerType();
-    if (isa<llvm::IntegerType>(DstTy))
-      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
-    else if (InputSigned)
-      return Builder.CreateSIToFP(Src, DstTy, "conv");
-    else
-      return Builder.CreateUIToFP(Src, DstTy, "conv");
-  }
-
-  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
-  if (isa<llvm::IntegerType>(DstTy)) {
-    if (DstType->isSignedIntegerType())
-      return Builder.CreateFPToSI(Src, DstTy, "conv");
-    else
-      return Builder.CreateFPToUI(Src, DstTy, "conv");
-  }
-
-  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
-  if (DstTy->getTypeID() < Src->getType()->getTypeID())
-    return Builder.CreateFPTrunc(Src, DstTy, "conv");
-  else
-    return Builder.CreateFPExt(Src, DstTy, "conv");
-}
-
-/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
-/// type to the specified destination type, where the destination type is an
-/// LLVM scalar type.
-Value *ScalarExprEmitter::
-EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
-                              QualType SrcTy, QualType DstTy) {
-  // Get the source element type.
-  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
-
-  // Handle conversions to bool first, they are special: comparisons against 0.
-  if (DstTy->isBooleanType()) {
-    //  Complex != 0  -> (Real != 0) | (Imag != 0)
-    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
-    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
-    return Builder.CreateOr(Src.first, Src.second, "tobool");
-  }
-
-  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
-  // the imaginary part of the complex value is discarded and the value of the
-  // real part is converted according to the conversion rules for the
-  // corresponding real type.
-  return EmitScalarConversion(Src.first, SrcTy, DstTy);
-}
-
-Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
-  const llvm::Type *LTy = ConvertType(Ty);
-  
-  if (!Ty->isMemberPointerType())
-    return llvm::Constant::getNullValue(LTy);
-  
-  assert(!Ty->isMemberFunctionPointerType() &&
-         "member function pointers are not scalar!");
-
-  // Itanium C++ ABI 2.3:
-  //   A NULL pointer is represented as -1.
-  return llvm::ConstantInt::get(LTy, -1ULL, /*isSigned=*/true);  
-}
-
-//===----------------------------------------------------------------------===//
-//                            Visitor Methods
-//===----------------------------------------------------------------------===//
-
-Value *ScalarExprEmitter::VisitExpr(Expr *E) {
-  CGF.ErrorUnsupported(E, "scalar expression");
-  if (E->getType()->isVoidType())
-    return 0;
-  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
-}
-
-Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
-  // Vector Mask Case
-  if (E->getNumSubExprs() == 2 || 
-      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
-    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
-    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
-    Value *Mask;
-    
-    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
-    unsigned LHSElts = LTy->getNumElements();
-
-    if (E->getNumSubExprs() == 3) {
-      Mask = CGF.EmitScalarExpr(E->getExpr(2));
-      
-      // Shuffle LHS & RHS into one input vector.
-      llvm::SmallVector<llvm::Constant*, 32> concat;
-      for (unsigned i = 0; i != LHSElts; ++i) {
-        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
-        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
-      }
-      
-      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
-      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
-      LHSElts *= 2;
-    } else {
-      Mask = RHS;
-    }
-    
-    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
-    llvm::Constant* EltMask;
-    
-    // Treat vec3 like vec4.
-    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
-      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
-                                       (1 << llvm::Log2_32(LHSElts+2))-1);
-    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
-      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
-                                       (1 << llvm::Log2_32(LHSElts+1))-1);
-    else
-      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
-                                       (1 << llvm::Log2_32(LHSElts))-1);
-             
-    // Mask off the high bits of each shuffle index.
-    llvm::SmallVector<llvm::Constant *, 32> MaskV;
-    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
-      MaskV.push_back(EltMask);
-    
-    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
-    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
-    
-    // newv = undef
-    // mask = mask & maskbits
-    // for each elt
-    //   n = extract mask i
-    //   x = extract val n
-    //   newv = insert newv, x, i
-    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
-                                                        MTy->getNumElements());
-    Value* NewV = llvm::UndefValue::get(RTy);
-    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
-      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
-      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
-      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
-      
-      // Handle vec3 special since the index will be off by one for the RHS.
-      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
-        Value *cmpIndx, *newIndx;
-        cmpIndx = Builder.CreateICmpUGT(Indx,
-                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
-                                        "cmp_shuf_idx");
-        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
-                                    "shuf_idx_adj");
-        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
-      }
-      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
-      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
-    }
-    return NewV;
-  }
-  
-  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
-  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
-  
-  // Handle vec3 special since the index will be off by one for the RHS.
-  llvm::SmallVector<llvm::Constant*, 32> indices;
-  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
-    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
-    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
-    if (VTy->getNumElements() == 3) {
-      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
-        uint64_t cVal = CI->getZExtValue();
-        if (cVal > 3) {
-          C = llvm::ConstantInt::get(C->getType(), cVal-1);
-        }
-      }
-    }
-    indices.push_back(C);
-  }
-
-  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
-  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
-}
-Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
-  Expr::EvalResult Result;
-  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
-    if (E->isArrow())
-      CGF.EmitScalarExpr(E->getBase());
-    else
-      EmitLValue(E->getBase());
-    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
-  }
-  return EmitLoadOfLValue(E);
-}
-
-Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
-  TestAndClearIgnoreResultAssign();
-
-  // Emit subscript expressions in rvalue context's.  For most cases, this just
-  // loads the lvalue formed by the subscript expr.  However, we have to be
-  // careful, because the base of a vector subscript is occasionally an rvalue,
-  // so we can't get it as an lvalue.
-  if (!E->getBase()->getType()->isVectorType())
-    return EmitLoadOfLValue(E);
-
-  // Handle the vector case.  The base must be a vector, the index must be an
-  // integer value.
-  Value *Base = Visit(E->getBase());
-  Value *Idx  = Visit(E->getIdx());
-  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
-  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
-  return Builder.CreateExtractElement(Base, Idx, "vecext");
-}
-
-static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
-                                  unsigned Off, const llvm::Type *I32Ty) {
-  int MV = SVI->getMaskValue(Idx);
-  if (MV == -1) 
-    return llvm::UndefValue::get(I32Ty);
-  return llvm::ConstantInt::get(I32Ty, Off+MV);
-}
-
-Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
-  bool Ignore = TestAndClearIgnoreResultAssign();
-  (void)Ignore;
-  assert (Ignore == false && "init list ignored");
-  unsigned NumInitElements = E->getNumInits();
-  
-  if (E->hadArrayRangeDesignator())
-    CGF.ErrorUnsupported(E, "GNU array range designator extension");
-  
-  const llvm::VectorType *VType =
-    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
-  
-  // We have a scalar in braces. Just use the first element.
