[llvm-branch-commits] [cfe-branch] r111418 [2/2] - in /cfe/branches/Apple/williamson: include/clang/Basic/DiagnosticSemaKinds.td.orig include/clang/Driver/CC1Options.td.orig lib/Analysis/CFG.cpp.orig lib/Basic/Targets.cpp.orig lib/Checker/AnalysisConsumer.cpp.orig lib/Checker/GRExprEngine.cpp.orig lib/CodeGen/CGObjCMac.cpp.orig lib/Frontend/CompilerInvocation.cpp.orig lib/Sema/SemaExpr.cpp.orig

Daniel Dunbar daniel at zuster.org
Wed Aug 18 13:34:30 PDT 2010


Removed: cfe/branches/Apple/williamson/lib/Sema/SemaExpr.cpp.orig
URL: http://llvm.org/viewvc/llvm-project/cfe/branches/Apple/williamson/lib/Sema/SemaExpr.cpp.orig?rev=111417&view=auto
==============================================================================
--- cfe/branches/Apple/williamson/lib/Sema/SemaExpr.cpp.orig (original)
+++ cfe/branches/Apple/williamson/lib/Sema/SemaExpr.cpp.orig (removed)
@@ -1,7991 +0,0 @@
-//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-//  This file implements semantic analysis for expressions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "Sema.h"
-#include "SemaInit.h"
-#include "Lookup.h"
-#include "AnalysisBasedWarnings.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/CXXInheritance.h"
-#include "clang/AST/DeclObjC.h"
-#include "clang/AST/DeclTemplate.h"
-#include "clang/AST/Expr.h"
-#include "clang/AST/ExprCXX.h"
-#include "clang/AST/ExprObjC.h"
-#include "clang/AST/RecursiveASTVisitor.h"
-#include "clang/AST/TypeLoc.h"
-#include "clang/Basic/PartialDiagnostic.h"
-#include "clang/Basic/SourceManager.h"
-#include "clang/Basic/TargetInfo.h"
-#include "clang/Lex/LiteralSupport.h"
-#include "clang/Lex/Preprocessor.h"
-#include "clang/Parse/DeclSpec.h"
-#include "clang/Parse/Designator.h"
-#include "clang/Parse/Scope.h"
-#include "clang/Parse/Template.h"
-using namespace clang;
-
-
-/// \brief Determine whether the use of this declaration is valid, and
-/// emit any corresponding diagnostics.
-///
-/// This routine diagnoses various problems with referencing
-/// declarations that can occur when using a declaration. For example,
-/// it might warn if a deprecated or unavailable declaration is being
-/// used, or produce an error (and return true) if a C++0x deleted
-/// function is being used.
-///
-/// If IgnoreDeprecated is set to true, this should not want about deprecated
-/// decls.
-///
-/// \returns true if there was an error (this declaration cannot be
-/// referenced), false otherwise.
-///
-bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
-  // See if the decl is deprecated.
-  if (D->getAttr<DeprecatedAttr>()) {
-    EmitDeprecationWarning(D, Loc);
-  }
-
-  // See if the decl is unavailable
-  if (D->getAttr<UnavailableAttr>()) {
-    Diag(Loc, diag::err_unavailable) << D->getDeclName();
-    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
-  }
-
-  // See if this is a deleted function.
-  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
-    if (FD->isDeleted()) {
-      Diag(Loc, diag::err_deleted_function_use);
-      Diag(D->getLocation(), diag::note_unavailable_here) << true;
-      return true;
-    }
-  }
-
-  return false;
-}
-
-/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
-/// (and other functions in future), which have been declared with sentinel
-/// attribute. It warns if call does not have the sentinel argument.
-///
-void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
-                                 Expr **Args, unsigned NumArgs) {
-  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
-  if (!attr)
-    return;
-
-  // FIXME: In C++0x, if any of the arguments are parameter pack
-  // expansions, we can't check for the sentinel now.
-  int sentinelPos = attr->getSentinel();
-  int nullPos = attr->getNullPos();
-
-  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
-  // base class. Then we won't be needing two versions of the same code.
-  unsigned int i = 0;
-  bool warnNotEnoughArgs = false;
-  int isMethod = 0;
-  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
-    // skip over named parameters.
-    ObjCMethodDecl::param_iterator P, E = MD->param_end();
-    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
-      if (nullPos)
-        --nullPos;
-      else
-        ++i;
-    }
-    warnNotEnoughArgs = (P != E || i >= NumArgs);
-    isMethod = 1;
-  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
-    // skip over named parameters.
-    ObjCMethodDecl::param_iterator P, E = FD->param_end();
-    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
-      if (nullPos)
-        --nullPos;
-      else
-        ++i;
-    }
-    warnNotEnoughArgs = (P != E || i >= NumArgs);
-  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
-    // block or function pointer call.
-    QualType Ty = V->getType();
-    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
-      const FunctionType *FT = Ty->isFunctionPointerType()
-      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
-      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
-      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
-        unsigned NumArgsInProto = Proto->getNumArgs();
-        unsigned k;
-        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
-          if (nullPos)
-            --nullPos;
-          else
-            ++i;
-        }
-        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
-      }
-      if (Ty->isBlockPointerType())
-        isMethod = 2;
-    } else
-      return;
-  } else
-    return;
-
-  if (warnNotEnoughArgs) {
-    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
-    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
-    return;
-  }
-  int sentinel = i;
-  while (sentinelPos > 0 && i < NumArgs-1) {
-    --sentinelPos;
-    ++i;
-  }
-  if (sentinelPos > 0) {
-    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
-    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
-    return;
-  }
-  while (i < NumArgs-1) {
-    ++i;
-    ++sentinel;
-  }
-  Expr *sentinelExpr = Args[sentinel];
-  if (!sentinelExpr) return;
-  if (sentinelExpr->isTypeDependent()) return;
-  if (sentinelExpr->isValueDependent()) return;
-  if (sentinelExpr->getType()->isAnyPointerType() &&
-      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
-                                            Expr::NPC_ValueDependentIsNull))
-    return;
-
-  // Unfortunately, __null has type 'int'.
-  if (isa<GNUNullExpr>(sentinelExpr)) return;
-
-  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
-  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
-}
-
-SourceRange Sema::getExprRange(ExprTy *E) const {
-  Expr *Ex = (Expr *)E;
-  return Ex? Ex->getSourceRange() : SourceRange();
-}
-
-//===----------------------------------------------------------------------===//
-//  Standard Promotions and Conversions
-//===----------------------------------------------------------------------===//
-
-/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
-void Sema::DefaultFunctionArrayConversion(Expr *&E) {
-  QualType Ty = E->getType();
-  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
-
-  if (Ty->isFunctionType())
-    ImpCastExprToType(E, Context.getPointerType(Ty),
-                      CastExpr::CK_FunctionToPointerDecay);
-  else if (Ty->isArrayType()) {
-    // In C90 mode, arrays only promote to pointers if the array expression is
-    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
-    // type 'array of type' is converted to an expression that has type 'pointer
-    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
-    // that has type 'array of type' ...".  The relevant change is "an lvalue"
-    // (C90) to "an expression" (C99).
-    //
-    // C++ 4.2p1:
-    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
-    // T" can be converted to an rvalue of type "pointer to T".
-    //
-    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
-        E->isLvalue(Context) == Expr::LV_Valid)
-      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
-                        CastExpr::CK_ArrayToPointerDecay);
-  }
-}
-
-void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
-  DefaultFunctionArrayConversion(E);
-
-  QualType Ty = E->getType();
-  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
-  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
-      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
-      E->isLvalue(Context) == Expr::LV_Valid) {
-    // C++ [conv.lval]p1:
-    //   [...] If T is a non-class type, the type of the rvalue is the
-    //   cv-unqualified version of T. Otherwise, the type of the
-    //   rvalue is T
-    //
-    // C99 6.3.2.1p2:
-    //   If the lvalue has qualified type, the value has the unqualified
-    //   version of the type of the lvalue; otherwise, the value has the
-    //   type of the lvalue.
-    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
-  }
-}
-
-
-/// UsualUnaryConversions - Performs various conversions that are common to most
-/// operators (C99 6.3). The conversions of array and function types are
-/// sometimes surpressed. For example, the array->pointer conversion doesn't
-/// apply if the array is an argument to the sizeof or address (&) operators.
-/// In these instances, this routine should *not* be called.
-Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
-  QualType Ty = Expr->getType();
-  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
-
-  // C99 6.3.1.1p2:
-  //
-  //   The following may be used in an expression wherever an int or
-  //   unsigned int may be used:
-  //     - an object or expression with an integer type whose integer
-  //       conversion rank is less than or equal to the rank of int
-  //       and unsigned int.
-  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
-  //
-  //   If an int can represent all values of the original type, the
-  //   value is converted to an int; otherwise, it is converted to an
-  //   unsigned int. These are called the integer promotions. All
-  //   other types are unchanged by the integer promotions.
-  QualType PTy = Context.isPromotableBitField(Expr);
-  if (!PTy.isNull()) {
-    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
-    return Expr;
-  }
-  if (Ty->isPromotableIntegerType()) {
-    QualType PT = Context.getPromotedIntegerType(Ty);
-    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
-    return Expr;
-  }
-
-  DefaultFunctionArrayLvalueConversion(Expr);
-  return Expr;
-}
-
-/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
-/// do not have a prototype. Arguments that have type float are promoted to
-/// double. All other argument types are converted by UsualUnaryConversions().
-void Sema::DefaultArgumentPromotion(Expr *&Expr) {
-  QualType Ty = Expr->getType();
-  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
-
-  // If this is a 'float' (CVR qualified or typedef) promote to double.
-  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
-    return ImpCastExprToType(Expr, Context.DoubleTy,
-                             CastExpr::CK_FloatingCast);
-
-  UsualUnaryConversions(Expr);
-}
-
-/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
-/// will warn if the resulting type is not a POD type, and rejects ObjC
-/// interfaces passed by value.  This returns true if the argument type is
-/// completely illegal.
-bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
-                                            FunctionDecl *FDecl) {
-  DefaultArgumentPromotion(Expr);
-
-  // __builtin_va_start takes the second argument as a "varargs" argument, but
-  // it doesn't actually do anything with it.  It doesn't need to be non-pod
-  // etc.
-  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
-    return false;
-  
-  if (Expr->getType()->isObjCObjectType() &&
-      DiagRuntimeBehavior(Expr->getLocStart(),
-        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
-          << Expr->getType() << CT))
-    return true;
-
-  if (!Expr->getType()->isPODType() &&
-      DiagRuntimeBehavior(Expr->getLocStart(),
-                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
-                            << Expr->getType() << CT))
-    return true;
-
-  return false;
-}
-
-
-/// UsualArithmeticConversions - Performs various conversions that are common to
-/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
-/// routine returns the first non-arithmetic type found. The client is
-/// responsible for emitting appropriate error diagnostics.
-/// FIXME: verify the conversion rules for "complex int" are consistent with
-/// GCC.
-QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
-                                          bool isCompAssign) {
-  if (!isCompAssign)
-    UsualUnaryConversions(lhsExpr);
-
-  UsualUnaryConversions(rhsExpr);
-
-  // For conversion purposes, we ignore any qualifiers.
-  // For example, "const float" and "float" are equivalent.
-  QualType lhs =
-    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
-  QualType rhs =
-    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
-
-  // If both types are identical, no conversion is needed.
-  if (lhs == rhs)
-    return lhs;
-
-  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
-  // The caller can deal with this (e.g. pointer + int).
-  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
-    return lhs;
-
-  // Perform bitfield promotions.
-  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
-  if (!LHSBitfieldPromoteTy.isNull())
-    lhs = LHSBitfieldPromoteTy;
-  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
-  if (!RHSBitfieldPromoteTy.isNull())
-    rhs = RHSBitfieldPromoteTy;
-
-  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
-  if (!isCompAssign)
-    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
-  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
-  return destType;
-}
-
-//===----------------------------------------------------------------------===//
-//  Semantic Analysis for various Expression Types
-//===----------------------------------------------------------------------===//
-
-
-/// ActOnStringLiteral - The specified tokens were lexed as pasted string
-/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
-/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
-/// multiple tokens.  However, the common case is that StringToks points to one
-/// string.
-///
-Action::OwningExprResult
-Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
-  assert(NumStringToks && "Must have at least one string!");
-
-  StringLiteralParser Literal(StringToks, NumStringToks, PP);
-  if (Literal.hadError)
-    return ExprError();
-
-  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
-  for (unsigned i = 0; i != NumStringToks; ++i)
-    StringTokLocs.push_back(StringToks[i].getLocation());
-
-  QualType StrTy = Context.CharTy;
-  if (Literal.AnyWide) StrTy = Context.getWCharType();
-  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
-
-  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
-  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
-    StrTy.addConst();
-
-  // Get an array type for the string, according to C99 6.4.5.  This includes
-  // the nul terminator character as well as the string length for pascal
-  // strings.
-  StrTy = Context.getConstantArrayType(StrTy,
-                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
-                                       ArrayType::Normal, 0);
-
-  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
-  return Owned(StringLiteral::Create(Context, Literal.GetString(),
-                                     Literal.GetStringLength(),
-                                     Literal.AnyWide, StrTy,
-                                     &StringTokLocs[0],
-                                     StringTokLocs.size()));
-}
-
-/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
-/// CurBlock to VD should cause it to be snapshotted (as we do for auto
-/// variables defined outside the block) or false if this is not needed (e.g.
-/// for values inside the block or for globals).
-///
-/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
-/// up-to-date.
-///
-static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
-                                              ValueDecl *VD) {
-  // If the value is defined inside the block, we couldn't snapshot it even if
-  // we wanted to.
-  if (CurBlock->TheDecl == VD->getDeclContext())
-    return false;
-
-  // If this is an enum constant or function, it is constant, don't snapshot.
-  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
-    return false;
-
-  // If this is a reference to an extern, static, or global variable, no need to
-  // snapshot it.
-  // FIXME: What about 'const' variables in C++?
-  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
-    if (!Var->hasLocalStorage())
-      return false;
-
-  // Blocks that have these can't be constant.
-  CurBlock->hasBlockDeclRefExprs = true;
-
-  // If we have nested blocks, the decl may be declared in an outer block (in
-  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
-  // be defined outside all of the current blocks (in which case the blocks do
-  // all get the bit).  Walk the nesting chain.
-  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
-    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
-
-    if (!NextBlock)
-      continue;
-
-    // If we found the defining block for the variable, don't mark the block as
-    // having a reference outside it.
-    if (NextBlock->TheDecl == VD->getDeclContext())
-      break;
-
-    // Otherwise, the DeclRef from the inner block causes the outer one to need
-    // a snapshot as well.
-    NextBlock->hasBlockDeclRefExprs = true;
-  }
-
-  return true;
-}
-
-
-
-/// BuildDeclRefExpr - Build a DeclRefExpr.
-Sema::OwningExprResult
-Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
-                       const CXXScopeSpec *SS) {
-  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
-    Diag(Loc,
-         diag::err_auto_variable_cannot_appear_in_own_initializer)
-      << D->getDeclName();
-    return ExprError();
-  }
-
-  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
-    if (isa<NonTypeTemplateParmDecl>(VD)) {
-      // Non-type template parameters can be referenced anywhere they are
-      // visible.
-      Ty = Ty.getNonLValueExprType(Context);
-    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
-      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
-        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
-          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
-            << D->getIdentifier() << FD->getDeclName();
-          Diag(D->getLocation(), diag::note_local_variable_declared_here)
-            << D->getIdentifier();
-          return ExprError();
-        }
-      }
-    }
-  }
-
-  MarkDeclarationReferenced(Loc, D);
-
-  return Owned(DeclRefExpr::Create(Context,
-                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
-                                   SS? SS->getRange() : SourceRange(),
-                                   D, Loc, Ty));
-}
-
-/// \brief Given a field that represents a member of an anonymous
-/// struct/union, build the path from that field's context to the
-/// actual member.
-///
-/// Construct the sequence of field member references we'll have to
-/// perform to get to the field in the anonymous union/struct. The
-/// list of members is built from the field outward, so traverse it
-/// backwards to go from an object in the current context to the field
-/// we found.
-///
-/// \returns The variable from which the field access should begin,
-/// for an anonymous struct/union that is not a member of another
-/// class. Otherwise, returns NULL.
-VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
-                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
-  assert(Field->getDeclContext()->isRecord() &&
-         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
-         && "Field must be stored inside an anonymous struct or union");
-
-  Path.push_back(Field);
-  VarDecl *BaseObject = 0;
-  DeclContext *Ctx = Field->getDeclContext();
-  do {
-    RecordDecl *Record = cast<RecordDecl>(Ctx);
-    ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
-    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
-      Path.push_back(AnonField);
-    else {
-      BaseObject = cast<VarDecl>(AnonObject);
-      break;
-    }
-    Ctx = Ctx->getParent();
-  } while (Ctx->isRecord() &&
-           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
-
-  return BaseObject;
-}
-
-Sema::OwningExprResult
-Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
-                                               FieldDecl *Field,
-                                               Expr *BaseObjectExpr,
-                                               SourceLocation OpLoc) {
-  llvm::SmallVector<FieldDecl *, 4> AnonFields;
-  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
-                                                            AnonFields);
-
-  // Build the expression that refers to the base object, from
-  // which we will build a sequence of member references to each
-  // of the anonymous union objects and, eventually, the field we
-  // found via name lookup.
-  bool BaseObjectIsPointer = false;
-  Qualifiers BaseQuals;
-  if (BaseObject) {
-    // BaseObject is an anonymous struct/union variable (and is,
-    // therefore, not part of another non-anonymous record).
-    MarkDeclarationReferenced(Loc, BaseObject);
-    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
-                                               SourceLocation());
-    BaseQuals
-      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
-  } else if (BaseObjectExpr) {
-    // The caller provided the base object expression. Determine
-    // whether its a pointer and whether it adds any qualifiers to the
-    // anonymous struct/union fields we're looking into.
-    QualType ObjectType = BaseObjectExpr->getType();
-    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
-      BaseObjectIsPointer = true;
-      ObjectType = ObjectPtr->getPointeeType();
-    }
-    BaseQuals
-      = Context.getCanonicalType(ObjectType).getQualifiers();
-  } else {
-    // We've found a member of an anonymous struct/union that is
-    // inside a non-anonymous struct/union, so in a well-formed
-    // program our base object expression is "this".
-    DeclContext *DC = getFunctionLevelDeclContext();
-    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
-      if (!MD->isStatic()) {
-        QualType AnonFieldType
-          = Context.getTagDeclType(
-                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
-        QualType ThisType = Context.getTagDeclType(MD->getParent());
-        if ((Context.getCanonicalType(AnonFieldType)
-               == Context.getCanonicalType(ThisType)) ||
-            IsDerivedFrom(ThisType, AnonFieldType)) {
-          // Our base object expression is "this".
-          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
-                                                     MD->getThisType(Context),
-                                                     /*isImplicit=*/true);
-          BaseObjectIsPointer = true;
-        }
-      } else {
-        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
-          << Field->getDeclName());
-      }
-      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
-    }
-
-    if (!BaseObjectExpr)
-      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
-        << Field->getDeclName());
-  }
-
-  // Build the implicit member references to the field of the
-  // anonymous struct/union.
-  Expr *Result = BaseObjectExpr;
-  Qualifiers ResultQuals = BaseQuals;
-  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
-         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
-       FI != FIEnd; ++FI) {
-    QualType MemberType = (*FI)->getType();
-    Qualifiers MemberTypeQuals =
-      Context.getCanonicalType(MemberType).getQualifiers();
-
-    // CVR attributes from the base are picked up by members,
-    // except that 'mutable' members don't pick up 'const'.
-    if ((*FI)->isMutable())
-      ResultQuals.removeConst();
-
-    // GC attributes are never picked up by members.
-    ResultQuals.removeObjCGCAttr();
-
-    // TR 18037 does not allow fields to be declared with address spaces.
-    assert(!MemberTypeQuals.hasAddressSpace());
-
-    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
-    if (NewQuals != MemberTypeQuals)
-      MemberType = Context.getQualifiedType(MemberType, NewQuals);
-
-    MarkDeclarationReferenced(Loc, *FI);
-    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
-    // FIXME: Might this end up being a qualified name?
-    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
-                                      OpLoc, MemberType);
-    BaseObjectIsPointer = false;
-    ResultQuals = NewQuals;
-  }
-
-  return Owned(Result);
-}
-
-/// Decomposes the given name into a DeclarationName, its location, and
-/// possibly a list of template arguments.
-///
-/// If this produces template arguments, it is permitted to call
-/// DecomposeTemplateName.
-///
-/// This actually loses a lot of source location information for
-/// non-standard name kinds; we should consider preserving that in
-/// some way.
-static void DecomposeUnqualifiedId(Sema &SemaRef,
-                                   const UnqualifiedId &Id,
-                                   TemplateArgumentListInfo &Buffer,
-                                   DeclarationName &Name,
-                                   SourceLocation &NameLoc,
-                             const TemplateArgumentListInfo *&TemplateArgs) {
-  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
-    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
-    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
-
-    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
-                                       Id.TemplateId->getTemplateArgs(),
-                                       Id.TemplateId->NumArgs);
-    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
-    TemplateArgsPtr.release();
-
-    TemplateName TName =
-      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
-
-    Name = SemaRef.Context.getNameForTemplate(TName);
-    NameLoc = Id.TemplateId->TemplateNameLoc;
-    TemplateArgs = &Buffer;
-  } else {
-    Name = SemaRef.GetNameFromUnqualifiedId(Id);
-    NameLoc = Id.StartLocation;
-    TemplateArgs = 0;
-  }
-}
-
-/// Determines whether the given record is "fully-formed" at the given
-/// location, i.e. whether a qualified lookup into it is assured of
-/// getting consistent results already.
-static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
-  if (!Record->hasDefinition())
-    return false;
-
-  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
-         E = Record->bases_end(); I != E; ++I) {
-    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
-    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
-    if (!BaseRT) return false;
-
-    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
-    if (!BaseRecord->hasDefinition() ||
-        !IsFullyFormedScope(SemaRef, BaseRecord))
-      return false;
-  }
-
-  return true;
-}
-
-/// Determines whether we can lookup this id-expression now or whether
-/// we have to wait until template instantiation is complete.
-static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
-  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
-
-  // If the qualifier scope isn't computable, it's definitely dependent.
-  if (!DC) return true;
-
-  // If the qualifier scope doesn't name a record, we can always look into it.
-  if (!isa<CXXRecordDecl>(DC)) return false;
-
-  // We can't look into record types unless they're fully-formed.
-  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
-
-  return false;
-}
-
-/// Determines if the given class is provably not derived from all of
-/// the prospective base classes.
-static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
-                                     CXXRecordDecl *Record,
-                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
-  if (Bases.count(Record->getCanonicalDecl()))
-    return false;
-
-  RecordDecl *RD = Record->getDefinition();
-  if (!RD) return false;
-  Record = cast<CXXRecordDecl>(RD);
-
-  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
-         E = Record->bases_end(); I != E; ++I) {
-    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
-    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
-    if (!BaseRT) return false;
-
-    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
-    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
-      return false;
-  }
-
-  return true;
-}
-
-enum IMAKind {
-  /// The reference is definitely not an instance member access.
-  IMA_Static,
-
-  /// The reference may be an implicit instance member access.
-  IMA_Mixed,
-
-  /// The reference may be to an instance member, but it is invalid if
-  /// so, because the context is not an instance method.
-  IMA_Mixed_StaticContext,
-
-  /// The reference may be to an instance member, but it is invalid if
-  /// so, because the context is from an unrelated class.
-  IMA_Mixed_Unrelated,
-
-  /// The reference is definitely an implicit instance member access.
-  IMA_Instance,
-
-  /// The reference may be to an unresolved using declaration.
-  IMA_Unresolved,
-
-  /// The reference may be to an unresolved using declaration and the
-  /// context is not an instance method.
-  IMA_Unresolved_StaticContext,
-
-  /// The reference is to a member of an anonymous structure in a
-  /// non-class context.
-  IMA_AnonymousMember,
-
-  /// All possible referrents are instance members and the current
-  /// context is not an instance method.
-  IMA_Error_StaticContext,
-
-  /// All possible referrents are instance members of an unrelated
-  /// class.
-  IMA_Error_Unrelated
-};
-
-/// The given lookup names class member(s) and is not being used for
-/// an address-of-member expression.  Classify the type of access
-/// according to whether it's possible that this reference names an
-/// instance member.  This is best-effort; it is okay to
-/// conservatively answer "yes", in which case some errors will simply
-/// not be caught until template-instantiation.
-static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
-                                            const LookupResult &R) {
-  assert(!R.empty() && (*R.begin())->isCXXClassMember());
-
-  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
-  bool isStaticContext =
-    (!isa<CXXMethodDecl>(DC) ||
-     cast<CXXMethodDecl>(DC)->isStatic());
-
-  if (R.isUnresolvableResult())
-    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
-
-  // Collect all the declaring classes of instance members we find.
-  bool hasNonInstance = false;
-  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
-  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
-    NamedDecl *D = *I;
-    if (D->isCXXInstanceMember()) {
-      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
-
-      // If this is a member of an anonymous record, move out to the
-      // innermost non-anonymous struct or union.  If there isn't one,
-      // that's a special case.
-      while (R->isAnonymousStructOrUnion()) {
-        R = dyn_cast<CXXRecordDecl>(R->getParent());
-        if (!R) return IMA_AnonymousMember;
-      }
-      Classes.insert(R->getCanonicalDecl());
-    }
-    else
-      hasNonInstance = true;
-  }
-
-  // If we didn't find any instance members, it can't be an implicit
-  // member reference.
-  if (Classes.empty())
-    return IMA_Static;
-
-  // If the current context is not an instance method, it can't be
-  // an implicit member reference.
-  if (isStaticContext)
-    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
-
-  // If we can prove that the current context is unrelated to all the
-  // declaring classes, it can't be an implicit member reference (in
-  // which case it's an error if any of those members are selected).
-  if (IsProvablyNotDerivedFrom(SemaRef,
-                               cast<CXXMethodDecl>(DC)->getParent(),
-                               Classes))
-    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
-
-  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
-}
-
-/// Diagnose a reference to a field with no object available.
-static void DiagnoseInstanceReference(Sema &SemaRef,
-                                      const CXXScopeSpec &SS,
-                                      const LookupResult &R) {
-  SourceLocation Loc = R.getNameLoc();
-  SourceRange Range(Loc);
-  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
-
-  if (R.getAsSingle<FieldDecl>()) {
-    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
-      if (MD->isStatic()) {
-        // "invalid use of member 'x' in static member function"
-        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
-          << Range << R.getLookupName();
-        return;
-      }
-    }
-
-    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
-      << R.getLookupName() << Range;
-    return;
-  }
-
-  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
-}
-
-/// Diagnose an empty lookup.
-///
-/// \return false if new lookup candidates were found
-bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
-                               CorrectTypoContext CTC) {
-  DeclarationName Name = R.getLookupName();
-
-  unsigned diagnostic = diag::err_undeclared_var_use;
-  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
-  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
-      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
-      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
-    diagnostic = diag::err_undeclared_use;
-    diagnostic_suggest = diag::err_undeclared_use_suggest;
-  }
-
-  // If the original lookup was an unqualified lookup, fake an
-  // unqualified lookup.  This is useful when (for example) the
-  // original lookup would not have found something because it was a
-  // dependent name.
-  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
-       DC; DC = DC->getParent()) {
-    if (isa<CXXRecordDecl>(DC)) {
-      LookupQualifiedName(R, DC);
-
-      if (!R.empty()) {
-        // Don't give errors about ambiguities in this lookup.
-        R.suppressDiagnostics();
-
-        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
-        bool isInstance = CurMethod &&
-                          CurMethod->isInstance() &&
-                          DC == CurMethod->getParent();
-
-        // Give a code modification hint to insert 'this->'.
-        // TODO: fixit for inserting 'Base<T>::' in the other cases.
-        // Actually quite difficult!
-        if (isInstance) {
-          Diag(R.getNameLoc(), diagnostic) << Name
-            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
-
-          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
-              CallsUndergoingInstantiation.back()->getCallee());
-          CXXMethodDecl *DepMethod = cast<CXXMethodDecl>(
-              CurMethod->getInstantiatedFromMemberFunction());
-          QualType DepThisType = DepMethod->getThisType(Context);
-          CXXThisExpr *DepThis = new (Context) CXXThisExpr(R.getNameLoc(),
-                                                           DepThisType, false);
-          TemplateArgumentListInfo TList;
-          if (ULE->hasExplicitTemplateArgs())
-            ULE->copyTemplateArgumentsInto(TList);
-          CXXDependentScopeMemberExpr *DepExpr =
-              CXXDependentScopeMemberExpr::Create(
-                  Context, DepThis, DepThisType, true, SourceLocation(),
-                  ULE->getQualifier(), ULE->getQualifierRange(), NULL, Name,
-                  R.getNameLoc(), &TList);
-          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
-        } else {
-          Diag(R.getNameLoc(), diagnostic) << Name;
-        }
-
-        // Do we really want to note all of these?
-        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
-          Diag((*I)->getLocation(), diag::note_dependent_var_use);
-
-        // Tell the callee to try to recover.
-        return false;
-      }
-    }
-  }
-
-  // We didn't find anything, so try to correct for a typo.
-  DeclarationName Corrected;
-  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
-    if (!R.empty()) {
-      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
-        if (SS.isEmpty())
-          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
-            << FixItHint::CreateReplacement(R.getNameLoc(),
-                                            R.getLookupName().getAsString());
-        else
-          Diag(R.getNameLoc(), diag::err_no_member_suggest)
-            << Name << computeDeclContext(SS, false) << R.getLookupName()
-            << SS.getRange()
-            << FixItHint::CreateReplacement(R.getNameLoc(),
-                                            R.getLookupName().getAsString());
-        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
-          Diag(ND->getLocation(), diag::note_previous_decl)
-            << ND->getDeclName();
-
-        // Tell the callee to try to recover.
-        return false;
-      }
-
-      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
-        // FIXME: If we ended up with a typo for a type name or
-        // Objective-C class name, we're in trouble because the parser
-        // is in the wrong place to recover. Suggest the typo
-        // correction, but don't make it a fix-it since we're not going
-        // to recover well anyway.
-        if (SS.isEmpty())
-          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
-        else
-          Diag(R.getNameLoc(), diag::err_no_member_suggest)
-            << Name << computeDeclContext(SS, false) << R.getLookupName()
-            << SS.getRange();
-
-        // Don't try to recover; it won't work.
-        return true;
-      }
-    } else {
-      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
-      // because we aren't able to recover.
