[llvm-branch-commits] [cfe-branch] r111418 [2/2] - in /cfe/branches/Apple/williamson: include/clang/Basic/DiagnosticSemaKinds.td.orig include/clang/Driver/CC1Options.td.orig lib/Analysis/CFG.cpp.orig lib/Basic/Targets.cpp.orig lib/Checker/AnalysisConsumer.cpp.orig lib/Checker/GRExprEngine.cpp.orig lib/CodeGen/CGObjCMac.cpp.orig lib/Frontend/CompilerInvocation.cpp.orig lib/Sema/SemaExpr.cpp.orig
Daniel Dunbar
daniel at zuster.org
Wed Aug 18 13:34:30 PDT 2010
Removed: cfe/branches/Apple/williamson/lib/Sema/SemaExpr.cpp.orig
URL: http://llvm.org/viewvc/llvm-project/cfe/branches/Apple/williamson/lib/Sema/SemaExpr.cpp.orig?rev=111417&view=auto
==============================================================================
--- cfe/branches/Apple/williamson/lib/Sema/SemaExpr.cpp.orig (original)
+++ cfe/branches/Apple/williamson/lib/Sema/SemaExpr.cpp.orig (removed)
@@ -1,7991 +0,0 @@
-//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements semantic analysis for expressions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "Sema.h"
-#include "SemaInit.h"
-#include "Lookup.h"
-#include "AnalysisBasedWarnings.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/CXXInheritance.h"
-#include "clang/AST/DeclObjC.h"
-#include "clang/AST/DeclTemplate.h"
-#include "clang/AST/Expr.h"
-#include "clang/AST/ExprCXX.h"
-#include "clang/AST/ExprObjC.h"
-#include "clang/AST/RecursiveASTVisitor.h"
-#include "clang/AST/TypeLoc.h"
-#include "clang/Basic/PartialDiagnostic.h"
-#include "clang/Basic/SourceManager.h"
-#include "clang/Basic/TargetInfo.h"
-#include "clang/Lex/LiteralSupport.h"
-#include "clang/Lex/Preprocessor.h"
-#include "clang/Parse/DeclSpec.h"
-#include "clang/Parse/Designator.h"
-#include "clang/Parse/Scope.h"
-#include "clang/Parse/Template.h"
-using namespace clang;
-
-
-/// \brief Determine whether the use of this declaration is valid, and
-/// emit any corresponding diagnostics.
-///
-/// This routine diagnoses various problems with referencing
-/// declarations that can occur when using a declaration. For example,
-/// it might warn if a deprecated or unavailable declaration is being
-/// used, or produce an error (and return true) if a C++0x deleted
-/// function is being used.
-///
-/// If IgnoreDeprecated is set to true, this should not want about deprecated
-/// decls.
-///
-/// \returns true if there was an error (this declaration cannot be
-/// referenced), false otherwise.
-///
-bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
- // See if the decl is deprecated.
- if (D->getAttr<DeprecatedAttr>()) {
- EmitDeprecationWarning(D, Loc);
- }
-
- // See if the decl is unavailable
- if (D->getAttr<UnavailableAttr>()) {
- Diag(Loc, diag::err_unavailable) << D->getDeclName();
- Diag(D->getLocation(), diag::note_unavailable_here) << 0;
- }
-
- // See if this is a deleted function.
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->isDeleted()) {
- Diag(Loc, diag::err_deleted_function_use);
- Diag(D->getLocation(), diag::note_unavailable_here) << true;
- return true;
- }
- }
-
- return false;
-}
-
-/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
-/// (and other functions in future), which have been declared with sentinel
-/// attribute. It warns if call does not have the sentinel argument.
-///
-void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
- Expr **Args, unsigned NumArgs) {
- const SentinelAttr *attr = D->getAttr<SentinelAttr>();
- if (!attr)
- return;
-
- // FIXME: In C++0x, if any of the arguments are parameter pack
- // expansions, we can't check for the sentinel now.
- int sentinelPos = attr->getSentinel();
- int nullPos = attr->getNullPos();
-
- // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
- // base class. Then we won't be needing two versions of the same code.
- unsigned int i = 0;
- bool warnNotEnoughArgs = false;
- int isMethod = 0;
- if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
- // skip over named parameters.
- ObjCMethodDecl::param_iterator P, E = MD->param_end();
- for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
- if (nullPos)
- --nullPos;
- else
- ++i;
- }
- warnNotEnoughArgs = (P != E || i >= NumArgs);
- isMethod = 1;
- } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- // skip over named parameters.
- ObjCMethodDecl::param_iterator P, E = FD->param_end();
- for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
- if (nullPos)
- --nullPos;
- else
- ++i;
- }
- warnNotEnoughArgs = (P != E || i >= NumArgs);
- } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
- // block or function pointer call.
- QualType Ty = V->getType();
- if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
- const FunctionType *FT = Ty->isFunctionPointerType()
- ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
- : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
- if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
- unsigned NumArgsInProto = Proto->getNumArgs();
- unsigned k;
- for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
- if (nullPos)
- --nullPos;
- else
- ++i;
- }
- warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
- }
- if (Ty->isBlockPointerType())
- isMethod = 2;
- } else
- return;
- } else
- return;
-
- if (warnNotEnoughArgs) {
- Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
- Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
- return;
- }
- int sentinel = i;
- while (sentinelPos > 0 && i < NumArgs-1) {
- --sentinelPos;
- ++i;
- }
- if (sentinelPos > 0) {
- Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
- Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
- return;
- }
- while (i < NumArgs-1) {
- ++i;
- ++sentinel;
- }
- Expr *sentinelExpr = Args[sentinel];
- if (!sentinelExpr) return;
- if (sentinelExpr->isTypeDependent()) return;
- if (sentinelExpr->isValueDependent()) return;
- if (sentinelExpr->getType()->isAnyPointerType() &&
- sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull))
- return;
-
- // Unfortunately, __null has type 'int'.
- if (isa<GNUNullExpr>(sentinelExpr)) return;
-
- Diag(Loc, diag::warn_missing_sentinel) << isMethod;
- Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
-}
-
-SourceRange Sema::getExprRange(ExprTy *E) const {
- Expr *Ex = (Expr *)E;
- return Ex? Ex->getSourceRange() : SourceRange();
-}
-
-//===----------------------------------------------------------------------===//
-// Standard Promotions and Conversions
-//===----------------------------------------------------------------------===//
-
-/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
-void Sema::DefaultFunctionArrayConversion(Expr *&E) {
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
-
- if (Ty->isFunctionType())
- ImpCastExprToType(E, Context.getPointerType(Ty),
- CastExpr::CK_FunctionToPointerDecay);
- else if (Ty->isArrayType()) {
- // In C90 mode, arrays only promote to pointers if the array expression is
- // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
- // type 'array of type' is converted to an expression that has type 'pointer
- // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
- // that has type 'array of type' ...". The relevant change is "an lvalue"
- // (C90) to "an expression" (C99).
- //
- // C++ 4.2p1:
- // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
- // T" can be converted to an rvalue of type "pointer to T".
- //
- if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
- E->isLvalue(Context) == Expr::LV_Valid)
- ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
- CastExpr::CK_ArrayToPointerDecay);
- }
-}
-
-void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
- DefaultFunctionArrayConversion(E);
-
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
- if (!Ty->isDependentType() && Ty.hasQualifiers() &&
- (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
- E->isLvalue(Context) == Expr::LV_Valid) {
- // C++ [conv.lval]p1:
- // [...] If T is a non-class type, the type of the rvalue is the
- // cv-unqualified version of T. Otherwise, the type of the
- // rvalue is T
- //
- // C99 6.3.2.1p2:
- // If the lvalue has qualified type, the value has the unqualified
- // version of the type of the lvalue; otherwise, the value has the
- // type of the lvalue.
- ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
- }
-}
-
-
-/// UsualUnaryConversions - Performs various conversions that are common to most
-/// operators (C99 6.3). The conversions of array and function types are
-/// sometimes surpressed. For example, the array->pointer conversion doesn't
-/// apply if the array is an argument to the sizeof or address (&) operators.
-/// In these instances, this routine should *not* be called.
-Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
- QualType Ty = Expr->getType();
- assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
-
- // C99 6.3.1.1p2:
- //
- // The following may be used in an expression wherever an int or
- // unsigned int may be used:
- // - an object or expression with an integer type whose integer
- // conversion rank is less than or equal to the rank of int
- // and unsigned int.
- // - A bit-field of type _Bool, int, signed int, or unsigned int.
- //
- // If an int can represent all values of the original type, the
- // value is converted to an int; otherwise, it is converted to an
- // unsigned int. These are called the integer promotions. All
- // other types are unchanged by the integer promotions.
- QualType PTy = Context.isPromotableBitField(Expr);
- if (!PTy.isNull()) {
- ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
- return Expr;
- }
- if (Ty->isPromotableIntegerType()) {
- QualType PT = Context.getPromotedIntegerType(Ty);
- ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
- return Expr;
- }
-
- DefaultFunctionArrayLvalueConversion(Expr);
- return Expr;
-}
-
-/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
-/// do not have a prototype. Arguments that have type float are promoted to
-/// double. All other argument types are converted by UsualUnaryConversions().
-void Sema::DefaultArgumentPromotion(Expr *&Expr) {
- QualType Ty = Expr->getType();
- assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
-
- // If this is a 'float' (CVR qualified or typedef) promote to double.
- if (Ty->isSpecificBuiltinType(BuiltinType::Float))
- return ImpCastExprToType(Expr, Context.DoubleTy,
- CastExpr::CK_FloatingCast);
-
- UsualUnaryConversions(Expr);
-}
-
-/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
-/// will warn if the resulting type is not a POD type, and rejects ObjC
-/// interfaces passed by value. This returns true if the argument type is
-/// completely illegal.
-bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
- FunctionDecl *FDecl) {
- DefaultArgumentPromotion(Expr);
-
- // __builtin_va_start takes the second argument as a "varargs" argument, but
- // it doesn't actually do anything with it. It doesn't need to be non-pod
- // etc.