-  if (!VType)
-    return Visit(E->getInit(0));
-  
-  unsigned ResElts = VType->getNumElements();
-  
-  // Loop over initializers collecting the Value for each, and remembering 
-  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
-  // us to fold the shuffle for the swizzle into the shuffle for the vector
-  // initializer, since LLVM optimizers generally do not want to touch
-  // shuffles.
-  unsigned CurIdx = 0;
-  bool VIsUndefShuffle = false;
-  llvm::Value *V = llvm::UndefValue::get(VType);
-  for (unsigned i = 0; i != NumInitElements; ++i) {
-    Expr *IE = E->getInit(i);
-    Value *Init = Visit(IE);
-    llvm::SmallVector<llvm::Constant*, 16> Args;
-    
-    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
-    
-    // Handle scalar elements.  If the scalar initializer is actually one
-    // element of a different vector of the same width, use shuffle instead of 
-    // extract+insert.
-    if (!VVT) {
-      if (isa<ExtVectorElementExpr>(IE)) {
-        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
-
-        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
-          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
-          Value *LHS = 0, *RHS = 0;
-          if (CurIdx == 0) {
-            // insert into undef -> shuffle (src, undef)
-            Args.push_back(C);
-            for (unsigned j = 1; j != ResElts; ++j)
-              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-
-            LHS = EI->getVectorOperand();
-            RHS = V;
-            VIsUndefShuffle = true;
-          } else if (VIsUndefShuffle) {
-            // insert into undefshuffle && size match -> shuffle (v, src)
-            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
-            for (unsigned j = 0; j != CurIdx; ++j)
-              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
-            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 
-                                                  ResElts + C->getZExtValue()));
-            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
-              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-            
-            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
-            RHS = EI->getVectorOperand();
-            VIsUndefShuffle = false;
-          }
-          if (!Args.empty()) {
-            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
-            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
-            ++CurIdx;
-            continue;
-          }
-        }
-      }
-      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
-      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
-      VIsUndefShuffle = false;
-      ++CurIdx;
-      continue;
-    }
-    
-    unsigned InitElts = VVT->getNumElements();
-
-    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 
-    // input is the same width as the vector being constructed, generate an
-    // optimized shuffle of the swizzle input into the result.
-    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
-    if (isa<ExtVectorElementExpr>(IE)) {
-      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
-      Value *SVOp = SVI->getOperand(0);
-      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
-      
-      if (OpTy->getNumElements() == ResElts) {
-        for (unsigned j = 0; j != CurIdx; ++j) {
-          // If the current vector initializer is a shuffle with undef, merge
-          // this shuffle directly into it.
-          if (VIsUndefShuffle) {
-            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
-                                      CGF.Int32Ty));
-          } else {
-            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
-          }
-        }
-        for (unsigned j = 0, je = InitElts; j != je; ++j)
-          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
-        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
-          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-
-        if (VIsUndefShuffle)
-          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
-
-        Init = SVOp;
-      }
-    }
-
-    // Extend init to result vector length, and then shuffle its contribution
-    // to the vector initializer into V.
-    if (Args.empty()) {
-      for (unsigned j = 0; j != InitElts; ++j)
-        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
-      for (unsigned j = InitElts; j != ResElts; ++j)
-        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
-      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
-                                         Mask, "vext");
-
-      Args.clear();
-      for (unsigned j = 0; j != CurIdx; ++j)
-        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
-      for (unsigned j = 0; j != InitElts; ++j)
-        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
-      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
-        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-    }
-
-    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
-    // merging subsequent shuffles into this one.
-    if (CurIdx == 0)
-      std::swap(V, Init);
-    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
-    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
-    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
-    CurIdx += InitElts;
-  }
-  
-  // FIXME: evaluate codegen vs. shuffling against constant null vector.
-  // Emit remaining default initializers.
-  const llvm::Type *EltTy = VType->getElementType();
-  
-  // Emit remaining default initializers
-  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
-    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
-    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
-    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
-  }
-  return V;
-}
-
-static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
-  const Expr *E = CE->getSubExpr();
-
-  if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
-    return false;
-  
-  if (isa<CXXThisExpr>(E)) {
-    // We always assume that 'this' is never null.
-    return false;
-  }
-  
-  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
-    // And that glvalue casts are never null.
-    if (ICE->getCategory() != ImplicitCastExpr::RValue)
-      return false;
-  }
-
-  return true;
-}
-
-// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
-// have to handle a more broad range of conversions than explicit casts, as they
-// handle things like function to ptr-to-function decay etc.
-Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
-  Expr *E = CE->getSubExpr();
-  QualType DestTy = CE->getType();
-  CastExpr::CastKind Kind = CE->getCastKind();
-  
-  if (!DestTy->isVoidType())
-    TestAndClearIgnoreResultAssign();
-
-  // Since almost all cast kinds apply to scalars, this switch doesn't have
-  // a default case, so the compiler will warn on a missing case.  The cases
-  // are in the same order as in the CastKind enum.
-  switch (Kind) {
-  case CastExpr::CK_Unknown:
-    // FIXME: All casts should have a known kind!
-    //assert(0 && "Unknown cast kind!");
-    break;
-
-  case CastExpr::CK_LValueBitCast: {
-    Value *V = EmitLValue(E).getAddress();
-    V = Builder.CreateBitCast(V, 
-                          ConvertType(CGF.getContext().getPointerType(DestTy)));
-    // FIXME: Are the qualifiers correct here?
-    return EmitLoadOfLValue(LValue::MakeAddr(V, CGF.MakeQualifiers(DestTy)), 
-                            DestTy);
-  }
-      
-  case CastExpr::CK_AnyPointerToObjCPointerCast:
-  case CastExpr::CK_AnyPointerToBlockPointerCast:
-  case CastExpr::CK_BitCast: {
-    Value *Src = Visit(const_cast<Expr*>(E));
-    return Builder.CreateBitCast(Src, ConvertType(DestTy));
-  }
-  case CastExpr::CK_NoOp:
-  case CastExpr::CK_UserDefinedConversion:
-    return Visit(const_cast<Expr*>(E));
-
-  case CastExpr::CK_BaseToDerived: {
-    const CXXRecordDecl *DerivedClassDecl = 
-      DestTy->getCXXRecordDeclForPointerType();
-    
-    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl, 
-                                        CE->getBasePath(), 
-                                        ShouldNullCheckClassCastValue(CE));
-  }
-  case CastExpr::CK_UncheckedDerivedToBase:
-  case CastExpr::CK_DerivedToBase: {
-    const RecordType *DerivedClassTy = 
-      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
-    CXXRecordDecl *DerivedClassDecl = 
-      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
-
-    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 
-                                     CE->getBasePath(),
-                                     ShouldNullCheckClassCastValue(CE));
-  }
-  case CastExpr::CK_Dynamic: {
-    Value *V = Visit(const_cast<Expr*>(E));
-    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
-    return CGF.EmitDynamicCast(V, DCE);
-  }
-  case CastExpr::CK_ToUnion:
-    assert(0 && "Should be unreachable!");
-    break;
-
-  case CastExpr::CK_ArrayToPointerDecay: {
-    assert(E->getType()->isArrayType() &&
-           "Array to pointer decay must have array source type!");
-
-    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
-
-    // Note that VLA pointers are always decayed, so we don't need to do
-    // anything here.