-      if (SS.isEmpty())
-        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
-      else
-        Diag(R.getNameLoc(), diag::err_no_member_suggest)
-        << Name << computeDeclContext(SS, false) << Corrected
-        << SS.getRange();
-      return true;
-    }
-    R.clear();
-  }
-
-  // Emit a special diagnostic for failed member lookups.
-  // FIXME: computing the declaration context might fail here (?)
-  if (!SS.isEmpty()) {
-    Diag(R.getNameLoc(), diag::err_no_member)
-      << Name << computeDeclContext(SS, false)
-      << SS.getRange();
-    return true;
-  }
-
-  // Give up, we can't recover.
-  Diag(R.getNameLoc(), diagnostic) << Name;
-  return true;
-}
-
-static ObjCPropertyDecl *OkToSynthesizeProvisionalIvar(Sema &SemaRef,
-                                          IdentifierInfo *II,
-                                          SourceLocation NameLoc) {
-  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
-  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
-  if (!IDecl)
-    return 0;
-  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
-  if (!ClassImpDecl)
-    return 0;
-  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
-  if (!property)
-    return 0;
-  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
-    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
-      return 0;
-  return property;
-}
-
-static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
-                                               IdentifierInfo *II,
-                                               SourceLocation NameLoc) {
-  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
-  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
-  if (!IDecl)
-    return 0;
-  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
-  if (!ClassImpDecl)
-    return 0;
-  bool DynamicImplSeen = false;
-  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
-  if (!property)
-    return 0;
-  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
-    DynamicImplSeen = 
-      (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
-  if (!DynamicImplSeen) {
-    QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
-    ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl, 
-                                              NameLoc,
-                                              II, PropType, /*Dinfo=*/0,
-                                              ObjCIvarDecl::Protected,
-                                              (Expr *)0, true);
-    ClassImpDecl->addDecl(Ivar);
-    IDecl->makeDeclVisibleInContext(Ivar, false);
-    property->setPropertyIvarDecl(Ivar);
-    return Ivar;
-  }
-  return 0;
-}
-
-Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
-                                               CXXScopeSpec &SS,
-                                               UnqualifiedId &Id,
-                                               bool HasTrailingLParen,
-                                               bool isAddressOfOperand) {
-  assert(!(isAddressOfOperand && HasTrailingLParen) &&
-         "cannot be direct & operand and have a trailing lparen");
-
-  if (SS.isInvalid())
-    return ExprError();
-
-  TemplateArgumentListInfo TemplateArgsBuffer;
-
-  // Decompose the UnqualifiedId into the following data.
-  DeclarationName Name;
-  SourceLocation NameLoc;
-  const TemplateArgumentListInfo *TemplateArgs;
-  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
-                         Name, NameLoc, TemplateArgs);
-
-  IdentifierInfo *II = Name.getAsIdentifierInfo();
-
-  // C++ [temp.dep.expr]p3:
-  //   An id-expression is type-dependent if it contains:
-  //     -- an identifier that was declared with a dependent type,
-  //        (note: handled after lookup)
-  //     -- a template-id that is dependent,
-  //        (note: handled in BuildTemplateIdExpr)
-  //     -- a conversion-function-id that specifies a dependent type,
-  //     -- a nested-name-specifier that contains a class-name that
-  //        names a dependent type.
-  // Determine whether this is a member of an unknown specialization;
-  // we need to handle these differently.
-  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
-       Name.getCXXNameType()->isDependentType()) ||
-      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
-    return ActOnDependentIdExpression(SS, Name, NameLoc,
-                                      isAddressOfOperand,
-                                      TemplateArgs);
-  }
-  bool IvarLookupFollowUp = false;
-  // Perform the required lookup.
-  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
-  if (TemplateArgs) {
-    // Lookup the template name again to correctly establish the context in
-    // which it was found. This is really unfortunate as we already did the
-    // lookup to determine that it was a template name in the first place. If
-    // this becomes a performance hit, we can work harder to preserve those
-    // results until we get here but it's likely not worth it.
-    bool MemberOfUnknownSpecialization;
-    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
-                       MemberOfUnknownSpecialization);
-  } else {
-    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
-    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
-
-    // If this reference is in an Objective-C method, then we need to do
-    // some special Objective-C lookup, too.
-    if (IvarLookupFollowUp) {
-      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
-      if (E.isInvalid())
-        return ExprError();
-
-      Expr *Ex = E.takeAs<Expr>();
-      if (Ex) return Owned(Ex);
-      // Synthesize ivars lazily
-      if (getLangOptions().ObjCNonFragileABI2) {
-        if (SynthesizeProvisionalIvar(*this, II, NameLoc))
-          return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
-                                   isAddressOfOperand);
-      }
-    }
-  }
-
-  if (R.isAmbiguous())
-    return ExprError();
-
-  // Determine whether this name might be a candidate for
-  // argument-dependent lookup.
-  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
-
-  if (R.empty() && !ADL) {
-    // Otherwise, this could be an implicitly declared function reference (legal
-    // in C90, extension in C99, forbidden in C++).
-    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
-      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
-      if (D) R.addDecl(D);
-    }
-
-    // If this name wasn't predeclared and if this is not a function
-    // call, diagnose the problem.
-    if (R.empty()) {
-      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
-        return ExprError();
-
-      assert(!R.empty() &&
-             "DiagnoseEmptyLookup returned false but added no results");
-
-      // If we found an Objective-C instance variable, let
-      // LookupInObjCMethod build the appropriate expression to
-      // reference the ivar.
-      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
-        R.clear();
-        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
-        assert(E.isInvalid() || E.get());
-        return move(E);
-      }
-    }
-  }
-
-  // This is guaranteed from this point on.
-  assert(!R.empty() || ADL);
-
-  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
-    if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
-        !getLangOptions().ObjCNonFragileABI2 &&
-        Var->isFileVarDecl()) {
-      ObjCPropertyDecl *Property = 
-        OkToSynthesizeProvisionalIvar(*this, II, NameLoc);
-      if (Property) {
-        Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
-        Diag(Property->getLocation(), diag::note_property_declare);
-      }
-    }
-    
-    // Warn about constructs like:
-    //   if (void *X = foo()) { ... } else { X }.
-    // In the else block, the pointer is always false.
-    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
-      Scope *CheckS = S;
-      while (CheckS && CheckS->getControlParent()) {
-        if ((CheckS->getFlags() & Scope::ElseScope) &&
-            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
-          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
-            << Var->getDeclName()
-            << (Var->getType()->isPointerType() ? 2 :
-                Var->getType()->isBooleanType() ? 1 : 0));
-          break;
-        }
-
-        // Move to the parent of this scope.
-        CheckS = CheckS->getParent();
-      }
-    }
-  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
-    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
-      // C99 DR 316 says that, if a function type comes from a
-      // function definition (without a prototype), that type is only
-      // used for checking compatibility. Therefore, when referencing
-      // the function, we pretend that we don't have the full function
-      // type.
-      if (DiagnoseUseOfDecl(Func, NameLoc))
-        return ExprError();
-
-      QualType T = Func->getType();
-      QualType NoProtoType = T;
-      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
-        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
-                                                     Proto->getExtInfo());
-      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
-    }
-  }
-
-  // Check whether this might be a C++ implicit instance member access.
-  // C++ [expr.prim.general]p6:
-  //   Within the definition of a non-static member function, an
-  //   identifier that names a non-static member is transformed to a
-  //   class member access expression.
-  // But note that &SomeClass::foo is grammatically distinct, even
-  // though we don't parse it that way.
-  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
-    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
-    if (!isAbstractMemberPointer)
-      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
-  }
-
-  if (TemplateArgs)
-    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
-
-  return BuildDeclarationNameExpr(SS, R, ADL);
-}
-
-/// Builds an expression which might be an implicit member expression.
-Sema::OwningExprResult
-Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
-                                      LookupResult &R,
-                                const TemplateArgumentListInfo *TemplateArgs) {
-  switch (ClassifyImplicitMemberAccess(*this, R)) {
-  case IMA_Instance:
-    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
-
-  case IMA_AnonymousMember:
-    assert(R.isSingleResult());
-    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
-                                                    R.getAsSingle<FieldDecl>());
-
-  case IMA_Mixed:
-  case IMA_Mixed_Unrelated:
-  case IMA_Unresolved:
-    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
-
-  case IMA_Static:
-  case IMA_Mixed_StaticContext:
-  case IMA_Unresolved_StaticContext:
-    if (TemplateArgs)
-      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
-    return BuildDeclarationNameExpr(SS, R, false);
-
-  case IMA_Error_StaticContext:
-  case IMA_Error_Unrelated:
-    DiagnoseInstanceReference(*this, SS, R);
-    return ExprError();
-  }
-
-  llvm_unreachable("unexpected instance member access kind");
-  return ExprError();
-}
-
-/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
-/// declaration name, generally during template instantiation.
-/// There's a large number of things which don't need to be done along
-/// this path.
-Sema::OwningExprResult
-Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
-                                        DeclarationName Name,
-                                        SourceLocation NameLoc) {
-  DeclContext *DC;
-  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
-    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
-
-  if (RequireCompleteDeclContext(SS, DC))
-    return ExprError();
-
-  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
-  LookupQualifiedName(R, DC);
-
-  if (R.isAmbiguous())
-    return ExprError();
-
-  if (R.empty()) {
-    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
-    return ExprError();
-  }
-
-  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
-}
-
-/// LookupInObjCMethod - The parser has read a name in, and Sema has
-/// detected that we're currently inside an ObjC method.  Perform some
-/// additional lookup.
-///
-/// Ideally, most of this would be done by lookup, but there's
-/// actually quite a lot of extra work involved.
-///
-/// Returns a null sentinel to indicate trivial success.
-Sema::OwningExprResult
-Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
-                         IdentifierInfo *II, bool AllowBuiltinCreation) {
-  SourceLocation Loc = Lookup.getNameLoc();
-  ObjCMethodDecl *CurMethod = getCurMethodDecl();
-
-  // There are two cases to handle here.  1) scoped lookup could have failed,
-  // in which case we should look for an ivar.  2) scoped lookup could have
-  // found a decl, but that decl is outside the current instance method (i.e.
-  // a global variable).  In these two cases, we do a lookup for an ivar with
-  // this name, if the lookup sucedes, we replace it our current decl.
-
-  // If we're in a class method, we don't normally want to look for
-  // ivars.  But if we don't find anything else, and there's an
-  // ivar, that's an error.
-  bool IsClassMethod = CurMethod->isClassMethod();
-
-  bool LookForIvars;
-  if (Lookup.empty())
-    LookForIvars = true;
-  else if (IsClassMethod)
-    LookForIvars = false;
-  else
-    LookForIvars = (Lookup.isSingleResult() &&
-                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
-  ObjCInterfaceDecl *IFace = 0;
-  if (LookForIvars) {
-    IFace = CurMethod->getClassInterface();
-    ObjCInterfaceDecl *ClassDeclared;
-    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
-      // Diagnose using an ivar in a class method.
-      if (IsClassMethod)
-        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
-                         << IV->getDeclName());
-
-      // If we're referencing an invalid decl, just return this as a silent
-      // error node.  The error diagnostic was already emitted on the decl.
-      if (IV->isInvalidDecl())
-        return ExprError();
-
-      // Check if referencing a field with __attribute__((deprecated)).
-      if (DiagnoseUseOfDecl(IV, Loc))
-        return ExprError();
-
-      // Diagnose the use of an ivar outside of the declaring class.
-      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
-          ClassDeclared != IFace)
-        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
-
-      // FIXME: This should use a new expr for a direct reference, don't
-      // turn this into Self->ivar, just return a BareIVarExpr or something.
-      IdentifierInfo &II = Context.Idents.get("self");
-      UnqualifiedId SelfName;
-      SelfName.setIdentifier(&II, SourceLocation());
-      CXXScopeSpec SelfScopeSpec;
-      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
-                                                    SelfName, false, false);
-      MarkDeclarationReferenced(Loc, IV);
-      return Owned(new (Context)
-                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
-                                   SelfExpr.takeAs<Expr>(), true, true));
-    }
-  } else if (CurMethod->isInstanceMethod()) {
-    // We should warn if a local variable hides an ivar.
-    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
-    ObjCInterfaceDecl *ClassDeclared;
-    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
-      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
-          IFace == ClassDeclared)
-        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
-    }
-  }
-
-  if (Lookup.empty() && II && AllowBuiltinCreation) {
-    // FIXME. Consolidate this with similar code in LookupName.
-    if (unsigned BuiltinID = II->getBuiltinID()) {
-      if (!(getLangOptions().CPlusPlus &&
-            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
-        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
-                                           S, Lookup.isForRedeclaration(),
-                                           Lookup.getNameLoc());
-        if (D) Lookup.addDecl(D);
-      }
-    }
-  }
-  // Sentinel value saying that we didn't do anything special.
-  return Owned((Expr*) 0);
-}
-
-/// \brief Cast a base object to a member's actual type.
-///
-/// Logically this happens in three phases:
-///
-/// * First we cast from the base type to the naming class.
-///   The naming class is the class into which we were looking
-///   when we found the member;  it's the qualifier type if a
-///   qualifier was provided, and otherwise it's the base type.
-///
-/// * Next we cast from the naming class to the declaring class.
-///   If the member we found was brought into a class's scope by
-///   a using declaration, this is that class;  otherwise it's
-///   the class declaring the member.
-///
-/// * Finally we cast from the declaring class to the "true"
-///   declaring class of the member.  This conversion does not
-///   obey access control.
-bool
-Sema::PerformObjectMemberConversion(Expr *&From,
-                                    NestedNameSpecifier *Qualifier,
-                                    NamedDecl *FoundDecl,
-                                    NamedDecl *Member) {
-  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
-  if (!RD)
-    return false;
-
-  QualType DestRecordType;
-  QualType DestType;
-  QualType FromRecordType;
-  QualType FromType = From->getType();
-  bool PointerConversions = false;
-  if (isa<FieldDecl>(Member)) {
-    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
-
-    if (FromType->getAs<PointerType>()) {
-      DestType = Context.getPointerType(DestRecordType);
-      FromRecordType = FromType->getPointeeType();
-      PointerConversions = true;
-    } else {
-      DestType = DestRecordType;
-      FromRecordType = FromType;
-    }
-  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
-    if (Method->isStatic())
-      return false;
-
-    DestType = Method->getThisType(Context);
-    DestRecordType = DestType->getPointeeType();
-
-    if (FromType->getAs<PointerType>()) {
-      FromRecordType = FromType->getPointeeType();
-      PointerConversions = true;
-    } else {
-      FromRecordType = FromType;
-      DestType = DestRecordType;
-    }
-  } else {
-    // No conversion necessary.
-    return false;
-  }
-
-  if (DestType->isDependentType() || FromType->isDependentType())
-    return false;
-
-  // If the unqualified types are the same, no conversion is necessary.
-  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
-    return false;
-
-  SourceRange FromRange = From->getSourceRange();
-  SourceLocation FromLoc = FromRange.getBegin();
-
-  ImplicitCastExpr::ResultCategory Category = CastCategory(From);
-
-  // C++ [class.member.lookup]p8:
-  //   [...] Ambiguities can often be resolved by qualifying a name with its
-  //   class name.
-  //
-  // If the member was a qualified name and the qualified referred to a
-  // specific base subobject type, we'll cast to that intermediate type
-  // first and then to the object in which the member is declared. That allows
-  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
-  //
-  //   class Base { public: int x; };
-  //   class Derived1 : public Base { };
-  //   class Derived2 : public Base { };
-  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
-  //
-  //   void VeryDerived::f() {
-  //     x = 17; // error: ambiguous base subobjects
-  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
-  //   }
-  if (Qualifier) {
-    QualType QType = QualType(Qualifier->getAsType(), 0);
-    assert(!QType.isNull() && "lookup done with dependent qualifier?");
-    assert(QType->isRecordType() && "lookup done with non-record type");
-
-    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
-
-    // In C++98, the qualifier type doesn't actually have to be a base
-    // type of the object type, in which case we just ignore it.
-    // Otherwise build the appropriate casts.
-    if (IsDerivedFrom(FromRecordType, QRecordType)) {
-      CXXBaseSpecifierArray BasePath;
-      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
-                                       FromLoc, FromRange, &BasePath))
-        return true;
-
-      if (PointerConversions)
-        QType = Context.getPointerType(QType);
-      ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
-                        Category, BasePath);
-
-      FromType = QType;
-      FromRecordType = QRecordType;
-
-      // If the qualifier type was the same as the destination type,
-      // we're done.
-      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
-        return false;
-    }
-  }
-
-  bool IgnoreAccess = false;
-
-  // If we actually found the member through a using declaration, cast
-  // down to the using declaration's type.
-  //
-  // Pointer equality is fine here because only one declaration of a
-  // class ever has member declarations.
-  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
-    assert(isa<UsingShadowDecl>(FoundDecl));
-    QualType URecordType = Context.getTypeDeclType(
-                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
-
-    // We only need to do this if the naming-class to declaring-class
-    // conversion is non-trivial.
-    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
-      assert(IsDerivedFrom(FromRecordType, URecordType));
-      CXXBaseSpecifierArray BasePath;
-      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
-                                       FromLoc, FromRange, &BasePath))
-        return true;
-
-      QualType UType = URecordType;
-      if (PointerConversions)
-        UType = Context.getPointerType(UType);
-      ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
-                        Category, BasePath);
-      FromType = UType;
-      FromRecordType = URecordType;
-    }
-
-    // We don't do access control for the conversion from the
-    // declaring class to the true declaring class.
-    IgnoreAccess = true;
-  }
-
-  CXXBaseSpecifierArray BasePath;
-  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
-                                   FromLoc, FromRange, &BasePath,
-                                   IgnoreAccess))
-    return true;
-
-  ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
-                    Category, BasePath);
-  return false;
-}
-
-/// \brief Build a MemberExpr AST node.
-static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
-                                   const CXXScopeSpec &SS, ValueDecl *Member,
-                                   DeclAccessPair FoundDecl,
-                                   SourceLocation Loc, QualType Ty,
-                          const TemplateArgumentListInfo *TemplateArgs = 0) {
-  NestedNameSpecifier *Qualifier = 0;
-  SourceRange QualifierRange;
-  if (SS.isSet()) {
-    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
-    QualifierRange = SS.getRange();
-  }
-
-  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
-                            Member, FoundDecl, Loc, TemplateArgs, Ty);
-}
-
-/// Builds an implicit member access expression.  The current context
-/// is known to be an instance method, and the given unqualified lookup
-/// set is known to contain only instance members, at least one of which
-/// is from an appropriate type.
-Sema::OwningExprResult
-Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
-                              LookupResult &R,
-                              const TemplateArgumentListInfo *TemplateArgs,
-                              bool IsKnownInstance) {
-  assert(!R.empty() && !R.isAmbiguous());
-
-  SourceLocation Loc = R.getNameLoc();
-
-  // We may have found a field within an anonymous union or struct
-  // (C++ [class.union]).
-  // FIXME: This needs to happen post-isImplicitMemberReference?
-  // FIXME: template-ids inside anonymous structs?
-  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
-    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
-      return BuildAnonymousStructUnionMemberReference(Loc, FD);
-
-  // If this is known to be an instance access, go ahead and build a
-  // 'this' expression now.
-  DeclContext *DC = getFunctionLevelDeclContext();
-  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
-  Expr *This = 0; // null signifies implicit access
-  if (IsKnownInstance) {
-    SourceLocation Loc = R.getNameLoc();
-    if (SS.getRange().isValid())
-      Loc = SS.getRange().getBegin();
-    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
-  }
-
-  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
-                                  /*OpLoc*/ SourceLocation(),
-                                  /*IsArrow*/ true,
-                                  SS,
-                                  /*FirstQualifierInScope*/ 0,
-                                  R, TemplateArgs);
-}
-
-bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
-                                      const LookupResult &R,
-                                      bool HasTrailingLParen) {
-  // Only when used directly as the postfix-expression of a call.
-  if (!HasTrailingLParen)
-    return false;
-
-  // Never if a scope specifier was provided.
-  if (SS.isSet())
-    return false;
-
-  // Only in C++ or ObjC++.
-  if (!getLangOptions().CPlusPlus)
-    return false;
-
-  // Turn off ADL when we find certain kinds of declarations during
-  // normal lookup:
-  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
-    NamedDecl *D = *I;
-
-    // C++0x [basic.lookup.argdep]p3:
-    //     -- a declaration of a class member
-    // Since using decls preserve this property, we check this on the
-    // original decl.
-    if (D->isCXXClassMember())
-      return false;
-
-    // C++0x [basic.lookup.argdep]p3:
-    //     -- a block-scope function declaration that is not a
-    //        using-declaration
-    // NOTE: we also trigger this for function templates (in fact, we
-    // don't check the decl type at all, since all other decl types
-    // turn off ADL anyway).
-    if (isa<UsingShadowDecl>(D))
-      D = cast<UsingShadowDecl>(D)->getTargetDecl();
-    else if (D->getDeclContext()->isFunctionOrMethod())
-      return false;
-
-    // C++0x [basic.lookup.argdep]p3:
-    //     -- a declaration that is neither a function or a function
-    //        template
-    // And also for builtin functions.
-    if (isa<FunctionDecl>(D)) {
-      FunctionDecl *FDecl = cast<FunctionDecl>(D);
-
-      // But also builtin functions.
-      if (FDecl->getBuiltinID() && FDecl->isImplicit())
-        return false;
-    } else if (!isa<FunctionTemplateDecl>(D))
-      return false;
-  }
-
-  return true;
-}
-
-
-/// Diagnoses obvious problems with the use of the given declaration
-/// as an expression.  This is only actually called for lookups that
-/// were not overloaded, and it doesn't promise that the declaration
-/// will in fact be used.
-static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
-  if (isa<TypedefDecl>(D)) {
-    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
-    return true;
-  }
-
-  if (isa<ObjCInterfaceDecl>(D)) {
-    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
-    return true;
-  }
-
-  if (isa<NamespaceDecl>(D)) {
-    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
-    return true;
-  }
-
-  return false;
-}
-
-Sema::OwningExprResult
-Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
-                               LookupResult &R,
-                               bool NeedsADL) {
-  // If this is a single, fully-resolved result and we don't need ADL,
-  // just build an ordinary singleton decl ref.
-  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
-    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
-
-  // We only need to check the declaration if there's exactly one
-  // result, because in the overloaded case the results can only be
-  // functions and function templates.
-  if (R.isSingleResult() &&
-      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
-    return ExprError();
-
-  // Otherwise, just build an unresolved lookup expression.  Suppress
-  // any lookup-related diagnostics; we'll hash these out later, when
-  // we've picked a target.
-  R.suppressDiagnostics();
-
-  bool Dependent
-    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
-  UnresolvedLookupExpr *ULE
-    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
-                                   (NestedNameSpecifier*) SS.getScopeRep(),
-                                   SS.getRange(),
-                                   R.getLookupName(), R.getNameLoc(),
-                                   NeedsADL, R.isOverloadedResult(),
-                                   R.begin(), R.end());
-
-  return Owned(ULE);
-}
-
-
-/// \brief Complete semantic analysis for a reference to the given declaration.
-Sema::OwningExprResult
-Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
-                               SourceLocation Loc, NamedDecl *D) {
-  assert(D && "Cannot refer to a NULL declaration");
-  assert(!isa<FunctionTemplateDecl>(D) &&
-         "Cannot refer unambiguously to a function template");
-
-  if (CheckDeclInExpr(*this, Loc, D))
-    return ExprError();
-
-  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
-    // Specifically diagnose references to class templates that are missing
-    // a template argument list.
-    Diag(Loc, diag::err_template_decl_ref)
-      << Template << SS.getRange();
-    Diag(Template->getLocation(), diag::note_template_decl_here);
-    return ExprError();
-  }
-
-  // Make sure that we're referring to a value.
-  ValueDecl *VD = dyn_cast<ValueDecl>(D);
-  if (!VD) {
-    Diag(Loc, diag::err_ref_non_value)
-      << D << SS.getRange();
-    Diag(D->getLocation(), diag::note_declared_at);
-    return ExprError();
-  }
-
-  // Check whether this declaration can be used. Note that we suppress
-  // this check when we're going to perform argument-dependent lookup
-  // on this function name, because this might not be the function
-  // that overload resolution actually selects.
-  if (DiagnoseUseOfDecl(VD, Loc))
-    return ExprError();
-
-  // Only create DeclRefExpr's for valid Decl's.
-  if (VD->isInvalidDecl())
-    return ExprError();
-
-  // If the identifier reference is inside a block, and it refers to a value
-  // that is outside the block, create a BlockDeclRefExpr instead of a
-  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
-  // the block is formed.
-  //
-  // We do not do this for things like enum constants, global variables, etc,
-  // as they do not get snapshotted.
-  //
-  if (getCurBlock() &&
-      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
-    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
-      Diag(Loc, diag::err_ref_vm_type);
-      Diag(D->getLocation(), diag::note_declared_at);
-      return ExprError();
-    }
-
-    if (VD->getType()->isArrayType()) {
-      Diag(Loc, diag::err_ref_array_type);
-      Diag(D->getLocation(), diag::note_declared_at);
-      return ExprError();
-    }
-
-    MarkDeclarationReferenced(Loc, VD);
-    QualType ExprTy = VD->getType().getNonReferenceType();
-    // The BlocksAttr indicates the variable is bound by-reference.
-    if (VD->getAttr<BlocksAttr>())
-      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
-    // This is to record that a 'const' was actually synthesize and added.
-    bool constAdded = !ExprTy.isConstQualified();
-    // Variable will be bound by-copy, make it const within the closure.
-
-    ExprTy.addConst();
-    QualType T = VD->getType();
-    BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD, 
-                                                            ExprTy, Loc, false,
-                                                            constAdded);
-    if (getLangOptions().CPlusPlus) {
-      if (!T->isDependentType() && !T->isReferenceType()) {
-        Expr *E = new (Context) 
-                    DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
-                                          SourceLocation());
-      
-        OwningExprResult Res = PerformCopyInitialization(
-                          InitializedEntity::InitializeBlock(VD->getLocation(), 
-                                                         T, false),
-                                                         SourceLocation(),
-                                                         Owned(E));
-        if (!Res.isInvalid()) {
-          Res = MaybeCreateCXXExprWithTemporaries(move(Res));
-          Expr *Init = Res.takeAs<Expr>();
-          BDRE->setCopyConstructorExpr(Init);
-        }
-      }
-    }
-    return Owned(BDRE);
-  }
-  // If this reference is not in a block or if the referenced variable is
-  // within the block, create a normal DeclRefExpr.
-
-  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
-}
-
-Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
-                                                 tok::TokenKind Kind) {
-  PredefinedExpr::IdentType IT;
-
-  switch (Kind) {
-  default: assert(0 && "Unknown simple primary expr!");
-  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
-  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
-  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
-  }
-
-  // Pre-defined identifiers are of type char[x], where x is the length of the
-  // string.
-
-  Decl *currentDecl = getCurFunctionOrMethodDecl();
-  if (!currentDecl && getCurBlock())
-    currentDecl = getCurBlock()->TheDecl;
-  if (!currentDecl) {
-    Diag(Loc, diag::ext_predef_outside_function);
-    currentDecl = Context.getTranslationUnitDecl();
-  }
-
-  QualType ResTy;
-  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
-    ResTy = Context.DependentTy;
-  } else {
-    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
-
-    llvm::APInt LengthI(32, Length + 1);
-    ResTy = Context.CharTy.withConst();
-    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
-  }
-  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
-}
-
-Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
-  llvm::SmallString<16> CharBuffer;
-  bool Invalid = false;
-  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
-  if (Invalid)
-    return ExprError();
-
-  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
-                            PP);
-  if (Literal.hadError())
-    return ExprError();
-
-  QualType Ty;
-  if (!getLangOptions().CPlusPlus)
-    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
-  else if (Literal.isWide())
-    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
-  else if (Literal.isMultiChar())
-    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
-  else
-    Ty = Context.CharTy;  // 'x' -> char in C++
-
-  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
-                                              Literal.isWide(),
-                                              Ty, Tok.getLocation()));
-}
-
-Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
-  // Fast path for a single digit (which is quite common).  A single digit
-  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
-  if (Tok.getLength() == 1) {
-    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
-    unsigned IntSize = Context.Target.getIntWidth();
-    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
-                    Context.IntTy, Tok.getLocation()));
-  }
-
-  llvm::SmallString<512> IntegerBuffer;
-  // Add padding so that NumericLiteralParser can overread by one character.
-  IntegerBuffer.resize(Tok.getLength()+1);
-  const char *ThisTokBegin = &IntegerBuffer[0];
-
-  // Get the spelling of the token, which eliminates trigraphs, etc.
-  bool Invalid = false;
-  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
-  if (Invalid)
-    return ExprError();
-
-  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
-                               Tok.getLocation(), PP);
-  if (Literal.hadError)
-    return ExprError();
-
-  Expr *Res;
-
-  if (Literal.isFloatingLiteral()) {
-    QualType Ty;
-    if (Literal.isFloat)
-      Ty = Context.FloatTy;
-    else if (!Literal.isLong)
-      Ty = Context.DoubleTy;
-    else
-      Ty = Context.LongDoubleTy;
-
-    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
-
-    using llvm::APFloat;
-    APFloat Val(Format);
-
-    APFloat::opStatus result = Literal.GetFloatValue(Val);
-
-    // Overflow is always an error, but underflow is only an error if
-    // we underflowed to zero (APFloat reports denormals as underflow).
-    if ((result & APFloat::opOverflow) ||
-        ((result & APFloat::opUnderflow) && Val.isZero())) {
-      unsigned diagnostic;
-      llvm::SmallString<20> buffer;
-      if (result & APFloat::opOverflow) {
-        diagnostic = diag::warn_float_overflow;
-        APFloat::getLargest(Format).toString(buffer);
-      } else {
-        diagnostic = diag::warn_float_underflow;
-        APFloat::getSmallest(Format).toString(buffer);
-      }
-
-      Diag(Tok.getLocation(), diagnostic)
-        << Ty
-        << llvm::StringRef(buffer.data(), buffer.size());
-    }
-
-    bool isExact = (result == APFloat::opOK);
-    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
-
-  } else if (!Literal.isIntegerLiteral()) {
-    return ExprError();
-  } else {
-    QualType Ty;
-
-    // long long is a C99 feature.
-    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
-        Literal.isLongLong)
-      Diag(Tok.getLocation(), diag::ext_longlong);
-
-    // Get the value in the widest-possible width.
-    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
-
-    if (Literal.GetIntegerValue(ResultVal)) {
-      // If this value didn't fit into uintmax_t, warn and force to ull.