- if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
- return false;
-
- if (Expr->getType()->isObjCObjectType() &&
- DiagRuntimeBehavior(Expr->getLocStart(),
- PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
- << Expr->getType() << CT))
- return true;
-
- if (!Expr->getType()->isPODType() &&
- DiagRuntimeBehavior(Expr->getLocStart(),
- PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
- << Expr->getType() << CT))
- return true;
-
- return false;
-}
-
-
-/// UsualArithmeticConversions - Performs various conversions that are common to
-/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
-/// routine returns the first non-arithmetic type found. The client is
-/// responsible for emitting appropriate error diagnostics.
-/// FIXME: verify the conversion rules for "complex int" are consistent with
-/// GCC.
-QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
- bool isCompAssign) {
- if (!isCompAssign)
- UsualUnaryConversions(lhsExpr);
-
- UsualUnaryConversions(rhsExpr);
-
- // For conversion purposes, we ignore any qualifiers.
- // For example, "const float" and "float" are equivalent.
- QualType lhs =
- Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
- QualType rhs =
- Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
-
- // If both types are identical, no conversion is needed.
- if (lhs == rhs)
- return lhs;
-
- // If either side is a non-arithmetic type (e.g. a pointer), we are done.
- // The caller can deal with this (e.g. pointer + int).
- if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
- return lhs;
-
- // Perform bitfield promotions.
- QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
- if (!LHSBitfieldPromoteTy.isNull())
- lhs = LHSBitfieldPromoteTy;
- QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
- if (!RHSBitfieldPromoteTy.isNull())
- rhs = RHSBitfieldPromoteTy;
-
- QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
- if (!isCompAssign)
- ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
- ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
- return destType;
-}
-
-//===----------------------------------------------------------------------===//
-// Semantic Analysis for various Expression Types
-//===----------------------------------------------------------------------===//
-
-
-/// ActOnStringLiteral - The specified tokens were lexed as pasted string
-/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
-/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
-/// multiple tokens. However, the common case is that StringToks points to one
-/// string.
-///
-Action::OwningExprResult
-Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
- assert(NumStringToks && "Must have at least one string!");
-
- StringLiteralParser Literal(StringToks, NumStringToks, PP);
- if (Literal.hadError)
- return ExprError();
-
- llvm::SmallVector<SourceLocation, 4> StringTokLocs;
- for (unsigned i = 0; i != NumStringToks; ++i)
- StringTokLocs.push_back(StringToks[i].getLocation());
-
- QualType StrTy = Context.CharTy;
- if (Literal.AnyWide) StrTy = Context.getWCharType();
- if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
-
- // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
- if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
- StrTy.addConst();
-
- // Get an array type for the string, according to C99 6.4.5. This includes
- // the nul terminator character as well as the string length for pascal
- // strings.
- StrTy = Context.getConstantArrayType(StrTy,
- llvm::APInt(32, Literal.GetNumStringChars()+1),
- ArrayType::Normal, 0);
-
- // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
- return Owned(StringLiteral::Create(Context, Literal.GetString(),
- Literal.GetStringLength(),
- Literal.AnyWide, StrTy,
- &StringTokLocs[0],
- StringTokLocs.size()));
-}
-
-/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
-/// CurBlock to VD should cause it to be snapshotted (as we do for auto
-/// variables defined outside the block) or false if this is not needed (e.g.
-/// for values inside the block or for globals).
-///
-/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
-/// up-to-date.
-///
-static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
- ValueDecl *VD) {
- // If the value is defined inside the block, we couldn't snapshot it even if
- // we wanted to.
- if (CurBlock->TheDecl == VD->getDeclContext())
- return false;
-
- // If this is an enum constant or function, it is constant, don't snapshot.
- if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
- return false;
-
- // If this is a reference to an extern, static, or global variable, no need to
- // snapshot it.
- // FIXME: What about 'const' variables in C++?
- if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
- if (!Var->hasLocalStorage())
- return false;
-
- // Blocks that have these can't be constant.
- CurBlock->hasBlockDeclRefExprs = true;
-
- // If we have nested blocks, the decl may be declared in an outer block (in
- // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
- // be defined outside all of the current blocks (in which case the blocks do
- // all get the bit). Walk the nesting chain.
- for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
- BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
-
- if (!NextBlock)
- continue;
-
- // If we found the defining block for the variable, don't mark the block as
- // having a reference outside it.
- if (NextBlock->TheDecl == VD->getDeclContext())
- break;
-
- // Otherwise, the DeclRef from the inner block causes the outer one to need
- // a snapshot as well.
- NextBlock->hasBlockDeclRefExprs = true;
- }
-
- return true;
-}
-
-
-
-/// BuildDeclRefExpr - Build a DeclRefExpr.
-Sema::OwningExprResult
-Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
- const CXXScopeSpec *SS) {
- if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
- Diag(Loc,
- diag::err_auto_variable_cannot_appear_in_own_initializer)
- << D->getDeclName();
- return ExprError();
- }
-
- if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
- if (isa<NonTypeTemplateParmDecl>(VD)) {
- // Non-type template parameters can be referenced anywhere they are
- // visible.
- Ty = Ty.getNonLValueExprType(Context);
- } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
- if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
- if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
- Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
- << D->getIdentifier() << FD->getDeclName();
- Diag(D->getLocation(), diag::note_local_variable_declared_here)
- << D->getIdentifier();
- return ExprError();
- }
- }
- }
- }
-
- MarkDeclarationReferenced(Loc, D);
-
- return Owned(DeclRefExpr::Create(Context,
- SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
- SS? SS->getRange() : SourceRange(),
- D, Loc, Ty));
-}
-
-/// \brief Given a field that represents a member of an anonymous
-/// struct/union, build the path from that field's context to the
-/// actual member.
-///
-/// Construct the sequence of field member references we'll have to
-/// perform to get to the field in the anonymous union/struct. The
-/// list of members is built from the field outward, so traverse it
-/// backwards to go from an object in the current context to the field
-/// we found.
-///
-/// \returns The variable from which the field access should begin,
-/// for an anonymous struct/union that is not a member of another
-/// class. Otherwise, returns NULL.
-VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
- llvm::SmallVectorImpl<FieldDecl *> &Path) {
- assert(Field->getDeclContext()->isRecord() &&
- cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
- && "Field must be stored inside an anonymous struct or union");
-
- Path.push_back(Field);
- VarDecl *BaseObject = 0;
- DeclContext *Ctx = Field->getDeclContext();
- do {
- RecordDecl *Record = cast<RecordDecl>(Ctx);
- ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
- if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
- Path.push_back(AnonField);
- else {
- BaseObject = cast<VarDecl>(AnonObject);
- break;
- }
- Ctx = Ctx->getParent();
- } while (Ctx->isRecord() &&
- cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
-
- return BaseObject;
-}
-
-Sema::OwningExprResult
-Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
- FieldDecl *Field,
- Expr *BaseObjectExpr,
- SourceLocation OpLoc) {
- llvm::SmallVector<FieldDecl *, 4> AnonFields;
- VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
- AnonFields);
-
- // Build the expression that refers to the base object, from
- // which we will build a sequence of member references to each
- // of the anonymous union objects and, eventually, the field we
- // found via name lookup.
- bool BaseObjectIsPointer = false;
- Qualifiers BaseQuals;
- if (BaseObject) {
- // BaseObject is an anonymous struct/union variable (and is,
- // therefore, not part of another non-anonymous record).
- MarkDeclarationReferenced(Loc, BaseObject);
- BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
- SourceLocation());
- BaseQuals
- = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
- } else if (BaseObjectExpr) {
- // The caller provided the base object expression. Determine
- // whether its a pointer and whether it adds any qualifiers to the
- // anonymous struct/union fields we're looking into.
- QualType ObjectType = BaseObjectExpr->getType();
- if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
- BaseObjectIsPointer = true;
- ObjectType = ObjectPtr->getPointeeType();
- }
- BaseQuals
- = Context.getCanonicalType(ObjectType).getQualifiers();
- } else {
- // We've found a member of an anonymous struct/union that is
- // inside a non-anonymous struct/union, so in a well-formed
- // program our base object expression is "this".
- DeclContext *DC = getFunctionLevelDeclContext();
- if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
- if (!MD->isStatic()) {
- QualType AnonFieldType
- = Context.getTagDeclType(
- cast<RecordDecl>(AnonFields.back()->getDeclContext()));
- QualType ThisType = Context.getTagDeclType(MD->getParent());
- if ((Context.getCanonicalType(AnonFieldType)
- == Context.getCanonicalType(ThisType)) ||
- IsDerivedFrom(ThisType, AnonFieldType)) {
- // Our base object expression is "this".
- BaseObjectExpr = new (Context) CXXThisExpr(Loc,
- MD->getThisType(Context),
- /*isImplicit=*/true);
- BaseObjectIsPointer = true;
- }
- } else {
- return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
- << Field->getDeclName());
- }
- BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
- }
-
- if (!BaseObjectExpr)
- return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
- << Field->getDeclName());
- }
-
- // Build the implicit member references to the field of the
- // anonymous struct/union.
- Expr *Result = BaseObjectExpr;
- Qualifiers ResultQuals = BaseQuals;
- for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
- FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
- FI != FIEnd; ++FI) {
- QualType MemberType = (*FI)->getType();
- Qualifiers MemberTypeQuals =
- Context.getCanonicalType(MemberType).getQualifiers();
-
- // CVR attributes from the base are picked up by members,
- // except that 'mutable' members don't pick up 'const'.
- if ((*FI)->isMutable())
- ResultQuals.removeConst();
-
- // GC attributes are never picked up by members.
- ResultQuals.removeObjCGCAttr();
-
- // TR 18037 does not allow fields to be declared with address spaces.
- assert(!MemberTypeQuals.hasAddressSpace());
-
- Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
- if (NewQuals != MemberTypeQuals)
- MemberType = Context.getQualifiedType(MemberType, NewQuals);
-
- MarkDeclarationReferenced(Loc, *FI);
- PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
- // FIXME: Might this end up being a qualified name?
- Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
- OpLoc, MemberType);
- BaseObjectIsPointer = false;
- ResultQuals = NewQuals;
- }
-
- return Owned(Result);
-}
-
-/// Decomposes the given name into a DeclarationName, its location, and
-/// possibly a list of template arguments.
-///
-/// If this produces template arguments, it is permitted to call
-/// DecomposeTemplateName.
-///
-/// This actually loses a lot of source location information for
-/// non-standard name kinds; we should consider preserving that in
-/// some way.
-static void DecomposeUnqualifiedId(Sema &SemaRef,
- const UnqualifiedId &Id,
- TemplateArgumentListInfo &Buffer,
- DeclarationName &Name,
- SourceLocation &NameLoc,
- const TemplateArgumentListInfo *&TemplateArgs) {
- if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
- Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
- Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
-
- ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
- Id.TemplateId->getTemplateArgs(),
- Id.TemplateId->NumArgs);
- SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
- TemplateArgsPtr.release();
-
- TemplateName TName =
- Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
-
- Name = SemaRef.Context.getNameForTemplate(TName);
- NameLoc = Id.TemplateId->TemplateNameLoc;
- TemplateArgs = &Buffer;
- } else {
- Name = SemaRef.GetNameFromUnqualifiedId(Id);
- NameLoc = Id.StartLocation;
- TemplateArgs = 0;
- }
-}
-
-/// Determines whether the given record is "fully-formed" at the given
-/// location, i.e. whether a qualified lookup into it is assured of
-/// getting consistent results already.
-static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
- if (!Record->hasDefinition())
- return false;
-
- for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
- E = Record->bases_end(); I != E; ++I) {
- CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
- CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
- if (!BaseRT) return false;
-
- CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
- if (!BaseRecord->hasDefinition() ||
- !IsFullyFormedScope(SemaRef, BaseRecord))
- return false;
- }
-
- return true;
-}
-
-/// Determines whether we can lookup this id-expression now or whether
-/// we have to wait until template instantiation is complete.
-static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
- DeclContext *DC = SemaRef.computeDeclContext(SS, false);
-
- // If the qualifier scope isn't computable, it's definitely dependent.
- if (!DC) return true;
-
- // If the qualifier scope doesn't name a record, we can always look into it.
- if (!isa<CXXRecordDecl>(DC)) return false;
-
- // We can't look into record types unless they're fully-formed.
- if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
-
- return false;
-}
-
-/// Determines if the given class is provably not derived from all of
-/// the prospective base classes.
-static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
- CXXRecordDecl *Record,
- const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
- if (Bases.count(Record->getCanonicalDecl()))
- return false;
-
- RecordDecl *RD = Record->getDefinition();
- if (!RD) return false;
- Record = cast<CXXRecordDecl>(RD);
-
- for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
- E = Record->bases_end(); I != E; ++I) {
- CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
- CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
- if (!BaseRT) return false;
-
- CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
- if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
- return false;
- }
-
- return true;
-}
-
-enum IMAKind {
- /// The reference is definitely not an instance member access.
- IMA_Static,
-
- /// The reference may be an implicit instance member access.
- IMA_Mixed,
-
- /// The reference may be to an instance member, but it is invalid if
- /// so, because the context is not an instance method.
- IMA_Mixed_StaticContext,
-
- /// The reference may be to an instance member, but it is invalid if
- /// so, because the context is from an unrelated class.
- IMA_Mixed_Unrelated,
-
- /// The reference is definitely an implicit instance member access.
- IMA_Instance,
-
- /// The reference may be to an unresolved using declaration.
- IMA_Unresolved,
-
- /// The reference may be to an unresolved using declaration and the
- /// context is not an instance method.
- IMA_Unresolved_StaticContext,
-
- /// The reference is to a member of an anonymous structure in a
- /// non-class context.
- IMA_AnonymousMember,
-
- /// All possible referrents are instance members and the current
- /// context is not an instance method.
- IMA_Error_StaticContext,
-
- /// All possible referrents are instance members of an unrelated
- /// class.
- IMA_Error_Unrelated
-};
-
-/// The given lookup names class member(s) and is not being used for
-/// an address-of-member expression. Classify the type of access
-/// according to whether it's possible that this reference names an
-/// instance member. This is best-effort; it is okay to
-/// conservatively answer "yes", in which case some errors will simply
-/// not be caught until template-instantiation.
-static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
- const LookupResult &R) {
- assert(!R.empty() && (*R.begin())->isCXXClassMember());
-
- DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
- bool isStaticContext =
- (!isa<CXXMethodDecl>(DC) ||
- cast<CXXMethodDecl>(DC)->isStatic());
-
- if (R.isUnresolvableResult())
- return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
-
- // Collect all the declaring classes of instance members we find.
- bool hasNonInstance = false;
- llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
- NamedDecl *D = *I;
- if (D->isCXXInstanceMember()) {
- CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
-
- // If this is a member of an anonymous record, move out to the
- // innermost non-anonymous struct or union. If there isn't one,
- // that's a special case.
- while (R->isAnonymousStructOrUnion()) {
- R = dyn_cast<CXXRecordDecl>(R->getParent());
- if (!R) return IMA_AnonymousMember;
- }
- Classes.insert(R->getCanonicalDecl());
- }
- else
- hasNonInstance = true;
- }
-
- // If we didn't find any instance members, it can't be an implicit
- // member reference.
- if (Classes.empty())
- return IMA_Static;
-
- // If the current context is not an instance method, it can't be
- // an implicit member reference.
- if (isStaticContext)
- return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
-
- // If we can prove that the current context is unrelated to all the
- // declaring classes, it can't be an implicit member reference (in
- // which case it's an error if any of those members are selected).
- if (IsProvablyNotDerivedFrom(SemaRef,
- cast<CXXMethodDecl>(DC)->getParent(),
- Classes))
- return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
-
- return (hasNonInstance ? IMA_Mixed : IMA_Instance);
-}
-
-/// Diagnose a reference to a field with no object available.
-static void DiagnoseInstanceReference(Sema &SemaRef,
- const CXXScopeSpec &SS,
- const LookupResult &R) {
- SourceLocation Loc = R.getNameLoc();
- SourceRange Range(Loc);
- if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
-
- if (R.getAsSingle<FieldDecl>()) {
- if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
- if (MD->isStatic()) {
- // "invalid use of member 'x' in static member function"
- SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
- << Range << R.getLookupName();
- return;
- }
- }
-
- SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
- << R.getLookupName() << Range;
- return;
- }
-
- SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
-}
-
-/// Diagnose an empty lookup.
-///
-/// \return false if new lookup candidates were found
-bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
- CorrectTypoContext CTC) {
- DeclarationName Name = R.getLookupName();
-
- unsigned diagnostic = diag::err_undeclared_var_use;
- unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
- if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
- Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
- Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
- diagnostic = diag::err_undeclared_use;
- diagnostic_suggest = diag::err_undeclared_use_suggest;
- }
-
- // If the original lookup was an unqualified lookup, fake an
- // unqualified lookup. This is useful when (for example) the
- // original lookup would not have found something because it was a
- // dependent name.
- for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
- DC; DC = DC->getParent()) {
- if (isa<CXXRecordDecl>(DC)) {
- LookupQualifiedName(R, DC);
-
- if (!R.empty()) {
- // Don't give errors about ambiguities in this lookup.
- R.suppressDiagnostics();
-
- CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
- bool isInstance = CurMethod &&
- CurMethod->isInstance() &&
- DC == CurMethod->getParent();
-
- // Give a code modification hint to insert 'this->'.
- // TODO: fixit for inserting 'Base<T>::' in the other cases.
- // Actually quite difficult!
- if (isInstance) {
- Diag(R.getNameLoc(), diagnostic) << Name
- << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
-
- UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
- CallsUndergoingInstantiation.back()->getCallee());
- CXXMethodDecl *DepMethod = cast<CXXMethodDecl>(
- CurMethod->getInstantiatedFromMemberFunction());
- QualType DepThisType = DepMethod->getThisType(Context);
- CXXThisExpr *DepThis = new (Context) CXXThisExpr(R.getNameLoc(),
- DepThisType, false);
- TemplateArgumentListInfo TList;
- if (ULE->hasExplicitTemplateArgs())
- ULE->copyTemplateArgumentsInto(TList);
- CXXDependentScopeMemberExpr *DepExpr =
- CXXDependentScopeMemberExpr::Create(
- Context, DepThis, DepThisType, true, SourceLocation(),
- ULE->getQualifier(), ULE->getQualifierRange(), NULL, Name,
- R.getNameLoc(), &TList);
- CallsUndergoingInstantiation.back()->setCallee(DepExpr);
- } else {
- Diag(R.getNameLoc(), diagnostic) << Name;
- }
-
- // Do we really want to note all of these?
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
- Diag((*I)->getLocation(), diag::note_dependent_var_use);
-
- // Tell the callee to try to recover.
- return false;
- }
- }
- }
-
- // We didn't find anything, so try to correct for a typo.
- DeclarationName Corrected;
- if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
- if (!R.empty()) {
- if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
- if (SS.isEmpty())
- Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
- << FixItHint::CreateReplacement(R.getNameLoc(),
- R.getLookupName().getAsString());
- else
- Diag(R.getNameLoc(), diag::err_no_member_suggest)
- << Name << computeDeclContext(SS, false) << R.getLookupName()
- << SS.getRange()
- << FixItHint::CreateReplacement(R.getNameLoc(),
- R.getLookupName().getAsString());
- if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
- Diag(ND->getLocation(), diag::note_previous_decl)
- << ND->getDeclName();
-
- // Tell the callee to try to recover.
- return false;
- }
-
- if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
- // FIXME: If we ended up with a typo for a type name or
- // Objective-C class name, we're in trouble because the parser
- // is in the wrong place to recover. Suggest the typo
- // correction, but don't make it a fix-it since we're not going
- // to recover well anyway.