-    if (!E->getType()->isVariableArrayType()) {
-      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
-      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
-                                 ->getElementType()) &&
-             "Expected pointer to array");
-      V = Builder.CreateStructGEP(V, 0, "arraydecay");
-    }
-
-    return V;
-  }
-  case CastExpr::CK_FunctionToPointerDecay:
-    return EmitLValue(E).getAddress();
-
-  case CastExpr::CK_NullToMemberPointer:
-    return CGF.CGM.EmitNullConstant(DestTy);
-
-  case CastExpr::CK_BaseToDerivedMemberPointer:
-  case CastExpr::CK_DerivedToBaseMemberPointer: {
-    Value *Src = Visit(E);
-
-    // See if we need to adjust the pointer.
-    const CXXRecordDecl *BaseDecl = 
-      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
-                          getClass()->getAs<RecordType>()->getDecl());
-    const CXXRecordDecl *DerivedDecl = 
-      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
-                          getClass()->getAs<RecordType>()->getDecl());
-    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
-      std::swap(DerivedDecl, BaseDecl);
-
-    if (llvm::Constant *Adj = 
-          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, CE->getBasePath())){
-      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
-        Src = Builder.CreateNSWSub(Src, Adj, "adj");
-      else
-        Src = Builder.CreateNSWAdd(Src, Adj, "adj");
-    }
-    
-    return Src;
-  }
-
-  case CastExpr::CK_ConstructorConversion:
-    assert(0 && "Should be unreachable!");
-    break;
-
-  case CastExpr::CK_IntegralToPointer: {
-    Value *Src = Visit(const_cast<Expr*>(E));
-    
-    // First, convert to the correct width so that we control the kind of
-    // extension.
-    const llvm::Type *MiddleTy = CGF.IntPtrTy;
-    bool InputSigned = E->getType()->isSignedIntegerType();
-    llvm::Value* IntResult =
-      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
-    
-    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
-  }
-  case CastExpr::CK_PointerToIntegral: {
-    Value *Src = Visit(const_cast<Expr*>(E));
-    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
-  }
-  case CastExpr::CK_ToVoid: {
-    CGF.EmitAnyExpr(E, 0, false, true);
-    return 0;
-  }
-  case CastExpr::CK_VectorSplat: {
-    const llvm::Type *DstTy = ConvertType(DestTy);
-    Value *Elt = Visit(const_cast<Expr*>(E));
-
-    // Insert the element in element zero of an undef vector
-    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
-    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
-    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
-
-    // Splat the element across to all elements
-    llvm::SmallVector<llvm::Constant*, 16> Args;
-    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
-    for (unsigned i = 0; i < NumElements; i++)
-      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
-
-    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
-    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
-    return Yay;
-  }
-  case CastExpr::CK_IntegralCast:
-  case CastExpr::CK_IntegralToFloating:
-  case CastExpr::CK_FloatingToIntegral:
-  case CastExpr::CK_FloatingCast:
-    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
-
-  case CastExpr::CK_MemberPointerToBoolean:
-    return CGF.EvaluateExprAsBool(E);
-  }
-
-  // Handle cases where the source is an non-complex type.
-
-  if (!CGF.hasAggregateLLVMType(E->getType())) {
-    Value *Src = Visit(const_cast<Expr*>(E));
-
-    // Use EmitScalarConversion to perform the conversion.
-    return EmitScalarConversion(Src, E->getType(), DestTy);
-  }
-
-  if (E->getType()->isAnyComplexType()) {
-    // Handle cases where the source is a complex type.
-    bool IgnoreImag = true;
-    bool IgnoreImagAssign = true;
-    bool IgnoreReal = IgnoreResultAssign;
-    bool IgnoreRealAssign = IgnoreResultAssign;
-    if (DestTy->isBooleanType())
-      IgnoreImagAssign = IgnoreImag = false;
-    else if (DestTy->isVoidType()) {
-      IgnoreReal = IgnoreImag = false;
-      IgnoreRealAssign = IgnoreImagAssign = true;
-    }
-    CodeGenFunction::ComplexPairTy V
-      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
-                            IgnoreImagAssign);
-    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
-  }
-
-  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
-  // evaluate the result and return.
-  CGF.EmitAggExpr(E, 0, false, true);
-  return 0;
-}
-
-Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
-  return CGF.EmitCompoundStmt(*E->getSubStmt(),
-                              !E->getType()->isVoidType()).getScalarVal();
-}
-
-Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
-  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
-  if (E->getType().isObjCGCWeak())
-    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
-  return Builder.CreateLoad(V, "tmp");
-}
-
-//===----------------------------------------------------------------------===//
-//                             Unary Operators
-//===----------------------------------------------------------------------===//
-
-llvm::Value *ScalarExprEmitter::
-EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
-                        bool isInc, bool isPre) {
-  
-  QualType ValTy = E->getSubExpr()->getType();
-  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
-  
-  int AmountVal = isInc ? 1 : -1;
-  
-  if (ValTy->isPointerType() &&
-      ValTy->getAs<PointerType>()->isVariableArrayType()) {
-    // The amount of the addition/subtraction needs to account for the VLA size
-    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
-  }
-  
-  llvm::Value *NextVal;
-  if (const llvm::PointerType *PT =
-      dyn_cast<llvm::PointerType>(InVal->getType())) {
-    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
-    if (!isa<llvm::FunctionType>(PT->getElementType())) {
-      QualType PTEE = ValTy->getPointeeType();
-      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
-        // Handle interface types, which are not represented with a concrete
-        // type.