-      Diag(Tok.getLocation(), diag::warn_integer_too_large);
-      Ty = Context.UnsignedLongLongTy;
-      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
-             "long long is not intmax_t?");
-    } else {
-      // If this value fits into a ULL, try to figure out what else it fits into
-      // according to the rules of C99 6.4.4.1p5.
-
-      // Octal, Hexadecimal, and integers with a U suffix are allowed to
-      // be an unsigned int.
-      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
-
-      // Check from smallest to largest, picking the smallest type we can.
-      unsigned Width = 0;
-      if (!Literal.isLong && !Literal.isLongLong) {
-        // Are int/unsigned possibilities?
-        unsigned IntSize = Context.Target.getIntWidth();
-
-        // Does it fit in a unsigned int?
-        if (ResultVal.isIntN(IntSize)) {
-          // Does it fit in a signed int?
-          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
-            Ty = Context.IntTy;
-          else if (AllowUnsigned)
-            Ty = Context.UnsignedIntTy;
-          Width = IntSize;
-        }
-      }
-
-      // Are long/unsigned long possibilities?
-      if (Ty.isNull() && !Literal.isLongLong) {
-        unsigned LongSize = Context.Target.getLongWidth();
-
-        // Does it fit in a unsigned long?
-        if (ResultVal.isIntN(LongSize)) {
-          // Does it fit in a signed long?
-          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
-            Ty = Context.LongTy;
-          else if (AllowUnsigned)
-            Ty = Context.UnsignedLongTy;
-          Width = LongSize;
-        }
-      }
-
-      // Finally, check long long if needed.
-      if (Ty.isNull()) {
-        unsigned LongLongSize = Context.Target.getLongLongWidth();
-
-        // Does it fit in a unsigned long long?
-        if (ResultVal.isIntN(LongLongSize)) {
-          // Does it fit in a signed long long?
-          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
-            Ty = Context.LongLongTy;
-          else if (AllowUnsigned)
-            Ty = Context.UnsignedLongLongTy;
-          Width = LongLongSize;
-        }
-      }
-
-      // If we still couldn't decide a type, we probably have something that
-      // does not fit in a signed long long, but has no U suffix.
-      if (Ty.isNull()) {
-        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
-        Ty = Context.UnsignedLongLongTy;
-        Width = Context.Target.getLongLongWidth();
-      }
-
-      if (ResultVal.getBitWidth() != Width)
-        ResultVal.trunc(Width);
-    }
-    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
-  }
-
-  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
-  if (Literal.isImaginary)
-    Res = new (Context) ImaginaryLiteral(Res,
-                                        Context.getComplexType(Res->getType()));
-
-  return Owned(Res);
-}
-
-Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
-                                              SourceLocation R, ExprArg Val) {
-  Expr *E = Val.takeAs<Expr>();
-  assert((E != 0) && "ActOnParenExpr() missing expr");
-  return Owned(new (Context) ParenExpr(L, R, E));
-}
-
-/// The UsualUnaryConversions() function is *not* called by this routine.
-/// See C99 6.3.2.1p[2-4] for more details.
-bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
-                                     SourceLocation OpLoc,
-                                     const SourceRange &ExprRange,
-                                     bool isSizeof) {
-  if (exprType->isDependentType())
-    return false;
-
-  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
-  //   the result is the size of the referenced type."
-  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
-  //   result shall be the alignment of the referenced type."
-  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
-    exprType = Ref->getPointeeType();
-
-  // C99 6.5.3.4p1:
-  if (exprType->isFunctionType()) {
-    // alignof(function) is allowed as an extension.
-    if (isSizeof)
-      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
-    return false;
-  }
-
-  // Allow sizeof(void)/alignof(void) as an extension.
-  if (exprType->isVoidType()) {
-    Diag(OpLoc, diag::ext_sizeof_void_type)
-      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
-    return false;
-  }
-
-  if (RequireCompleteType(OpLoc, exprType,
-                          PDiag(diag::err_sizeof_alignof_incomplete_type)
-                          << int(!isSizeof) << ExprRange))
-    return true;
-
-  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
-  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
-    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
-      << exprType << isSizeof << ExprRange;
-    return true;
-  }
-
-  if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
-    Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
-      << !isSizeof << ExprRange;
-    return true;
-  }
-  
-  return false;
-}
-
-bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
-                            const SourceRange &ExprRange) {
-  E = E->IgnoreParens();
-
-  // alignof decl is always ok.
-  if (isa<DeclRefExpr>(E))
-    return false;
-
-  // Cannot know anything else if the expression is dependent.
-  if (E->isTypeDependent())
-    return false;
-
-  if (E->getBitField()) {
-    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
-    return true;
-  }
-
-  // Alignment of a field access is always okay, so long as it isn't a
-  // bit-field.
-  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
-    if (isa<FieldDecl>(ME->getMemberDecl()))
-      return false;
-
-  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
-}
-
-/// \brief Build a sizeof or alignof expression given a type operand.
-Action::OwningExprResult
-Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
-                              SourceLocation OpLoc,
-                              bool isSizeOf, SourceRange R) {
-  if (!TInfo)
-    return ExprError();
-
-  QualType T = TInfo->getType();
-
-  if (!T->isDependentType() &&
-      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
-    return ExprError();
-
-  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
-  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
-                                               Context.getSizeType(), OpLoc,
-                                               R.getEnd()));
-}
-
-/// \brief Build a sizeof or alignof expression given an expression
-/// operand.
-Action::OwningExprResult
-Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
-                              bool isSizeOf, SourceRange R) {
-  // Verify that the operand is valid.
-  bool isInvalid = false;
-  if (E->isTypeDependent()) {
-    // Delay type-checking for type-dependent expressions.
-  } else if (!isSizeOf) {
-    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
-  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
-    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
-    isInvalid = true;
-  } else {
-    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
-  }
-
-  if (isInvalid)
-    return ExprError();
-
-  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
-  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
-                                               Context.getSizeType(), OpLoc,
-                                               R.getEnd()));
-}
-
-/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
-/// the same for @c alignof and @c __alignof
-/// Note that the ArgRange is invalid if isType is false.
-Action::OwningExprResult
-Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
-                             void *TyOrEx, const SourceRange &ArgRange) {
-  // If error parsing type, ignore.
-  if (TyOrEx == 0) return ExprError();
-
-  if (isType) {
-    TypeSourceInfo *TInfo;
-    (void) GetTypeFromParser(TyOrEx, &TInfo);
-    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
-  }
-
-  Expr *ArgEx = (Expr *)TyOrEx;
-  Action::OwningExprResult Result
-    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
-
-  if (Result.isInvalid())
-    DeleteExpr(ArgEx);
-
-  return move(Result);
-}
-
-QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
-  if (V->isTypeDependent())
-    return Context.DependentTy;
-
-  // These operators return the element type of a complex type.
-  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
-    return CT->getElementType();
-
-  // Otherwise they pass through real integer and floating point types here.
-  if (V->getType()->isArithmeticType())
-    return V->getType();
-
-  // Reject anything else.
-  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
-    << (isReal ? "__real" : "__imag");
-  return QualType();
-}
-
-
-
-Action::OwningExprResult
-Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
-                          tok::TokenKind Kind, ExprArg Input) {
-  UnaryOperator::Opcode Opc;
-  switch (Kind) {
-  default: assert(0 && "Unknown unary op!");
-  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
-  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
-  }
-
-  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
-}
-
-Action::OwningExprResult
-Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
-                              ExprArg Idx, SourceLocation RLoc) {
-  // Since this might be a postfix expression, get rid of ParenListExprs.
-  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
-
-  Expr *LHSExp = static_cast<Expr*>(Base.get()),
-       *RHSExp = static_cast<Expr*>(Idx.get());
-
-  if (getLangOptions().CPlusPlus &&
-      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
-    Base.release();
-    Idx.release();
-    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
-                                                  Context.DependentTy, RLoc));
-  }
-
-  if (getLangOptions().CPlusPlus &&
-      (LHSExp->getType()->isRecordType() ||
-       LHSExp->getType()->isEnumeralType() ||
-       RHSExp->getType()->isRecordType() ||
-       RHSExp->getType()->isEnumeralType())) {
-    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
-  }
-
-  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
-}
-
-
-Action::OwningExprResult
-Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
-                                     ExprArg Idx, SourceLocation RLoc) {
-  Expr *LHSExp = static_cast<Expr*>(Base.get());
-  Expr *RHSExp = static_cast<Expr*>(Idx.get());
-
-  // Perform default conversions.
-  if (!LHSExp->getType()->getAs<VectorType>())
-      DefaultFunctionArrayLvalueConversion(LHSExp);
-  DefaultFunctionArrayLvalueConversion(RHSExp);
-
-  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
-
-  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
-  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
-  // in the subscript position. As a result, we need to derive the array base
-  // and index from the expression types.
-  Expr *BaseExpr, *IndexExpr;
-  QualType ResultType;
-  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
-    BaseExpr = LHSExp;
-    IndexExpr = RHSExp;
-    ResultType = Context.DependentTy;
-  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
-    BaseExpr = LHSExp;
-    IndexExpr = RHSExp;
-    ResultType = PTy->getPointeeType();
-  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
-     // Handle the uncommon case of "123[Ptr]".
-    BaseExpr = RHSExp;
-    IndexExpr = LHSExp;
-    ResultType = PTy->getPointeeType();
-  } else if (const ObjCObjectPointerType *PTy =
-               LHSTy->getAs<ObjCObjectPointerType>()) {
-    BaseExpr = LHSExp;
-    IndexExpr = RHSExp;
-    ResultType = PTy->getPointeeType();
-  } else if (const ObjCObjectPointerType *PTy =
-               RHSTy->getAs<ObjCObjectPointerType>()) {
-     // Handle the uncommon case of "123[Ptr]".
-    BaseExpr = RHSExp;
-    IndexExpr = LHSExp;
-    ResultType = PTy->getPointeeType();
-  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
-    BaseExpr = LHSExp;    // vectors: V[123]
-    IndexExpr = RHSExp;
-
-    // FIXME: need to deal with const...
-    ResultType = VTy->getElementType();
-  } else if (LHSTy->isArrayType()) {
-    // If we see an array that wasn't promoted by
-    // DefaultFunctionArrayLvalueConversion, it must be an array that
-    // wasn't promoted because of the C90 rule that doesn't
-    // allow promoting non-lvalue arrays.  Warn, then
-    // force the promotion here.
-    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
-        LHSExp->getSourceRange();
-    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
-                      CastExpr::CK_ArrayToPointerDecay);
-    LHSTy = LHSExp->getType();
-
-    BaseExpr = LHSExp;
-    IndexExpr = RHSExp;
-    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
-  } else if (RHSTy->isArrayType()) {
-    // Same as previous, except for 123[f().a] case
-    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
-        RHSExp->getSourceRange();
-    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
-                      CastExpr::CK_ArrayToPointerDecay);
-    RHSTy = RHSExp->getType();
-
-    BaseExpr = RHSExp;
-    IndexExpr = LHSExp;
-    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
-  } else {
-    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
-       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
-  }
-  // C99 6.5.2.1p1
-  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
-    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
-                     << IndexExpr->getSourceRange());
-
-  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
-       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
-         && !IndexExpr->isTypeDependent())
-    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
-
-  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
-  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
-  // type. Note that Functions are not objects, and that (in C99 parlance)
-  // incomplete types are not object types.
-  if (ResultType->isFunctionType()) {
-    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
-      << ResultType << BaseExpr->getSourceRange();
-    return ExprError();
-  }
-
-  if (!ResultType->isDependentType() &&
-      RequireCompleteType(LLoc, ResultType,
-                          PDiag(diag::err_subscript_incomplete_type)
-                            << BaseExpr->getSourceRange()))
-    return ExprError();
-
-  // Diagnose bad cases where we step over interface counts.
-  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
-    Diag(LLoc, diag::err_subscript_nonfragile_interface)
-      << ResultType << BaseExpr->getSourceRange();
-    return ExprError();
-  }
-
-  Base.release();
-  Idx.release();
-  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
-                                                ResultType, RLoc));
-}
-
-QualType Sema::
-CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
-                        const IdentifierInfo *CompName,
-                        SourceLocation CompLoc) {
-  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
-  // see FIXME there.
-  //
-  // FIXME: This logic can be greatly simplified by splitting it along
-  // halving/not halving and reworking the component checking.
-  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
-
-  // The vector accessor can't exceed the number of elements.
-  const char *compStr = CompName->getNameStart();
-
-  // This flag determines whether or not the component is one of the four
-  // special names that indicate a subset of exactly half the elements are
-  // to be selected.
-  bool HalvingSwizzle = false;
-
-  // This flag determines whether or not CompName has an 's' char prefix,
-  // indicating that it is a string of hex values to be used as vector indices.
-  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
-
-  // Check that we've found one of the special components, or that the component
-  // names must come from the same set.
-  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
-      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
-    HalvingSwizzle = true;
-  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
-    do
-      compStr++;
-    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
-  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
-    do
-      compStr++;
-    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
-  }
-
-  if (!HalvingSwizzle && *compStr) {
-    // We didn't get to the end of the string. This means the component names
-    // didn't come from the same set *or* we encountered an illegal name.
-    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
-      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
-    return QualType();
-  }
-
-  // Ensure no component accessor exceeds the width of the vector type it
-  // operates on.
-  if (!HalvingSwizzle) {
-    compStr = CompName->getNameStart();
-
-    if (HexSwizzle)
-      compStr++;
-
-    while (*compStr) {
-      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
-        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
-          << baseType << SourceRange(CompLoc);
-        return QualType();
-      }
-    }
-  }
-
-  // The component accessor looks fine - now we need to compute the actual type.
-  // The vector type is implied by the component accessor. For example,
-  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
-  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
-  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
-  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
-                                     : CompName->getLength();
-  if (HexSwizzle)
-    CompSize--;
-
-  if (CompSize == 1)
-    return vecType->getElementType();
-
-  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
-  // Now look up the TypeDefDecl from the vector type. Without this,
-  // diagostics look bad. We want extended vector types to appear built-in.
-  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
-    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
-      return Context.getTypedefType(ExtVectorDecls[i]);
-  }
-  return VT; // should never get here (a typedef type should always be found).
-}
-
-static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
-                                                IdentifierInfo *Member,
-                                                const Selector &Sel,
-                                                ASTContext &Context) {
-
-  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
-    return PD;
-  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
-    return OMD;
-
-  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
-       E = PDecl->protocol_end(); I != E; ++I) {
-    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
-                                                     Context))
-      return D;
-  }
-  return 0;
-}
-
-static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
-                                IdentifierInfo *Member,
-                                const Selector &Sel,
-                                ASTContext &Context) {
-  // Check protocols on qualified interfaces.
-  Decl *GDecl = 0;
-  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
-       E = QIdTy->qual_end(); I != E; ++I) {
-    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
-      GDecl = PD;
-      break;
-    }
-    // Also must look for a getter name which uses property syntax.
-    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
-      GDecl = OMD;
-      break;
-    }
-  }
-  if (!GDecl) {
-    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
-         E = QIdTy->qual_end(); I != E; ++I) {
-      // Search in the protocol-qualifier list of current protocol.
-      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
-      if (GDecl)
-        return GDecl;
-    }
-  }
-  return GDecl;
-}
-
-Sema::OwningExprResult
-Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
-                               bool IsArrow, SourceLocation OpLoc,
-                               const CXXScopeSpec &SS,
-                               NamedDecl *FirstQualifierInScope,
-                               DeclarationName Name, SourceLocation NameLoc,
-                               const TemplateArgumentListInfo *TemplateArgs) {
-  Expr *BaseExpr = Base.takeAs<Expr>();
-
-  // Even in dependent contexts, try to diagnose base expressions with
-  // obviously wrong types, e.g.:
-  //
-  // T* t;
-  // t.f;
-  //
-  // In Obj-C++, however, the above expression is valid, since it could be
-  // accessing the 'f' property if T is an Obj-C interface. The extra check
-  // allows this, while still reporting an error if T is a struct pointer.
-  if (!IsArrow) {
-    const PointerType *PT = BaseType->getAs<PointerType>();
-    if (PT && (!getLangOptions().ObjC1 ||
-               PT->getPointeeType()->isRecordType())) {
-      assert(BaseExpr && "cannot happen with implicit member accesses");
-      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
-        << BaseType << BaseExpr->getSourceRange();
-      return ExprError();
-    }
-  }
-
-  assert(BaseType->isDependentType() || Name.isDependentName() ||
-         isDependentScopeSpecifier(SS));
-
-  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
-  // must have pointer type, and the accessed type is the pointee.
-  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
-                                                   IsArrow, OpLoc,
-                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
-                                                   SS.getRange(),
-                                                   FirstQualifierInScope,
-                                                   Name, NameLoc,
-                                                   TemplateArgs));
-}
-
-/// We know that the given qualified member reference points only to
-/// declarations which do not belong to the static type of the base
-/// expression.  Diagnose the problem.
-static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
-                                             Expr *BaseExpr,
-                                             QualType BaseType,
-                                             const CXXScopeSpec &SS,
-                                             const LookupResult &R) {
-  // If this is an implicit member access, use a different set of
-  // diagnostics.
-  if (!BaseExpr)
-    return DiagnoseInstanceReference(SemaRef, SS, R);
-
-  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
-    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
-}
-
-// Check whether the declarations we found through a nested-name
-// specifier in a member expression are actually members of the base
-// type.  The restriction here is:
-//
-//   C++ [expr.ref]p2:
-//     ... In these cases, the id-expression shall name a
-//     member of the class or of one of its base classes.
-//
-// So it's perfectly legitimate for the nested-name specifier to name
-// an unrelated class, and for us to find an overload set including
-// decls from classes which are not superclasses, as long as the decl
-// we actually pick through overload resolution is from a superclass.
-bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
-                                         QualType BaseType,
-                                         const CXXScopeSpec &SS,
-                                         const LookupResult &R) {
-  const RecordType *BaseRT = BaseType->getAs<RecordType>();
-  if (!BaseRT) {
-    // We can't check this yet because the base type is still
-    // dependent.
-    assert(BaseType->isDependentType());
-    return false;
-  }
-  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
-
-  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
-    // If this is an implicit member reference and we find a
-    // non-instance member, it's not an error.
-    if (!BaseExpr && !(*I)->isCXXInstanceMember())
-      return false;
-
-    // Note that we use the DC of the decl, not the underlying decl.
-    DeclContext *DC = (*I)->getDeclContext();
-    while (DC->isTransparentContext())
-      DC = DC->getParent();
-
-    if (!DC->isRecord())
-      continue;
-    
-    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
-    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
-
-    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
-      return false;
-  }
-
-  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
-  return true;
-}
-
-static bool
-LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
-                         SourceRange BaseRange, const RecordType *RTy,
-                         SourceLocation OpLoc, CXXScopeSpec &SS,
-                         bool HasTemplateArgs) {
-  RecordDecl *RDecl = RTy->getDecl();
-  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
-                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
-                                    << BaseRange))
-    return true;
-
-  if (HasTemplateArgs) {
-    // LookupTemplateName doesn't expect these both to exist simultaneously.
-    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
-
-    bool MOUS;
-    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
-    return false;
-  }
-
-  DeclContext *DC = RDecl;
-  if (SS.isSet()) {
-    // If the member name was a qualified-id, look into the
-    // nested-name-specifier.
-    DC = SemaRef.computeDeclContext(SS, false);
-
-    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
-      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
-        << SS.getRange() << DC;
-      return true;
-    }
-
-    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
-
-    if (!isa<TypeDecl>(DC)) {
-      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
-        << DC << SS.getRange();
-      return true;
-    }
-  }
-
-  // The record definition is complete, now look up the member.
-  SemaRef.LookupQualifiedName(R, DC);
-
-  if (!R.empty())
-    return false;
-
-  // We didn't find anything with the given name, so try to correct
-  // for typos.
-  DeclarationName Name = R.getLookupName();
-  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
-      !R.empty() &&
-      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
-    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
-      << Name << DC << R.getLookupName() << SS.getRange()
-      << FixItHint::CreateReplacement(R.getNameLoc(),
-                                      R.getLookupName().getAsString());
-    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
-      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
-        << ND->getDeclName();
-    return false;
-  } else {
-    R.clear();
-    R.setLookupName(Name);
-  }
-
-  return false;
-}
-
-Sema::OwningExprResult
-Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
-                               SourceLocation OpLoc, bool IsArrow,
-                               CXXScopeSpec &SS,
-                               NamedDecl *FirstQualifierInScope,
-                               DeclarationName Name, SourceLocation NameLoc,
-                               const TemplateArgumentListInfo *TemplateArgs) {
-  Expr *Base = BaseArg.takeAs<Expr>();
-
-  if (BaseType->isDependentType() ||
-      (SS.isSet() && isDependentScopeSpecifier(SS)))
-    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
-                                    IsArrow, OpLoc,
-                                    SS, FirstQualifierInScope,
-                                    Name, NameLoc,
-                                    TemplateArgs);
-
-  LookupResult R(*this, Name, NameLoc, LookupMemberName);
-
-  // Implicit member accesses.
-  if (!Base) {
-    QualType RecordTy = BaseType;
-    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
-    if (LookupMemberExprInRecord(*this, R, SourceRange(),
-                                 RecordTy->getAs<RecordType>(),
-                                 OpLoc, SS, TemplateArgs != 0))
-      return ExprError();
-
-  // Explicit member accesses.
-  } else {
-    OwningExprResult Result =
-      LookupMemberExpr(R, Base, IsArrow, OpLoc,
-                       SS, /*ObjCImpDecl*/ DeclPtrTy(), TemplateArgs != 0);
-
-    if (Result.isInvalid()) {
-      Owned(Base);
-      return ExprError();
-    }
-
-    if (Result.get())
-      return move(Result);
-
-    // LookupMemberExpr can modify Base, and thus change BaseType
-    BaseType = Base->getType();
-  }
-
-  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
-                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
-                                  R, TemplateArgs);
-}
-
-Sema::OwningExprResult
-Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
-                               SourceLocation OpLoc, bool IsArrow,
-                               const CXXScopeSpec &SS,
-                               NamedDecl *FirstQualifierInScope,
-                               LookupResult &R,
-                         const TemplateArgumentListInfo *TemplateArgs,
-                               bool SuppressQualifierCheck) {
-  Expr *BaseExpr = Base.takeAs<Expr>();
-  QualType BaseType = BaseExprType;
-  if (IsArrow) {
-    assert(BaseType->isPointerType());
-    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
-  }
-  R.setBaseObjectType(BaseType);
-
-  NestedNameSpecifier *Qualifier =
-    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
-  DeclarationName MemberName = R.getLookupName();
-  SourceLocation MemberLoc = R.getNameLoc();
-
-  if (R.isAmbiguous())
-    return ExprError();
-
-  if (R.empty()) {
-    // Rederive where we looked up.
-    DeclContext *DC = (SS.isSet()
-                       ? computeDeclContext(SS, false)
-                       : BaseType->getAs<RecordType>()->getDecl());
-
-    Diag(R.getNameLoc(), diag::err_no_member)
-      << MemberName << DC
-      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
-    return ExprError();
-  }
-
-  // Diagnose lookups that find only declarations from a non-base
-  // type.  This is possible for either qualified lookups (which may
-  // have been qualified with an unrelated type) or implicit member
-  // expressions (which were found with unqualified lookup and thus
-  // may have come from an enclosing scope).  Note that it's okay for
-  // lookup to find declarations from a non-base type as long as those
-  // aren't the ones picked by overload resolution.
-  if ((SS.isSet() || !BaseExpr ||
-       (isa<CXXThisExpr>(BaseExpr) &&
-        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
-      !SuppressQualifierCheck &&
-      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
-    return ExprError();
-
-  // Construct an unresolved result if we in fact got an unresolved
-  // result.
-  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
-    bool Dependent =
-      BaseExprType->isDependentType() ||
-      R.isUnresolvableResult() ||
-      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
-
-    // Suppress any lookup-related diagnostics; we'll do these when we
-    // pick a member.
-    R.suppressDiagnostics();
-
-    UnresolvedMemberExpr *MemExpr
-      = UnresolvedMemberExpr::Create(Context, Dependent,
-                                     R.isUnresolvableResult(),
-                                     BaseExpr, BaseExprType,
-                                     IsArrow, OpLoc,
-                                     Qualifier, SS.getRange(),
-                                     MemberName, MemberLoc,
-                                     TemplateArgs, R.begin(), R.end());
-
-    return Owned(MemExpr);
-  }
-
-  assert(R.isSingleResult());
-  DeclAccessPair FoundDecl = R.begin().getPair();
-  NamedDecl *MemberDecl = R.getFoundDecl();
-
-  // FIXME: diagnose the presence of template arguments now.
-
-  // If the decl being referenced had an error, return an error for this
-  // sub-expr without emitting another error, in order to avoid cascading
-  // error cases.
-  if (MemberDecl->isInvalidDecl())
-    return ExprError();
-
-  // Handle the implicit-member-access case.
-  if (!BaseExpr) {
-    // If this is not an instance member, convert to a non-member access.
-    if (!MemberDecl->isCXXInstanceMember())
-      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
-
-    SourceLocation Loc = R.getNameLoc();
-    if (SS.getRange().isValid())
-      Loc = SS.getRange().getBegin();
-    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
-  }
-
-  bool ShouldCheckUse = true;
-  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
-    // Don't diagnose the use of a virtual member function unless it's
-    // explicitly qualified.
-    if (MD->isVirtual() && !SS.isSet())
-      ShouldCheckUse = false;
-  }
-
-  // Check the use of this member.
-  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
-    Owned(BaseExpr);
-    return ExprError();
-  }
-
-  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
-    // We may have found a field within an anonymous union or struct
-    // (C++ [class.union]).
-    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
-        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
-      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
-                                                      BaseExpr, OpLoc);
-
-    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
-    QualType MemberType = FD->getType();
-    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
-      MemberType = Ref->getPointeeType();
-    else {
-      Qualifiers BaseQuals = BaseType.getQualifiers();
-      BaseQuals.removeObjCGCAttr();
-      if (FD->isMutable()) BaseQuals.removeConst();
-
-      Qualifiers MemberQuals
-        = Context.getCanonicalType(MemberType).getQualifiers();
-
-      Qualifiers Combined = BaseQuals + MemberQuals;
-      if (Combined != MemberQuals)
-        MemberType = Context.getQualifiedType(MemberType, Combined);
-    }
-
-    MarkDeclarationReferenced(MemberLoc, FD);
-    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
-      return ExprError();
-    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
-                                 FD, FoundDecl, MemberLoc, MemberType));
-  }
-
-  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
-    MarkDeclarationReferenced(MemberLoc, Var);
-    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
-                                 Var, FoundDecl, MemberLoc,
-                                 Var->getType().getNonReferenceType()));
-  }
-
-  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
-    MarkDeclarationReferenced(MemberLoc, MemberDecl);
-    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
-                                 MemberFn, FoundDecl, MemberLoc,
-                                 MemberFn->getType()));
-  }
-
-  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
-    MarkDeclarationReferenced(MemberLoc, MemberDecl);
-    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
-                                 Enum, FoundDecl, MemberLoc, Enum->getType()));
-  }
-
-  Owned(BaseExpr);
-
-  // We found something that we didn't expect. Complain.
-  if (isa<TypeDecl>(MemberDecl))
-    Diag(MemberLoc,diag::err_typecheck_member_reference_type)
-      << MemberName << BaseType << int(IsArrow);
-  else
-    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
-      << MemberName << BaseType << int(IsArrow);
-
-  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
-    << MemberName;
-  R.suppressDiagnostics();
-  return ExprError();
-}
-
-/// Look up the given member of the given non-type-dependent
-/// expression.  This can return in one of two ways:
-///  * If it returns a sentinel null-but-valid result, the caller will
-///    assume that lookup was performed and the results written into
-///    the provided structure.  It will take over from there.
-///  * Otherwise, the returned expression will be produced in place of
-///    an ordinary member expression.
-///
-/// The ObjCImpDecl bit is a gross hack that will need to be properly
-/// fixed for ObjC++.
-Sema::OwningExprResult
-Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
-                       bool &IsArrow, SourceLocation OpLoc,
-                       CXXScopeSpec &SS,
-                       DeclPtrTy ObjCImpDecl, bool HasTemplateArgs) {
-  assert(BaseExpr && "no base expression");
-
-  // Perform default conversions.
-  DefaultFunctionArrayConversion(BaseExpr);
-
-  QualType BaseType = BaseExpr->getType();
-  assert(!BaseType->isDependentType());
-
-  DeclarationName MemberName = R.getLookupName();
-  SourceLocation MemberLoc = R.getNameLoc();
-
-  // If the user is trying to apply -> or . to a function pointer
-  // type, it's probably because they forgot parentheses to call that
-  // function. Suggest the addition of those parentheses, build the
-  // call, and continue on.
-  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
-    if (const FunctionProtoType *Fun
-          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
-      QualType ResultTy = Fun->getResultType();
-      if (Fun->getNumArgs() == 0 &&
-          ((!IsArrow && ResultTy->isRecordType()) ||
-           (IsArrow && ResultTy->isPointerType() &&
-            ResultTy->getAs<PointerType>()->getPointeeType()
-                                                          ->isRecordType()))) {
-        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
-        Diag(Loc, diag::err_member_reference_needs_call)
-          << QualType(Fun, 0)
-          << FixItHint::CreateInsertion(Loc, "()");
-
-        OwningExprResult NewBase
-          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
-                          MultiExprArg(*this, 0, 0), 0, Loc);
-        BaseExpr = 0;
-        if (NewBase.isInvalid())
-          return ExprError();
-
-        BaseExpr = NewBase.takeAs<Expr>();
-        DefaultFunctionArrayConversion(BaseExpr);
-        BaseType = BaseExpr->getType();
-      }
-    }
-  }
-
-  // If this is an Objective-C pseudo-builtin and a definition is provided then
-  // use that.
-  if (BaseType->isObjCIdType()) {
-    if (IsArrow) {
-      // Handle the following exceptional case PObj->isa.
-      if (const ObjCObjectPointerType *OPT =
-          BaseType->getAs<ObjCObjectPointerType>()) {
-        if (OPT->getObjectType()->isObjCId() &&
-            MemberName.getAsIdentifierInfo()->isStr("isa"))
-          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
-                                                 Context.getObjCClassType()));
-      }
-    }
-    // We have an 'id' type. Rather than fall through, we check if this
-    // is a reference to 'isa'.
-    if (BaseType != Context.ObjCIdRedefinitionType) {
-      BaseType = Context.ObjCIdRedefinitionType;
-      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
-    }
-  }
-
-  // If this is an Objective-C pseudo-builtin and a definition is provided then
-  // use that.