- if (SS.isEmpty())
- Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
- else
- Diag(R.getNameLoc(), diag::err_no_member_suggest)
- << Name << computeDeclContext(SS, false) << R.getLookupName()
- << SS.getRange();
-
- // Don't try to recover; it won't work.
- return true;
- }
- } else {
- // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
- // because we aren't able to recover.
- if (SS.isEmpty())
- Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
- else
- Diag(R.getNameLoc(), diag::err_no_member_suggest)
- << Name << computeDeclContext(SS, false) << Corrected
- << SS.getRange();
- return true;
- }
- R.clear();
- }
-
- // Emit a special diagnostic for failed member lookups.
- // FIXME: computing the declaration context might fail here (?)
- if (!SS.isEmpty()) {
- Diag(R.getNameLoc(), diag::err_no_member)
- << Name << computeDeclContext(SS, false)
- << SS.getRange();
- return true;
- }
-
- // Give up, we can't recover.
- Diag(R.getNameLoc(), diagnostic) << Name;
- return true;
-}
-
-static ObjCPropertyDecl *OkToSynthesizeProvisionalIvar(Sema &SemaRef,
- IdentifierInfo *II,
- SourceLocation NameLoc) {
- ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
- ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
- if (!IDecl)
- return 0;
- ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
- if (!ClassImpDecl)
- return 0;
- ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
- if (!property)
- return 0;
- if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
- if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
- return 0;
- return property;
-}
-
-static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
- IdentifierInfo *II,
- SourceLocation NameLoc) {
- ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
- ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
- if (!IDecl)
- return 0;
- ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
- if (!ClassImpDecl)
- return 0;
- bool DynamicImplSeen = false;
- ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
- if (!property)
- return 0;
- if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
- DynamicImplSeen =
- (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
- if (!DynamicImplSeen) {
- QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
- ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
- NameLoc,
- II, PropType, /*Dinfo=*/0,
- ObjCIvarDecl::Protected,
- (Expr *)0, true);
- ClassImpDecl->addDecl(Ivar);
- IDecl->makeDeclVisibleInContext(Ivar, false);
- property->setPropertyIvarDecl(Ivar);
- return Ivar;
- }
- return 0;
-}
-
-Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
- CXXScopeSpec &SS,
- UnqualifiedId &Id,
- bool HasTrailingLParen,
- bool isAddressOfOperand) {
- assert(!(isAddressOfOperand && HasTrailingLParen) &&
- "cannot be direct & operand and have a trailing lparen");
-
- if (SS.isInvalid())
- return ExprError();
-
- TemplateArgumentListInfo TemplateArgsBuffer;
-
- // Decompose the UnqualifiedId into the following data.
- DeclarationName Name;
- SourceLocation NameLoc;
- const TemplateArgumentListInfo *TemplateArgs;
- DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
- Name, NameLoc, TemplateArgs);
-
- IdentifierInfo *II = Name.getAsIdentifierInfo();
-
- // C++ [temp.dep.expr]p3:
- // An id-expression is type-dependent if it contains:
- // -- an identifier that was declared with a dependent type,
- // (note: handled after lookup)
- // -- a template-id that is dependent,
- // (note: handled in BuildTemplateIdExpr)
- // -- a conversion-function-id that specifies a dependent type,
- // -- a nested-name-specifier that contains a class-name that
- // names a dependent type.
- // Determine whether this is a member of an unknown specialization;
- // we need to handle these differently.
- if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
- Name.getCXXNameType()->isDependentType()) ||
- (SS.isSet() && IsDependentIdExpression(*this, SS))) {
- return ActOnDependentIdExpression(SS, Name, NameLoc,
- isAddressOfOperand,
- TemplateArgs);
- }
- bool IvarLookupFollowUp = false;
- // Perform the required lookup.
- LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
- if (TemplateArgs) {
- // Lookup the template name again to correctly establish the context in
- // which it was found. This is really unfortunate as we already did the
- // lookup to determine that it was a template name in the first place. If
- // this becomes a performance hit, we can work harder to preserve those
- // results until we get here but it's likely not worth it.
- bool MemberOfUnknownSpecialization;
- LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
- MemberOfUnknownSpecialization);
- } else {
- IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
- LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
-
- // If this reference is in an Objective-C method, then we need to do
- // some special Objective-C lookup, too.
- if (IvarLookupFollowUp) {
- OwningExprResult E(LookupInObjCMethod(R, S, II, true));
- if (E.isInvalid())
- return ExprError();
-
- Expr *Ex = E.takeAs<Expr>();
- if (Ex) return Owned(Ex);
- // Synthesize ivars lazily
- if (getLangOptions().ObjCNonFragileABI2) {
- if (SynthesizeProvisionalIvar(*this, II, NameLoc))
- return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
- isAddressOfOperand);
- }
- }
- }
-
- if (R.isAmbiguous())
- return ExprError();
-
- // Determine whether this name might be a candidate for
- // argument-dependent lookup.
- bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
-
- if (R.empty() && !ADL) {
- // Otherwise, this could be an implicitly declared function reference (legal
- // in C90, extension in C99, forbidden in C++).
- if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
- NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
- if (D) R.addDecl(D);
- }
-
- // If this name wasn't predeclared and if this is not a function
- // call, diagnose the problem.
- if (R.empty()) {
- if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
- return ExprError();
-
- assert(!R.empty() &&
- "DiagnoseEmptyLookup returned false but added no results");
-
- // If we found an Objective-C instance variable, let
- // LookupInObjCMethod build the appropriate expression to
- // reference the ivar.
- if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
- R.clear();
- OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
- assert(E.isInvalid() || E.get());
- return move(E);
- }
- }
- }
-
- // This is guaranteed from this point on.
- assert(!R.empty() || ADL);
-
- if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
- if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
- !getLangOptions().ObjCNonFragileABI2 &&
- Var->isFileVarDecl()) {
- ObjCPropertyDecl *Property =
- OkToSynthesizeProvisionalIvar(*this, II, NameLoc);
- if (Property) {
- Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
- Diag(Property->getLocation(), diag::note_property_declare);
- }
- }
-
- // Warn about constructs like:
- // if (void *X = foo()) { ... } else { X }.
- // In the else block, the pointer is always false.
- if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
- Scope *CheckS = S;
- while (CheckS && CheckS->getControlParent()) {
- if ((CheckS->getFlags() & Scope::ElseScope) &&
- CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
- ExprError(Diag(NameLoc, diag::warn_value_always_zero)
- << Var->getDeclName()
- << (Var->getType()->isPointerType() ? 2 :
- Var->getType()->isBooleanType() ? 1 : 0));
- break;
- }
-
- // Move to the parent of this scope.
- CheckS = CheckS->getParent();
- }
- }
- } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
- if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
- // C99 DR 316 says that, if a function type comes from a
- // function definition (without a prototype), that type is only
- // used for checking compatibility. Therefore, when referencing
- // the function, we pretend that we don't have the full function
- // type.
- if (DiagnoseUseOfDecl(Func, NameLoc))
- return ExprError();
-
- QualType T = Func->getType();
- QualType NoProtoType = T;
- if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
- NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
- Proto->getExtInfo());
- return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
- }
- }
-
- // Check whether this might be a C++ implicit instance member access.
- // C++ [expr.prim.general]p6:
- // Within the definition of a non-static member function, an
- // identifier that names a non-static member is transformed to a
- // class member access expression.
- // But note that &SomeClass::foo is grammatically distinct, even
- // though we don't parse it that way.
- if (!R.empty() && (*R.begin())->isCXXClassMember()) {
- bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
- if (!isAbstractMemberPointer)
- return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
- }
-
- if (TemplateArgs)
- return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
-
- return BuildDeclarationNameExpr(SS, R, ADL);
-}
-
-/// Builds an expression which might be an implicit member expression.
-Sema::OwningExprResult
-Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
- LookupResult &R,
- const TemplateArgumentListInfo *TemplateArgs) {
- switch (ClassifyImplicitMemberAccess(*this, R)) {
- case IMA_Instance:
- return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
-
- case IMA_AnonymousMember:
- assert(R.isSingleResult());
- return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
- R.getAsSingle<FieldDecl>());
-
- case IMA_Mixed:
- case IMA_Mixed_Unrelated:
- case IMA_Unresolved:
- return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
-
- case IMA_Static:
- case IMA_Mixed_StaticContext:
- case IMA_Unresolved_StaticContext:
- if (TemplateArgs)
- return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
- return BuildDeclarationNameExpr(SS, R, false);
-
- case IMA_Error_StaticContext:
- case IMA_Error_Unrelated:
- DiagnoseInstanceReference(*this, SS, R);
- return ExprError();
- }
-
- llvm_unreachable("unexpected instance member access kind");
- return ExprError();
-}
-
-/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
-/// declaration name, generally during template instantiation.
-/// There's a large number of things which don't need to be done along
-/// this path.
-Sema::OwningExprResult
-Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
- DeclarationName Name,
- SourceLocation NameLoc) {
- DeclContext *DC;
- if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
- return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
-
- if (RequireCompleteDeclContext(SS, DC))
- return ExprError();
-
- LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
- LookupQualifiedName(R, DC);
-
- if (R.isAmbiguous())
- return ExprError();
-
- if (R.empty()) {
- Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
- return ExprError();
- }
-
- return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
-}
-
-/// LookupInObjCMethod - The parser has read a name in, and Sema has
-/// detected that we're currently inside an ObjC method. Perform some
-/// additional lookup.
-///
-/// Ideally, most of this would be done by lookup, but there's
-/// actually quite a lot of extra work involved.
-///
-/// Returns a null sentinel to indicate trivial success.
-Sema::OwningExprResult
-Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
- IdentifierInfo *II, bool AllowBuiltinCreation) {
- SourceLocation Loc = Lookup.getNameLoc();
- ObjCMethodDecl *CurMethod = getCurMethodDecl();
-
- // There are two cases to handle here. 1) scoped lookup could have failed,
- // in which case we should look for an ivar. 2) scoped lookup could have
- // found a decl, but that decl is outside the current instance method (i.e.
- // a global variable). In these two cases, we do a lookup for an ivar with
- // this name, if the lookup sucedes, we replace it our current decl.