-        int size = CGF.getContext().getTypeSize(OIT) / 8;
-        if (!isInc)
-          size = -size;
-        Inc = llvm::ConstantInt::get(Inc->getType(), size);
-        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
-        InVal = Builder.CreateBitCast(InVal, i8Ty);
-        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
-        llvm::Value *lhs = LV.getAddress();
-        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
-        LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
-      } else
-        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
-    } else {
-      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
-      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
-      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
-      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
-    }
-  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
-    // Bool++ is an interesting case, due to promotion rules, we get:
-    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
-    // Bool = ((int)Bool+1) != 0
-    // An interesting aspect of this is that increment is always true.
-    // Decrement does not have this property.
-    NextVal = llvm::ConstantInt::getTrue(VMContext);
-  } else if (isa<llvm::IntegerType>(InVal->getType())) {
-    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
-    
-    if (!ValTy->isSignedIntegerType())
-      // Unsigned integer inc is always two's complement.
-      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
-    else {
-      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
-      case LangOptions::SOB_Undefined:
-        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
-        break;
-      case LangOptions::SOB_Defined:
-        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
-        break;
-      case LangOptions::SOB_Trapping:
-        BinOpInfo BinOp;
-        BinOp.LHS = InVal;
-        BinOp.RHS = NextVal;
-        BinOp.Ty = E->getType();
-        BinOp.Opcode = BinaryOperator::Add;
-        BinOp.E = E;
-        return EmitOverflowCheckedBinOp(BinOp);
-      }
-    }
-  } else {
-    // Add the inc/dec to the real part.
-    if (InVal->getType()->isFloatTy())
-      NextVal =
-      llvm::ConstantFP::get(VMContext,
-                            llvm::APFloat(static_cast<float>(AmountVal)));
-    else if (InVal->getType()->isDoubleTy())
-      NextVal =
-      llvm::ConstantFP::get(VMContext,
-                            llvm::APFloat(static_cast<double>(AmountVal)));
-    else {
-      llvm::APFloat F(static_cast<float>(AmountVal));
-      bool ignored;
-      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
-                &ignored);
-      NextVal = llvm::ConstantFP::get(VMContext, F);
-    }
-    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
-  }
-  
-  // Store the updated result through the lvalue.
-  if (LV.isBitField())
-    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
-  else
-    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
-  
-  // If this is a postinc, return the value read from memory, otherwise use the
-  // updated value.
-  return isPre ? NextVal : InVal;
-}
-
-
-
-Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
-  TestAndClearIgnoreResultAssign();
-  // Emit unary minus with EmitSub so we handle overflow cases etc.
-  BinOpInfo BinOp;
-  BinOp.RHS = Visit(E->getSubExpr());
-  
-  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
-    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
-  else 
-    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
-  BinOp.Ty = E->getType();
-  BinOp.Opcode = BinaryOperator::Sub;
-  BinOp.E = E;
-  return EmitSub(BinOp);
-}
-
-Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
-  TestAndClearIgnoreResultAssign();
-  Value *Op = Visit(E->getSubExpr());
-  return Builder.CreateNot(Op, "neg");
-}
-
-Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
-  // Compare operand to zero.
-  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
-
-  // Invert value.
-  // TODO: Could dynamically modify easy computations here.  For example, if
-  // the operand is an icmp ne, turn into icmp eq.
-  BoolVal = Builder.CreateNot(BoolVal, "lnot");
-
-  // ZExt result to the expr type.
-  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
-}
-
-Value *ScalarExprEmitter::VisitOffsetOfExpr(const OffsetOfExpr *E) {
-  Expr::EvalResult Result;
-  if(E->Evaluate(Result, CGF.getContext()))
-    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
-  
-  // FIXME: Cannot support code generation for non-constant offsetof.
-  unsigned DiagID = CGF.CGM.getDiags().getCustomDiagID(Diagnostic::Error,
-                             "cannot compile non-constant __builtin_offsetof");
-  CGF.CGM.getDiags().Report(CGF.getContext().getFullLoc(E->getLocStart()), 
-                            DiagID)
-    << E->getSourceRange();
-  
-  return llvm::Constant::getNullValue(ConvertType(E->getType()));
-}
-
-/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
-/// argument of the sizeof expression as an integer.
-Value *
-ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
-  QualType TypeToSize = E->getTypeOfArgument();
-  if (E->isSizeOf()) {
-    if (const VariableArrayType *VAT =
-          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
-      if (E->isArgumentType()) {
-        // sizeof(type) - make sure to emit the VLA size.
-        CGF.EmitVLASize(TypeToSize);
-      } else {
-        // C99 6.5.3.4p2: If the argument is an expression of type
-        // VLA, it is evaluated.
-        CGF.EmitAnyExpr(E->getArgumentExpr());
-      }
-
-      return CGF.GetVLASize(VAT);
-    }
-  }
-
-  // If this isn't sizeof(vla), the result must be constant; use the constant
-  // folding logic so we don't have to duplicate it here.
-  Expr::EvalResult Result;
-  E->Evaluate(Result, CGF.getContext());
-  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
-}
-
-Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
-  Expr *Op = E->getSubExpr();
-  if (Op->getType()->isAnyComplexType())
-    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
-  return Visit(Op);
-}
-Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
-  Expr *Op = E->getSubExpr();
-  if (Op->getType()->isAnyComplexType())
-    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
-
-  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
-  // effects are evaluated, but not the actual value.
-  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
-    CGF.EmitLValue(Op);
-  else
-    CGF.EmitScalarExpr(Op, true);
-  return llvm::Constant::getNullValue(ConvertType(E->getType()));
-}
-
-Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
-  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
-  const llvm::Type* ResultType = ConvertType(E->getType());
-  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
-}
-
-//===----------------------------------------------------------------------===//
-//                           Binary Operators
-//===----------------------------------------------------------------------===//
-
-BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
-  TestAndClearIgnoreResultAssign();
-  BinOpInfo Result;
-  Result.LHS = Visit(E->getLHS());
-  Result.RHS = Visit(E->getRHS());
-  Result.Ty  = E->getType();
-  Result.Opcode = E->getOpcode();
-  Result.E = E;
-  return Result;
-}
-
-LValue ScalarExprEmitter::EmitCompoundAssignLValue(
-                                              const CompoundAssignOperator *E,
-                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
-                                                   Value *&Result) {
-  QualType LHSTy = E->getLHS()->getType();
-  BinOpInfo OpInfo;
-  
-  if (E->getComputationResultType()->isAnyComplexType()) {
-    // This needs to go through the complex expression emitter, but it's a tad
-    // complicated to do that... I'm leaving it out for now.  (Note that we do
-    // actually need the imaginary part of the RHS for multiplication and
-    // division.)