-  if (Context.isObjCSelType(BaseType)) {
-    // We have an 'SEL' type. Rather than fall through, we check if this
-    // is a reference to 'sel_id'.
-    if (BaseType != Context.ObjCSelRedefinitionType) {
-      BaseType = Context.ObjCSelRedefinitionType;
-      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
-    }
-  }
-
-  assert(!BaseType.isNull() && "no type for member expression");
-
-  // Handle properties on ObjC 'Class' types.
-  if (!IsArrow && BaseType->isObjCClassType()) {
-    // Also must look for a getter name which uses property syntax.
-    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
-    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
-    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
-      ObjCInterfaceDecl *IFace = MD->getClassInterface();
-      ObjCMethodDecl *Getter;
-      // FIXME: need to also look locally in the implementation.
-      if ((Getter = IFace->lookupClassMethod(Sel))) {
-        // Check the use of this method.
-        if (DiagnoseUseOfDecl(Getter, MemberLoc))
-          return ExprError();
-      }
-      // If we found a getter then this may be a valid dot-reference, we
-      // will look for the matching setter, in case it is needed.
-      Selector SetterSel =
-      SelectorTable::constructSetterName(PP.getIdentifierTable(),
-                                         PP.getSelectorTable(), Member);
-      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
-      if (!Setter) {
-        // If this reference is in an @implementation, also check for 'private'
-        // methods.
-        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
-      }
-      // Look through local category implementations associated with the class.
-      if (!Setter)
-        Setter = IFace->getCategoryClassMethod(SetterSel);
-
-      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
-        return ExprError();
-
-      if (Getter || Setter) {
-        QualType PType;
-
-        if (Getter)
-          PType = Getter->getSendResultType();
-        else
-          // Get the expression type from Setter's incoming parameter.
-          PType = (*(Setter->param_end() -1))->getType();
-        // FIXME: we must check that the setter has property type.
-        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
-                                                  PType,
-                                                  Setter, MemberLoc, BaseExpr));
-      }
-      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
-                       << MemberName << BaseType);
-    }
-  }
-
-  if (BaseType->isObjCClassType() &&
-      BaseType != Context.ObjCClassRedefinitionType) {
-    BaseType = Context.ObjCClassRedefinitionType;
-    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
-  }
-
-  if (IsArrow) {
-    if (const PointerType *PT = BaseType->getAs<PointerType>())
-      BaseType = PT->getPointeeType();
-    else if (BaseType->isObjCObjectPointerType())
-      ;
-    else if (BaseType->isRecordType()) {
-      // Recover from arrow accesses to records, e.g.:
-      //   struct MyRecord foo;
-      //   foo->bar
-      // This is actually well-formed in C++ if MyRecord has an
-      // overloaded operator->, but that should have been dealt with
-      // by now.
-      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
-        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
-        << FixItHint::CreateReplacement(OpLoc, ".");
-      IsArrow = false;
-    } else {
-      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
-        << BaseType << BaseExpr->getSourceRange();
-      return ExprError();
-    }
-  } else {
-    // Recover from dot accesses to pointers, e.g.:
-    //   type *foo;
-    //   foo.bar
-    // This is actually well-formed in two cases:
-    //   - 'type' is an Objective C type
-    //   - 'bar' is a pseudo-destructor name which happens to refer to
-    //     the appropriate pointer type
-    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
-      const PointerType *PT = BaseType->getAs<PointerType>();
-      if (PT && PT->getPointeeType()->isRecordType()) {
-        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
-          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
-          << FixItHint::CreateReplacement(OpLoc, "->");
-        BaseType = PT->getPointeeType();
-        IsArrow = true;
-      }
-    }
-  }
-
-  // Handle field access to simple records.
-  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
-    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
-                                 RTy, OpLoc, SS, HasTemplateArgs))
-      return ExprError();
-    return Owned((Expr*) 0);
-  }
-
-  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
-  // (*Obj).ivar.
-  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
-      (!IsArrow && BaseType->isObjCObjectType())) {
-    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
-    ObjCInterfaceDecl *IDecl =
-      OPT ? OPT->getInterfaceDecl()
-          : BaseType->getAs<ObjCObjectType>()->getInterface();
-    if (IDecl) {
-      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
-
-      ObjCInterfaceDecl *ClassDeclared;
-      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
-
-      if (!IV) {
-        // Attempt to correct for typos in ivar names.
-        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
-                         LookupMemberName);
-        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
-            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
-          Diag(R.getNameLoc(),
-               diag::err_typecheck_member_reference_ivar_suggest)
-            << IDecl->getDeclName() << MemberName << IV->getDeclName()
-            << FixItHint::CreateReplacement(R.getNameLoc(),
-                                            IV->getNameAsString());
-          Diag(IV->getLocation(), diag::note_previous_decl)
-            << IV->getDeclName();
-        } else {
-          Res.clear();
-          Res.setLookupName(Member);
-        }
-      }
-
-      if (IV) {
-        // If the decl being referenced had an error, return an error for this
-        // sub-expr without emitting another error, in order to avoid cascading
-        // error cases.
-        if (IV->isInvalidDecl())
-          return ExprError();
-
-        // Check whether we can reference this field.
-        if (DiagnoseUseOfDecl(IV, MemberLoc))
-          return ExprError();
-        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
-            IV->getAccessControl() != ObjCIvarDecl::Package) {
-          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
-          if (ObjCMethodDecl *MD = getCurMethodDecl())
-            ClassOfMethodDecl =  MD->getClassInterface();
-          else if (ObjCImpDecl && getCurFunctionDecl()) {
-            // Case of a c-function declared inside an objc implementation.
-            // FIXME: For a c-style function nested inside an objc implementation
-            // class, there is no implementation context available, so we pass
-            // down the context as argument to this routine. Ideally, this context
-            // need be passed down in the AST node and somehow calculated from the
-            // AST for a function decl.
-            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
-            if (ObjCImplementationDecl *IMPD =
-                dyn_cast<ObjCImplementationDecl>(ImplDecl))
-              ClassOfMethodDecl = IMPD->getClassInterface();
-            else if (ObjCCategoryImplDecl* CatImplClass =
-                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
-              ClassOfMethodDecl = CatImplClass->getClassInterface();
-          }
-
-          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
-            if (ClassDeclared != IDecl ||
-                ClassOfMethodDecl != ClassDeclared)
-              Diag(MemberLoc, diag::error_private_ivar_access)
-                << IV->getDeclName();
-          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
-            // @protected
-            Diag(MemberLoc, diag::error_protected_ivar_access)
-              << IV->getDeclName();
-        }
-
-        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
-                                                   MemberLoc, BaseExpr,
-                                                   IsArrow));
-      }
-      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
-                         << IDecl->getDeclName() << MemberName
-                         << BaseExpr->getSourceRange());
-    }
-  }
-  // Handle properties on 'id' and qualified "id".
-  if (!IsArrow && (BaseType->isObjCIdType() ||
-                   BaseType->isObjCQualifiedIdType())) {
-    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
-    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
-
-    // Check protocols on qualified interfaces.
-    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
-    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
-      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
-        // Check the use of this declaration
-        if (DiagnoseUseOfDecl(PD, MemberLoc))
-          return ExprError();
-
-        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
-                                                       MemberLoc, BaseExpr));
-      }
-      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
-        // Check the use of this method.
-        if (DiagnoseUseOfDecl(OMD, MemberLoc))
-          return ExprError();
-
-        return Owned(ObjCMessageExpr::Create(Context,
-                                             OMD->getSendResultType(),
-                                             OpLoc, BaseExpr, Sel,
-                                             OMD, NULL, 0, MemberLoc));
-      }
-    }
-
-    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
-                       << MemberName << BaseType);
-  }
-
-  // Handle Objective-C property access, which is "Obj.property" where Obj is a
-  // pointer to a (potentially qualified) interface type.
-  if (!IsArrow)
-    if (const ObjCObjectPointerType *OPT =
-          BaseType->getAsObjCInterfacePointerType())
-      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
-
-  // Handle the following exceptional case (*Obj).isa.
-  if (!IsArrow &&
-      BaseType->isObjCObjectType() &&
-      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
-      MemberName.getAsIdentifierInfo()->isStr("isa"))
-    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
-                                           Context.getObjCClassType()));
-
-  // Handle 'field access' to vectors, such as 'V.xx'.
-  if (BaseType->isExtVectorType()) {
-    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
-    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
-    if (ret.isNull())
-      return ExprError();
-    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
-                                                    MemberLoc));
-  }
-
-  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
-    << BaseType << BaseExpr->getSourceRange();
-
-  return ExprError();
-}
-
-/// The main callback when the parser finds something like
-///   expression . [nested-name-specifier] identifier
-///   expression -> [nested-name-specifier] identifier
-/// where 'identifier' encompasses a fairly broad spectrum of
-/// possibilities, including destructor and operator references.
-///
-/// \param OpKind either tok::arrow or tok::period
-/// \param HasTrailingLParen whether the next token is '(', which
-///   is used to diagnose mis-uses of special members that can
-///   only be called
-/// \param ObjCImpDecl the current ObjC @implementation decl;
-///   this is an ugly hack around the fact that ObjC @implementations
-///   aren't properly put in the context chain
-Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
-                                                   SourceLocation OpLoc,
-                                                   tok::TokenKind OpKind,
-                                                   CXXScopeSpec &SS,
-                                                   UnqualifiedId &Id,
-                                                   DeclPtrTy ObjCImpDecl,
-                                                   bool HasTrailingLParen) {
-  if (SS.isSet() && SS.isInvalid())
-    return ExprError();
-
-  TemplateArgumentListInfo TemplateArgsBuffer;
-
-  // Decompose the name into its component parts.
-  DeclarationName Name;
-  SourceLocation NameLoc;
-  const TemplateArgumentListInfo *TemplateArgs;
-  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
-                         Name, NameLoc, TemplateArgs);
-
-  bool IsArrow = (OpKind == tok::arrow);
-
-  NamedDecl *FirstQualifierInScope
-    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
-                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
-
-  // This is a postfix expression, so get rid of ParenListExprs.
-  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
-
-  Expr *Base = BaseArg.takeAs<Expr>();
-  OwningExprResult Result(*this);
-  if (Base->getType()->isDependentType() || Name.isDependentName() ||
-      isDependentScopeSpecifier(SS)) {
-    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
-                                      IsArrow, OpLoc,
-                                      SS, FirstQualifierInScope,
-                                      Name, NameLoc,
-                                      TemplateArgs);
-  } else {
-    LookupResult R(*this, Name, NameLoc, LookupMemberName);
-    Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
-                              SS, ObjCImpDecl, TemplateArgs != 0);
-
-    if (Result.isInvalid()) {
-      Owned(Base);
-      return ExprError();
-    }
-
-    if (Result.get()) {
-      // The only way a reference to a destructor can be used is to
-      // immediately call it, which falls into this case.  If the
-      // next token is not a '(', produce a diagnostic and build the
-      // call now.
-      if (!HasTrailingLParen &&
-          Id.getKind() == UnqualifiedId::IK_DestructorName)
-        return DiagnoseDtorReference(NameLoc, move(Result));
-
-      return move(Result);
-    }
-
-    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
-                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
-                                      R, TemplateArgs);
-  }
-
-  return move(Result);
-}
-
-Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
-                                                    FunctionDecl *FD,
-                                                    ParmVarDecl *Param) {
-  if (Param->hasUnparsedDefaultArg()) {
-    Diag (CallLoc,
-          diag::err_use_of_default_argument_to_function_declared_later) <<
-      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
-    Diag(UnparsedDefaultArgLocs[Param],
-          diag::note_default_argument_declared_here);
-  } else {
-    if (Param->hasUninstantiatedDefaultArg()) {
-      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
-
-      // Instantiate the expression.
-      MultiLevelTemplateArgumentList ArgList
-        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
-
-      std::pair<const TemplateArgument *, unsigned> Innermost 
-        = ArgList.getInnermost();
-      InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
-                                 Innermost.second);
-
-      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
-      if (Result.isInvalid())
-        return ExprError();
-
-      // Check the expression as an initializer for the parameter.
-      InitializedEntity Entity
-        = InitializedEntity::InitializeParameter(Param);
-      InitializationKind Kind
-        = InitializationKind::CreateCopy(Param->getLocation(),
-               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
-      Expr *ResultE = Result.takeAs<Expr>();
-
-      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
-      Result = InitSeq.Perform(*this, Entity, Kind,
-                               MultiExprArg(*this, (void**)&ResultE, 1));
-      if (Result.isInvalid())
-        return ExprError();
-
-      // Build the default argument expression.
-      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
-                                             Result.takeAs<Expr>()));
-    }
-
-    // If the default expression creates temporaries, we need to
-    // push them to the current stack of expression temporaries so they'll
-    // be properly destroyed.
-    // FIXME: We should really be rebuilding the default argument with new
-    // bound temporaries; see the comment in PR5810.
-    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
-      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
-  }
-
-  // We already type-checked the argument, so we know it works.
-  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
-}
-
-/// ConvertArgumentsForCall - Converts the arguments specified in
-/// Args/NumArgs to the parameter types of the function FDecl with
-/// function prototype Proto. Call is the call expression itself, and
-/// Fn is the function expression. For a C++ member function, this
-/// routine does not attempt to convert the object argument. Returns
-/// true if the call is ill-formed.
-bool
-Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
-                              FunctionDecl *FDecl,
-                              const FunctionProtoType *Proto,
-                              Expr **Args, unsigned NumArgs,
-                              SourceLocation RParenLoc) {
-  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
-  // assignment, to the types of the corresponding parameter, ...
-  unsigned NumArgsInProto = Proto->getNumArgs();
-  bool Invalid = false;
-
-  // If too few arguments are available (and we don't have default
-  // arguments for the remaining parameters), don't make the call.
-  if (NumArgs < NumArgsInProto) {
-    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
-      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
-        << Fn->getType()->isBlockPointerType()
-        << NumArgsInProto << NumArgs << Fn->getSourceRange();
-    Call->setNumArgs(Context, NumArgsInProto);
-  }
-
-  // If too many are passed and not variadic, error on the extras and drop
-  // them.
-  if (NumArgs > NumArgsInProto) {
-    if (!Proto->isVariadic()) {
-      Diag(Args[NumArgsInProto]->getLocStart(),
-           diag::err_typecheck_call_too_many_args)
-        << Fn->getType()->isBlockPointerType()
-        << NumArgsInProto << NumArgs << Fn->getSourceRange()
-        << SourceRange(Args[NumArgsInProto]->getLocStart(),
-                       Args[NumArgs-1]->getLocEnd());
-      // This deletes the extra arguments.
-      Call->setNumArgs(Context, NumArgsInProto);
-      return true;
-    }
-  }
-  llvm::SmallVector<Expr *, 8> AllArgs;
-  VariadicCallType CallType =
-    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
-  if (Fn->getType()->isBlockPointerType())
-    CallType = VariadicBlock; // Block
-  else if (isa<MemberExpr>(Fn))
-    CallType = VariadicMethod;
-  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
-                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
-  if (Invalid)
-    return true;
-  unsigned TotalNumArgs = AllArgs.size();
-  for (unsigned i = 0; i < TotalNumArgs; ++i)
-    Call->setArg(i, AllArgs[i]);
-
-  return false;
-}
-
-bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
-                                  FunctionDecl *FDecl,
-                                  const FunctionProtoType *Proto,
-                                  unsigned FirstProtoArg,
-                                  Expr **Args, unsigned NumArgs,
-                                  llvm::SmallVector<Expr *, 8> &AllArgs,
-                                  VariadicCallType CallType) {
-  unsigned NumArgsInProto = Proto->getNumArgs();
-  unsigned NumArgsToCheck = NumArgs;
-  bool Invalid = false;
-  if (NumArgs != NumArgsInProto)
-    // Use default arguments for missing arguments
-    NumArgsToCheck = NumArgsInProto;
-  unsigned ArgIx = 0;
-  // Continue to check argument types (even if we have too few/many args).
-  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
-    QualType ProtoArgType = Proto->getArgType(i);
-
-    Expr *Arg;
-    if (ArgIx < NumArgs) {
-      Arg = Args[ArgIx++];
-
-      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
-                              ProtoArgType,
-                              PDiag(diag::err_call_incomplete_argument)
-                              << Arg->getSourceRange()))
-        return true;
-
-      // Pass the argument
-      ParmVarDecl *Param = 0;
-      if (FDecl && i < FDecl->getNumParams())
-        Param = FDecl->getParamDecl(i);
-
-
-      InitializedEntity Entity =
-        Param? InitializedEntity::InitializeParameter(Param)
-             : InitializedEntity::InitializeParameter(ProtoArgType);
-      OwningExprResult ArgE = PerformCopyInitialization(Entity,
-                                                        SourceLocation(),
-                                                        Owned(Arg));
-      if (ArgE.isInvalid())
-        return true;
-
-      Arg = ArgE.takeAs<Expr>();
-    } else {
-      ParmVarDecl *Param = FDecl->getParamDecl(i);
-
-      OwningExprResult ArgExpr =
-        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
-      if (ArgExpr.isInvalid())
-        return true;
-
-      Arg = ArgExpr.takeAs<Expr>();
-    }
-    AllArgs.push_back(Arg);
-  }
-
-  // If this is a variadic call, handle args passed through "...".
-  if (CallType != VariadicDoesNotApply) {
-    // Promote the arguments (C99 6.5.2.2p7).
-    for (unsigned i = ArgIx; i != NumArgs; ++i) {
-      Expr *Arg = Args[i];
-      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
-      AllArgs.push_back(Arg);
-    }
-  }
-  return Invalid;
-}
-
-/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
-/// This provides the location of the left/right parens and a list of comma
-/// locations.
-Action::OwningExprResult
-Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
-                    MultiExprArg args,
-                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
-  unsigned NumArgs = args.size();
-
-  // Since this might be a postfix expression, get rid of ParenListExprs.
-  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
-
-  Expr *Fn = fn.takeAs<Expr>();
-  Expr **Args = reinterpret_cast<Expr**>(args.release());
-  assert(Fn && "no function call expression");
-
-  if (getLangOptions().CPlusPlus) {
-    // If this is a pseudo-destructor expression, build the call immediately.
-    if (isa<CXXPseudoDestructorExpr>(Fn)) {
-      if (NumArgs > 0) {
-        // Pseudo-destructor calls should not have any arguments.
-        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
-          << FixItHint::CreateRemoval(
-                                    SourceRange(Args[0]->getLocStart(),
-                                                Args[NumArgs-1]->getLocEnd()));
-
-        NumArgs = 0;
-      }
-
-      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
-                                          RParenLoc));
-    }
-
-    // Determine whether this is a dependent call inside a C++ template,
-    // in which case we won't do any semantic analysis now.
-    // FIXME: Will need to cache the results of name lookup (including ADL) in
-    // Fn.
-    bool Dependent = false;
-    if (Fn->isTypeDependent())
-      Dependent = true;
-    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
-      Dependent = true;
-
-    if (Dependent)
-      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
-                                          Context.DependentTy, RParenLoc));
-
-    // Determine whether this is a call to an object (C++ [over.call.object]).
-    if (Fn->getType()->isRecordType())
-      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
-                                                CommaLocs, RParenLoc));
-
-    Expr *NakedFn = Fn->IgnoreParens();
-
-    // Determine whether this is a call to an unresolved member function.
-    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
-      // If lookup was unresolved but not dependent (i.e. didn't find
-      // an unresolved using declaration), it has to be an overloaded
-      // function set, which means it must contain either multiple
-      // declarations (all methods or method templates) or a single
-      // method template.
-      assert((MemE->getNumDecls() > 1) ||
-             isa<FunctionTemplateDecl>(
-                                 (*MemE->decls_begin())->getUnderlyingDecl()));
-      (void)MemE;
-
-      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
-                                       CommaLocs, RParenLoc);
-    }
-
-    // Determine whether this is a call to a member function.
-    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
-      NamedDecl *MemDecl = MemExpr->getMemberDecl();
-      if (isa<CXXMethodDecl>(MemDecl))
-        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
-                                         CommaLocs, RParenLoc);
-    }
-
-    // Determine whether this is a call to a pointer-to-member function.
-    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
-      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
-          BO->getOpcode() == BinaryOperator::PtrMemI) {
-        if (const FunctionProtoType *FPT
-                                = BO->getType()->getAs<FunctionProtoType>()) {
-          QualType ResultTy = FPT->getCallResultType(Context);
-
-          ExprOwningPtr<CXXMemberCallExpr>
-            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
-                                                          NumArgs, ResultTy,
-                                                          RParenLoc));
-
-          if (CheckCallReturnType(FPT->getResultType(),
-                                  BO->getRHS()->getSourceRange().getBegin(),
-                                  TheCall.get(), 0))
-            return ExprError();
-
-          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
-                                      RParenLoc))
-            return ExprError();
-
-          return Owned(MaybeBindToTemporary(TheCall.release()).release());
-        }
-        return ExprError(Diag(Fn->getLocStart(),
-                              diag::err_typecheck_call_not_function)
-                              << Fn->getType() << Fn->getSourceRange());
-      }
-    }
-  }
-
-  // If we're directly calling a function, get the appropriate declaration.
-  // Also, in C++, keep track of whether we should perform argument-dependent
-  // lookup and whether there were any explicitly-specified template arguments.
-
-  Expr *NakedFn = Fn->IgnoreParens();
-  if (isa<UnresolvedLookupExpr>(NakedFn)) {
-    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
-    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
-                                   CommaLocs, RParenLoc);
-  }
-
-  NamedDecl *NDecl = 0;
-  if (isa<DeclRefExpr>(NakedFn))
-    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
-
-  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
-}
-
-/// BuildResolvedCallExpr - Build a call to a resolved expression,
-/// i.e. an expression not of \p OverloadTy.  The expression should
-/// unary-convert to an expression of function-pointer or
-/// block-pointer type.
-///
-/// \param NDecl the declaration being called, if available
-Sema::OwningExprResult
-Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
-                            SourceLocation LParenLoc,
-                            Expr **Args, unsigned NumArgs,
-                            SourceLocation RParenLoc) {
-  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
-
-  // Promote the function operand.
-  UsualUnaryConversions(Fn);
-
-  // Make the call expr early, before semantic checks.  This guarantees cleanup
-  // of arguments and function on error.
-  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
-                                                               Args, NumArgs,
-                                                               Context.BoolTy,
-                                                               RParenLoc));
-
-  const FunctionType *FuncT;
-  if (!Fn->getType()->isBlockPointerType()) {
-    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
-    // have type pointer to function".
-    const PointerType *PT = Fn->getType()->getAs<PointerType>();
-    if (PT == 0)
-      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
-        << Fn->getType() << Fn->getSourceRange());
-    FuncT = PT->getPointeeType()->getAs<FunctionType>();
-  } else { // This is a block call.
-    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
-                getAs<FunctionType>();
-  }
-  if (FuncT == 0)
-    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
-      << Fn->getType() << Fn->getSourceRange());
-
-  // Check for a valid return type
-  if (CheckCallReturnType(FuncT->getResultType(),
-                          Fn->getSourceRange().getBegin(), TheCall.get(),
-                          FDecl))
-    return ExprError();
-
-  // We know the result type of the call, set it.
-  TheCall->setType(FuncT->getCallResultType(Context));
-
-  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
-    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
-                                RParenLoc))
-      return ExprError();
-  } else {
-    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
-
-    if (FDecl) {
-      // Check if we have too few/too many template arguments, based
-      // on our knowledge of the function definition.
-      const FunctionDecl *Def = 0;
-      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
-        const FunctionProtoType *Proto =
-            Def->getType()->getAs<FunctionProtoType>();
-        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
-          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
-            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
-        }
-      }
-    }
-
-    // Promote the arguments (C99 6.5.2.2p6).
-    for (unsigned i = 0; i != NumArgs; i++) {
-      Expr *Arg = Args[i];
-      DefaultArgumentPromotion(Arg);
-      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
-                              Arg->getType(),
-                              PDiag(diag::err_call_incomplete_argument)
-                                << Arg->getSourceRange()))
-        return ExprError();
-      TheCall->setArg(i, Arg);
-    }
-  }
-
-  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
-    if (!Method->isStatic())
-      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
-        << Fn->getSourceRange());
-
-  // Check for sentinels
-  if (NDecl)
-    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
-
-  // Do special checking on direct calls to functions.
-  if (FDecl) {
-    if (CheckFunctionCall(FDecl, TheCall.get()))
-      return ExprError();
-
-    if (unsigned BuiltinID = FDecl->getBuiltinID())
-      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
-  } else if (NDecl) {
-    if (CheckBlockCall(NDecl, TheCall.get()))
-      return ExprError();
-  }
-
-  return MaybeBindToTemporary(TheCall.take());
-}
-
-Action::OwningExprResult
-Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
-                           SourceLocation RParenLoc, ExprArg InitExpr) {
-  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
-  // FIXME: put back this assert when initializers are worked out.
-  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
-
-  TypeSourceInfo *TInfo;
-  QualType literalType = GetTypeFromParser(Ty, &TInfo);
-  if (!TInfo)
-    TInfo = Context.getTrivialTypeSourceInfo(literalType);
-
-  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
-}
-
-Action::OwningExprResult
-Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
-                               SourceLocation RParenLoc, ExprArg InitExpr) {
-  QualType literalType = TInfo->getType();
-  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
-
-  if (literalType->isArrayType()) {
-    if (literalType->isVariableArrayType())
-      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
-        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
-  } else if (!literalType->isDependentType() &&
-             RequireCompleteType(LParenLoc, literalType,
-                      PDiag(diag::err_typecheck_decl_incomplete_type)
-                        << SourceRange(LParenLoc,
-                                       literalExpr->getSourceRange().getEnd())))
-    return ExprError();
-
-  InitializedEntity Entity
-    = InitializedEntity::InitializeTemporary(literalType);
-  InitializationKind Kind
-    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
-                                     /*IsCStyleCast=*/true);
-  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
-  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
-                                   MultiExprArg(*this, (void**)&literalExpr, 1),
-                                            &literalType);
-  if (Result.isInvalid())
-    return ExprError();
-  InitExpr.release();
-  literalExpr = static_cast<Expr*>(Result.get());
-
-  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
-  if (isFileScope) { // 6.5.2.5p3
-    if (CheckForConstantInitializer(literalExpr, literalType))
-      return ExprError();
-  }
-
-  Result.release();
-
-  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
-                                                 literalExpr, isFileScope));
-}
-
-Action::OwningExprResult
-Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
-                    SourceLocation RBraceLoc) {
-  unsigned NumInit = initlist.size();
-  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
-
-  // Semantic analysis for initializers is done by ActOnDeclarator() and
-  // CheckInitializer() - it requires knowledge of the object being intialized.
-
-  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
-                                               NumInit, RBraceLoc);
-  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
-  return Owned(E);
-}
-
-static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
-                                            QualType SrcTy, QualType DestTy) {
-  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
-    return CastExpr::CK_NoOp;
-
-  if (SrcTy->hasPointerRepresentation()) {
-    if (DestTy->hasPointerRepresentation())
-      return DestTy->isObjCObjectPointerType() ?
-                CastExpr::CK_AnyPointerToObjCPointerCast :
-                CastExpr::CK_BitCast;
-    if (DestTy->isIntegerType())
-      return CastExpr::CK_PointerToIntegral;
-  }
-
-  if (SrcTy->isIntegerType()) {
-    if (DestTy->isIntegerType())
-      return CastExpr::CK_IntegralCast;
-    if (DestTy->hasPointerRepresentation())
-      return CastExpr::CK_IntegralToPointer;
-    if (DestTy->isRealFloatingType())
-      return CastExpr::CK_IntegralToFloating;
-  }
-
-  if (SrcTy->isRealFloatingType()) {
-    if (DestTy->isRealFloatingType())
-      return CastExpr::CK_FloatingCast;
-    if (DestTy->isIntegerType())
-      return CastExpr::CK_FloatingToIntegral;
-  }
-
-  // FIXME: Assert here.
-  // assert(false && "Unhandled cast combination!");
-  return CastExpr::CK_Unknown;
-}
-
-/// CheckCastTypes - Check type constraints for casting between types.
-bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
-                          CastExpr::CastKind& Kind,
-                          CXXBaseSpecifierArray &BasePath,
-                          bool FunctionalStyle) {
-  if (getLangOptions().CPlusPlus)
-    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
-                              FunctionalStyle);
-
-  DefaultFunctionArrayLvalueConversion(castExpr);
-
-  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
-  // type needs to be scalar.
-  if (castType->isVoidType()) {
-    // Cast to void allows any expr type.
-    Kind = CastExpr::CK_ToVoid;
-    return false;
-  }
-
-  if (RequireCompleteType(TyR.getBegin(), castType,
-                          diag::err_typecheck_cast_to_incomplete))
-    return true;
-
-  if (!castType->isScalarType() && !castType->isVectorType()) {
-    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
-        (castType->isStructureType() || castType->isUnionType())) {
-      // GCC struct/union extension: allow cast to self.
-      // FIXME: Check that the cast destination type is complete.
-      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
-        << castType << castExpr->getSourceRange();
-      Kind = CastExpr::CK_NoOp;
-      return false;
-    }
-
-    if (castType->isUnionType()) {
-      // GCC cast to union extension
-      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
-      RecordDecl::field_iterator Field, FieldEnd;
-      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
-           Field != FieldEnd; ++Field) {
-        if (Context.hasSameUnqualifiedType(Field->getType(),
-                                           castExpr->getType())) {
-          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
-            << castExpr->getSourceRange();
-          break;
-        }
-      }
-      if (Field == FieldEnd)
-        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
-          << castExpr->getType() << castExpr->getSourceRange();
-      Kind = CastExpr::CK_ToUnion;
-      return false;
-    }
-
-    // Reject any other conversions to non-scalar types.
-    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
-      << castType << castExpr->getSourceRange();
-  }
-
-  if (!castExpr->getType()->isScalarType() &&
-      !castExpr->getType()->isVectorType()) {
-    return Diag(castExpr->getLocStart(),
-                diag::err_typecheck_expect_scalar_operand)
-      << castExpr->getType() << castExpr->getSourceRange();
-  }
-
-  if (castType->isExtVectorType())
-    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
-
-  if (castType->isVectorType())
-    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
-  if (castExpr->getType()->isVectorType())
-    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
-
-  if (isa<ObjCSelectorExpr>(castExpr))
-    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
-
-  if (!castType->isArithmeticType()) {
-    QualType castExprType = castExpr->getType();
-    if (!castExprType->isIntegralType(Context) && 
-        castExprType->isArithmeticType())
-      return Diag(castExpr->getLocStart(),
-                  diag::err_cast_pointer_from_non_pointer_int)
-        << castExprType << castExpr->getSourceRange();
-  } else if (!castExpr->getType()->isArithmeticType()) {
-    if (!castType->isIntegralType(Context) && castType->isArithmeticType())
-      return Diag(castExpr->getLocStart(),
-                  diag::err_cast_pointer_to_non_pointer_int)
-        << castType << castExpr->getSourceRange();
-  }
-
-  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
-  return false;
-}
-
-bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
-                           CastExpr::CastKind &Kind) {
-  assert(VectorTy->isVectorType() && "Not a vector type!");
-
-  if (Ty->isVectorType() || Ty->isIntegerType()) {
-    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
-      return Diag(R.getBegin(),
-                  Ty->isVectorType() ?