-
- // If we're in a class method, we don't normally want to look for
- // ivars. But if we don't find anything else, and there's an
- // ivar, that's an error.
- bool IsClassMethod = CurMethod->isClassMethod();
-
- bool LookForIvars;
- if (Lookup.empty())
- LookForIvars = true;
- else if (IsClassMethod)
- LookForIvars = false;
- else
- LookForIvars = (Lookup.isSingleResult() &&
- Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
- ObjCInterfaceDecl *IFace = 0;
- if (LookForIvars) {
- IFace = CurMethod->getClassInterface();
- ObjCInterfaceDecl *ClassDeclared;
- if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
- // Diagnose using an ivar in a class method.
- if (IsClassMethod)
- return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
- << IV->getDeclName());
-
- // If we're referencing an invalid decl, just return this as a silent
- // error node. The error diagnostic was already emitted on the decl.
- if (IV->isInvalidDecl())
- return ExprError();
-
- // Check if referencing a field with __attribute__((deprecated)).
- if (DiagnoseUseOfDecl(IV, Loc))
- return ExprError();
-
- // Diagnose the use of an ivar outside of the declaring class.
- if (IV->getAccessControl() == ObjCIvarDecl::Private &&
- ClassDeclared != IFace)
- Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
-
- // FIXME: This should use a new expr for a direct reference, don't
- // turn this into Self->ivar, just return a BareIVarExpr or something.
- IdentifierInfo &II = Context.Idents.get("self");
- UnqualifiedId SelfName;
- SelfName.setIdentifier(&II, SourceLocation());
- CXXScopeSpec SelfScopeSpec;
- OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
- SelfName, false, false);
- MarkDeclarationReferenced(Loc, IV);
- return Owned(new (Context)
- ObjCIvarRefExpr(IV, IV->getType(), Loc,
- SelfExpr.takeAs<Expr>(), true, true));
- }
- } else if (CurMethod->isInstanceMethod()) {
- // We should warn if a local variable hides an ivar.
- ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
- ObjCInterfaceDecl *ClassDeclared;
- if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
- if (IV->getAccessControl() != ObjCIvarDecl::Private ||
- IFace == ClassDeclared)
- Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
- }
- }
-
- if (Lookup.empty() && II && AllowBuiltinCreation) {
- // FIXME. Consolidate this with similar code in LookupName.
- if (unsigned BuiltinID = II->getBuiltinID()) {
- if (!(getLangOptions().CPlusPlus &&
- Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
- NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
- S, Lookup.isForRedeclaration(),
- Lookup.getNameLoc());
- if (D) Lookup.addDecl(D);
- }
- }
- }
- // Sentinel value saying that we didn't do anything special.
- return Owned((Expr*) 0);
-}
-
-/// \brief Cast a base object to a member's actual type.
-///
-/// Logically this happens in three phases:
-///
-/// * First we cast from the base type to the naming class.
-/// The naming class is the class into which we were looking
-/// when we found the member; it's the qualifier type if a
-/// qualifier was provided, and otherwise it's the base type.
-///
-/// * Next we cast from the naming class to the declaring class.
-/// If the member we found was brought into a class's scope by
-/// a using declaration, this is that class; otherwise it's
-/// the class declaring the member.
-///
-/// * Finally we cast from the declaring class to the "true"
-/// declaring class of the member. This conversion does not
-/// obey access control.
-bool
-Sema::PerformObjectMemberConversion(Expr *&From,
- NestedNameSpecifier *Qualifier,
- NamedDecl *FoundDecl,
- NamedDecl *Member) {
- CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
- if (!RD)
- return false;
-
- QualType DestRecordType;
- QualType DestType;
- QualType FromRecordType;
- QualType FromType = From->getType();
- bool PointerConversions = false;
- if (isa<FieldDecl>(Member)) {
- DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
-
- if (FromType->getAs<PointerType>()) {
- DestType = Context.getPointerType(DestRecordType);
- FromRecordType = FromType->getPointeeType();
- PointerConversions = true;
- } else {
- DestType = DestRecordType;
- FromRecordType = FromType;
- }
- } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
- if (Method->isStatic())
- return false;
-
- DestType = Method->getThisType(Context);
- DestRecordType = DestType->getPointeeType();
-
- if (FromType->getAs<PointerType>()) {
- FromRecordType = FromType->getPointeeType();
- PointerConversions = true;
- } else {
- FromRecordType = FromType;
- DestType = DestRecordType;
- }
- } else {
- // No conversion necessary.
- return false;
- }
-
- if (DestType->isDependentType() || FromType->isDependentType())
- return false;
-
- // If the unqualified types are the same, no conversion is necessary.
- if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
- return false;
-
- SourceRange FromRange = From->getSourceRange();
- SourceLocation FromLoc = FromRange.getBegin();
-
- ImplicitCastExpr::ResultCategory Category = CastCategory(From);
-
- // C++ [class.member.lookup]p8:
- // [...] Ambiguities can often be resolved by qualifying a name with its
- // class name.
- //
- // If the member was a qualified name and the qualified referred to a
- // specific base subobject type, we'll cast to that intermediate type
- // first and then to the object in which the member is declared. That allows
- // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
- //
- // class Base { public: int x; };
- // class Derived1 : public Base { };
- // class Derived2 : public Base { };
- // class VeryDerived : public Derived1, public Derived2 { void f(); };
- //
- // void VeryDerived::f() {
- // x = 17; // error: ambiguous base subobjects
- // Derived1::x = 17; // okay, pick the Base subobject of Derived1
- // }
- if (Qualifier) {
- QualType QType = QualType(Qualifier->getAsType(), 0);
- assert(!QType.isNull() && "lookup done with dependent qualifier?");
- assert(QType->isRecordType() && "lookup done with non-record type");
-
- QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
-
- // In C++98, the qualifier type doesn't actually have to be a base
- // type of the object type, in which case we just ignore it.
- // Otherwise build the appropriate casts.
- if (IsDerivedFrom(FromRecordType, QRecordType)) {
- CXXBaseSpecifierArray BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
- FromLoc, FromRange, &BasePath))
- return true;
-
- if (PointerConversions)
- QType = Context.getPointerType(QType);
- ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
- Category, BasePath);
-
- FromType = QType;
- FromRecordType = QRecordType;
-
- // If the qualifier type was the same as the destination type,
- // we're done.
- if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
- return false;
- }
- }
-
- bool IgnoreAccess = false;
-
- // If we actually found the member through a using declaration, cast
- // down to the using declaration's type.
- //
- // Pointer equality is fine here because only one declaration of a
- // class ever has member declarations.
- if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
- assert(isa<UsingShadowDecl>(FoundDecl));
- QualType URecordType = Context.getTypeDeclType(
- cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
-
- // We only need to do this if the naming-class to declaring-class
- // conversion is non-trivial.
- if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
- assert(IsDerivedFrom(FromRecordType, URecordType));
- CXXBaseSpecifierArray BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
- FromLoc, FromRange, &BasePath))
- return true;
-
- QualType UType = URecordType;
- if (PointerConversions)
- UType = Context.getPointerType(UType);
- ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
- Category, BasePath);
- FromType = UType;
- FromRecordType = URecordType;
- }
-
- // We don't do access control for the conversion from the
- // declaring class to the true declaring class.
- IgnoreAccess = true;
- }
-
- CXXBaseSpecifierArray BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
- FromLoc, FromRange, &BasePath,
- IgnoreAccess))
- return true;
-
- ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
- Category, BasePath);
- return false;
-}
-
-/// \brief Build a MemberExpr AST node.
-static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
- const CXXScopeSpec &SS, ValueDecl *Member,
- DeclAccessPair FoundDecl,
- SourceLocation Loc, QualType Ty,
- const TemplateArgumentListInfo *TemplateArgs = 0) {
- NestedNameSpecifier *Qualifier = 0;
- SourceRange QualifierRange;
- if (SS.isSet()) {
- Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
- QualifierRange = SS.getRange();
- }
-
- return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
- Member, FoundDecl, Loc, TemplateArgs, Ty);
-}
-
-/// Builds an implicit member access expression. The current context
-/// is known to be an instance method, and the given unqualified lookup
-/// set is known to contain only instance members, at least one of which
-/// is from an appropriate type.
-Sema::OwningExprResult
-Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
- LookupResult &R,
- const TemplateArgumentListInfo *TemplateArgs,
- bool IsKnownInstance) {
- assert(!R.empty() && !R.isAmbiguous());
-
- SourceLocation Loc = R.getNameLoc();
-
- // We may have found a field within an anonymous union or struct
- // (C++ [class.union]).
- // FIXME: This needs to happen post-isImplicitMemberReference?
- // FIXME: template-ids inside anonymous structs?
- if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
- if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
- return BuildAnonymousStructUnionMemberReference(Loc, FD);
-
- // If this is known to be an instance access, go ahead and build a
- // 'this' expression now.
- DeclContext *DC = getFunctionLevelDeclContext();
- QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
- Expr *This = 0; // null signifies implicit access
- if (IsKnownInstance) {
- SourceLocation Loc = R.getNameLoc();
- if (SS.getRange().isValid())
- Loc = SS.getRange().getBegin();
- This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
- }
-
- return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
- /*OpLoc*/ SourceLocation(),
- /*IsArrow*/ true,
- SS,
- /*FirstQualifierInScope*/ 0,
- R, TemplateArgs);
-}
-
-bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
- const LookupResult &R,
- bool HasTrailingLParen) {
- // Only when used directly as the postfix-expression of a call.
- if (!HasTrailingLParen)
- return false;
-
- // Never if a scope specifier was provided.
- if (SS.isSet())
- return false;
-
- // Only in C++ or ObjC++.
- if (!getLangOptions().CPlusPlus)
- return false;
-
- // Turn off ADL when we find certain kinds of declarations during
- // normal lookup:
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
- NamedDecl *D = *I;
-
- // C++0x [basic.lookup.argdep]p3:
- // -- a declaration of a class member
- // Since using decls preserve this property, we check this on the
- // original decl.