-    CGF.ErrorUnsupported(E, "complex compound assignment");
-    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
-    return LValue();
-  }
-  
-  // Emit the RHS first.  __block variables need to have the rhs evaluated
-  // first, plus this should improve codegen a little.
-  OpInfo.RHS = Visit(E->getRHS());
-  OpInfo.Ty = E->getComputationResultType();
-  OpInfo.Opcode = E->getOpcode();
-  OpInfo.E = E;
-  // Load/convert the LHS.
-  LValue LHSLV = EmitCheckedLValue(E->getLHS());
-  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
-  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
-                                    E->getComputationLHSType());
-  
-  // Expand the binary operator.
-  Result = (this->*Func)(OpInfo);
-  
-  // Convert the result back to the LHS type.
-  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
-  
-  // Store the result value into the LHS lvalue. Bit-fields are handled
-  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
-  // 'An assignment expression has the value of the left operand after the
-  // assignment...'.
-  if (LHSLV.isBitField())
-    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
-                                       &Result);
-  else
-    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
-
-  return LHSLV;
-}
-
-Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
-                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
-  bool Ignore = TestAndClearIgnoreResultAssign();
-  Value *RHS;
-  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
-
-  // If the result is clearly ignored, return now.
-  if (Ignore)
-    return 0;
-
-  // Objective-C property assignment never reloads the value following a store.
-  if (LHS.isPropertyRef() || LHS.isKVCRef())
-    return RHS;
-
-  // If the lvalue is non-volatile, return the computed value of the assignment.
-  if (!LHS.isVolatileQualified())
-    return RHS;
-
-  // Otherwise, reload the value.
-  return EmitLoadOfLValue(LHS, E->getType());
-}
-
-
-Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
-  if (Ops.LHS->getType()->isFPOrFPVectorTy())
-    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
-  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
-    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
-  else
-    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
-}
-
-Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
-  // Rem in C can't be a floating point type: C99 6.5.5p2.
-  if (Ops.Ty->isUnsignedIntegerType())
-    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
-  else
-    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
-}
-
-Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
-  unsigned IID;
-  unsigned OpID = 0;
-
-  switch (Ops.Opcode) {
-  case BinaryOperator::Add:
-  case BinaryOperator::AddAssign:
-    OpID = 1;
-    IID = llvm::Intrinsic::sadd_with_overflow;
-    break;
-  case BinaryOperator::Sub:
-  case BinaryOperator::SubAssign:
-    OpID = 2;
-    IID = llvm::Intrinsic::ssub_with_overflow;
-    break;
-  case BinaryOperator::Mul:
-  case BinaryOperator::MulAssign:
-    OpID = 3;
-    IID = llvm::Intrinsic::smul_with_overflow;
-    break;
-  default:
-    assert(false && "Unsupported operation for overflow detection");
-    IID = 0;
-  }
-  OpID <<= 1;
-  OpID |= 1;
-
-  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
-
-  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
-
-  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
-  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
-  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
-
-  // Branch in case of overflow.
-  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
-  llvm::BasicBlock *overflowBB =
-    CGF.createBasicBlock("overflow", CGF.CurFn);
-  llvm::BasicBlock *continueBB =
-    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
-
-  Builder.CreateCondBr(overflow, overflowBB, continueBB);
-
-  // Handle overflow
-
-  Builder.SetInsertPoint(overflowBB);
-
-  // Handler is:
-  // long long *__overflow_handler)(long long a, long long b, char op,
-  // char width)
-  std::vector<const llvm::Type*> handerArgTypes;
-  handerArgTypes.push_back(CGF.Int64Ty);
-  handerArgTypes.push_back(CGF.Int64Ty);
-  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
-  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
-  llvm::FunctionType *handlerTy =
-    llvm::FunctionType::get(CGF.Int64Ty, handerArgTypes, false);
-  llvm::Value *handlerFunction =
-    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
-        llvm::PointerType::getUnqual(handlerTy));
-  handlerFunction = Builder.CreateLoad(handlerFunction);
-
-  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
-      Builder.CreateSExt(Ops.LHS, CGF.Int64Ty),
-      Builder.CreateSExt(Ops.RHS, CGF.Int64Ty),
-      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
-      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
-        cast<llvm::IntegerType>(opTy)->getBitWidth()));
-
-  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
-
-  Builder.CreateBr(continueBB);
-
-  // Set up the continuation
-  Builder.SetInsertPoint(continueBB);
-  // Get the correct result
-  llvm::PHINode *phi = Builder.CreatePHI(opTy);
-  phi->reserveOperandSpace(2);
-  phi->addIncoming(result, initialBB);
-  phi->addIncoming(handlerResult, overflowBB);
-
-  return phi;
-}
-
-Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
-  if (!Ops.Ty->isAnyPointerType()) {
-    if (Ops.Ty->hasSignedIntegerRepresentation()) {
-      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
-      case LangOptions::SOB_Undefined:
-        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
-      case LangOptions::SOB_Defined:
-        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
-      case LangOptions::SOB_Trapping:
-        return EmitOverflowCheckedBinOp(Ops);
-      }
-    }
-    
-    if (Ops.LHS->getType()->isFPOrFPVectorTy())
-      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
-
-    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
-  }
-
-  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
-  // use this path.
-  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
-  
-  if (Ops.Ty->isPointerType() &&
-      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
-    // The amount of the addition needs to account for the VLA size
-    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
-  }
-  
-  Value *Ptr, *Idx;
-  Expr *IdxExp;
-  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
-  const ObjCObjectPointerType *OPT =
-    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
-  if (PT || OPT) {
-    Ptr = Ops.LHS;
-    Idx = Ops.RHS;
-    IdxExp = BinOp->getRHS();
-  } else {  // int + pointer
-    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
-    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
-    assert((PT || OPT) && "Invalid add expr");
-    Ptr = Ops.RHS;
-    Idx = Ops.LHS;
-    IdxExp = BinOp->getLHS();
-  }
-
-  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
-  if (Width < CGF.LLVMPointerWidth) {
-    // Zero or sign extend the pointer value based on whether the index is
-    // signed or not.
-    const llvm::Type *IdxType = CGF.IntPtrTy;
-    if (IdxExp->getType()->isSignedIntegerType())
-      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
-    else
-      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
-  }
-  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
-  // Handle interface types, which are not represented with a concrete type.
-  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
-    llvm::Value *InterfaceSize =
-      llvm::ConstantInt::get(Idx->getType(),
-          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
-    Idx = Builder.CreateMul(Idx, InterfaceSize);
-    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
-    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
-    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
-    return Builder.CreateBitCast(Res, Ptr->getType());
-  }
-
-  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
-  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
-  // future proof.