-                  diag::err_invalid_conversion_between_vectors :
-                  diag::err_invalid_conversion_between_vector_and_integer)
-        << VectorTy << Ty << R;
-  } else
-    return Diag(R.getBegin(),
-                diag::err_invalid_conversion_between_vector_and_scalar)
-      << VectorTy << Ty << R;
-
-  Kind = CastExpr::CK_BitCast;
-  return false;
-}
-
-bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
-                              CastExpr::CastKind &Kind) {
-  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
-
-  QualType SrcTy = CastExpr->getType();
-
-  // If SrcTy is a VectorType, the total size must match to explicitly cast to
-  // an ExtVectorType.
-  if (SrcTy->isVectorType()) {
-    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
-      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
-        << DestTy << SrcTy << R;
-    Kind = CastExpr::CK_BitCast;
-    return false;
-  }
-
-  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
-  // conversion will take place first from scalar to elt type, and then
-  // splat from elt type to vector.
-  if (SrcTy->isPointerType())
-    return Diag(R.getBegin(),
-                diag::err_invalid_conversion_between_vector_and_scalar)
-      << DestTy << SrcTy << R;
-
-  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
-  ImpCastExprToType(CastExpr, DestElemTy,
-                    getScalarCastKind(Context, SrcTy, DestElemTy));
-
-  Kind = CastExpr::CK_VectorSplat;
-  return false;
-}
-
-Action::OwningExprResult
-Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
-                    SourceLocation RParenLoc, ExprArg Op) {
-  assert((Ty != 0) && (Op.get() != 0) &&
-         "ActOnCastExpr(): missing type or expr");
-
-  TypeSourceInfo *castTInfo;
-  QualType castType = GetTypeFromParser(Ty, &castTInfo);
-  if (!castTInfo)
-    castTInfo = Context.getTrivialTypeSourceInfo(castType);
-
-  // If the Expr being casted is a ParenListExpr, handle it specially.
-  Expr *castExpr = (Expr *)Op.get();
-  if (isa<ParenListExpr>(castExpr))
-    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
-                                    castTInfo);
-
-  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
-}
-
-Action::OwningExprResult
-Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
-                          SourceLocation RParenLoc, ExprArg Op) {
-  Expr *castExpr = static_cast<Expr*>(Op.get());
-
-  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
-  CXXBaseSpecifierArray BasePath;
-  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
-                     Kind, BasePath))
-    return ExprError();
-
-  Op.release();
-  return Owned(new (Context) CStyleCastExpr(
-                                    Ty->getType().getNonLValueExprType(Context),
-                                            Kind, castExpr, BasePath, Ty,
-                                            LParenLoc, RParenLoc));
-}
-
-/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
-/// of comma binary operators.
-Action::OwningExprResult
-Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
-  Expr *expr = EA.takeAs<Expr>();
-  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
-  if (!E)
-    return Owned(expr);
-
-  OwningExprResult Result(*this, E->getExpr(0));
-
-  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
-    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
-                        Owned(E->getExpr(i)));
-
-  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
-}
-
-Action::OwningExprResult
-Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
-                               SourceLocation RParenLoc, ExprArg Op,
-                               TypeSourceInfo *TInfo) {
-  ParenListExpr *PE = (ParenListExpr *)Op.get();
-  QualType Ty = TInfo->getType();
-  bool isAltiVecLiteral = false;
-
-  // Check for an altivec literal,
-  // i.e. all the elements are integer constants.
-  if (getLangOptions().AltiVec && Ty->isVectorType()) {
-    if (PE->getNumExprs() == 0) {
-      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
-      return ExprError();
-    }
-    if (PE->getNumExprs() == 1) {
-      if (!PE->getExpr(0)->getType()->isVectorType())
-        isAltiVecLiteral = true;
-    }
-    else
-      isAltiVecLiteral = true;
-  }
-
-  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
-  // then handle it as such.
-  if (isAltiVecLiteral) {
-    llvm::SmallVector<Expr *, 8> initExprs;
-    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
-      initExprs.push_back(PE->getExpr(i));
-
-    // FIXME: This means that pretty-printing the final AST will produce curly
-    // braces instead of the original commas.
-    Op.release();
-    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
-                                                 &initExprs[0],
-                                                 initExprs.size(), RParenLoc);
-    E->setType(Ty);
-    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
-  } else {
-    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
-    // sequence of BinOp comma operators.
-    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
-    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
-  }
-}
-
-Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
-                                                  SourceLocation R,
-                                                  MultiExprArg Val,
-                                                  TypeTy *TypeOfCast) {
-  unsigned nexprs = Val.size();
-  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
-  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
-  Expr *expr;
-  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
-    expr = new (Context) ParenExpr(L, R, exprs[0]);
-  else
-    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
-  return Owned(expr);
-}
-
-/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
-/// In that case, lhs = cond.
-/// C99 6.5.15
-QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
-                                        SourceLocation QuestionLoc) {
-  // C++ is sufficiently different to merit its own checker.
-  if (getLangOptions().CPlusPlus)
-    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
-
-  UsualUnaryConversions(Cond);
-  UsualUnaryConversions(LHS);
-  UsualUnaryConversions(RHS);
-  QualType CondTy = Cond->getType();
-  QualType LHSTy = LHS->getType();
-  QualType RHSTy = RHS->getType();
-
-  // first, check the condition.
-  if (!CondTy->isScalarType()) { // C99 6.5.15p2
-    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
-      << CondTy;
-    return QualType();
-  }
-
-  // Now check the two expressions.
-  if (LHSTy->isVectorType() || RHSTy->isVectorType())
-    return CheckVectorOperands(QuestionLoc, LHS, RHS);
-
-  // If both operands have arithmetic type, do the usual arithmetic conversions
-  // to find a common type: C99 6.5.15p3,5.
-  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
-    UsualArithmeticConversions(LHS, RHS);
-    return LHS->getType();
-  }
-
-  // If both operands are the same structure or union type, the result is that
-  // type.
-  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
-    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
-      if (LHSRT->getDecl() == RHSRT->getDecl())
-        // "If both the operands have structure or union type, the result has
-        // that type."  This implies that CV qualifiers are dropped.
-        return LHSTy.getUnqualifiedType();
-    // FIXME: Type of conditional expression must be complete in C mode.
-  }
-
-  // C99 6.5.15p5: "If both operands have void type, the result has void type."
-  // The following || allows only one side to be void (a GCC-ism).
-  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
-    if (!LHSTy->isVoidType())
-      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
-        << RHS->getSourceRange();
-    if (!RHSTy->isVoidType())
-      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
-        << LHS->getSourceRange();
-    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
-    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
-    return Context.VoidTy;
-  }
-  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
-  // the type of the other operand."
-  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
-      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
-    // promote the null to a pointer.
-    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
-    return LHSTy;
-  }
-  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
-      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
-    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
-    return RHSTy;
-  }
-
-  // All objective-c pointer type analysis is done here.
-  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
-                                                        QuestionLoc);
-  if (!compositeType.isNull())
-    return compositeType;
-
-
-  // Handle block pointer types.
-  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
-    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
-      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
-        QualType destType = Context.getPointerType(Context.VoidTy);
-        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
-        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
-        return destType;
-      }
-      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
-      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
-      return QualType();
-    }
-    // We have 2 block pointer types.
-    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
-      // Two identical block pointer types are always compatible.
-      return LHSTy;
-    }
-    // The block pointer types aren't identical, continue checking.
-    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
-    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
-
-    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
-                                    rhptee.getUnqualifiedType())) {
-      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
-      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
-      // In this situation, we assume void* type. No especially good
-      // reason, but this is what gcc does, and we do have to pick
-      // to get a consistent AST.
-      QualType incompatTy = Context.getPointerType(Context.VoidTy);
-      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
-      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
-      return incompatTy;
-    }
-    // The block pointer types are compatible.
-    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
-    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
-    return LHSTy;
-  }
-
-  // Check constraints for C object pointers types (C99 6.5.15p3,6).
-  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
-    // get the "pointed to" types
-    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
-    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
-
-    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
-    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
-      // Figure out necessary qualifiers (C99 6.5.15p6)
-      QualType destPointee
-        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
-      QualType destType = Context.getPointerType(destPointee);
-      // Add qualifiers if necessary.
-      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
-      // Promote to void*.
-      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
-      return destType;
-    }
-    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
-      QualType destPointee
-        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
-      QualType destType = Context.getPointerType(destPointee);
-      // Add qualifiers if necessary.
-      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
-      // Promote to void*.
-      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
-      return destType;
-    }
-
-    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
-      // Two identical pointer types are always compatible.
-      return LHSTy;
-    }
-    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
-                                    rhptee.getUnqualifiedType())) {
-      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
-        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
-      // In this situation, we assume void* type. No especially good
-      // reason, but this is what gcc does, and we do have to pick
-      // to get a consistent AST.
-      QualType incompatTy = Context.getPointerType(Context.VoidTy);
-      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
-      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
-      return incompatTy;
-    }
-    // The pointer types are compatible.
-    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
-    // differently qualified versions of compatible types, the result type is
-    // a pointer to an appropriately qualified version of the *composite*
-    // type.
-    // FIXME: Need to calculate the composite type.
-    // FIXME: Need to add qualifiers
-    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
-    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
-    return LHSTy;
-  }
-
-  // GCC compatibility: soften pointer/integer mismatch.
-  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
-    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
-      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
-    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
-    return RHSTy;
-  }
-  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
-    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
-      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
-    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
-    return LHSTy;
-  }
-
-  // Otherwise, the operands are not compatible.
-  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
-    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
-  return QualType();
-}
-
-/// FindCompositeObjCPointerType - Helper method to find composite type of
-/// two objective-c pointer types of the two input expressions.
-QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
-                                        SourceLocation QuestionLoc) {
-  QualType LHSTy = LHS->getType();
-  QualType RHSTy = RHS->getType();
-
-  // Handle things like Class and struct objc_class*.  Here we case the result
-  // to the pseudo-builtin, because that will be implicitly cast back to the
-  // redefinition type if an attempt is made to access its fields.
-  if (LHSTy->isObjCClassType() &&
-      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
-    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
-    return LHSTy;
-  }
-  if (RHSTy->isObjCClassType() &&
-      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
-    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
-    return RHSTy;
-  }
-  // And the same for struct objc_object* / id
-  if (LHSTy->isObjCIdType() &&
-      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
-    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
-    return LHSTy;
-  }
-  if (RHSTy->isObjCIdType() &&
-      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
-    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
-    return RHSTy;
-  }
-  // And the same for struct objc_selector* / SEL
-  if (Context.isObjCSelType(LHSTy) &&
-      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
-    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
-    return LHSTy;
-  }
-  if (Context.isObjCSelType(RHSTy) &&
-      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
-    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
-    return RHSTy;
-  }
-  // Check constraints for Objective-C object pointers types.
-  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
-
-    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
-      // Two identical object pointer types are always compatible.
-      return LHSTy;
-    }
-    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
-    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
-    QualType compositeType = LHSTy;
-
-    // If both operands are interfaces and either operand can be
-    // assigned to the other, use that type as the composite
-    // type. This allows
-    //   xxx ? (A*) a : (B*) b
-    // where B is a subclass of A.
-    //
-    // Additionally, as for assignment, if either type is 'id'
-    // allow silent coercion. Finally, if the types are
-    // incompatible then make sure to use 'id' as the composite
-    // type so the result is acceptable for sending messages to.
-
-    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
-    // It could return the composite type.
-    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
-      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
-    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
-      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
-    } else if ((LHSTy->isObjCQualifiedIdType() ||
-                RHSTy->isObjCQualifiedIdType()) &&
-               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
-      // Need to handle "id<xx>" explicitly.
-      // GCC allows qualified id and any Objective-C type to devolve to
-      // id. Currently localizing to here until clear this should be
-      // part of ObjCQualifiedIdTypesAreCompatible.
-      compositeType = Context.getObjCIdType();
-    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
-      compositeType = Context.getObjCIdType();
-    } else if (!(compositeType =
-                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
-      ;
-    else {
-      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
-      << LHSTy << RHSTy
-      << LHS->getSourceRange() << RHS->getSourceRange();
-      QualType incompatTy = Context.getObjCIdType();
-      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
-      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
-      return incompatTy;
-    }
-    // The object pointer types are compatible.
-    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
-    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
-    return compositeType;
-  }
-  // Check Objective-C object pointer types and 'void *'
-  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
-    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
-    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
-    QualType destPointee
-    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
-    QualType destType = Context.getPointerType(destPointee);
-    // Add qualifiers if necessary.
-    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
-    // Promote to void*.
-    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
-    return destType;
-  }
-  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
-    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
-    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
-    QualType destPointee
-    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
-    QualType destType = Context.getPointerType(destPointee);
-    // Add qualifiers if necessary.
-    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
-    // Promote to void*.
-    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
-    return destType;
-  }
-  return QualType();
-}
-
-/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
-/// in the case of a the GNU conditional expr extension.
-Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
-                                                  SourceLocation ColonLoc,
-                                                  ExprArg Cond, ExprArg LHS,
-                                                  ExprArg RHS) {
-  Expr *CondExpr = (Expr *) Cond.get();
-  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
-
-  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
-  // was the condition.
-  bool isLHSNull = LHSExpr == 0;
-  if (isLHSNull)
-    LHSExpr = CondExpr;
-
-  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
-                                             RHSExpr, QuestionLoc);
-  if (result.isNull())
-    return ExprError();
-
-  Cond.release();
-  LHS.release();
-  RHS.release();
-  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
-                                                 isLHSNull ? 0 : LHSExpr,
-                                                 ColonLoc, RHSExpr, result));
-}
-
-// CheckPointerTypesForAssignment - This is a very tricky routine (despite
-// being closely modeled after the C99 spec:-). The odd characteristic of this
-// routine is it effectively iqnores the qualifiers on the top level pointee.
-// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
-// FIXME: add a couple examples in this comment.
-Sema::AssignConvertType
-Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
-  QualType lhptee, rhptee;
-
-  if ((lhsType->isObjCClassType() &&
-       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
-     (rhsType->isObjCClassType() &&
-       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
-      return Compatible;
-  }
-
-  // get the "pointed to" type (ignoring qualifiers at the top level)
-  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
-  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
-
-  // make sure we operate on the canonical type
-  lhptee = Context.getCanonicalType(lhptee);
-  rhptee = Context.getCanonicalType(rhptee);
-
-  AssignConvertType ConvTy = Compatible;
-
-  // C99 6.5.16.1p1: This following citation is common to constraints
-  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
-  // qualifiers of the type *pointed to* by the right;
-  // FIXME: Handle ExtQualType
-  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
-    ConvTy = CompatiblePointerDiscardsQualifiers;
-
-  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
-  // incomplete type and the other is a pointer to a qualified or unqualified
-  // version of void...
-  if (lhptee->isVoidType()) {
-    if (rhptee->isIncompleteOrObjectType())
-      return ConvTy;
-
-    // As an extension, we allow cast to/from void* to function pointer.
-    assert(rhptee->isFunctionType());
-    return FunctionVoidPointer;
-  }
-
-  if (rhptee->isVoidType()) {
-    if (lhptee->isIncompleteOrObjectType())
-      return ConvTy;
-
-    // As an extension, we allow cast to/from void* to function pointer.
-    assert(lhptee->isFunctionType());
-    return FunctionVoidPointer;
-  }
-  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
-  // unqualified versions of compatible types, ...
-  lhptee = lhptee.getUnqualifiedType();
-  rhptee = rhptee.getUnqualifiedType();
-  if (!Context.typesAreCompatible(lhptee, rhptee)) {
-    // Check if the pointee types are compatible ignoring the sign.
-    // We explicitly check for char so that we catch "char" vs
-    // "unsigned char" on systems where "char" is unsigned.
-    if (lhptee->isCharType())
-      lhptee = Context.UnsignedCharTy;
-    else if (lhptee->hasSignedIntegerRepresentation())
-      lhptee = Context.getCorrespondingUnsignedType(lhptee);
-
-    if (rhptee->isCharType())
-      rhptee = Context.UnsignedCharTy;
-    else if (rhptee->hasSignedIntegerRepresentation())
-      rhptee = Context.getCorrespondingUnsignedType(rhptee);
-
-    if (lhptee == rhptee) {
-      // Types are compatible ignoring the sign. Qualifier incompatibility
-      // takes priority over sign incompatibility because the sign
-      // warning can be disabled.
-      if (ConvTy != Compatible)
-        return ConvTy;
-      return IncompatiblePointerSign;
-    }
-
-    // If we are a multi-level pointer, it's possible that our issue is simply
-    // one of qualification - e.g. char ** -> const char ** is not allowed. If
-    // the eventual target type is the same and the pointers have the same
-    // level of indirection, this must be the issue.
-    if (lhptee->isPointerType() && rhptee->isPointerType()) {
-      do {
-        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
-        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
-
-        lhptee = Context.getCanonicalType(lhptee);
-        rhptee = Context.getCanonicalType(rhptee);
-      } while (lhptee->isPointerType() && rhptee->isPointerType());
-
-      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
-        return IncompatibleNestedPointerQualifiers;
-    }
-
-    // General pointer incompatibility takes priority over qualifiers.
-    return IncompatiblePointer;
-  }
-  return ConvTy;
-}
-
-/// CheckBlockPointerTypesForAssignment - This routine determines whether two
-/// block pointer types are compatible or whether a block and normal pointer
-/// are compatible. It is more restrict than comparing two function pointer
-// types.
-Sema::AssignConvertType
-Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
-                                          QualType rhsType) {
-  QualType lhptee, rhptee;
-
-  // get the "pointed to" type (ignoring qualifiers at the top level)
-  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
-  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
-
-  // make sure we operate on the canonical type
-  lhptee = Context.getCanonicalType(lhptee);
-  rhptee = Context.getCanonicalType(rhptee);
-
-  AssignConvertType ConvTy = Compatible;
-
-  // For blocks we enforce that qualifiers are identical.
-  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
-    ConvTy = CompatiblePointerDiscardsQualifiers;
-
-  if (!getLangOptions().CPlusPlus) {
-    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
-      return IncompatibleBlockPointer;
-  }
-  else if (!Context.typesAreCompatible(lhptee, rhptee))
-    return IncompatibleBlockPointer;
-  return ConvTy;
-}
-
-/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
-/// for assignment compatibility.
-Sema::AssignConvertType
-Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
-  if (lhsType->isObjCBuiltinType()) {
-    // Class is not compatible with ObjC object pointers.
-    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
-        !rhsType->isObjCQualifiedClassType())
-      return IncompatiblePointer;
-    return Compatible;
-  }
-  if (rhsType->isObjCBuiltinType()) {
-    // Class is not compatible with ObjC object pointers.
-    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
-        !lhsType->isObjCQualifiedClassType())
-      return IncompatiblePointer;
-    return Compatible;
-  }
-  QualType lhptee =
-  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
-  QualType rhptee =
-  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
-  // make sure we operate on the canonical type
-  lhptee = Context.getCanonicalType(lhptee);
-  rhptee = Context.getCanonicalType(rhptee);
-  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
-    return CompatiblePointerDiscardsQualifiers;
-
-  if (Context.typesAreCompatible(lhsType, rhsType))
-    return Compatible;
-  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
-    return IncompatibleObjCQualifiedId;
-  return IncompatiblePointer;
-}
-
-/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
-/// has code to accommodate several GCC extensions when type checking
-/// pointers. Here are some objectionable examples that GCC considers warnings:
-///
-///  int a, *pint;
-///  short *pshort;
-///  struct foo *pfoo;
-///
-///  pint = pshort; // warning: assignment from incompatible pointer type
-///  a = pint; // warning: assignment makes integer from pointer without a cast
-///  pint = a; // warning: assignment makes pointer from integer without a cast
-///  pint = pfoo; // warning: assignment from incompatible pointer type
-///
-/// As a result, the code for dealing with pointers is more complex than the
-/// C99 spec dictates.
-///
-Sema::AssignConvertType
-Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
-  // Get canonical types.  We're not formatting these types, just comparing
-  // them.
-  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
-  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
-
-  if (lhsType == rhsType)
-    return Compatible; // Common case: fast path an exact match.
-
-  if ((lhsType->isObjCClassType() &&
-       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
-     (rhsType->isObjCClassType() &&
-       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
-      return Compatible;
-  }
-
-  // If the left-hand side is a reference type, then we are in a
-  // (rare!) case where we've allowed the use of references in C,
-  // e.g., as a parameter type in a built-in function. In this case,
-  // just make sure that the type referenced is compatible with the
-  // right-hand side type. The caller is responsible for adjusting
-  // lhsType so that the resulting expression does not have reference
-  // type.
-  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
-    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
-      return Compatible;
-    return Incompatible;
-  }
-  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
-  // to the same ExtVector type.
-  if (lhsType->isExtVectorType()) {
-    if (rhsType->isExtVectorType())
-      return lhsType == rhsType ? Compatible : Incompatible;
-    if (rhsType->isArithmeticType())
-      return Compatible;
-  }
-
-  if (lhsType->isVectorType() || rhsType->isVectorType()) {
-    // If we are allowing lax vector conversions, and LHS and RHS are both
-    // vectors, the total size only needs to be the same. This is a bitcast;
-    // no bits are changed but the result type is different.
-    if (getLangOptions().LaxVectorConversions &&
-        lhsType->isVectorType() && rhsType->isVectorType()) {
-      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
-        return IncompatibleVectors;
-    }
-    return Incompatible;
-  }
-
-  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
-      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
-    return Compatible;
-
-  if (isa<PointerType>(lhsType)) {
-    if (rhsType->isIntegerType())
-      return IntToPointer;
-
-    if (isa<PointerType>(rhsType))
-      return CheckPointerTypesForAssignment(lhsType, rhsType);
-
-    // In general, C pointers are not compatible with ObjC object pointers.
-    if (isa<ObjCObjectPointerType>(rhsType)) {
-      if (lhsType->isVoidPointerType()) // an exception to the rule.
-        return Compatible;
-      return IncompatiblePointer;
-    }
-    if (rhsType->getAs<BlockPointerType>()) {
-      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
-        return Compatible;
-
-      // Treat block pointers as objects.
-      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
-        return Compatible;
-    }
-    return Incompatible;
-  }
-
-  if (isa<BlockPointerType>(lhsType)) {
-    if (rhsType->isIntegerType())
-      return IntToBlockPointer;
-
-    // Treat block pointers as objects.
-    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
-      return Compatible;
-
-    if (rhsType->isBlockPointerType())
-      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
-
-    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
-      if (RHSPT->getPointeeType()->isVoidType())
-        return Compatible;
-    }
-    return Incompatible;
-  }
-
-  if (isa<ObjCObjectPointerType>(lhsType)) {
-    if (rhsType->isIntegerType())
-      return IntToPointer;
-
-    // In general, C pointers are not compatible with ObjC object pointers.
-    if (isa<PointerType>(rhsType)) {
-      if (rhsType->isVoidPointerType()) // an exception to the rule.
-        return Compatible;
-      return IncompatiblePointer;
-    }
-    if (rhsType->isObjCObjectPointerType()) {
-      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
-    }
-    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
-      if (RHSPT->getPointeeType()->isVoidType())
-        return Compatible;
-    }
-    // Treat block pointers as objects.
-    if (rhsType->isBlockPointerType())
-      return Compatible;
-    return Incompatible;
-  }
-  if (isa<PointerType>(rhsType)) {
-    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
-    if (lhsType == Context.BoolTy)
-      return Compatible;
-
-    if (lhsType->isIntegerType())
-      return PointerToInt;
-
-    if (isa<PointerType>(lhsType))
-      return CheckPointerTypesForAssignment(lhsType, rhsType);
-
-    if (isa<BlockPointerType>(lhsType) &&
-        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
-      return Compatible;
-    return Incompatible;
-  }
-  if (isa<ObjCObjectPointerType>(rhsType)) {
-    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
-    if (lhsType == Context.BoolTy)
-      return Compatible;
-
-    if (lhsType->isIntegerType())
-      return PointerToInt;
-
-    // In general, C pointers are not compatible with ObjC object pointers.
-    if (isa<PointerType>(lhsType)) {
-      if (lhsType->isVoidPointerType()) // an exception to the rule.
-        return Compatible;
-      return IncompatiblePointer;
-    }
-    if (isa<BlockPointerType>(lhsType) &&
-        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
-      return Compatible;
-    return Incompatible;
-  }
-
-  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
-    if (Context.typesAreCompatible(lhsType, rhsType))
-      return Compatible;
-  }
-  return Incompatible;
-}
-
-/// \brief Constructs a transparent union from an expression that is
-/// used to initialize the transparent union.
-static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
-                                      QualType UnionType, FieldDecl *Field) {
-  // Build an initializer list that designates the appropriate member
-  // of the transparent union.
-  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
-                                                   &E, 1,
-                                                   SourceLocation());
-  Initializer->setType(UnionType);
-  Initializer->setInitializedFieldInUnion(Field);
-
-  // Build a compound literal constructing a value of the transparent
-  // union type from this initializer list.
-  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
-  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
-                                  Initializer, false);
-}
-
-Sema::AssignConvertType
-Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
-  QualType FromType = rExpr->getType();
-
-  // If the ArgType is a Union type, we want to handle a potential
-  // transparent_union GCC extension.
-  const RecordType *UT = ArgType->getAsUnionType();
-  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
-    return Incompatible;
-
-  // The field to initialize within the transparent union.
-  RecordDecl *UD = UT->getDecl();
-  FieldDecl *InitField = 0;
-  // It's compatible if the expression matches any of the fields.
-  for (RecordDecl::field_iterator it = UD->field_begin(),
-         itend = UD->field_end();
-       it != itend; ++it) {
-    if (it->getType()->isPointerType()) {
-      // If the transparent union contains a pointer type, we allow:
-      // 1) void pointer
-      // 2) null pointer constant
-      if (FromType->isPointerType())
-        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
-          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
-          InitField = *it;
-          break;
-        }
-
-      if (rExpr->isNullPointerConstant(Context,
-                                       Expr::NPC_ValueDependentIsNull)) {
-        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
-        InitField = *it;
-        break;
-      }
-    }
-
-    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
-          == Compatible) {
-      InitField = *it;
-      break;
-    }
-  }
-
-  if (!InitField)
-    return Incompatible;
-
-  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
-  return Compatible;
-}
-
-Sema::AssignConvertType
-Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
-  if (getLangOptions().CPlusPlus) {
-    if (!lhsType->isRecordType()) {
-      // C++ 5.17p3: If the left operand is not of class type, the
-      // expression is implicitly converted (C++ 4) to the
-      // cv-unqualified type of the left operand.
-      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
-                                    AA_Assigning))
-        return Incompatible;
-      return Compatible;
-    }
-
-    // FIXME: Currently, we fall through and treat C++ classes like C
-    // structures.
-  }
-
-  // C99 6.5.16.1p1: the left operand is a pointer and the right is
-  // a null pointer constant.
-  if ((lhsType->isPointerType() ||
-       lhsType->isObjCObjectPointerType() ||
-       lhsType->isBlockPointerType())
-      && rExpr->isNullPointerConstant(Context,
-                                      Expr::NPC_ValueDependentIsNull)) {
-    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
-    return Compatible;
-  }
-
-  // This check seems unnatural, however it is necessary to ensure the proper
-  // conversion of functions/arrays. If the conversion were done for all
-  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
-  // expressions that surpress this implicit conversion (&, sizeof).
-  //
-  // Suppress this for references: C++ 8.5.3p5.
-  if (!lhsType->isReferenceType())
-    DefaultFunctionArrayLvalueConversion(rExpr);
-
-  Sema::AssignConvertType result =
-    CheckAssignmentConstraints(lhsType, rExpr->getType());
-
-  // C99 6.5.16.1p2: The value of the right operand is converted to the
-  // type of the assignment expression.
-  // CheckAssignmentConstraints allows the left-hand side to be a reference,
-  // so that we can use references in built-in functions even in C.
-  // The getNonReferenceType() call makes sure that the resulting expression
-  // does not have reference type.
-  if (result != Incompatible && rExpr->getType() != lhsType)
-    ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context),
-                      CastExpr::CK_Unknown);
-  return result;
-}
-
-QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
-  Diag(Loc, diag::err_typecheck_invalid_operands)
-    << lex->getType() << rex->getType()
-    << lex->getSourceRange() << rex->getSourceRange();
-  return QualType();
-}
-
-QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
-  // For conversion purposes, we ignore any qualifiers.
-  // For example, "const float" and "float" are equivalent.
-  QualType lhsType =
-    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
-  QualType rhsType =
-    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
-
-  // If the vector types are identical, return.
-  if (lhsType == rhsType)
-    return lhsType;
-
-  // Handle the case of a vector & extvector type of the same size and element
-  // type.  It would be nice if we only had one vector type someday.
-  if (getLangOptions().LaxVectorConversions) {
-    // FIXME: Should we warn here?
-    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
-      if (const VectorType *RV = rhsType->getAs<VectorType>())
-        if (LV->getElementType() == RV->getElementType() &&
-            LV->getNumElements() == RV->getNumElements()) {
-          if (lhsType->isExtVectorType()) {
-            ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast);
-            return lhsType;
-          } 
-
-          ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
-          return rhsType;
-        }
-    }
-  }
-
-  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
-  // swap back (so that we don't reverse the inputs to a subtract, for instance.
-  bool swapped = false;
-  if (rhsType->isExtVectorType()) {
-    swapped = true;
-    std::swap(rex, lex);
-    std::swap(rhsType, lhsType);
-  }
-
-  // Handle the case of an ext vector and scalar.
-  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
-    QualType EltTy = LV->getElementType();
-    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
-      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
-        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
-        if (swapped) std::swap(rex, lex);
-        return lhsType;
-      }
-    }
-    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
-        rhsType->isRealFloatingType()) {
-      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
-        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
-        if (swapped) std::swap(rex, lex);
-        return lhsType;
-      }
-    }
-  }
-
-  // Vectors of different size or scalar and non-ext-vector are errors.