- if (D->isCXXClassMember())
- return false;
-
- // C++0x [basic.lookup.argdep]p3:
- // -- a block-scope function declaration that is not a
- // using-declaration
- // NOTE: we also trigger this for function templates (in fact, we
- // don't check the decl type at all, since all other decl types
- // turn off ADL anyway).
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- else if (D->getDeclContext()->isFunctionOrMethod())
- return false;
-
- // C++0x [basic.lookup.argdep]p3:
- // -- a declaration that is neither a function or a function
- // template
- // And also for builtin functions.
- if (isa<FunctionDecl>(D)) {
- FunctionDecl *FDecl = cast<FunctionDecl>(D);
-
- // But also builtin functions.
- if (FDecl->getBuiltinID() && FDecl->isImplicit())
- return false;
- } else if (!isa<FunctionTemplateDecl>(D))
- return false;
- }
-
- return true;
-}
-
-
-/// Diagnoses obvious problems with the use of the given declaration
-/// as an expression. This is only actually called for lookups that
-/// were not overloaded, and it doesn't promise that the declaration
-/// will in fact be used.
-static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
- if (isa<TypedefDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
- return true;
- }
-
- if (isa<ObjCInterfaceDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
- return true;
- }
-
- if (isa<NamespaceDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
- return true;
- }
-
- return false;
-}
-
-Sema::OwningExprResult
-Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
- LookupResult &R,
- bool NeedsADL) {
- // If this is a single, fully-resolved result and we don't need ADL,
- // just build an ordinary singleton decl ref.
- if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
- return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
-
- // We only need to check the declaration if there's exactly one
- // result, because in the overloaded case the results can only be
- // functions and function templates.
- if (R.isSingleResult() &&
- CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
- return ExprError();
-
- // Otherwise, just build an unresolved lookup expression. Suppress
- // any lookup-related diagnostics; we'll hash these out later, when
- // we've picked a target.
- R.suppressDiagnostics();
-
- bool Dependent
- = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
- UnresolvedLookupExpr *ULE
- = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
- (NestedNameSpecifier*) SS.getScopeRep(),
- SS.getRange(),
- R.getLookupName(), R.getNameLoc(),
- NeedsADL, R.isOverloadedResult(),
- R.begin(), R.end());
-
- return Owned(ULE);
-}
-
-
-/// \brief Complete semantic analysis for a reference to the given declaration.
-Sema::OwningExprResult
-Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
- SourceLocation Loc, NamedDecl *D) {
- assert(D && "Cannot refer to a NULL declaration");
- assert(!isa<FunctionTemplateDecl>(D) &&
- "Cannot refer unambiguously to a function template");
-
- if (CheckDeclInExpr(*this, Loc, D))
- return ExprError();
-
- if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
- // Specifically diagnose references to class templates that are missing
- // a template argument list.
- Diag(Loc, diag::err_template_decl_ref)
- << Template << SS.getRange();
- Diag(Template->getLocation(), diag::note_template_decl_here);
- return ExprError();
- }
-
- // Make sure that we're referring to a value.
- ValueDecl *VD = dyn_cast<ValueDecl>(D);
- if (!VD) {
- Diag(Loc, diag::err_ref_non_value)
- << D << SS.getRange();
- Diag(D->getLocation(), diag::note_declared_at);
- return ExprError();
- }
-
- // Check whether this declaration can be used. Note that we suppress
- // this check when we're going to perform argument-dependent lookup
- // on this function name, because this might not be the function
- // that overload resolution actually selects.
- if (DiagnoseUseOfDecl(VD, Loc))
- return ExprError();
-
- // Only create DeclRefExpr's for valid Decl's.
- if (VD->isInvalidDecl())
- return ExprError();
-
- // If the identifier reference is inside a block, and it refers to a value
- // that is outside the block, create a BlockDeclRefExpr instead of a
- // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
- // the block is formed.
- //
- // We do not do this for things like enum constants, global variables, etc,
- // as they do not get snapshotted.
- //
- if (getCurBlock() &&
- ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
- if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
- Diag(Loc, diag::err_ref_vm_type);
- Diag(D->getLocation(), diag::note_declared_at);
- return ExprError();
- }
-
- if (VD->getType()->isArrayType()) {
- Diag(Loc, diag::err_ref_array_type);
- Diag(D->getLocation(), diag::note_declared_at);
- return ExprError();
- }
-
- MarkDeclarationReferenced(Loc, VD);
- QualType ExprTy = VD->getType().getNonReferenceType();
- // The BlocksAttr indicates the variable is bound by-reference.
- if (VD->getAttr<BlocksAttr>())
- return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
- // This is to record that a 'const' was actually synthesize and added.
- bool constAdded = !ExprTy.isConstQualified();
- // Variable will be bound by-copy, make it const within the closure.
-
- ExprTy.addConst();
- QualType T = VD->getType();
- BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD,
- ExprTy, Loc, false,
- constAdded);
- if (getLangOptions().CPlusPlus) {
- if (!T->isDependentType() && !T->isReferenceType()) {
- Expr *E = new (Context)
- DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
- SourceLocation());
-
- OwningExprResult Res = PerformCopyInitialization(
- InitializedEntity::InitializeBlock(VD->getLocation(),
- T, false),
- SourceLocation(),
- Owned(E));
- if (!Res.isInvalid()) {
- Res = MaybeCreateCXXExprWithTemporaries(move(Res));
- Expr *Init = Res.takeAs<Expr>();
- BDRE->setCopyConstructorExpr(Init);
- }
- }
- }
- return Owned(BDRE);
- }
- // If this reference is not in a block or if the referenced variable is
- // within the block, create a normal DeclRefExpr.
-
- return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
-}
-
-Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
- tok::TokenKind Kind) {
- PredefinedExpr::IdentType IT;
-
- switch (Kind) {
- default: assert(0 && "Unknown simple primary expr!");
- case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
- case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
- case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
- }
-
- // Pre-defined identifiers are of type char[x], where x is the length of the
- // string.
-
- Decl *currentDecl = getCurFunctionOrMethodDecl();
- if (!currentDecl && getCurBlock())
- currentDecl = getCurBlock()->TheDecl;
- if (!currentDecl) {
- Diag(Loc, diag::ext_predef_outside_function);
- currentDecl = Context.getTranslationUnitDecl();
- }
-
- QualType ResTy;
- if (cast<DeclContext>(currentDecl)->isDependentContext()) {
- ResTy = Context.DependentTy;
- } else {
- unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
-
- llvm::APInt LengthI(32, Length + 1);
- ResTy = Context.CharTy.withConst();
- ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
- }
- return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
-}
-
-Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
- llvm::SmallString<16> CharBuffer;
- bool Invalid = false;
- llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
- if (Invalid)
- return ExprError();
-
- CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
- PP);
- if (Literal.hadError())
- return ExprError();
-
- QualType Ty;
- if (!getLangOptions().CPlusPlus)
- Ty = Context.IntTy; // 'x' and L'x' -> int in C.
- else if (Literal.isWide())
- Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
- else if (Literal.isMultiChar())
- Ty = Context.IntTy; // 'wxyz' -> int in C++.
- else
- Ty = Context.CharTy; // 'x' -> char in C++
-
- return Owned(new (Context) CharacterLiteral(Literal.getValue(),
- Literal.isWide(),
- Ty, Tok.getLocation()));
-}
-
-Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
- // Fast path for a single digit (which is quite common). A single digit
- // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
- if (Tok.getLength() == 1) {
- const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
- unsigned IntSize = Context.Target.getIntWidth();
- return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
- Context.IntTy, Tok.getLocation()));
- }
-
- llvm::SmallString<512> IntegerBuffer;
- // Add padding so that NumericLiteralParser can overread by one character.
- IntegerBuffer.resize(Tok.getLength()+1);
- const char *ThisTokBegin = &IntegerBuffer[0];
-
- // Get the spelling of the token, which eliminates trigraphs, etc.
- bool Invalid = false;
- unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
- if (Invalid)
- return ExprError();
-
- NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
- Tok.getLocation(), PP);
- if (Literal.hadError)
- return ExprError();
-
- Expr *Res;
-
- if (Literal.isFloatingLiteral()) {
- QualType Ty;
- if (Literal.isFloat)
- Ty = Context.FloatTy;
- else if (!Literal.isLong)
- Ty = Context.DoubleTy;
- else
- Ty = Context.LongDoubleTy;
-
- const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
-
- using llvm::APFloat;
- APFloat Val(Format);
-
- APFloat::opStatus result = Literal.GetFloatValue(Val);
-
- // Overflow is always an error, but underflow is only an error if
- // we underflowed to zero (APFloat reports denormals as underflow).
- if ((result & APFloat::opOverflow) ||
- ((result & APFloat::opUnderflow) && Val.isZero())) {
- unsigned diagnostic;
- llvm::SmallString<20> buffer;
- if (result & APFloat::opOverflow) {
- diagnostic = diag::warn_float_overflow;
- APFloat::getLargest(Format).toString(buffer);
- } else {
- diagnostic = diag::warn_float_underflow;
- APFloat::getSmallest(Format).toString(buffer);
- }
-
- Diag(Tok.getLocation(), diagnostic)
- << Ty
- << llvm::StringRef(buffer.data(), buffer.size());
- }
-
- bool isExact = (result == APFloat::opOK);
- Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
-
- } else if (!Literal.isIntegerLiteral()) {
- return ExprError();
- } else {
- QualType Ty;
-
- // long long is a C99 feature.
- if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
- Literal.isLongLong)
- Diag(Tok.getLocation(), diag::ext_longlong);
-
- // Get the value in the widest-possible width.
- llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
-
- if (Literal.GetIntegerValue(ResultVal)) {
- // If this value didn't fit into uintmax_t, warn and force to ull.
- Diag(Tok.getLocation(), diag::warn_integer_too_large);
- Ty = Context.UnsignedLongLongTy;
- assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
- "long long is not intmax_t?");
- } else {
- // If this value fits into a ULL, try to figure out what else it fits into
- // according to the rules of C99 6.4.4.1p5.