-  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
-    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
-    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
-    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
-    return Builder.CreateBitCast(Res, Ptr->getType());
-  }
-
-  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
-}
-
-Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
-  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
-    if (Ops.Ty->hasSignedIntegerRepresentation()) {
-      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
-      case LangOptions::SOB_Undefined:
-        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
-      case LangOptions::SOB_Defined:
-        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
-      case LangOptions::SOB_Trapping:
-        return EmitOverflowCheckedBinOp(Ops);
-      }
-    }
-    
-    if (Ops.LHS->getType()->isFPOrFPVectorTy())
-      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
-
-    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
-  }
-
-  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
-  // use this path.
-  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
-  
-  if (BinOp->getLHS()->getType()->isPointerType() &&
-      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
-    // The amount of the addition needs to account for the VLA size for
-    // ptr-int
-    // The amount of the division needs to account for the VLA size for
-    // ptr-ptr.
-    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
-  }
-
-  const QualType LHSType = BinOp->getLHS()->getType();
-  const QualType LHSElementType = LHSType->getPointeeType();
-  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
-    // pointer - int
-    Value *Idx = Ops.RHS;
-    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
-    if (Width < CGF.LLVMPointerWidth) {
-      // Zero or sign extend the pointer value based on whether the index is
-      // signed or not.
-      const llvm::Type *IdxType = CGF.IntPtrTy;
-      if (BinOp->getRHS()->getType()->isSignedIntegerType())
-        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
-      else
-        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
-    }
-    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
-
-    // Handle interface types, which are not represented with a concrete type.
-    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
-      llvm::Value *InterfaceSize =
-        llvm::ConstantInt::get(Idx->getType(),
-                               CGF.getContext().
-                                 getTypeSizeInChars(OIT).getQuantity());
-      Idx = Builder.CreateMul(Idx, InterfaceSize);
-      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
-      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
-      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
-      return Builder.CreateBitCast(Res, Ops.LHS->getType());
-    }
-
-    // Explicitly handle GNU void* and function pointer arithmetic
-    // extensions. The GNU void* casts amount to no-ops since our void* type is
-    // i8*, but this is future proof.
-    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
-      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
-      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
-      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
-      return Builder.CreateBitCast(Res, Ops.LHS->getType());
-    }
-
-    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
-  } else {
-    // pointer - pointer
-    Value *LHS = Ops.LHS;
-    Value *RHS = Ops.RHS;
-
-    CharUnits ElementSize;
-
-    // Handle GCC extension for pointer arithmetic on void* and function pointer
-    // types.
-    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
-      ElementSize = CharUnits::One();
-    } else {
-      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
-    }
-
-    const llvm::Type *ResultType = ConvertType(Ops.Ty);
-    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
-    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
-    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
-
-    // Optimize out the shift for element size of 1.
-    if (ElementSize.isOne())
-      return BytesBetween;
-
-    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
-    // pointer difference in C is only defined in the case where both operands
-    // are pointing to elements of an array.
-    Value *BytesPerElt = 
-        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
-    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
-  }
-}
-
-Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
-  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
-  // RHS to the same size as the LHS.
-  Value *RHS = Ops.RHS;
-  if (Ops.LHS->getType() != RHS->getType())
-    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
-
-  if (CGF.CatchUndefined 
-      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
-    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
-    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
-    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
-                                 llvm::ConstantInt::get(RHS->getType(), Width)),
-                             Cont, CGF.getTrapBB());
-    CGF.EmitBlock(Cont);
-  }
-
-  return Builder.CreateShl(Ops.LHS, RHS, "shl");
-}
-
-Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
-  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
-  // RHS to the same size as the LHS.
-  Value *RHS = Ops.RHS;
-  if (Ops.LHS->getType() != RHS->getType())
-    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
-
-  if (CGF.CatchUndefined 
-      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
-    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
-    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
-    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
-                                 llvm::ConstantInt::get(RHS->getType(), Width)),
-                             Cont, CGF.getTrapBB());
-    CGF.EmitBlock(Cont);
-  }
-
-  if (Ops.Ty->hasUnsignedIntegerRepresentation())
-    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
-  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
-}
-
-Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
-                                      unsigned SICmpOpc, unsigned FCmpOpc) {
-  TestAndClearIgnoreResultAssign();
-  Value *Result;
-  QualType LHSTy = E->getLHS()->getType();
-  if (LHSTy->isMemberFunctionPointerType()) {
-    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
-    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
-    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
-    LHSFunc = Builder.CreateLoad(LHSFunc);
-    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
-    RHSFunc = Builder.CreateLoad(RHSFunc);
-    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
-                                        LHSFunc, RHSFunc, "cmp.func");
-    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
-    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
-                                           LHSFunc, NullPtr, "cmp.null");
-    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
-    LHSAdj = Builder.CreateLoad(LHSAdj);
-    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
-    RHSAdj = Builder.CreateLoad(RHSAdj);
-    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
-                                        LHSAdj, RHSAdj, "cmp.adj");
-    if (E->getOpcode() == BinaryOperator::EQ) {
-      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
-      Result = Builder.CreateAnd(Result, ResultF, "and.f");
-    } else {
-      assert(E->getOpcode() == BinaryOperator::NE &&
-             "Member pointer comparison other than == or != ?");
-      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
-      Result = Builder.CreateOr(Result, ResultF, "or.f");
-    }
-  } else if (!LHSTy->isAnyComplexType()) {
-    Value *LHS = Visit(E->getLHS());
-    Value *RHS = Visit(E->getRHS());
-
-    if (LHS->getType()->isFPOrFPVectorTy()) {
-      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
-                                  LHS, RHS, "cmp");
-    } else if (LHSTy->hasSignedIntegerRepresentation()) {
-      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
-                                  LHS, RHS, "cmp");
-    } else {
-      // Unsigned integers and pointers.
-      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
-                                  LHS, RHS, "cmp");
-    }
-
-    // If this is a vector comparison, sign extend the result to the appropriate
-    // vector integer type and return it (don't convert to bool).
-    if (LHSTy->isVectorType())
-      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
-
-  } else {
-    // Complex Comparison: can only be an equality comparison.
-    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
-    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
-
-    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
-
-    Value *ResultR, *ResultI;
-    if (CETy->isRealFloatingType()) {
-      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
-                                   LHS.first, RHS.first, "cmp.r");
-      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
-                                   LHS.second, RHS.second, "cmp.i");
-    } else {
-      // Complex comparisons can only be equality comparisons.  As such, signed
-      // and unsigned opcodes are the same.