-  Diag(Loc, diag::err_typecheck_vector_not_convertable)
-    << lex->getType() << rex->getType()
-    << lex->getSourceRange() << rex->getSourceRange();
-  return QualType();
-}
-
-QualType Sema::CheckMultiplyDivideOperands(
-  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
-  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
-    return CheckVectorOperands(Loc, lex, rex);
-
-  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
-
-  if (!lex->getType()->isArithmeticType() ||
-      !rex->getType()->isArithmeticType())
-    return InvalidOperands(Loc, lex, rex);
-
-  // Check for division by zero.
-  if (isDiv &&
-      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
-    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
-                                     << rex->getSourceRange());
-
-  return compType;
-}
-
-QualType Sema::CheckRemainderOperands(
-  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
-  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
-    if (lex->getType()->hasIntegerRepresentation() && 
-        rex->getType()->hasIntegerRepresentation())
-      return CheckVectorOperands(Loc, lex, rex);
-    return InvalidOperands(Loc, lex, rex);
-  }
-
-  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
-
-  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
-    return InvalidOperands(Loc, lex, rex);
-
-  // Check for remainder by zero.
-  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
-    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
-                                 << rex->getSourceRange());
-
-  return compType;
-}
-
-QualType Sema::CheckAdditionOperands( // C99 6.5.6
-  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
-  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
-    QualType compType = CheckVectorOperands(Loc, lex, rex);
-    if (CompLHSTy) *CompLHSTy = compType;
-    return compType;
-  }
-
-  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
-
-  // handle the common case first (both operands are arithmetic).
-  if (lex->getType()->isArithmeticType() &&
-      rex->getType()->isArithmeticType()) {
-    if (CompLHSTy) *CompLHSTy = compType;
-    return compType;
-  }
-
-  // Put any potential pointer into PExp
-  Expr* PExp = lex, *IExp = rex;
-  if (IExp->getType()->isAnyPointerType())
-    std::swap(PExp, IExp);
-
-  if (PExp->getType()->isAnyPointerType()) {
-
-    if (IExp->getType()->isIntegerType()) {
-      QualType PointeeTy = PExp->getType()->getPointeeType();
-
-      // Check for arithmetic on pointers to incomplete types.
-      if (PointeeTy->isVoidType()) {
-        if (getLangOptions().CPlusPlus) {
-          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
-            << lex->getSourceRange() << rex->getSourceRange();
-          return QualType();
-        }
-
-        // GNU extension: arithmetic on pointer to void
-        Diag(Loc, diag::ext_gnu_void_ptr)
-          << lex->getSourceRange() << rex->getSourceRange();
-      } else if (PointeeTy->isFunctionType()) {
-        if (getLangOptions().CPlusPlus) {
-          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
-            << lex->getType() << lex->getSourceRange();
-          return QualType();
-        }
-
-        // GNU extension: arithmetic on pointer to function
-        Diag(Loc, diag::ext_gnu_ptr_func_arith)
-          << lex->getType() << lex->getSourceRange();
-      } else {
-        // Check if we require a complete type.
-        if (((PExp->getType()->isPointerType() &&
-              !PExp->getType()->isDependentType()) ||
-              PExp->getType()->isObjCObjectPointerType()) &&
-             RequireCompleteType(Loc, PointeeTy,
-                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
-                             << PExp->getSourceRange()
-                             << PExp->getType()))
-          return QualType();
-      }
-      // Diagnose bad cases where we step over interface counts.
-      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
-        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
-          << PointeeTy << PExp->getSourceRange();
-        return QualType();
-      }
-
-      if (CompLHSTy) {
-        QualType LHSTy = Context.isPromotableBitField(lex);
-        if (LHSTy.isNull()) {
-          LHSTy = lex->getType();
-          if (LHSTy->isPromotableIntegerType())
-            LHSTy = Context.getPromotedIntegerType(LHSTy);
-        }
-        *CompLHSTy = LHSTy;
-      }
-      return PExp->getType();
-    }
-  }
-
-  return InvalidOperands(Loc, lex, rex);
-}
-
-// C99 6.5.6
-QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
-                                        SourceLocation Loc, QualType* CompLHSTy) {
-  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
-    QualType compType = CheckVectorOperands(Loc, lex, rex);
-    if (CompLHSTy) *CompLHSTy = compType;
-    return compType;
-  }
-
-  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
-
-  // Enforce type constraints: C99 6.5.6p3.
-
-  // Handle the common case first (both operands are arithmetic).
-  if (lex->getType()->isArithmeticType()
-      && rex->getType()->isArithmeticType()) {
-    if (CompLHSTy) *CompLHSTy = compType;
-    return compType;
-  }
-
-  // Either ptr - int   or   ptr - ptr.
-  if (lex->getType()->isAnyPointerType()) {
-    QualType lpointee = lex->getType()->getPointeeType();
-
-    // The LHS must be an completely-defined object type.
-
-    bool ComplainAboutVoid = false;
-    Expr *ComplainAboutFunc = 0;
-    if (lpointee->isVoidType()) {
-      if (getLangOptions().CPlusPlus) {
-        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
-          << lex->getSourceRange() << rex->getSourceRange();
-        return QualType();
-      }
-
-      // GNU C extension: arithmetic on pointer to void
-      ComplainAboutVoid = true;
-    } else if (lpointee->isFunctionType()) {
-      if (getLangOptions().CPlusPlus) {
-        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
-          << lex->getType() << lex->getSourceRange();
-        return QualType();
-      }
-
-      // GNU C extension: arithmetic on pointer to function
-      ComplainAboutFunc = lex;
-    } else if (!lpointee->isDependentType() &&
-               RequireCompleteType(Loc, lpointee,
-                                   PDiag(diag::err_typecheck_sub_ptr_object)
-                                     << lex->getSourceRange()
-                                     << lex->getType()))
-      return QualType();
-
-    // Diagnose bad cases where we step over interface counts.
-    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
-      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
-        << lpointee << lex->getSourceRange();
-      return QualType();
-    }
-
-    // The result type of a pointer-int computation is the pointer type.
-    if (rex->getType()->isIntegerType()) {
-      if (ComplainAboutVoid)
-        Diag(Loc, diag::ext_gnu_void_ptr)
-          << lex->getSourceRange() << rex->getSourceRange();
-      if (ComplainAboutFunc)
-        Diag(Loc, diag::ext_gnu_ptr_func_arith)
-          << ComplainAboutFunc->getType()
-          << ComplainAboutFunc->getSourceRange();
-
-      if (CompLHSTy) *CompLHSTy = lex->getType();
-      return lex->getType();
-    }
-
-    // Handle pointer-pointer subtractions.
-    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
-      QualType rpointee = RHSPTy->getPointeeType();
-
-      // RHS must be a completely-type object type.
-      // Handle the GNU void* extension.
-      if (rpointee->isVoidType()) {
-        if (getLangOptions().CPlusPlus) {
-          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
-            << lex->getSourceRange() << rex->getSourceRange();
-          return QualType();
-        }
-
-        ComplainAboutVoid = true;
-      } else if (rpointee->isFunctionType()) {
-        if (getLangOptions().CPlusPlus) {
-          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
-            << rex->getType() << rex->getSourceRange();
-          return QualType();
-        }
-
-        // GNU extension: arithmetic on pointer to function
-        if (!ComplainAboutFunc)
-          ComplainAboutFunc = rex;
-      } else if (!rpointee->isDependentType() &&
-                 RequireCompleteType(Loc, rpointee,
-                                     PDiag(diag::err_typecheck_sub_ptr_object)
-                                       << rex->getSourceRange()
-                                       << rex->getType()))
-        return QualType();
-
-      if (getLangOptions().CPlusPlus) {
-        // Pointee types must be the same: C++ [expr.add]
-        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
-          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
-            << lex->getType() << rex->getType()
-            << lex->getSourceRange() << rex->getSourceRange();
-          return QualType();
-        }
-      } else {
-        // Pointee types must be compatible C99 6.5.6p3
-        if (!Context.typesAreCompatible(
-                Context.getCanonicalType(lpointee).getUnqualifiedType(),
-                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
-          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
-            << lex->getType() << rex->getType()
-            << lex->getSourceRange() << rex->getSourceRange();
-          return QualType();
-        }
-      }
-
-      if (ComplainAboutVoid)
-        Diag(Loc, diag::ext_gnu_void_ptr)
-          << lex->getSourceRange() << rex->getSourceRange();
-      if (ComplainAboutFunc)
-        Diag(Loc, diag::ext_gnu_ptr_func_arith)
-          << ComplainAboutFunc->getType()
-          << ComplainAboutFunc->getSourceRange();
-
-      if (CompLHSTy) *CompLHSTy = lex->getType();
-      return Context.getPointerDiffType();
-    }
-  }
-
-  return InvalidOperands(Loc, lex, rex);
-}
-
-// C99 6.5.7
-QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
-                                  bool isCompAssign) {
-  // C99 6.5.7p2: Each of the operands shall have integer type.
-  if (!lex->getType()->hasIntegerRepresentation() || 
-      !rex->getType()->hasIntegerRepresentation())
-    return InvalidOperands(Loc, lex, rex);
-
-  // Vector shifts promote their scalar inputs to vector type.
-  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
-    return CheckVectorOperands(Loc, lex, rex);
-
-  // Shifts don't perform usual arithmetic conversions, they just do integer
-  // promotions on each operand. C99 6.5.7p3
-  QualType LHSTy = Context.isPromotableBitField(lex);
-  if (LHSTy.isNull()) {
-    LHSTy = lex->getType();
-    if (LHSTy->isPromotableIntegerType())
-      LHSTy = Context.getPromotedIntegerType(LHSTy);
-  }
-  if (!isCompAssign)
-    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
-
-  UsualUnaryConversions(rex);
-
-  // Sanity-check shift operands
-  llvm::APSInt Right;
-  // Check right/shifter operand
-  if (!rex->isValueDependent() &&
-      rex->isIntegerConstantExpr(Right, Context)) {
-    if (Right.isNegative())
-      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
-    else {
-      llvm::APInt LeftBits(Right.getBitWidth(),
-                          Context.getTypeSize(lex->getType()));
-      if (Right.uge(LeftBits))
-        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
-    }
-  }
-
-  // "The type of the result is that of the promoted left operand."
-  return LHSTy;
-}
-
-static bool IsWithinTemplateSpecialization(Decl *D) {
-  if (DeclContext *DC = D->getDeclContext()) {
-    if (isa<ClassTemplateSpecializationDecl>(DC))
-      return true;
-    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
-      return FD->isFunctionTemplateSpecialization();
-  }
-  return false;
-}
-
-// C99 6.5.8, C++ [expr.rel]
-QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
-                                    unsigned OpaqueOpc, bool isRelational) {
-  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
-
-  // Handle vector comparisons separately.
-  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
-    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
-
-  QualType lType = lex->getType();
-  QualType rType = rex->getType();
-
-  if (!lType->hasFloatingRepresentation() &&
-      !(lType->isBlockPointerType() && isRelational)) {
-    // For non-floating point types, check for self-comparisons of the form
-    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
-    // often indicate logic errors in the program.
-    //
-    // NOTE: Don't warn about comparison expressions resulting from macro
-    // expansion. Also don't warn about comparisons which are only self
-    // comparisons within a template specialization. The warnings should catch
-    // obvious cases in the definition of the template anyways. The idea is to
-    // warn when the typed comparison operator will always evaluate to the same
-    // result.
-    Expr *LHSStripped = lex->IgnoreParens();
-    Expr *RHSStripped = rex->IgnoreParens();
-    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
-      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
-        if (DRL->getDecl() == DRR->getDecl() && !Loc.isMacroID() &&
-            !IsWithinTemplateSpecialization(DRL->getDecl())) {
-          DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
-                              << 0 // self-
-                              << (Opc == BinaryOperator::EQ
-                                  || Opc == BinaryOperator::LE
-                                  || Opc == BinaryOperator::GE));
-        } else if (lType->isArrayType() && rType->isArrayType() &&
-                   !DRL->getDecl()->getType()->isReferenceType() &&
-                   !DRR->getDecl()->getType()->isReferenceType()) {
-            // what is it always going to eval to?
-            char always_evals_to;
-            switch(Opc) {
-            case BinaryOperator::EQ: // e.g. array1 == array2
-              always_evals_to = 0; // false
-              break;
-            case BinaryOperator::NE: // e.g. array1 != array2
-              always_evals_to = 1; // true
-              break;
-            default:
-              // best we can say is 'a constant'
-              always_evals_to = 2; // e.g. array1 <= array2
-              break;
-            }
-            DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
-                                << 1 // array
-                                << always_evals_to);
-        }
-      }
-    }
-
-    if (isa<CastExpr>(LHSStripped))
-      LHSStripped = LHSStripped->IgnoreParenCasts();
-    if (isa<CastExpr>(RHSStripped))
-      RHSStripped = RHSStripped->IgnoreParenCasts();
-
-    // Warn about comparisons against a string constant (unless the other
-    // operand is null), the user probably wants strcmp.
-    Expr *literalString = 0;
-    Expr *literalStringStripped = 0;
-    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
-        !RHSStripped->isNullPointerConstant(Context,
-                                            Expr::NPC_ValueDependentIsNull)) {
-      literalString = lex;
-      literalStringStripped = LHSStripped;
-    } else if ((isa<StringLiteral>(RHSStripped) ||
-                isa<ObjCEncodeExpr>(RHSStripped)) &&
-               !LHSStripped->isNullPointerConstant(Context,
-                                            Expr::NPC_ValueDependentIsNull)) {
-      literalString = rex;
-      literalStringStripped = RHSStripped;
-    }
-
-    if (literalString) {
-      std::string resultComparison;
-      switch (Opc) {
-      case BinaryOperator::LT: resultComparison = ") < 0"; break;
-      case BinaryOperator::GT: resultComparison = ") > 0"; break;
-      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
-      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
-      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
-      case BinaryOperator::NE: resultComparison = ") != 0"; break;
-      default: assert(false && "Invalid comparison operator");
-      }
-
-      DiagRuntimeBehavior(Loc,
-        PDiag(diag::warn_stringcompare)
-          << isa<ObjCEncodeExpr>(literalStringStripped)
-          << literalString->getSourceRange());
-    }
-  }
-
-  // C99 6.5.8p3 / C99 6.5.9p4
-  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
-    UsualArithmeticConversions(lex, rex);
-  else {
-    UsualUnaryConversions(lex);
-    UsualUnaryConversions(rex);
-  }
-
-  lType = lex->getType();
-  rType = rex->getType();
-
-  // The result of comparisons is 'bool' in C++, 'int' in C.
-  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
-
-  if (isRelational) {
-    if (lType->isRealType() && rType->isRealType())
-      return ResultTy;
-  } else {
-    // Check for comparisons of floating point operands using != and ==.
-    if (lType->hasFloatingRepresentation())
-      CheckFloatComparison(Loc,lex,rex);
-
-    if (lType->isArithmeticType() && rType->isArithmeticType())
-      return ResultTy;
-  }
-
-  bool LHSIsNull = lex->isNullPointerConstant(Context,
-                                              Expr::NPC_ValueDependentIsNull);
-  bool RHSIsNull = rex->isNullPointerConstant(Context,
-                                              Expr::NPC_ValueDependentIsNull);
-
-  // All of the following pointer-related warnings are GCC extensions, except
-  // when handling null pointer constants. 
-  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
-    QualType LCanPointeeTy =
-      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
-    QualType RCanPointeeTy =
-      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
-
-    if (getLangOptions().CPlusPlus) {
-      if (LCanPointeeTy == RCanPointeeTy)
-        return ResultTy;
-      if (!isRelational &&
-          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
-        // Valid unless comparison between non-null pointer and function pointer
-        // This is a gcc extension compatibility comparison.
-        // In a SFINAE context, we treat this as a hard error to maintain
-        // conformance with the C++ standard.
-        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
-            && !LHSIsNull && !RHSIsNull) {
-          Diag(Loc, 
-               isSFINAEContext()? 
-                   diag::err_typecheck_comparison_of_fptr_to_void
-                 : diag::ext_typecheck_comparison_of_fptr_to_void)
-            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-          
-          if (isSFINAEContext())
-            return QualType();
-          
-          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
-          return ResultTy;
-        }
-      }
-      // C++ [expr.rel]p2:
-      //   [...] Pointer conversions (4.10) and qualification
-      //   conversions (4.4) are performed on pointer operands (or on
-      //   a pointer operand and a null pointer constant) to bring
-      //   them to their composite pointer type. [...]
-      //
-      // C++ [expr.eq]p1 uses the same notion for (in)equality
-      // comparisons of pointers.
-      bool NonStandardCompositeType = false;
-      QualType T = FindCompositePointerType(Loc, lex, rex,
-                              isSFINAEContext()? 0 : &NonStandardCompositeType);
-      if (T.isNull()) {
-        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
-          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-        return QualType();
-      } else if (NonStandardCompositeType) {
-        Diag(Loc,
-             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
-          << lType << rType << T
-          << lex->getSourceRange() << rex->getSourceRange();
-      }
-
-      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
-      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
-      return ResultTy;
-    }
-    // C99 6.5.9p2 and C99 6.5.8p2
-    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
-                                   RCanPointeeTy.getUnqualifiedType())) {
-      // Valid unless a relational comparison of function pointers
-      if (isRelational && LCanPointeeTy->isFunctionType()) {
-        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
-          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-      }
-    } else if (!isRelational &&
-               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
-      // Valid unless comparison between non-null pointer and function pointer
-      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
-          && !LHSIsNull && !RHSIsNull) {
-        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
-          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-      }
-    } else {
-      // Invalid
-      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
-        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-    }
-    if (LCanPointeeTy != RCanPointeeTy)
-      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
-    return ResultTy;
-  }
-
-  if (getLangOptions().CPlusPlus) {
-    // Comparison of pointers with null pointer constants and equality
-    // comparisons of member pointers to null pointer constants.
-    if (RHSIsNull &&
-        (lType->isPointerType() ||
-         (!isRelational && lType->isMemberPointerType()))) {
-      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
-      return ResultTy;
-    }
-    if (LHSIsNull &&
-        (rType->isPointerType() ||
-         (!isRelational && rType->isMemberPointerType()))) {
-      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
-      return ResultTy;
-    }
-
-    // Comparison of member pointers.
-    if (!isRelational &&
-        lType->isMemberPointerType() && rType->isMemberPointerType()) {
-      // C++ [expr.eq]p2:
-      //   In addition, pointers to members can be compared, or a pointer to
-      //   member and a null pointer constant. Pointer to member conversions
-      //   (4.11) and qualification conversions (4.4) are performed to bring
-      //   them to a common type. If one operand is a null pointer constant,
-      //   the common type is the type of the other operand. Otherwise, the
-      //   common type is a pointer to member type similar (4.4) to the type
-      //   of one of the operands, with a cv-qualification signature (4.4)
-      //   that is the union of the cv-qualification signatures of the operand
-      //   types.
-      bool NonStandardCompositeType = false;
-      QualType T = FindCompositePointerType(Loc, lex, rex,
-                              isSFINAEContext()? 0 : &NonStandardCompositeType);
-      if (T.isNull()) {
-        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
-          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-        return QualType();
-      } else if (NonStandardCompositeType) {
-        Diag(Loc,
-             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
-          << lType << rType << T
-          << lex->getSourceRange() << rex->getSourceRange();
-      }
-
-      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
-      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
-      return ResultTy;
-    }
-
-    // Comparison of nullptr_t with itself.
-    if (lType->isNullPtrType() && rType->isNullPtrType())
-      return ResultTy;
-  }
-
-  // Handle block pointer types.
-  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
-    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
-    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
-
-    if (!LHSIsNull && !RHSIsNull &&
-        !Context.typesAreCompatible(lpointee, rpointee)) {
-      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
-        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-    }
-    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
-    return ResultTy;
-  }
-  // Allow block pointers to be compared with null pointer constants.
-  if (!isRelational
-      && ((lType->isBlockPointerType() && rType->isPointerType())
-          || (lType->isPointerType() && rType->isBlockPointerType()))) {
-    if (!LHSIsNull && !RHSIsNull) {
-      if (!((rType->isPointerType() && rType->getAs<PointerType>()
-             ->getPointeeType()->isVoidType())
-            || (lType->isPointerType() && lType->getAs<PointerType>()
-                ->getPointeeType()->isVoidType())))
-        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
-          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-    }
-    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
-    return ResultTy;
-  }
-
-  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
-    if (lType->isPointerType() || rType->isPointerType()) {
-      const PointerType *LPT = lType->getAs<PointerType>();
-      const PointerType *RPT = rType->getAs<PointerType>();
-      bool LPtrToVoid = LPT ?
-        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
-      bool RPtrToVoid = RPT ?
-        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
-
-      if (!LPtrToVoid && !RPtrToVoid &&
-          !Context.typesAreCompatible(lType, rType)) {
-        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
-          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-      }
-      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
-      return ResultTy;
-    }
-    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
-      if (!Context.areComparableObjCPointerTypes(lType, rType))
-        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
-          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
-      return ResultTy;
-    }
-  }
-  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
-      (lType->isIntegerType() && rType->isAnyPointerType())) {
-    unsigned DiagID = 0;
-    bool isError = false;
-    if ((LHSIsNull && lType->isIntegerType()) ||
-        (RHSIsNull && rType->isIntegerType())) {
-      if (isRelational && !getLangOptions().CPlusPlus)
-        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
-    } else if (isRelational && !getLangOptions().CPlusPlus)
-      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
-    else if (getLangOptions().CPlusPlus) {
-      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
-      isError = true;
-    } else
-      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
-
-    if (DiagID) {
-      Diag(Loc, DiagID)
-        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-      if (isError)
-        return QualType();
-    }
-    
-    if (lType->isIntegerType())
-      ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
-    else
-      ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
-    return ResultTy;
-  }
-  
-  // Handle block pointers.
-  if (!isRelational && RHSIsNull
-      && lType->isBlockPointerType() && rType->isIntegerType()) {
-    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
-    return ResultTy;
-  }
-  if (!isRelational && LHSIsNull
-      && lType->isIntegerType() && rType->isBlockPointerType()) {
-    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
-    return ResultTy;
-  }
-  return InvalidOperands(Loc, lex, rex);
-}
-
-/// CheckVectorCompareOperands - vector comparisons are a clang extension that
-/// operates on extended vector types.  Instead of producing an IntTy result,
-/// like a scalar comparison, a vector comparison produces a vector of integer
-/// types.
-QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
-                                          SourceLocation Loc,
-                                          bool isRelational) {
-  // Check to make sure we're operating on vectors of the same type and width,
-  // Allowing one side to be a scalar of element type.
-  QualType vType = CheckVectorOperands(Loc, lex, rex);
-  if (vType.isNull())
-    return vType;
-
-  QualType lType = lex->getType();
-  QualType rType = rex->getType();
-
-  // For non-floating point types, check for self-comparisons of the form
-  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
-  // often indicate logic errors in the program.
-  if (!lType->hasFloatingRepresentation()) {
-    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
-      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
-        if (DRL->getDecl() == DRR->getDecl())
-          DiagRuntimeBehavior(Loc,
-                              PDiag(diag::warn_comparison_always)
-                                << 0 // self-
-                                << 2 // "a constant"
-                              );
-  }
-
-  // Check for comparisons of floating point operands using != and ==.
-  if (!isRelational && lType->hasFloatingRepresentation()) {
-    assert (rType->hasFloatingRepresentation());
-    CheckFloatComparison(Loc,lex,rex);
-  }
-
-  // Return the type for the comparison, which is the same as vector type for
-  // integer vectors, or an integer type of identical size and number of
-  // elements for floating point vectors.
-  if (lType->hasIntegerRepresentation())
-    return lType;
-
-  const VectorType *VTy = lType->getAs<VectorType>();
-  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
-  if (TypeSize == Context.getTypeSize(Context.IntTy))
-    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
-  if (TypeSize == Context.getTypeSize(Context.LongTy))
-    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
-
-  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
-         "Unhandled vector element size in vector compare");
-  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
-}
-
-inline QualType Sema::CheckBitwiseOperands(
-  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
-  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
-    if (lex->getType()->hasIntegerRepresentation() &&
-        rex->getType()->hasIntegerRepresentation())
-      return CheckVectorOperands(Loc, lex, rex);
-    
-    return InvalidOperands(Loc, lex, rex);
-  }
-
-  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
-
-  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
-    return compType;
-  return InvalidOperands(Loc, lex, rex);
-}
-
-inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
-  Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
-  
-  // Diagnose cases where the user write a logical and/or but probably meant a
-  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
-  // is a constant.
-  if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
-      rex->getType()->isIntegerType() && !rex->isValueDependent() &&
-      // Don't warn in macros.
-      !Loc.isMacroID()) {
-    // If the RHS can be constant folded, and if it constant folds to something
-    // that isn't 0 or 1 (which indicate a potential logical operation that
-    // happened to fold to true/false) then warn.
-    Expr::EvalResult Result;
-    if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
-        Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
-      Diag(Loc, diag::warn_logical_instead_of_bitwise)
-       << rex->getSourceRange()
-        << (Opc == BinaryOperator::LAnd ? "&&" : "||")
-        << (Opc == BinaryOperator::LAnd ? "&" : "|");
-    }
-  }
-  
-  if (!Context.getLangOptions().CPlusPlus) {
-    UsualUnaryConversions(lex);
-    UsualUnaryConversions(rex);
-
-    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
-      return InvalidOperands(Loc, lex, rex);
-
-    return Context.IntTy;
-  }
-
-  // The following is safe because we only use this method for
-  // non-overloadable operands.
-
-  // C++ [expr.log.and]p1
-  // C++ [expr.log.or]p1
-  // The operands are both contextually converted to type bool.
-  if (PerformContextuallyConvertToBool(lex) ||
-      PerformContextuallyConvertToBool(rex))
-    return InvalidOperands(Loc, lex, rex);
-
-  // C++ [expr.log.and]p2
-  // C++ [expr.log.or]p2
-  // The result is a bool.
-  return Context.BoolTy;
-}
-
-/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
-/// is a read-only property; return true if so. A readonly property expression
-/// depends on various declarations and thus must be treated specially.
-///
-static bool IsReadonlyProperty(Expr *E, Sema &S) {
-  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
-    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
-    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
-      QualType BaseType = PropExpr->getBase()->getType();
-      if (const ObjCObjectPointerType *OPT =
-            BaseType->getAsObjCInterfacePointerType())
-        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
-          if (S.isPropertyReadonly(PDecl, IFace))
-            return true;
-    }
-  }
-  return false;
-}
-
-/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
-/// emit an error and return true.  If so, return false.
-static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
-  SourceLocation OrigLoc = Loc;
-  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
-                                                              &Loc);
-  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
-    IsLV = Expr::MLV_ReadonlyProperty;
-  if (IsLV == Expr::MLV_Valid)
-    return false;
-
-  unsigned Diag = 0;
-  bool NeedType = false;
-  switch (IsLV) { // C99 6.5.16p2
-  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
-  case Expr::MLV_ArrayType:
-    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
-    NeedType = true;
-    break;
-  case Expr::MLV_NotObjectType:
-    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
-    NeedType = true;
-    break;
-  case Expr::MLV_LValueCast:
-    Diag = diag::err_typecheck_lvalue_casts_not_supported;
-    break;
-  case Expr::MLV_Valid:
-    llvm_unreachable("did not take early return for MLV_Valid");
-  case Expr::MLV_InvalidExpression:
-  case Expr::MLV_MemberFunction:
-  case Expr::MLV_ClassTemporary:
-    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
-    break;
-  case Expr::MLV_IncompleteType:
-  case Expr::MLV_IncompleteVoidType:
-    return S.RequireCompleteType(Loc, E->getType(),
-              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
-                  << E->getSourceRange());
-  case Expr::MLV_DuplicateVectorComponents:
-    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
-    break;
-  case Expr::MLV_NotBlockQualified:
-    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
-    break;
-  case Expr::MLV_ReadonlyProperty:
-    Diag = diag::error_readonly_property_assignment;
-    break;
-  case Expr::MLV_NoSetterProperty:
-    Diag = diag::error_nosetter_property_assignment;
-    break;
-  case Expr::MLV_SubObjCPropertySetting:
-    Diag = diag::error_no_subobject_property_setting;
-    break;
-  }
-
-  SourceRange Assign;
-  if (Loc != OrigLoc)
-    Assign = SourceRange(OrigLoc, OrigLoc);
-  if (NeedType)
-    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
-  else
-    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
-  return true;
-}
-
-
-
-// C99 6.5.16.1
-QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
-                                       SourceLocation Loc,
-                                       QualType CompoundType) {
-  // Verify that LHS is a modifiable lvalue, and emit error if not.
-  if (CheckForModifiableLvalue(LHS, Loc, *this))
-    return QualType();
-
-  QualType LHSType = LHS->getType();
-  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
-  AssignConvertType ConvTy;
-  if (CompoundType.isNull()) {
-    QualType LHSTy(LHSType);
-    // Simple assignment "x = y".
-    if (const ObjCImplicitSetterGetterRefExpr *OISGE = 
-        dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
-      // If using property-dot syntax notation for assignment, and there is a
-      // setter, RHS expression is being passed to the setter argument. So,
-      // type conversion (and comparison) is RHS to setter's argument type.
-      if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
-        ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
-        LHSTy = (*P)->getType();
-      }
-    }
-    
-    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
-    // Special case of NSObject attributes on c-style pointer types.
-    if (ConvTy == IncompatiblePointer &&
-        ((Context.isObjCNSObjectType(LHSType) &&
-          RHSType->isObjCObjectPointerType()) ||
-         (Context.isObjCNSObjectType(RHSType) &&
-          LHSType->isObjCObjectPointerType())))
-      ConvTy = Compatible;
-
-    // If the RHS is a unary plus or minus, check to see if they = and + are
-    // right next to each other.  If so, the user may have typo'd "x =+ 4"
-    // instead of "x += 4".
-    Expr *RHSCheck = RHS;
-    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
-      RHSCheck = ICE->getSubExpr();
-    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
-      if ((UO->getOpcode() == UnaryOperator::Plus ||
-           UO->getOpcode() == UnaryOperator::Minus) &&
-          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
-          // Only if the two operators are exactly adjacent.
-          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
-          // And there is a space or other character before the subexpr of the
-          // unary +/-.  We don't want to warn on "x=-1".