-
- // Octal, Hexadecimal, and integers with a U suffix are allowed to
- // be an unsigned int.
- bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
-
- // Check from smallest to largest, picking the smallest type we can.
- unsigned Width = 0;
- if (!Literal.isLong && !Literal.isLongLong) {
- // Are int/unsigned possibilities?
- unsigned IntSize = Context.Target.getIntWidth();
-
- // Does it fit in a unsigned int?
- if (ResultVal.isIntN(IntSize)) {
- // Does it fit in a signed int?
- if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
- Ty = Context.IntTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedIntTy;
- Width = IntSize;
- }
- }
-
- // Are long/unsigned long possibilities?
- if (Ty.isNull() && !Literal.isLongLong) {
- unsigned LongSize = Context.Target.getLongWidth();
-
- // Does it fit in a unsigned long?
- if (ResultVal.isIntN(LongSize)) {
- // Does it fit in a signed long?
- if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
- Ty = Context.LongTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedLongTy;
- Width = LongSize;
- }
- }
-
- // Finally, check long long if needed.
- if (Ty.isNull()) {
- unsigned LongLongSize = Context.Target.getLongLongWidth();
-
- // Does it fit in a unsigned long long?
- if (ResultVal.isIntN(LongLongSize)) {
- // Does it fit in a signed long long?
- if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
- Ty = Context.LongLongTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedLongLongTy;
- Width = LongLongSize;
- }
- }
-
- // If we still couldn't decide a type, we probably have something that
- // does not fit in a signed long long, but has no U suffix.
- if (Ty.isNull()) {
- Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
- Ty = Context.UnsignedLongLongTy;
- Width = Context.Target.getLongLongWidth();
- }
-
- if (ResultVal.getBitWidth() != Width)
- ResultVal.trunc(Width);
- }
- Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
- }
-
- // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
- if (Literal.isImaginary)
- Res = new (Context) ImaginaryLiteral(Res,
- Context.getComplexType(Res->getType()));
-
- return Owned(Res);
-}
-
-Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
- SourceLocation R, ExprArg Val) {
- Expr *E = Val.takeAs<Expr>();
- assert((E != 0) && "ActOnParenExpr() missing expr");
- return Owned(new (Context) ParenExpr(L, R, E));
-}
-
-/// The UsualUnaryConversions() function is *not* called by this routine.
-/// See C99 6.3.2.1p[2-4] for more details.
-bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
- SourceLocation OpLoc,
- const SourceRange &ExprRange,
- bool isSizeof) {
- if (exprType->isDependentType())
- return false;
-
- // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
- // the result is the size of the referenced type."
- // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
- // result shall be the alignment of the referenced type."
- if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
- exprType = Ref->getPointeeType();
-
- // C99 6.5.3.4p1:
- if (exprType->isFunctionType()) {
- // alignof(function) is allowed as an extension.
- if (isSizeof)
- Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
- return false;
- }
-
- // Allow sizeof(void)/alignof(void) as an extension.
- if (exprType->isVoidType()) {
- Diag(OpLoc, diag::ext_sizeof_void_type)
- << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
- return false;
- }
-
- if (RequireCompleteType(OpLoc, exprType,
- PDiag(diag::err_sizeof_alignof_incomplete_type)
- << int(!isSizeof) << ExprRange))
- return true;
-
- // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
- if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
- Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
- << exprType << isSizeof << ExprRange;
- return true;
- }
-
- if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
- Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
- << !isSizeof << ExprRange;
- return true;
- }
-
- return false;
-}
-
-bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
- const SourceRange &ExprRange) {
- E = E->IgnoreParens();
-
- // alignof decl is always ok.
- if (isa<DeclRefExpr>(E))
- return false;
-
- // Cannot know anything else if the expression is dependent.
- if (E->isTypeDependent())
- return false;
-
- if (E->getBitField()) {
- Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
- return true;
- }
-
- // Alignment of a field access is always okay, so long as it isn't a
- // bit-field.
- if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
- if (isa<FieldDecl>(ME->getMemberDecl()))
- return false;
-
- return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
-}
-
-/// \brief Build a sizeof or alignof expression given a type operand.
-Action::OwningExprResult
-Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
- SourceLocation OpLoc,
- bool isSizeOf, SourceRange R) {
- if (!TInfo)
- return ExprError();
-
- QualType T = TInfo->getType();
-
- if (!T->isDependentType() &&
- CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
- return ExprError();
-
- // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
- return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
- Context.getSizeType(), OpLoc,
- R.getEnd()));
-}
-
-/// \brief Build a sizeof or alignof expression given an expression
-/// operand.
-Action::OwningExprResult
-Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
- bool isSizeOf, SourceRange R) {
- // Verify that the operand is valid.
- bool isInvalid = false;
- if (E->isTypeDependent()) {
- // Delay type-checking for type-dependent expressions.
- } else if (!isSizeOf) {
- isInvalid = CheckAlignOfExpr(E, OpLoc, R);
- } else if (E->getBitField()) { // C99 6.5.3.4p1.
- Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
- isInvalid = true;
- } else {
- isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
- }
-
- if (isInvalid)
- return ExprError();
-
- // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
- return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
- Context.getSizeType(), OpLoc,
- R.getEnd()));
-}
-
-/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
-/// the same for @c alignof and @c __alignof
-/// Note that the ArgRange is invalid if isType is false.
-Action::OwningExprResult
-Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
- void *TyOrEx, const SourceRange &ArgRange) {
- // If error parsing type, ignore.
- if (TyOrEx == 0) return ExprError();
-
- if (isType) {
- TypeSourceInfo *TInfo;
- (void) GetTypeFromParser(TyOrEx, &TInfo);
- return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
- }
-
- Expr *ArgEx = (Expr *)TyOrEx;
- Action::OwningExprResult Result
- = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
-
- if (Result.isInvalid())
- DeleteExpr(ArgEx);
-
- return move(Result);
-}
-
-QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
- if (V->isTypeDependent())
- return Context.DependentTy;
-
- // These operators return the element type of a complex type.
- if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
- return CT->getElementType();
-
- // Otherwise they pass through real integer and floating point types here.
- if (V->getType()->isArithmeticType())
- return V->getType();
-
- // Reject anything else.
- Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
- << (isReal ? "__real" : "__imag");
- return QualType();
-}
-
-
-
-Action::OwningExprResult
-Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
- tok::TokenKind Kind, ExprArg Input) {
- UnaryOperator::Opcode Opc;
- switch (Kind) {
- default: assert(0 && "Unknown unary op!");
- case tok::plusplus: Opc = UnaryOperator::PostInc; break;
- case tok::minusminus: Opc = UnaryOperator::PostDec; break;
- }
-
- return BuildUnaryOp(S, OpLoc, Opc, move(Input));
-}
-
-Action::OwningExprResult
-Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
- ExprArg Idx, SourceLocation RLoc) {
- // Since this might be a postfix expression, get rid of ParenListExprs.
- Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
-
- Expr *LHSExp = static_cast<Expr*>(Base.get()),
- *RHSExp = static_cast<Expr*>(Idx.get());
-
- if (getLangOptions().CPlusPlus &&
- (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
- Base.release();
- Idx.release();
- return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
- Context.DependentTy, RLoc));
- }
-
- if (getLangOptions().CPlusPlus &&
- (LHSExp->getType()->isRecordType() ||
- LHSExp->getType()->isEnumeralType() ||
- RHSExp->getType()->isRecordType() ||
- RHSExp->getType()->isEnumeralType())) {
- return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
- }
-
- return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
-}
-
-
-Action::OwningExprResult
-Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
- ExprArg Idx, SourceLocation RLoc) {
- Expr *LHSExp = static_cast<Expr*>(Base.get());
- Expr *RHSExp = static_cast<Expr*>(Idx.get());
-
- // Perform default conversions.
- if (!LHSExp->getType()->getAs<VectorType>())
- DefaultFunctionArrayLvalueConversion(LHSExp);
- DefaultFunctionArrayLvalueConversion(RHSExp);
-
- QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
-
- // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
- // to the expression *((e1)+(e2)). This means the array "Base" may actually be
- // in the subscript position. As a result, we need to derive the array base
- // and index from the expression types.
- Expr *BaseExpr, *IndexExpr;
- QualType ResultType;
- if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = Context.DependentTy;
- } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = PTy->getPointeeType();
- } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
- // Handle the uncommon case of "123[Ptr]".
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = PTy->getPointeeType();
- } else if (const ObjCObjectPointerType *PTy =
- LHSTy->getAs<ObjCObjectPointerType>()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = PTy->getPointeeType();
- } else if (const ObjCObjectPointerType *PTy =
- RHSTy->getAs<ObjCObjectPointerType>()) {
- // Handle the uncommon case of "123[Ptr]".
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = PTy->getPointeeType();
- } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
- BaseExpr = LHSExp; // vectors: V[123]
- IndexExpr = RHSExp;
-
- // FIXME: need to deal with const...
- ResultType = VTy->getElementType();
- } else if (LHSTy->isArrayType()) {
- // If we see an array that wasn't promoted by
- // DefaultFunctionArrayLvalueConversion, it must be an array that
- // wasn't promoted because of the C90 rule that doesn't
- // allow promoting non-lvalue arrays. Warn, then
- // force the promotion here.
- Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
- LHSExp->getSourceRange();
- ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
- CastExpr::CK_ArrayToPointerDecay);
- LHSTy = LHSExp->getType();
-
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
- } else if (RHSTy->isArrayType()) {
- // Same as previous, except for 123[f().a] case
- Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
- RHSExp->getSourceRange();
- ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
- CastExpr::CK_ArrayToPointerDecay);
- RHSTy = RHSExp->getType();
-
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
- } else {
- return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
- << LHSExp->getSourceRange() << RHSExp->getSourceRange());
- }
- // C99 6.5.2.1p1
- if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
- return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
- << IndexExpr->getSourceRange());
-
- if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
- IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
- && !IndexExpr->isTypeDependent())
- Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
-
- // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
- // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
- // type. Note that Functions are not objects, and that (in C99 parlance)
- // incomplete types are not object types.