-      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
-                                   LHS.first, RHS.first, "cmp.r");
-      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
-                                   LHS.second, RHS.second, "cmp.i");
-    }
-
-    if (E->getOpcode() == BinaryOperator::EQ) {
-      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
-    } else {
-      assert(E->getOpcode() == BinaryOperator::NE &&
-             "Complex comparison other than == or != ?");
-      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
-    }
-  }
-
-  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
-}
-
-Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
-  bool Ignore = TestAndClearIgnoreResultAssign();
-
-  // __block variables need to have the rhs evaluated first, plus this should
-  // improve codegen just a little.
-  Value *RHS = Visit(E->getRHS());
-  LValue LHS = EmitCheckedLValue(E->getLHS());
-
-  // Store the value into the LHS.  Bit-fields are handled specially
-  // because the result is altered by the store, i.e., [C99 6.5.16p1]
-  // 'An assignment expression has the value of the left operand after
-  // the assignment...'.
-  if (LHS.isBitField())
-    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
-                                       &RHS);
-  else
-    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
-
-  // If the result is clearly ignored, return now.
-  if (Ignore)
-    return 0;
-
-  // Objective-C property assignment never reloads the value following a store.
-  if (LHS.isPropertyRef() || LHS.isKVCRef())
-    return RHS;
-
-  // If the lvalue is non-volatile, return the computed value of the assignment.
-  if (!LHS.isVolatileQualified())
-    return RHS;
-
-  // Otherwise, reload the value.
-  return EmitLoadOfLValue(LHS, E->getType());
-}
-
-Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
-  const llvm::Type *ResTy = ConvertType(E->getType());
-  
-  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
-  // If we have 1 && X, just emit X without inserting the control flow.
-  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
-    if (Cond == 1) { // If we have 1 && X, just emit X.
-      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
-      // ZExt result to int or bool.
-      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
-    }
-
-    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
-    if (!CGF.ContainsLabel(E->getRHS()))
-      return llvm::Constant::getNullValue(ResTy);
-  }
-
-  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
-  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
-
-  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
-  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
-
-  // Any edges into the ContBlock are now from an (indeterminate number of)
-  // edges from this first condition.  All of these values will be false.  Start
-  // setting up the PHI node in the Cont Block for this.
-  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
-                                            "", ContBlock);
-  PN->reserveOperandSpace(2);  // Normal case, two inputs.
-  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
-       PI != PE; ++PI)
-    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
-
-  CGF.BeginConditionalBranch();
-  CGF.EmitBlock(RHSBlock);
-  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
-  CGF.EndConditionalBranch();
-
-  // Reaquire the RHS block, as there may be subblocks inserted.
-  RHSBlock = Builder.GetInsertBlock();
-
-  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
-  // into the phi node for the edge with the value of RHSCond.
-  CGF.EmitBlock(ContBlock);
-  PN->addIncoming(RHSCond, RHSBlock);
-
-  // ZExt result to int.
-  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
-}
-
-Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
-  const llvm::Type *ResTy = ConvertType(E->getType());
-  
-  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
-  // If we have 0 || X, just emit X without inserting the control flow.
-  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
-    if (Cond == -1) { // If we have 0 || X, just emit X.
-      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
-      // ZExt result to int or bool.
-      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
-    }
-
-    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
-    if (!CGF.ContainsLabel(E->getRHS()))
-      return llvm::ConstantInt::get(ResTy, 1);
-  }
-
-  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
-  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
-
-  // Branch on the LHS first.  If it is true, go to the success (cont) block.
-  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
-
-  // Any edges into the ContBlock are now from an (indeterminate number of)
-  // edges from this first condition.  All of these values will be true.  Start
-  // setting up the PHI node in the Cont Block for this.
-  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
-                                            "", ContBlock);
-  PN->reserveOperandSpace(2);  // Normal case, two inputs.
-  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
-       PI != PE; ++PI)
-    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
-
-  CGF.BeginConditionalBranch();
-
-  // Emit the RHS condition as a bool value.
-  CGF.EmitBlock(RHSBlock);
-  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
-
-  CGF.EndConditionalBranch();
-
-  // Reaquire the RHS block, as there may be subblocks inserted.
-  RHSBlock = Builder.GetInsertBlock();
-
-  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
-  // into the phi node for the edge with the value of RHSCond.
-  CGF.EmitBlock(ContBlock);
-  PN->addIncoming(RHSCond, RHSBlock);
-
-  // ZExt result to int.
-  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
-}
-
-Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
-  CGF.EmitStmt(E->getLHS());
-  CGF.EnsureInsertPoint();
-  return Visit(E->getRHS());
-}
-
-//===----------------------------------------------------------------------===//
-//                             Other Operators
-//===----------------------------------------------------------------------===//
-
-/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
-/// expression is cheap enough and side-effect-free enough to evaluate
-/// unconditionally instead of conditionally.  This is used to convert control
-/// flow into selects in some cases.
-static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
-                                                   CodeGenFunction &CGF) {
-  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
-    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
-
-  // TODO: Allow anything we can constant fold to an integer or fp constant.
-  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
-      isa<FloatingLiteral>(E))
-    return true;
-
-  // Non-volatile automatic variables too, to get "cond ? X : Y" where
-  // X and Y are local variables.
-  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
-    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
-      if (VD->hasLocalStorage() && !(CGF.getContext()
-                                     .getCanonicalType(VD->getType())
-                                     .isVolatileQualified()))
-        return true;
-
-  return false;
-}
-
-
-Value *ScalarExprEmitter::
-VisitConditionalOperator(const ConditionalOperator *E) {
-  TestAndClearIgnoreResultAssign();
-  // If the condition constant folds and can be elided, try to avoid emitting
-  // the condition and the dead arm.
-  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
-    Expr *Live = E->getLHS(), *Dead = E->getRHS();
-    if (Cond == -1)
-      std::swap(Live, Dead);
-
-    // If the dead side doesn't have labels we need, and if the Live side isn't
-    // the gnu missing ?: extension (which we could handle, but don't bother
-    // to), just emit the Live part.
-    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
-        Live)                                   // Live part isn't missing.
-      return Visit(Live);
-  }
-
-
-  // If this is a really simple expression (like x ? 4 : 5), emit this as a
-  // select instead of as control flow.  We can only do this if it is cheap and
-  // safe to evaluate the LHS and RHS unconditionally.