-          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
-          UO->getSubExpr()->getLocStart().isFileID()) {
-        Diag(Loc, diag::warn_not_compound_assign)
-          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
-          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
-      }
-    }
-  } else {
-    // Compound assignment "x += y"
-    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
-  }
-
-  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
-                               RHS, AA_Assigning))
-    return QualType();
-
-  
-  // Check to see if the destination operand is a dereferenced null pointer.  If
-  // so, and if not volatile-qualified, this is undefined behavior that the
-  // optimizer will delete, so warn about it.  People sometimes try to use this
-  // to get a deterministic trap and are surprised by clang's behavior.  This
-  // only handles the pattern "*null = whatever", which is a very syntactic
-  // check.
-  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
-    if (UO->getOpcode() == UnaryOperator::Deref &&
-        UO->getSubExpr()->IgnoreParenCasts()->
-          isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
-        !UO->getType().isVolatileQualified()) {
-    Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
-        << UO->getSubExpr()->getSourceRange();
-    Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
-  }
-  
-  // C99 6.5.16p3: The type of an assignment expression is the type of the
-  // left operand unless the left operand has qualified type, in which case
-  // it is the unqualified version of the type of the left operand.
-  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
-  // is converted to the type of the assignment expression (above).
-  // C++ 5.17p1: the type of the assignment expression is that of its left
-  // operand.
-  return LHSType.getUnqualifiedType();
-}
-
-// C99 6.5.17
-QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
-  DiagnoseUnusedExprResult(LHS);
-
-  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
-  // C++ does not perform this conversion (C++ [expr.comma]p1).
-  if (!getLangOptions().CPlusPlus)
-    DefaultFunctionArrayLvalueConversion(RHS);
-
-  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
-  // incomplete in C++).
-
-  return RHS->getType();
-}
-
-/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
-/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
-QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
-                                              bool isInc, bool isPrefix) {
-  if (Op->isTypeDependent())
-    return Context.DependentTy;
-
-  QualType ResType = Op->getType();
-  assert(!ResType.isNull() && "no type for increment/decrement expression");
-
-  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
-    // Decrement of bool is not allowed.
-    if (!isInc) {
-      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
-      return QualType();
-    }
-    // Increment of bool sets it to true, but is deprecated.
-    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
-  } else if (ResType->isRealType()) {
-    // OK!
-  } else if (ResType->isAnyPointerType()) {
-    QualType PointeeTy = ResType->getPointeeType();
-
-    // C99 6.5.2.4p2, 6.5.6p2
-    if (PointeeTy->isVoidType()) {
-      if (getLangOptions().CPlusPlus) {
-        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
-          << Op->getSourceRange();
-        return QualType();
-      }
-
-      // Pointer to void is a GNU extension in C.
-      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
-    } else if (PointeeTy->isFunctionType()) {
-      if (getLangOptions().CPlusPlus) {
-        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
-          << Op->getType() << Op->getSourceRange();
-        return QualType();
-      }
-
-      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
-        << ResType << Op->getSourceRange();
-    } else if (RequireCompleteType(OpLoc, PointeeTy,
-                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
-                             << Op->getSourceRange()
-                             << ResType))
-      return QualType();
-    // Diagnose bad cases where we step over interface counts.
-    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
-      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
-        << PointeeTy << Op->getSourceRange();
-      return QualType();
-    }
-  } else if (ResType->isAnyComplexType()) {
-    // C99 does not support ++/-- on complex types, we allow as an extension.
-    Diag(OpLoc, diag::ext_integer_increment_complex)
-      << ResType << Op->getSourceRange();
-  } else {
-    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
-      << ResType << int(isInc) << Op->getSourceRange();
-    return QualType();
-  }
-  // At this point, we know we have a real, complex or pointer type.
-  // Now make sure the operand is a modifiable lvalue.
-  if (CheckForModifiableLvalue(Op, OpLoc, *this))
-    return QualType();
-  // In C++, a prefix increment is the same type as the operand. Otherwise
-  // (in C or with postfix), the increment is the unqualified type of the
-  // operand.
-  return isPrefix && getLangOptions().CPlusPlus
-    ? ResType : ResType.getUnqualifiedType();
-}
-
-/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
-/// This routine allows us to typecheck complex/recursive expressions
-/// where the declaration is needed for type checking. We only need to
-/// handle cases when the expression references a function designator
-/// or is an lvalue. Here are some examples:
-///  - &(x) => x
-///  - &*****f => f for f a function designator.
-///  - &s.xx => s
-///  - &s.zz[1].yy -> s, if zz is an array
-///  - *(x + 1) -> x, if x is an array
-///  - &"123"[2] -> 0
-///  - & __real__ x -> x
-static NamedDecl *getPrimaryDecl(Expr *E) {
-  switch (E->getStmtClass()) {
-  case Stmt::DeclRefExprClass:
-    return cast<DeclRefExpr>(E)->getDecl();
-  case Stmt::MemberExprClass:
-    // If this is an arrow operator, the address is an offset from
-    // the base's value, so the object the base refers to is
-    // irrelevant.
-    if (cast<MemberExpr>(E)->isArrow())
-      return 0;
-    // Otherwise, the expression refers to a part of the base
-    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
-  case Stmt::ArraySubscriptExprClass: {
-    // FIXME: This code shouldn't be necessary!  We should catch the implicit
-    // promotion of register arrays earlier.
-    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
-    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
-      if (ICE->getSubExpr()->getType()->isArrayType())
-        return getPrimaryDecl(ICE->getSubExpr());
-    }
-    return 0;
-  }
-  case Stmt::UnaryOperatorClass: {
-    UnaryOperator *UO = cast<UnaryOperator>(E);
-
-    switch(UO->getOpcode()) {
-    case UnaryOperator::Real:
-    case UnaryOperator::Imag:
-    case UnaryOperator::Extension:
-      return getPrimaryDecl(UO->getSubExpr());
-    default:
-      return 0;
-    }
-  }
-  case Stmt::ParenExprClass:
-    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
-  case Stmt::ImplicitCastExprClass:
-    // If the result of an implicit cast is an l-value, we care about
-    // the sub-expression; otherwise, the result here doesn't matter.
-    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
-  default:
-    return 0;
-  }
-}
-
-/// CheckAddressOfOperand - The operand of & must be either a function
-/// designator or an lvalue designating an object. If it is an lvalue, the
-/// object cannot be declared with storage class register or be a bit field.
-/// Note: The usual conversions are *not* applied to the operand of the &
-/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
-/// In C++, the operand might be an overloaded function name, in which case
-/// we allow the '&' but retain the overloaded-function type.
-QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
-  // Make sure to ignore parentheses in subsequent checks
-  op = op->IgnoreParens();
-
-  if (op->isTypeDependent())
-    return Context.DependentTy;
-
-  if (getLangOptions().C99) {
-    // Implement C99-only parts of addressof rules.
-    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
-      if (uOp->getOpcode() == UnaryOperator::Deref)
-        // Per C99 6.5.3.2, the address of a deref always returns a valid result
-        // (assuming the deref expression is valid).
-        return uOp->getSubExpr()->getType();
-    }
-    // Technically, there should be a check for array subscript
-    // expressions here, but the result of one is always an lvalue anyway.
-  }
-  NamedDecl *dcl = getPrimaryDecl(op);
-  Expr::isLvalueResult lval = op->isLvalue(Context);
-
-  MemberExpr *ME = dyn_cast<MemberExpr>(op);
-  if (lval == Expr::LV_MemberFunction && ME &&
-      isa<CXXMethodDecl>(ME->getMemberDecl())) {
-    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
-    // &f where f is a member of the current object, or &o.f, or &p->f
-    // All these are not allowed, and we need to catch them before the dcl
-    // branch of the if, below.
-    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
-        << dcl;
-    // FIXME: Improve this diagnostic and provide a fixit.
-
-    // Now recover by acting as if the function had been accessed qualified.
-    return Context.getMemberPointerType(op->getType(),
-                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
-                       .getTypePtr());
-  }
-  
-  if (lval == Expr::LV_ClassTemporary) {
-    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
-                                 : diag::ext_typecheck_addrof_class_temporary)
-      << op->getType() << op->getSourceRange();
-    if (isSFINAEContext())
-      return QualType();
-  } else if (isa<ObjCSelectorExpr>(op))
-    return Context.getPointerType(op->getType());
-  else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
-    // C99 6.5.3.2p1
-    // The operand must be either an l-value or a function designator
-    if (!op->getType()->isFunctionType()) {
-      // FIXME: emit more specific diag...
-      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
-        << op->getSourceRange();
-      return QualType();
-    }
-  } else if (op->getBitField()) { // C99 6.5.3.2p1
-    // The operand cannot be a bit-field
-    Diag(OpLoc, diag::err_typecheck_address_of)
-      << "bit-field" << op->getSourceRange();
-        return QualType();
-  } else if (op->refersToVectorElement()) {
-    // The operand cannot be an element of a vector
-    Diag(OpLoc, diag::err_typecheck_address_of)
-      << "vector element" << op->getSourceRange();
-    return QualType();
-  } else if (isa<ObjCPropertyRefExpr>(op)) {
-    // cannot take address of a property expression.
-    Diag(OpLoc, diag::err_typecheck_address_of)
-      << "property expression" << op->getSourceRange();
-    return QualType();
-  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
-    // FIXME: Can LHS ever be null here?
-    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
-      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
-  } else if (isa<UnresolvedLookupExpr>(op)) {
-    return Context.OverloadTy;
-  } else if (dcl) { // C99 6.5.3.2p1
-    // We have an lvalue with a decl. Make sure the decl is not declared
-    // with the register storage-class specifier.
-    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
-      if (vd->getStorageClass() == VarDecl::Register) {
-        Diag(OpLoc, diag::err_typecheck_address_of)
-          << "register variable" << op->getSourceRange();
-        return QualType();
-      }
-    } else if (isa<FunctionTemplateDecl>(dcl)) {
-      return Context.OverloadTy;
-    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
-      // Okay: we can take the address of a field.
-      // Could be a pointer to member, though, if there is an explicit
-      // scope qualifier for the class.
-      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
-        DeclContext *Ctx = dcl->getDeclContext();
-        if (Ctx && Ctx->isRecord()) {
-          if (FD->getType()->isReferenceType()) {
-            Diag(OpLoc,
-                 diag::err_cannot_form_pointer_to_member_of_reference_type)
-              << FD->getDeclName() << FD->getType();
-            return QualType();
-          }
-
-          return Context.getMemberPointerType(op->getType(),
-                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
-        }
-      }
-    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
-      // Okay: we can take the address of a function.
-      // As above.
-      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
-          MD->isInstance())
-        return Context.getMemberPointerType(op->getType(),
-              Context.getTypeDeclType(MD->getParent()).getTypePtr());
-    } else if (!isa<FunctionDecl>(dcl))
-      assert(0 && "Unknown/unexpected decl type");
-  }
-
-  if (lval == Expr::LV_IncompleteVoidType) {
-    // Taking the address of a void variable is technically illegal, but we
-    // allow it in cases which are otherwise valid.
-    // Example: "extern void x; void* y = &x;".
-    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
-  }
-
-  // If the operand has type "type", the result has type "pointer to type".
-  if (op->getType()->isObjCObjectType())
-    return Context.getObjCObjectPointerType(op->getType());
-  return Context.getPointerType(op->getType());
-}
-
-/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
-QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
-  if (Op->isTypeDependent())
-    return Context.DependentTy;
-
-  UsualUnaryConversions(Op);
-  QualType OpTy = Op->getType();
-  QualType Result;
-  
-  // Note that per both C89 and C99, indirection is always legal, even if OpTy
-  // is an incomplete type or void.  It would be possible to warn about
-  // dereferencing a void pointer, but it's completely well-defined, and such a
-  // warning is unlikely to catch any mistakes.
-  if (const PointerType *PT = OpTy->getAs<PointerType>())
-    Result = PT->getPointeeType();
-  else if (const ObjCObjectPointerType *OPT =
-             OpTy->getAs<ObjCObjectPointerType>())
-    Result = OPT->getPointeeType();
-
-  if (Result.isNull()) {
-    Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
-      << OpTy << Op->getSourceRange();
-    return QualType();
-  }
-  
-  return Result;
-}
-
-static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
-  tok::TokenKind Kind) {
-  BinaryOperator::Opcode Opc;
-  switch (Kind) {
-  default: assert(0 && "Unknown binop!");
-  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
-  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
-  case tok::star:                 Opc = BinaryOperator::Mul; break;
-  case tok::slash:                Opc = BinaryOperator::Div; break;
-  case tok::percent:              Opc = BinaryOperator::Rem; break;
-  case tok::plus:                 Opc = BinaryOperator::Add; break;
-  case tok::minus:                Opc = BinaryOperator::Sub; break;
-  case tok::lessless:             Opc = BinaryOperator::Shl; break;
-  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
-  case tok::lessequal:            Opc = BinaryOperator::LE; break;
-  case tok::less:                 Opc = BinaryOperator::LT; break;
-  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
-  case tok::greater:              Opc = BinaryOperator::GT; break;
-  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
-  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
-  case tok::amp:                  Opc = BinaryOperator::And; break;
-  case tok::caret:                Opc = BinaryOperator::Xor; break;
-  case tok::pipe:                 Opc = BinaryOperator::Or; break;
-  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
-  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
-  case tok::equal:                Opc = BinaryOperator::Assign; break;
-  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
-  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
-  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
-  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
-  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
-  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
-  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
-  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
-  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
-  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
-  case tok::comma:                Opc = BinaryOperator::Comma; break;
-  }
-  return Opc;
-}
-
-static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
-  tok::TokenKind Kind) {
-  UnaryOperator::Opcode Opc;
-  switch (Kind) {
-  default: assert(0 && "Unknown unary op!");
-  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
-  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
-  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
-  case tok::star:         Opc = UnaryOperator::Deref; break;
-  case tok::plus:         Opc = UnaryOperator::Plus; break;
-  case tok::minus:        Opc = UnaryOperator::Minus; break;
-  case tok::tilde:        Opc = UnaryOperator::Not; break;
-  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
-  case tok::kw___real:    Opc = UnaryOperator::Real; break;
-  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
-  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
-  }
-  return Opc;
-}
-
-/// CreateBuiltinBinOp - Creates a new built-in binary operation with
-/// operator @p Opc at location @c TokLoc. This routine only supports
-/// built-in operations; ActOnBinOp handles overloaded operators.
-Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
-                                                  unsigned Op,
-                                                  Expr *lhs, Expr *rhs) {
-  QualType ResultTy;     // Result type of the binary operator.
-  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
-  // The following two variables are used for compound assignment operators
-  QualType CompLHSTy;    // Type of LHS after promotions for computation
-  QualType CompResultTy; // Type of computation result
-
-  switch (Opc) {
-  case BinaryOperator::Assign:
-    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
-    break;
-  case BinaryOperator::PtrMemD:
-  case BinaryOperator::PtrMemI:
-    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
-                                            Opc == BinaryOperator::PtrMemI);
-    break;
-  case BinaryOperator::Mul:
-  case BinaryOperator::Div:
-    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
-                                           Opc == BinaryOperator::Div);
-    break;
-  case BinaryOperator::Rem:
-    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
-    break;
-  case BinaryOperator::Add:
-    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
-    break;
-  case BinaryOperator::Sub:
-    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
-    break;
-  case BinaryOperator::Shl:
-  case BinaryOperator::Shr:
-    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
-    break;
-  case BinaryOperator::LE:
-  case BinaryOperator::LT:
-  case BinaryOperator::GE:
-  case BinaryOperator::GT:
-    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
-    break;
-  case BinaryOperator::EQ:
-  case BinaryOperator::NE:
-    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
-    break;
-  case BinaryOperator::And:
-  case BinaryOperator::Xor:
-  case BinaryOperator::Or:
-    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
-    break;
-  case BinaryOperator::LAnd:
-  case BinaryOperator::LOr:
-    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
-    break;
-  case BinaryOperator::MulAssign:
-  case BinaryOperator::DivAssign:
-    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
-                                              Opc == BinaryOperator::DivAssign);
-    CompLHSTy = CompResultTy;
-    if (!CompResultTy.isNull())
-      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
-    break;
-  case BinaryOperator::RemAssign:
-    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
-    CompLHSTy = CompResultTy;
-    if (!CompResultTy.isNull())
-      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
-    break;
-  case BinaryOperator::AddAssign:
-    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
-    if (!CompResultTy.isNull())
-      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
-    break;
-  case BinaryOperator::SubAssign:
-    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
-    if (!CompResultTy.isNull())
-      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
-    break;
-  case BinaryOperator::ShlAssign:
-  case BinaryOperator::ShrAssign:
-    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
-    CompLHSTy = CompResultTy;
-    if (!CompResultTy.isNull())
-      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
-    break;
-  case BinaryOperator::AndAssign:
-  case BinaryOperator::XorAssign:
-  case BinaryOperator::OrAssign:
-    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
-    CompLHSTy = CompResultTy;
-    if (!CompResultTy.isNull())
-      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
-    break;
-  case BinaryOperator::Comma:
-    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
-    break;
-  }
-  if (ResultTy.isNull())
-    return ExprError();
-  if (CompResultTy.isNull())
-    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
-  else
-    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
-                                                      CompLHSTy, CompResultTy,
-                                                      OpLoc));
-}
-
-/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
-/// ParenRange in parentheses.
-static void SuggestParentheses(Sema &Self, SourceLocation Loc,
-                               const PartialDiagnostic &PD,
-                               const PartialDiagnostic &FirstNote,
-                               SourceRange FirstParenRange,
-                               const PartialDiagnostic &SecondNote,
-                               SourceRange SecondParenRange) {
-  Self.Diag(Loc, PD);
-
-  if (!FirstNote.getDiagID())
-    return;
-
-  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
-  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
-    // We can't display the parentheses, so just return.
-    return;
-  }
-
-  Self.Diag(Loc, FirstNote)
-    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
-    << FixItHint::CreateInsertion(EndLoc, ")");
-
-  if (!SecondNote.getDiagID())
-    return;
-
-  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
-  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
-    // We can't display the parentheses, so just dig the
-    // warning/error and return.
-    Self.Diag(Loc, SecondNote);
-    return;
-  }
-
-  Self.Diag(Loc, SecondNote)
-    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
-    << FixItHint::CreateInsertion(EndLoc, ")");
-}
-
-/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
-/// operators are mixed in a way that suggests that the programmer forgot that
-/// comparison operators have higher precedence. The most typical example of
-/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
-static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
-                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
-  typedef BinaryOperator BinOp;
-  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
-                rhsopc = static_cast<BinOp::Opcode>(-1);
-  if (BinOp *BO = dyn_cast<BinOp>(lhs))
-    lhsopc = BO->getOpcode();
-  if (BinOp *BO = dyn_cast<BinOp>(rhs))
-    rhsopc = BO->getOpcode();
-
-  // Subs are not binary operators.
-  if (lhsopc == -1 && rhsopc == -1)
-    return;
-
-  // Bitwise operations are sometimes used as eager logical ops.
-  // Don't diagnose this.
-  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
-      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
-    return;
-
-  if (BinOp::isComparisonOp(lhsopc))
-    SuggestParentheses(Self, OpLoc,
-      Self.PDiag(diag::warn_precedence_bitwise_rel)
-          << SourceRange(lhs->getLocStart(), OpLoc)
-          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
-      Self.PDiag(diag::note_precedence_bitwise_first)
-          << BinOp::getOpcodeStr(Opc),
-      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
-      Self.PDiag(diag::note_precedence_bitwise_silence)
-          << BinOp::getOpcodeStr(lhsopc),
-                       lhs->getSourceRange());
-  else if (BinOp::isComparisonOp(rhsopc))
-    SuggestParentheses(Self, OpLoc,
-      Self.PDiag(diag::warn_precedence_bitwise_rel)
-          << SourceRange(OpLoc, rhs->getLocEnd())
-          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
-      Self.PDiag(diag::note_precedence_bitwise_first)
-        << BinOp::getOpcodeStr(Opc),
-      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
-      Self.PDiag(diag::note_precedence_bitwise_silence)
-        << BinOp::getOpcodeStr(rhsopc),
-                       rhs->getSourceRange());
-}
-
-/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
-/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
-/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
-static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
-                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
-  if (BinaryOperator::isBitwiseOp(Opc))
-    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
-}
-
-// Binary Operators.  'Tok' is the token for the operator.
-Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
-                                          tok::TokenKind Kind,
-                                          ExprArg LHS, ExprArg RHS) {
-  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
-  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
-
-  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
-  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
-
-  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
-  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
-
-  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
-}
-
-Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
-                                          BinaryOperator::Opcode Opc,
-                                          Expr *lhs, Expr *rhs) {
-  if (getLangOptions().CPlusPlus &&
-      (lhs->getType()->isOverloadableType() ||
-       rhs->getType()->isOverloadableType())) {
-    // Find all of the overloaded operators visible from this
-    // point. We perform both an operator-name lookup from the local
-    // scope and an argument-dependent lookup based on the types of
-    // the arguments.
-    UnresolvedSet<16> Functions;
-    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
-    if (S && OverOp != OO_None)
-      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
-                                   Functions);
-
-    // Build the (potentially-overloaded, potentially-dependent)
-    // binary operation.
-    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
-  }
-
-  // Build a built-in binary operation.
-  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
-}
-
-Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
-                                                    unsigned OpcIn,
-                                                    ExprArg InputArg) {
-  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
-
-  // FIXME: Input is modified below, but InputArg is not updated appropriately.
-  Expr *Input = (Expr *)InputArg.get();
-  QualType resultType;
-  switch (Opc) {
-  case UnaryOperator::OffsetOf:
-    assert(false && "Invalid unary operator");
-    break;
-      
-  case UnaryOperator::PreInc:
-  case UnaryOperator::PreDec:
-  case UnaryOperator::PostInc:
-  case UnaryOperator::PostDec:
-    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
-                                                Opc == UnaryOperator::PreInc ||
-                                                Opc == UnaryOperator::PostInc,
-                                                Opc == UnaryOperator::PreInc ||
-                                                Opc == UnaryOperator::PreDec);
-    break;
-  case UnaryOperator::AddrOf:
-    resultType = CheckAddressOfOperand(Input, OpLoc);
-    break;
-  case UnaryOperator::Deref:
-    DefaultFunctionArrayLvalueConversion(Input);
-    resultType = CheckIndirectionOperand(Input, OpLoc);
-    break;
-  case UnaryOperator::Plus:
-  case UnaryOperator::Minus:
-    UsualUnaryConversions(Input);
-    resultType = Input->getType();
-    if (resultType->isDependentType())
-      break;
-    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
-        resultType->isVectorType()) 
-      break;
-    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
-             resultType->isEnumeralType())
-      break;
-    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
-             Opc == UnaryOperator::Plus &&
-             resultType->isPointerType())
-      break;
-
-    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
-      << resultType << Input->getSourceRange());
-  case UnaryOperator::Not: // bitwise complement
-    UsualUnaryConversions(Input);
-    resultType = Input->getType();
-    if (resultType->isDependentType())
-      break;
-    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
-    if (resultType->isComplexType() || resultType->isComplexIntegerType())
-      // C99 does not support '~' for complex conjugation.
-      Diag(OpLoc, diag::ext_integer_complement_complex)
-        << resultType << Input->getSourceRange();
-    else if (!resultType->hasIntegerRepresentation())
-      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
-        << resultType << Input->getSourceRange());
-    break;
-  case UnaryOperator::LNot: // logical negation
-    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
-    DefaultFunctionArrayLvalueConversion(Input);
-    resultType = Input->getType();
-    if (resultType->isDependentType())
-      break;
-    if (!resultType->isScalarType()) // C99 6.5.3.3p1
-      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
-        << resultType << Input->getSourceRange());
-    // LNot always has type int. C99 6.5.3.3p5.
-    // In C++, it's bool. C++ 5.3.1p8
-    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
-    break;
-  case UnaryOperator::Real:
-  case UnaryOperator::Imag:
-    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
-    break;
-  case UnaryOperator::Extension:
-    resultType = Input->getType();
-    break;
-  }
-  if (resultType.isNull())
-    return ExprError();
-
-  InputArg.release();
-  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
-}
-
-Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
-                                            UnaryOperator::Opcode Opc,
-                                            ExprArg input) {
-  Expr *Input = (Expr*)input.get();
-  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
-      Opc != UnaryOperator::Extension) {
-    // Find all of the overloaded operators visible from this
-    // point. We perform both an operator-name lookup from the local
-    // scope and an argument-dependent lookup based on the types of
-    // the arguments.
-    UnresolvedSet<16> Functions;
-    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
-    if (S && OverOp != OO_None)
-      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
-                                   Functions);
-
-    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
-  }
-
-  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
-}
-
-// Unary Operators.  'Tok' is the token for the operator.
-Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
-                                            tok::TokenKind Op, ExprArg input) {
-  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
-}
-
-/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
-Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
-                                            SourceLocation LabLoc,
-                                            IdentifierInfo *LabelII) {
-  // Look up the record for this label identifier.
-  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
-
-  // If we haven't seen this label yet, create a forward reference. It
-  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
-  if (LabelDecl == 0)
-    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
-
-  // Create the AST node.  The address of a label always has type 'void*'.
-  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
-                                       Context.getPointerType(Context.VoidTy)));
-}
-
-Sema::OwningExprResult
-Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
-                    SourceLocation RPLoc) { // "({..})"
-  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
-  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
-  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
-
-  bool isFileScope
-    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
-  if (isFileScope)
-    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
-
-  // FIXME: there are a variety of strange constraints to enforce here, for
-  // example, it is not possible to goto into a stmt expression apparently.
-  // More semantic analysis is needed.
-
-  // If there are sub stmts in the compound stmt, take the type of the last one
-  // as the type of the stmtexpr.
-  QualType Ty = Context.VoidTy;
-
-  if (!Compound->body_empty()) {
-    Stmt *LastStmt = Compound->body_back();
-    // If LastStmt is a label, skip down through into the body.
-    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
-      LastStmt = Label->getSubStmt();
-
-    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
-      Ty = LastExpr->getType();
-  }
-
-  // FIXME: Check that expression type is complete/non-abstract; statement
-  // expressions are not lvalues.
-
-  substmt.release();
-  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
-}
-
-Sema::OwningExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
-                                                  TypeSourceInfo *TInfo,
-                                                  OffsetOfComponent *CompPtr,
-                                                  unsigned NumComponents,
-                                                  SourceLocation RParenLoc) {
-  QualType ArgTy = TInfo->getType();
-  bool Dependent = ArgTy->isDependentType();
-  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
-  
-  // We must have at least one component that refers to the type, and the first
-  // one is known to be a field designator.  Verify that the ArgTy represents
-  // a struct/union/class.
-  if (!Dependent && !ArgTy->isRecordType())
-    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) 
-                       << ArgTy << TypeRange);
-  
-  // Type must be complete per C99 7.17p3 because a declaring a variable
-  // with an incomplete type would be ill-formed.
-  if (!Dependent 
-      && RequireCompleteType(BuiltinLoc, ArgTy,
-                             PDiag(diag::err_offsetof_incomplete_type)
-                               << TypeRange))
-    return ExprError();
-  
-  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
-  // GCC extension, diagnose them.
-  // FIXME: This diagnostic isn't actually visible because the location is in
-  // a system header!
-  if (NumComponents != 1)
-    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
-      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
-  
-  bool DidWarnAboutNonPOD = false;
-  QualType CurrentType = ArgTy;
-  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
-  llvm::SmallVector<OffsetOfNode, 4> Comps;
-  llvm::SmallVector<Expr*, 4> Exprs;
-  for (unsigned i = 0; i != NumComponents; ++i) {
-    const OffsetOfComponent &OC = CompPtr[i];
-    if (OC.isBrackets) {
-      // Offset of an array sub-field.  TODO: Should we allow vector elements?
-      if (!CurrentType->isDependentType()) {
-        const ArrayType *AT = Context.getAsArrayType(CurrentType);
-        if(!AT)
-          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
-                           << CurrentType);
-        CurrentType = AT->getElementType();
-      } else
-        CurrentType = Context.DependentTy;
-      
-      // The expression must be an integral expression.
-      // FIXME: An integral constant expression?
-      Expr *Idx = static_cast<Expr*>(OC.U.E);
-      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
-          !Idx->getType()->isIntegerType())
-        return ExprError(Diag(Idx->getLocStart(),
-                              diag::err_typecheck_subscript_not_integer)
-                         << Idx->getSourceRange());
-      
-      // Record this array index.
-      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
-      Exprs.push_back(Idx);
-      continue;
-    }
-    
-    // Offset of a field.
-    if (CurrentType->isDependentType()) {
-      // We have the offset of a field, but we can't look into the dependent
-      // type. Just record the identifier of the field.
-      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
-      CurrentType = Context.DependentTy;
-      continue;
-    }
-    
-    // We need to have a complete type to look into.
-    if (RequireCompleteType(OC.LocStart, CurrentType,
-                            diag::err_offsetof_incomplete_type))
-      return ExprError();
-    
-    // Look for the designated field.
-    const RecordType *RC = CurrentType->getAs<RecordType>();
-    if (!RC) 
-      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
-                       << CurrentType);
-    RecordDecl *RD = RC->getDecl();
-    
-    // C++ [lib.support.types]p5:
-    //   The macro offsetof accepts a restricted set of type arguments in this
-    //   International Standard. type shall be a POD structure or a POD union
-    //   (clause 9).
-    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
-      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
-          DiagRuntimeBehavior(BuiltinLoc,
-                              PDiag(diag::warn_offsetof_non_pod_type)
-                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
-                              << CurrentType))
-        DidWarnAboutNonPOD = true;
-    }
-    
-    // Look for the field.
-    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
-    LookupQualifiedName(R, RD);
-    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
-    if (!MemberDecl)
-      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
-                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, 
-                                                              OC.LocEnd));
-    
-    // C99 7.17p3:
-    //   (If the specified member is a bit-field, the behavior is undefined.)
-    //
-    // We diagnose this as an error.
-    if (MemberDecl->getBitWidth()) {
-      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
-        << MemberDecl->getDeclName()
-        << SourceRange(BuiltinLoc, RParenLoc);
-      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
-      return ExprError();
-    }
-      
-    // If the member was found in a base class, introduce OffsetOfNodes for
-    // the base class indirections.