-  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
-                                                            CGF) &&
-      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
-    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
-    llvm::Value *LHS = Visit(E->getLHS());
-    llvm::Value *RHS = Visit(E->getRHS());
-    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
-  }
-
-
-  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
-  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
-  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
-  Value *CondVal = 0;
-
-  // If we don't have the GNU missing condition extension, emit a branch on bool
-  // the normal way.
-  if (E->getLHS()) {
-    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
-    // the branch on bool.
-    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
-  } else {
-    // Otherwise, for the ?: extension, evaluate the conditional and then
-    // convert it to bool the hard way.  We do this explicitly because we need
-    // the unconverted value for the missing middle value of the ?:.
-    CondVal = CGF.EmitScalarExpr(E->getCond());
-
-    // In some cases, EmitScalarConversion will delete the "CondVal" expression
-    // if there are no extra uses (an optimization).  Inhibit this by making an
-    // extra dead use, because we're going to add a use of CondVal later.  We
-    // don't use the builder for this, because we don't want it to get optimized
-    // away.  This leaves dead code, but the ?: extension isn't common.
-    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
-                          Builder.GetInsertBlock());
-
-    Value *CondBoolVal =
-      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
-                               CGF.getContext().BoolTy);
-    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
-  }
-
-  CGF.BeginConditionalBranch();
-  CGF.EmitBlock(LHSBlock);
-
-  // Handle the GNU extension for missing LHS.
-  Value *LHS;
-  if (E->getLHS())
-    LHS = Visit(E->getLHS());
-  else    // Perform promotions, to handle cases like "short ?: int"
-    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
-
-  CGF.EndConditionalBranch();
-  LHSBlock = Builder.GetInsertBlock();
-  CGF.EmitBranch(ContBlock);
-
-  CGF.BeginConditionalBranch();
-  CGF.EmitBlock(RHSBlock);
-
-  Value *RHS = Visit(E->getRHS());
-  CGF.EndConditionalBranch();
-  RHSBlock = Builder.GetInsertBlock();
-  CGF.EmitBranch(ContBlock);
-
-  CGF.EmitBlock(ContBlock);
-
-  // If the LHS or RHS is a throw expression, it will be legitimately null.
-  if (!LHS)
-    return RHS;
-  if (!RHS)
-    return LHS;
-
-  // Create a PHI node for the real part.
-  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
-  PN->reserveOperandSpace(2);
-  PN->addIncoming(LHS, LHSBlock);
-  PN->addIncoming(RHS, RHSBlock);
-  return PN;
-}
-
-Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
-  return Visit(E->getChosenSubExpr(CGF.getContext()));
-}
-
-Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
-  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
-  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
-
-  // If EmitVAArg fails, we fall back to the LLVM instruction.
-  if (!ArgPtr)
-    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
-
-  // FIXME Volatility.
-  return Builder.CreateLoad(ArgPtr);
-}
-
-Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
-  return CGF.BuildBlockLiteralTmp(BE);
-}
-
-//===----------------------------------------------------------------------===//
-//                         Entry Point into this File
-//===----------------------------------------------------------------------===//
-
-/// EmitScalarExpr - Emit the computation of the specified expression of scalar
-/// type, ignoring the result.
-Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
-  assert(E && !hasAggregateLLVMType(E->getType()) &&
-         "Invalid scalar expression to emit");
-
-  return ScalarExprEmitter(*this, IgnoreResultAssign)
-    .Visit(const_cast<Expr*>(E));
-}
-
-/// EmitScalarConversion - Emit a conversion from the specified type to the
-/// specified destination type, both of which are LLVM scalar types.
-Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
-                                             QualType DstTy) {
-  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
-         "Invalid scalar expression to emit");
-  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
-}
-
-/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
-/// type to the specified destination type, where the destination type is an
-/// LLVM scalar type.
-Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
-                                                      QualType SrcTy,
-                                                      QualType DstTy) {
-  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
-         "Invalid complex -> scalar conversion");
-  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
-                                                                DstTy);
-}
-
-
-llvm::Value *CodeGenFunction::
-EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
-                        bool isInc, bool isPre) {
-  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
-}
-
-LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
-  llvm::Value *V;
-  // object->isa or (*object).isa
-  // Generate code as for: *(Class*)object
-  // build Class* type
-  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
-
-  Expr *BaseExpr = E->getBase();
-  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
-    V = CreateTempAlloca(ClassPtrTy, "resval");
-    llvm::Value *Src = EmitScalarExpr(BaseExpr);
-    Builder.CreateStore(Src, V);
-    LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
-    V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType());
-  }
-  else {
-      if (E->isArrow())
-        V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
-      else
-        V  = EmitLValue(BaseExpr).getAddress();
-  }
-  
-  // build Class* type
-  ClassPtrTy = ClassPtrTy->getPointerTo();
-  V = Builder.CreateBitCast(V, ClassPtrTy);
-  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
-  return LV;
-}
-
-
-LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
-                                            const CompoundAssignOperator *E) {
-  ScalarExprEmitter Scalar(*this);
-  Value *Result = 0;
-  switch (E->getOpcode()) {
-#define COMPOUND_OP(Op)                                                       \
-    case BinaryOperator::Op##Assign:                                          \
-      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
-                                             Result)
-  COMPOUND_OP(Mul);
-  COMPOUND_OP(Div);
-  COMPOUND_OP(Rem);
-  COMPOUND_OP(Add);
-  COMPOUND_OP(Sub);
-  COMPOUND_OP(Shl);
-  COMPOUND_OP(Shr);
-  COMPOUND_OP(And);
-  COMPOUND_OP(Xor);
-  COMPOUND_OP(Or);
-#undef COMPOUND_OP
-      
-  case BinaryOperator::PtrMemD:
-  case BinaryOperator::PtrMemI:
-  case BinaryOperator::Mul:
-  case BinaryOperator::Div:
-  case BinaryOperator::Rem:
-  case BinaryOperator::Add:
-  case BinaryOperator::Sub:
-  case BinaryOperator::Shl:
-  case BinaryOperator::Shr:
-  case BinaryOperator::LT:
-  case BinaryOperator::GT:
-  case BinaryOperator::LE:
-  case BinaryOperator::GE:
-  case BinaryOperator::EQ:
-  case BinaryOperator::NE:
-  case BinaryOperator::And:
-  case BinaryOperator::Xor:
-  case BinaryOperator::Or:
-  case BinaryOperator::LAnd:
-  case BinaryOperator::LOr:
-  case BinaryOperator::Assign:
-  case BinaryOperator::Comma:
-    assert(false && "Not valid compound assignment operators");
-    break;
-  }
-   
-  llvm_unreachable("Unhandled compound assignment operator");
-}





More information about the llvm-branch-commits mailing list