-    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
-                       /*DetectVirtual=*/false);
-    if (IsDerivedFrom(CurrentType, 
-                      Context.getTypeDeclType(MemberDecl->getParent()), 
-                      Paths)) {
-      CXXBasePath &Path = Paths.front();
-      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
-           B != BEnd; ++B)
-        Comps.push_back(OffsetOfNode(B->Base));
-    }
-    
-    if (cast<RecordDecl>(MemberDecl->getDeclContext())->
-                                                isAnonymousStructOrUnion()) {
-      llvm::SmallVector<FieldDecl*, 4> Path;
-      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
-      unsigned n = Path.size();
-      for (int j = n - 1; j > -1; --j)
-        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
-    } else {
-      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
-    }
-    CurrentType = MemberDecl->getType().getNonReferenceType(); 
-  }
-  
-  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, 
-                                    TInfo, Comps.data(), Comps.size(),
-                                    Exprs.data(), Exprs.size(), RParenLoc));  
-}
-
-Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
-                                                  SourceLocation BuiltinLoc,
-                                                  SourceLocation TypeLoc,
-                                                  TypeTy *argty,
-                                                  OffsetOfComponent *CompPtr,
-                                                  unsigned NumComponents,
-                                                  SourceLocation RPLoc) {
-
-  TypeSourceInfo *ArgTInfo;
-  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
-  if (ArgTy.isNull())
-    return ExprError();
-
-  if (getLangOptions().CPlusPlus) {
-    if (!ArgTInfo)
-      ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
-    
-    return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents, 
-                                RPLoc);
-  }
-  
-  // FIXME: The code below is marked for death, once we have proper CodeGen
-  // support for non-constant OffsetOf expressions.
-  
-  bool Dependent = ArgTy->isDependentType();
-  
-  // We must have at least one component that refers to the type, and the first
-  // one is known to be a field designator.  Verify that the ArgTy represents
-  // a struct/union/class.
-  if (!Dependent && !ArgTy->isRecordType())
-    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
-  
-  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
-  // with an incomplete type would be illegal.
-  
-  // Otherwise, create a null pointer as the base, and iteratively process
-  // the offsetof designators.
-  QualType ArgTyPtr = Context.getPointerType(ArgTy);
-  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
-  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
-                                    ArgTy, SourceLocation());
-  
-  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
-  // GCC extension, diagnose them.
-  // FIXME: This diagnostic isn't actually visible because the location is in
-  // a system header!
-  if (NumComponents != 1)
-    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
-    << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
-  
-  if (!Dependent) {
-    bool DidWarnAboutNonPOD = false;
-    
-    if (RequireCompleteType(TypeLoc, Res->getType(),
-                            diag::err_offsetof_incomplete_type))
-      return ExprError();
-    
-    // FIXME: Dependent case loses a lot of information here. And probably
-    // leaks like a sieve.
-    for (unsigned i = 0; i != NumComponents; ++i) {
-      const OffsetOfComponent &OC = CompPtr[i];
-      if (OC.isBrackets) {
-        // Offset of an array sub-field.  TODO: Should we allow vector elements?
-        const ArrayType *AT = Context.getAsArrayType(Res->getType());
-        if (!AT)
-          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
-                           << Res->getType());
-        
-        // FIXME: C++: Verify that operator[] isn't overloaded.
-        
-        // Promote the array so it looks more like a normal array subscript
-        // expression.
-        DefaultFunctionArrayLvalueConversion(Res);
-        
-        // C99 6.5.2.1p1
-        Expr *Idx = static_cast<Expr*>(OC.U.E);
-        // FIXME: Leaks Res
-        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
-          return ExprError(Diag(Idx->getLocStart(),
-                                diag::err_typecheck_subscript_not_integer)
-                           << Idx->getSourceRange());
-        
-        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
-                                               OC.LocEnd);
-        continue;
-      }
-      
-      const RecordType *RC = Res->getType()->getAs<RecordType>();
-      if (!RC)
-        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
-                         << Res->getType());
-      
-      // Get the decl corresponding to this.
-      RecordDecl *RD = RC->getDecl();
-      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
-        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
-            DiagRuntimeBehavior(BuiltinLoc,
-                                PDiag(diag::warn_offsetof_non_pod_type)
-                                << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
-                                << Res->getType()))
-          DidWarnAboutNonPOD = true;
-      }
-      
-      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
-      LookupQualifiedName(R, RD);
-      
-      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
-      // FIXME: Leaks Res
-      if (!MemberDecl)
-        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
-                         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
-      
-      // C99 7.17p3:
-      //   (If the specified member is a bit-field, the behavior is undefined.)
-      //
-      // We diagnose this as an error.
-      if (MemberDecl->getBitWidth()) {
-        Diag(OC.LocEnd, diag::err_offsetof_bitfield)
-          << MemberDecl->getDeclName()
-          << SourceRange(BuiltinLoc, RPLoc);
-        Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
-        return ExprError();
-      }
-      
-      // FIXME: C++: Verify that MemberDecl isn't a static field.
-      // FIXME: Verify that MemberDecl isn't a bitfield.
-      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
-        Res = BuildAnonymousStructUnionMemberReference(
-                                                       OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
-      } else {
-        PerformObjectMemberConversion(Res, /*Qualifier=*/0,
-                                      *R.begin(), MemberDecl);
-        // MemberDecl->getType() doesn't get the right qualifiers, but it
-        // doesn't matter here.
-        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
-                                       MemberDecl->getType().getNonReferenceType());
-      }
-    }
-  }
-  
-  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
-                                           Context.getSizeType(), BuiltinLoc));
-}
-
-
-Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
-                                                      TypeTy *arg1,TypeTy *arg2,
-                                                      SourceLocation RPLoc) {
-  // FIXME: Preserve type source info.
-  QualType argT1 = GetTypeFromParser(arg1);
-  QualType argT2 = GetTypeFromParser(arg2);
-
-  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
-
-  if (getLangOptions().CPlusPlus) {
-    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
-      << SourceRange(BuiltinLoc, RPLoc);
-    return ExprError();
-  }
-
-  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
-                                                 argT1, argT2, RPLoc));
-}
-
-Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
-                                             ExprArg cond,
-                                             ExprArg expr1, ExprArg expr2,
-                                             SourceLocation RPLoc) {
-  Expr *CondExpr = static_cast<Expr*>(cond.get());
-  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
-  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
-
-  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
-
-  QualType resType;
-  bool ValueDependent = false;
-  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
-    resType = Context.DependentTy;
-    ValueDependent = true;
-  } else {
-    // The conditional expression is required to be a constant expression.
-    llvm::APSInt condEval(32);
-    SourceLocation ExpLoc;
-    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
-      return ExprError(Diag(ExpLoc,
-                       diag::err_typecheck_choose_expr_requires_constant)
-        << CondExpr->getSourceRange());
-
-    // If the condition is > zero, then the AST type is the same as the LSHExpr.
-    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
-    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
-                                             : RHSExpr->isValueDependent();
-  }
-
-  cond.release(); expr1.release(); expr2.release();
-  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
-                                        resType, RPLoc,
-                                        resType->isDependentType(),
-                                        ValueDependent));
-}
-
-//===----------------------------------------------------------------------===//
-// Clang Extensions.
-//===----------------------------------------------------------------------===//
-
-/// ActOnBlockStart - This callback is invoked when a block literal is started.
-void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
-  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
-  PushBlockScope(BlockScope, Block);
-  CurContext->addDecl(Block);
-  if (BlockScope)
-    PushDeclContext(BlockScope, Block);
-  else
-    CurContext = Block;
-}
-
-void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
-  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
-  BlockScopeInfo *CurBlock = getCurBlock();
-
-  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
-  CurBlock->TheDecl->setSignatureAsWritten(Sig);
-  QualType T = Sig->getType();
-
-  bool isVariadic;
-  QualType RetTy;
-  if (const FunctionType *Fn = T->getAs<FunctionType>()) {
-    CurBlock->FunctionType = T;
-    RetTy = Fn->getResultType();
-    isVariadic =
-      !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
-  } else {
-    RetTy = T;
-    isVariadic = false;
-  }
-
-  CurBlock->TheDecl->setIsVariadic(isVariadic);
-
-  // Don't allow returning an array by value.
-  if (RetTy->isArrayType()) {
-    Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
-    return;
-  }
-
-  // Don't allow returning a objc interface by value.
-  if (RetTy->isObjCObjectType()) {
-    Diag(ParamInfo.getSourceRange().getBegin(),
-         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
-    return;
-  }
-
-  // Context.DependentTy is used as a placeholder for a missing block
-  // return type.  TODO:  what should we do with declarators like:
-  //   ^ * { ... }
-  // If the answer is "apply template argument deduction"....
-  if (RetTy != Context.DependentTy)
-    CurBlock->ReturnType = RetTy;
-
-  // Push block parameters from the declarator if we had them.
-  llvm::SmallVector<ParmVarDecl*, 8> Params;
-  if (isa<FunctionProtoType>(T)) {
-    FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
-    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
-      ParmVarDecl *Param = TL.getArg(I);
-      if (Param->getIdentifier() == 0 &&
-          !Param->isImplicit() &&
-          !Param->isInvalidDecl() &&
-          !getLangOptions().CPlusPlus)
-        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
-      Params.push_back(Param);
-    }
-
-  // Fake up parameter variables if we have a typedef, like
-  //   ^ fntype { ... }
-  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
-    for (FunctionProtoType::arg_type_iterator
-           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
-      ParmVarDecl *Param =
-        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
-                                   ParamInfo.getSourceRange().getBegin(),
-                                   *I);
-      Params.push_back(Param);
-    }
-  }
-
-  // Set the parameters on the block decl.
-  if (!Params.empty())
-    CurBlock->TheDecl->setParams(Params.data(), Params.size());
-
-  // Finally we can process decl attributes.
-  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
-
-  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
-    Diag(ParamInfo.getAttributes()->getLoc(),
-         diag::warn_attribute_sentinel_not_variadic) << 1;
-    // FIXME: remove the attribute.
-  }
-
-  // Put the parameter variables in scope.  We can bail out immediately
-  // if we don't have any.
-  if (Params.empty())
-    return;
-
-  bool ShouldCheckShadow =
-    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
-
-  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
-         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
-    (*AI)->setOwningFunction(CurBlock->TheDecl);
-
-    // If this has an identifier, add it to the scope stack.
-    if ((*AI)->getIdentifier()) {
-      if (ShouldCheckShadow)
-        CheckShadow(CurBlock->TheScope, *AI);
-
-      PushOnScopeChains(*AI, CurBlock->TheScope);
-    }
-  }
-}
-
-/// ActOnBlockError - If there is an error parsing a block, this callback
-/// is invoked to pop the information about the block from the action impl.
-void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
-  // Pop off CurBlock, handle nested blocks.
-  PopDeclContext();
-  PopFunctionOrBlockScope();
-  // FIXME: Delete the ParmVarDecl objects as well???
-}
-
-/// ActOnBlockStmtExpr - This is called when the body of a block statement
-/// literal was successfully completed.  ^(int x){...}
-Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
-                                                StmtArg body, Scope *CurScope) {
-  // If blocks are disabled, emit an error.
-  if (!LangOpts.Blocks)
-    Diag(CaretLoc, diag::err_blocks_disable);
-
-  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
-  
-  PopDeclContext();
-
-  QualType RetTy = Context.VoidTy;
-  if (!BSI->ReturnType.isNull())
-    RetTy = BSI->ReturnType;
-
-  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
-  QualType BlockTy;
-
-  // If the user wrote a function type in some form, try to use that.
-  if (!BSI->FunctionType.isNull()) {
-    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
-
-    FunctionType::ExtInfo Ext = FTy->getExtInfo();
-    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
-    
-    // Turn protoless block types into nullary block types.
-    if (isa<FunctionNoProtoType>(FTy)) {
-      BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
-                                        false, false, 0, 0, Ext);
-
-    // Otherwise, if we don't need to change anything about the function type,
-    // preserve its sugar structure.
-    } else if (FTy->getResultType() == RetTy &&
-               (!NoReturn || FTy->getNoReturnAttr())) {
-      BlockTy = BSI->FunctionType;
-
-    // Otherwise, make the minimal modifications to the function type.
-    } else {
-      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
-      BlockTy = Context.getFunctionType(RetTy,
-                                        FPT->arg_type_begin(),
-                                        FPT->getNumArgs(),
-                                        FPT->isVariadic(),
-                                        /*quals*/ 0,
-                                        FPT->hasExceptionSpec(),
-                                        FPT->hasAnyExceptionSpec(),
-                                        FPT->getNumExceptions(),
-                                        FPT->exception_begin(),
-                                        Ext);
-    }
-
-  // If we don't have a function type, just build one from nothing.
-  } else {
-    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
-                                      false, false, 0, 0,
-                             FunctionType::ExtInfo(NoReturn, 0, CC_Default));
-  }
-
-  // FIXME: Check that return/parameter types are complete/non-abstract
-  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
-                           BSI->TheDecl->param_end());
-  BlockTy = Context.getBlockPointerType(BlockTy);
-
-  // If needed, diagnose invalid gotos and switches in the block.
-  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
-    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
-
-  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
-
-  bool Good = true;
-  // Check goto/label use.
-  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
-         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
-    LabelStmt *L = I->second;
-
-    // Verify that we have no forward references left.  If so, there was a goto
-    // or address of a label taken, but no definition of it.
-    if (L->getSubStmt() != 0)
-      continue;
-
-    // Emit error.
-    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
-    Good = false;
-  }
-  if (!Good) {
-    PopFunctionOrBlockScope();
-    return ExprError();
-  }
-
-  // Issue any analysis-based warnings.
-  const sema::AnalysisBasedWarnings::Policy &WP =
-    AnalysisWarnings.getDefaultPolicy();
-  AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
-
-  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
-                                         BSI->hasBlockDeclRefExprs);
-  PopFunctionOrBlockScope();
-  return Owned(Result);
-}
-
-Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
-                                        ExprArg expr, TypeTy *type,
-                                        SourceLocation RPLoc) {
-  QualType T = GetTypeFromParser(type);
-  Expr *E = static_cast<Expr*>(expr.get());
-  Expr *OrigExpr = E;
-
-  InitBuiltinVaListType();
-
-  // Get the va_list type
-  QualType VaListType = Context.getBuiltinVaListType();
-  if (VaListType->isArrayType()) {
-    // Deal with implicit array decay; for example, on x86-64,
-    // va_list is an array, but it's supposed to decay to
-    // a pointer for va_arg.
-    VaListType = Context.getArrayDecayedType(VaListType);
-    // Make sure the input expression also decays appropriately.
-    UsualUnaryConversions(E);
-  } else {
-    // Otherwise, the va_list argument must be an l-value because
-    // it is modified by va_arg.
-    if (!E->isTypeDependent() &&
-        CheckForModifiableLvalue(E, BuiltinLoc, *this))
-      return ExprError();
-  }
-
-  if (!E->isTypeDependent() &&
-      !Context.hasSameType(VaListType, E->getType())) {
-    return ExprError(Diag(E->getLocStart(),
-                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
-      << OrigExpr->getType() << E->getSourceRange());
-  }
-
-  // FIXME: Check that type is complete/non-abstract
-  // FIXME: Warn if a non-POD type is passed in.
-
-  expr.release();
-  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, 
-                                       T.getNonLValueExprType(Context),
-                                       RPLoc));
-}
-
-Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
-  // The type of __null will be int or long, depending on the size of
-  // pointers on the target.
-  QualType Ty;
-  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
-    Ty = Context.IntTy;
-  else
-    Ty = Context.LongTy;
-
-  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
-}
-
-static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
-                                           Expr *SrcExpr, FixItHint &Hint) {
-  if (!SemaRef.getLangOptions().ObjC1)
-    return;
-
-  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
-  if (!PT)
-    return;
-
-  // Check if the destination is of type 'id'.
-  if (!PT->isObjCIdType()) {
-    // Check if the destination is the 'NSString' interface.
-    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
-    if (!ID || !ID->getIdentifier()->isStr("NSString"))
-      return;
-  }
-
-  // Strip off any parens and casts.
-  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
-  if (!SL || SL->isWide())
-    return;
-
-  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
-}
-
-bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
-                                    SourceLocation Loc,
-                                    QualType DstType, QualType SrcType,
-                                    Expr *SrcExpr, AssignmentAction Action,
-                                    bool *Complained) {
-  if (Complained)
-    *Complained = false;
-
-  // Decode the result (notice that AST's are still created for extensions).
-  bool isInvalid = false;
-  unsigned DiagKind;
-  FixItHint Hint;
-
-  switch (ConvTy) {
-  default: assert(0 && "Unknown conversion type");
-  case Compatible: return false;
-  case PointerToInt:
-    DiagKind = diag::ext_typecheck_convert_pointer_int;
-    break;
-  case IntToPointer:
-    DiagKind = diag::ext_typecheck_convert_int_pointer;
-    break;
-  case IncompatiblePointer:
-    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
-    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
-    break;
-  case IncompatiblePointerSign:
-    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
-    break;
-  case FunctionVoidPointer:
-    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
-    break;
-  case CompatiblePointerDiscardsQualifiers:
-    // If the qualifiers lost were because we were applying the
-    // (deprecated) C++ conversion from a string literal to a char*
-    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
-    // Ideally, this check would be performed in
-    // CheckPointerTypesForAssignment. However, that would require a
-    // bit of refactoring (so that the second argument is an
-    // expression, rather than a type), which should be done as part
-    // of a larger effort to fix CheckPointerTypesForAssignment for
-    // C++ semantics.
-    if (getLangOptions().CPlusPlus &&
-        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
-      return false;
-    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
-    break;
-  case IncompatibleNestedPointerQualifiers:
-    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
-    break;
-  case IntToBlockPointer:
-    DiagKind = diag::err_int_to_block_pointer;
-    break;
-  case IncompatibleBlockPointer:
-    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
-    break;
-  case IncompatibleObjCQualifiedId:
-    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
-    // it can give a more specific diagnostic.
-    DiagKind = diag::warn_incompatible_qualified_id;
-    break;
-  case IncompatibleVectors:
-    DiagKind = diag::warn_incompatible_vectors;
-    break;
-  case Incompatible:
-    DiagKind = diag::err_typecheck_convert_incompatible;
-    isInvalid = true;
-    break;
-  }
-
-  QualType FirstType, SecondType;
-  switch (Action) {
-  case AA_Assigning:
-  case AA_Initializing:
-    // The destination type comes first.
-    FirstType = DstType;
-    SecondType = SrcType;
-    break;
-
-  case AA_Returning:
-  case AA_Passing:
-  case AA_Converting:
-  case AA_Sending:
-  case AA_Casting:
-    // The source type comes first.
-    FirstType = SrcType;
-    SecondType = DstType;
-    break;
-  }
-
-  Diag(Loc, DiagKind) << FirstType << SecondType << Action
-    << SrcExpr->getSourceRange() << Hint;
-  if (Complained)
-    *Complained = true;
-  return isInvalid;
-}
-
-bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
-  llvm::APSInt ICEResult;
-  if (E->isIntegerConstantExpr(ICEResult, Context)) {
-    if (Result)
-      *Result = ICEResult;
-    return false;
-  }
-
-  Expr::EvalResult EvalResult;
-
-  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
-      EvalResult.HasSideEffects) {
-    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
-
-    if (EvalResult.Diag) {
-      // We only show the note if it's not the usual "invalid subexpression"
-      // or if it's actually in a subexpression.
-      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
-          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
-        Diag(EvalResult.DiagLoc, EvalResult.Diag);
-    }
-
-    return true;
-  }
-
-  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
-    E->getSourceRange();
-
-  if (EvalResult.Diag &&
-      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
-    Diag(EvalResult.DiagLoc, EvalResult.Diag);
-
-  if (Result)
-    *Result = EvalResult.Val.getInt();
-  return false;
-}
-
-void
-Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
-  ExprEvalContexts.push_back(
-        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
-}
-
-void
-Sema::PopExpressionEvaluationContext() {
-  // Pop the current expression evaluation context off the stack.
-  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
-  ExprEvalContexts.pop_back();
-
-  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
-    if (Rec.PotentiallyReferenced) {
-      // Mark any remaining declarations in the current position of the stack
-      // as "referenced". If they were not meant to be referenced, semantic
-      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
-      for (PotentiallyReferencedDecls::iterator
-             I = Rec.PotentiallyReferenced->begin(),
-             IEnd = Rec.PotentiallyReferenced->end();
-           I != IEnd; ++I)
-        MarkDeclarationReferenced(I->first, I->second);
-    }
-
-    if (Rec.PotentiallyDiagnosed) {
-      // Emit any pending diagnostics.
-      for (PotentiallyEmittedDiagnostics::iterator
-                I = Rec.PotentiallyDiagnosed->begin(),
-             IEnd = Rec.PotentiallyDiagnosed->end();
-           I != IEnd; ++I)
-        Diag(I->first, I->second);
-    }
-  }
-
-  // When are coming out of an unevaluated context, clear out any
-  // temporaries that we may have created as part of the evaluation of
-  // the expression in that context: they aren't relevant because they
-  // will never be constructed.
-  if (Rec.Context == Unevaluated &&
-      ExprTemporaries.size() > Rec.NumTemporaries)
-    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
-                          ExprTemporaries.end());
-
-  // Destroy the popped expression evaluation record.
-  Rec.Destroy();
-}
-
-/// \brief Note that the given declaration was referenced in the source code.
-///
-/// This routine should be invoke whenever a given declaration is referenced
-/// in the source code, and where that reference occurred. If this declaration
-/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
-/// C99 6.9p3), then the declaration will be marked as used.
-///
-/// \param Loc the location where the declaration was referenced.
-///
-/// \param D the declaration that has been referenced by the source code.
-void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
-  assert(D && "No declaration?");
-
-  if (D->isUsed(false))
-    return;
-
-  // Mark a parameter or variable declaration "used", regardless of whether we're in a
-  // template or not. The reason for this is that unevaluated expressions
-  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
-  // -Wunused-parameters)
-  if (isa<ParmVarDecl>(D) ||
-      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
-    D->setUsed(true);
-    return;
-  }
-
-  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
-    return;
-
-  // Do not mark anything as "used" within a dependent context; wait for
-  // an instantiation.
-  if (CurContext->isDependentContext())
-    return;
-
-  switch (ExprEvalContexts.back().Context) {
-    case Unevaluated:
-      // We are in an expression that is not potentially evaluated; do nothing.
-      return;
-
-    case PotentiallyEvaluated:
-      // We are in a potentially-evaluated expression, so this declaration is
-      // "used"; handle this below.
-      break;
-
-    case PotentiallyPotentiallyEvaluated:
-      // We are in an expression that may be potentially evaluated; queue this
-      // declaration reference until we know whether the expression is
-      // potentially evaluated.
-      ExprEvalContexts.back().addReferencedDecl(Loc, D);
-      return;
-  }
-
-  // Note that this declaration has been used.
-  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
-    unsigned TypeQuals;
-    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
-        if (!Constructor->isUsed(false))
-          DefineImplicitDefaultConstructor(Loc, Constructor);
-    } else if (Constructor->isImplicit() &&
-               Constructor->isCopyConstructor(TypeQuals)) {
-      if (!Constructor->isUsed(false))
-        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
-    }
-
-    MarkVTableUsed(Loc, Constructor->getParent());
-  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
-    if (Destructor->isImplicit() && !Destructor->isUsed(false))
-      DefineImplicitDestructor(Loc, Destructor);
-    if (Destructor->isVirtual())
-      MarkVTableUsed(Loc, Destructor->getParent());
-  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
-    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
-        MethodDecl->getOverloadedOperator() == OO_Equal) {
-      if (!MethodDecl->isUsed(false))
-        DefineImplicitCopyAssignment(Loc, MethodDecl);
-    } else if (MethodDecl->isVirtual())
-      MarkVTableUsed(Loc, MethodDecl->getParent());
-  }
-  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
-    // Implicit instantiation of function templates and member functions of
-    // class templates.
-    if (Function->isImplicitlyInstantiable()) {
-      bool AlreadyInstantiated = false;
-      if (FunctionTemplateSpecializationInfo *SpecInfo
-                                = Function->getTemplateSpecializationInfo()) {
-        if (SpecInfo->getPointOfInstantiation().isInvalid())
-          SpecInfo->setPointOfInstantiation(Loc);
-        else if (SpecInfo->getTemplateSpecializationKind()
-                   == TSK_ImplicitInstantiation)
-          AlreadyInstantiated = true;
-      } else if (MemberSpecializationInfo *MSInfo
-                                  = Function->getMemberSpecializationInfo()) {
-        if (MSInfo->getPointOfInstantiation().isInvalid())
-          MSInfo->setPointOfInstantiation(Loc);
-        else if (MSInfo->getTemplateSpecializationKind()
-                   == TSK_ImplicitInstantiation)
-          AlreadyInstantiated = true;
-      }
-
-      if (!AlreadyInstantiated) {
-        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
-            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
-          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
-                                                                      Loc));
-        else
-          PendingImplicitInstantiations.push_back(std::make_pair(Function,
-                                                                 Loc));
-      }
-    }
-
-    // FIXME: keep track of references to static functions
-    Function->setUsed(true);
-
-    return;
-  }
-
-  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
-    // Implicit instantiation of static data members of class templates.
-    if (Var->isStaticDataMember() &&
-        Var->getInstantiatedFromStaticDataMember()) {
-      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
-      assert(MSInfo && "Missing member specialization information?");
-      if (MSInfo->getPointOfInstantiation().isInvalid() &&
-          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
-        MSInfo->setPointOfInstantiation(Loc);
-        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
-      }
-    }
-
-    // FIXME: keep track of references to static data?
-
-    D->setUsed(true);
-    return;
-  }
-}
-
-namespace {
-  // Mark all of the declarations referenced
-  // FIXME: Not fully implemented yet! We need to have a better understanding
-  // of when we're entering
-  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
-    Sema &S;
-    SourceLocation Loc;
-
-  public:
-    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
-
-    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
-
-    bool TraverseTemplateArgument(const TemplateArgument &Arg);
-    bool TraverseRecordType(RecordType *T);
-  };
-}
-
-bool MarkReferencedDecls::TraverseTemplateArgument(
-  const TemplateArgument &Arg) {
-  if (Arg.getKind() == TemplateArgument::Declaration) {
-    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
-  }
-
-  return Inherited::TraverseTemplateArgument(Arg);
-}
-
-bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
-  if (ClassTemplateSpecializationDecl *Spec
-                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
-    const TemplateArgumentList &Args = Spec->getTemplateArgs();
-    return TraverseTemplateArguments(Args.getFlatArgumentList(),
-                                     Args.flat_size());
-  }
-
-  return true;
-}
-
-void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
-  MarkReferencedDecls Marker(*this, Loc);
-  Marker.TraverseType(Context.getCanonicalType(T));
-}
-
-/// \brief Emit a diagnostic that describes an effect on the run-time behavior
-/// of the program being compiled.
-///
-/// This routine emits the given diagnostic when the code currently being
-/// type-checked is "potentially evaluated", meaning that there is a
-/// possibility that the code will actually be executable. Code in sizeof()
-/// expressions, code used only during overload resolution, etc., are not
-/// potentially evaluated. This routine will suppress such diagnostics or,
-/// in the absolutely nutty case of potentially potentially evaluated
-/// expressions (C++ typeid), queue the diagnostic to potentially emit it
-/// later.
-///
-/// This routine should be used for all diagnostics that describe the run-time
-/// behavior of a program, such as passing a non-POD value through an ellipsis.
-/// Failure to do so will likely result in spurious diagnostics or failures
-/// during overload resolution or within sizeof/alignof/typeof/typeid.
-bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
-                               const PartialDiagnostic &PD) {
-  switch (ExprEvalContexts.back().Context ) {
-  case Unevaluated:
-    // The argument will never be evaluated, so don't complain.
-    break;
-
-  case PotentiallyEvaluated:
-    Diag(Loc, PD);
-    return true;
-
-  case PotentiallyPotentiallyEvaluated:
-    ExprEvalContexts.back().addDiagnostic(Loc, PD);
-    break;
-  }
-
-  return false;
-}
-
-bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
-                               CallExpr *CE, FunctionDecl *FD) {
-  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
-    return false;
-
-  PartialDiagnostic Note =
-    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
-    << FD->getDeclName() : PDiag();
-  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
-
-  if (RequireCompleteType(Loc, ReturnType,
-                          FD ?
-                          PDiag(diag::err_call_function_incomplete_return)
-                            << CE->getSourceRange() << FD->getDeclName() :
-                          PDiag(diag::err_call_incomplete_return)
-                            << CE->getSourceRange(),
-                          std::make_pair(NoteLoc, Note)))
-    return true;
-
-  return false;
-}
-
-// Diagnose the common s/=/==/ typo.  Note that adding parentheses
-// will prevent this condition from triggering, which is what we want.
-void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
-  SourceLocation Loc;
-
-  unsigned diagnostic = diag::warn_condition_is_assignment;
-
-  if (isa<BinaryOperator>(E)) {
-    BinaryOperator *Op = cast<BinaryOperator>(E);
-    if (Op->getOpcode() != BinaryOperator::Assign)
-      return;
-
-    // Greylist some idioms by putting them into a warning subcategory.
-    if (ObjCMessageExpr *ME
-          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
-      Selector Sel = ME->getSelector();
-
-      // self = [<foo> init...]
-      if (isSelfExpr(Op->getLHS())
-          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
-        diagnostic = diag::warn_condition_is_idiomatic_assignment;
-
-      // <foo> = [<bar> nextObject]
-      else if (Sel.isUnarySelector() &&
-               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
-        diagnostic = diag::warn_condition_is_idiomatic_assignment;
-    }
-
-    Loc = Op->getOperatorLoc();
-  } else if (isa<CXXOperatorCallExpr>(E)) {
-    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
-    if (Op->getOperator() != OO_Equal)
-      return;
-
-    Loc = Op->getOperatorLoc();
-  } else {
-    // Not an assignment.
-    return;
-  }
-
-  SourceLocation Open = E->getSourceRange().getBegin();
-  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
-
-  Diag(Loc, diagnostic) << E->getSourceRange();
-  Diag(Loc, diag::note_condition_assign_to_comparison)
-    << FixItHint::CreateReplacement(Loc, "==");
-  Diag(Loc, diag::note_condition_assign_silence)
-    << FixItHint::CreateInsertion(Open, "(")
-    << FixItHint::CreateInsertion(Close, ")");
-}
-
-bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
-  DiagnoseAssignmentAsCondition(E);
-
-  if (!E->isTypeDependent()) {
-    DefaultFunctionArrayLvalueConversion(E);
-
-    QualType T = E->getType();
-
-    if (getLangOptions().CPlusPlus) {
-      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
-        return true;
-    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
-      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
-        << T << E->getSourceRange();
-      return true;
-    }
-  }
-
-  return false;
-}
-
-Sema::OwningExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
-                                                   ExprArg SubExpr) {
-  Expr *Sub = SubExpr.takeAs<Expr>();
-  if (!Sub)
-    return ExprError();
-  
-  if (CheckBooleanCondition(Sub, Loc))
-    return ExprError();
-  
-  return Owned(Sub);
-}





More information about the llvm-branch-commits mailing list