- if (ResultType->isFunctionType()) {
- Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
- << ResultType << BaseExpr->getSourceRange();
- return ExprError();
- }
-
- if (!ResultType->isDependentType() &&
- RequireCompleteType(LLoc, ResultType,
- PDiag(diag::err_subscript_incomplete_type)
- << BaseExpr->getSourceRange()))
- return ExprError();
-
- // Diagnose bad cases where we step over interface counts.
- if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
- Diag(LLoc, diag::err_subscript_nonfragile_interface)
- << ResultType << BaseExpr->getSourceRange();
- return ExprError();
- }
-
- Base.release();
- Idx.release();
- return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
- ResultType, RLoc));
-}
-
-QualType Sema::
-CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
- const IdentifierInfo *CompName,
- SourceLocation CompLoc) {
- // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
- // see FIXME there.
- //
- // FIXME: This logic can be greatly simplified by splitting it along
- // halving/not halving and reworking the component checking.
- const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
-
- // The vector accessor can't exceed the number of elements.
- const char *compStr = CompName->getNameStart();
-
- // This flag determines whether or not the component is one of the four
- // special names that indicate a subset of exactly half the elements are
- // to be selected.
- bool HalvingSwizzle = false;
-
- // This flag determines whether or not CompName has an 's' char prefix,
- // indicating that it is a string of hex values to be used as vector indices.
- bool HexSwizzle = *compStr == 's' || *compStr == 'S';
-
- // Check that we've found one of the special components, or that the component
- // names must come from the same set.
- if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
- !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
- HalvingSwizzle = true;
- } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
- do
- compStr++;
- while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
- } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
- do
- compStr++;
- while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
- }
-
- if (!HalvingSwizzle && *compStr) {
- // We didn't get to the end of the string. This means the component names
- // didn't come from the same set *or* we encountered an illegal name.
- Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
- << std::string(compStr,compStr+1) << SourceRange(CompLoc);
- return QualType();
- }
-
- // Ensure no component accessor exceeds the width of the vector type it
- // operates on.
- if (!HalvingSwizzle) {
- compStr = CompName->getNameStart();
-
- if (HexSwizzle)
- compStr++;
-
- while (*compStr) {
- if (!vecType->isAccessorWithinNumElements(*compStr++)) {
- Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
- << baseType << SourceRange(CompLoc);
- return QualType();
- }
- }
- }
-
- // The component accessor looks fine - now we need to compute the actual type.
- // The vector type is implied by the component accessor. For example,
- // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
- // vec4.s0 is a float, vec4.s23 is a vec3, etc.
- // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
- unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
- : CompName->getLength();
- if (HexSwizzle)
- CompSize--;
-
- if (CompSize == 1)
- return vecType->getElementType();
-
- QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
- // Now look up the TypeDefDecl from the vector type. Without this,
- // diagostics look bad. We want extended vector types to appear built-in.
- for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
- if (ExtVectorDecls[i]->getUnderlyingType() == VT)
- return Context.getTypedefType(ExtVectorDecls[i]);
- }
- return VT; // should never get here (a typedef type should always be found).
-}
-
-static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
- IdentifierInfo *Member,
- const Selector &Sel,
- ASTContext &Context) {
-
- if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
- return PD;
- if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
- return OMD;
-
- for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
- E = PDecl->protocol_end(); I != E; ++I) {
- if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
- Context))
- return D;
- }
- return 0;
-}
-
-static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
- IdentifierInfo *Member,
- const Selector &Sel,
- ASTContext &Context) {
- // Check protocols on qualified interfaces.
- Decl *GDecl = 0;
- for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
- E = QIdTy->qual_end(); I != E; ++I) {
- if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
- GDecl = PD;
- break;
- }
- // Also must look for a getter name which uses property syntax.
- if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
- GDecl = OMD;
- break;
- }
- }
- if (!GDecl) {
- for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
- E = QIdTy->qual_end(); I != E; ++I) {
- // Search in the protocol-qualifier list of current protocol.
- GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
- if (GDecl)
- return GDecl;
- }
- }
- return GDecl;
-}
-
-Sema::OwningExprResult
-Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
- bool IsArrow, SourceLocation OpLoc,
- const CXXScopeSpec &SS,
- NamedDecl *FirstQualifierInScope,
- DeclarationName Name, SourceLocation NameLoc,
- const TemplateArgumentListInfo *TemplateArgs) {
- Expr *BaseExpr = Base.takeAs<Expr>();
-
- // Even in dependent contexts, try to diagnose base expressions with
- // obviously wrong types, e.g.:
- //
- // T* t;
- // t.f;
- //
- // In Obj-C++, however, the above expression is valid, since it could be
- // accessing the 'f' property if T is an Obj-C interface. The extra check
- // allows this, while still reporting an error if T is a struct pointer.
- if (!IsArrow) {
- const PointerType *PT = BaseType->getAs<PointerType>();
- if (PT && (!getLangOptions().ObjC1 ||
- PT->getPointeeType()->isRecordType())) {
- assert(BaseExpr && "cannot happen with implicit member accesses");
- Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
- << BaseType << BaseExpr->getSourceRange();
- return ExprError();
- }
- }
-
- assert(BaseType->isDependentType() || Name.isDependentName() ||
- isDependentScopeSpecifier(SS));
-
- // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
- // must have pointer type, and the accessed type is the pointee.
- return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
- IsArrow, OpLoc,
- static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
- SS.getRange(),
- FirstQualifierInScope,
- Name, NameLoc,
- TemplateArgs));
-}
-
-/// We know that the given qualified member reference points only to
-/// declarations which do not belong to the static type of the base
-/// expression. Diagnose the problem.
-static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
- Expr *BaseExpr,
- QualType BaseType,
- const CXXScopeSpec &SS,
- const LookupResult &R) {
- // If this is an implicit member access, use a different set of
- // diagnostics.
- if (!BaseExpr)
- return DiagnoseInstanceReference(SemaRef, SS, R);
-
- SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
- << SS.getRange() << R.getRepresentativeDecl() << BaseType;
-}
-
-// Check whether the declarations we found through a nested-name
-// specifier in a member expression are actually members of the base
-// type. The restriction here is:
-//
-// C++ [expr.ref]p2:
-// ... In these cases, the id-expression shall name a
-// member of the class or of one of its base classes.
-//
-// So it's perfectly legitimate for the nested-name specifier to name
-// an unrelated class, and for us to find an overload set including
-// decls from classes which are not superclasses, as long as the decl
-// we actually pick through overload resolution is from a superclass.
-bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
- QualType BaseType,
- const CXXScopeSpec &SS,
- const LookupResult &R) {
- const RecordType *BaseRT = BaseType->getAs<RecordType>();
- if (!BaseRT) {
- // We can't check this yet because the base type is still
- // dependent.
- assert(BaseType->isDependentType());
- return false;
- }
- CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
-
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
- // If this is an implicit member reference and we find a
- // non-instance member, it's not an error.
- if (!BaseExpr && !(*I)->isCXXInstanceMember())
- return false;
-
- // Note that we use the DC of the decl, not the underlying decl.
- DeclContext *DC = (*I)->getDeclContext();
- while (DC->isTransparentContext())
- DC = DC->getParent();
-
- if (!DC->isRecord())
- continue;
-
- llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
- MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
-
- if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
- return false;
- }
-
- DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
- return true;
-}
-
-static bool
-LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
- SourceRange BaseRange, const RecordType *RTy,
- SourceLocation OpLoc, CXXScopeSpec &SS,
- bool HasTemplateArgs) {
- RecordDecl *RDecl = RTy->getDecl();
- if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
- SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
- << BaseRange))
- return true;
-
- if (HasTemplateArgs) {
- // LookupTemplateName doesn't expect these both to exist simultaneously.
- QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
-
- bool MOUS;
- SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
- return false;
- }
-
- DeclContext *DC = RDecl;
- if (SS.isSet()) {
- // If the member name was a qualified-id, look into the
- // nested-name-specifier.
- DC = SemaRef.computeDeclContext(SS, false);
-
- if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
- SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
- << SS.getRange() << DC;
- return true;
- }
-
- assert(DC && "Cannot handle non-computable dependent contexts in lookup");
-
- if (!isa<TypeDecl>(DC)) {
- SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
- << DC << SS.getRange();
- return true;
- }
- }
-
- // The record definition is complete, now look up the member.
- SemaRef.LookupQualifiedName(R, DC);
-
- if (!R.empty())
- return false;
-
- // We didn't find anything with the given name, so try to correct
- // for typos.
- DeclarationName Name = R.getLookupName();
- if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
- !R.empty() &&
- (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
- SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
- << Name << DC << R.getLookupName() << SS.getRange()
- << FixItHint::CreateReplacement(R.getNameLoc(),
- R.getLookupName().getAsString());
- if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
- SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
- << ND->getDeclName();
- return false;
- } else {
- R.clear();
- R.setLookupName(Name);
- }
-
- return false;
-}
-
-Sema::OwningExprResult
-Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
- SourceLocation OpLoc, bool IsArrow,
- CXXScopeSpec &SS,
- NamedDecl *FirstQualifierInScope,
- DeclarationName Name, SourceLocation NameLoc,
- const TemplateArgumentListInfo *TemplateArgs) {
- Expr *Base = BaseArg.takeAs<Expr>();
-
- if (BaseType->isDependentType() ||
- (SS.isSet() && isDependentScopeSpecifier(SS)))
- return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
- IsArrow, OpLoc,
- SS, FirstQualifierInScope,
- Name, NameLoc,
- TemplateArgs);
-
- LookupResult R(*this, Name, NameLoc, LookupMemberName);
-
- // Implicit member accesses.
- if (!Base) {
- QualType RecordTy = BaseType;
- if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
- if (LookupMemberExprInRecord(*this, R, SourceRange(),
- RecordTy->getAs<RecordType>(),
- OpLoc, SS, TemplateArgs != 0))
- return ExprError();
-
- // Explicit member accesses.
- } else {
- OwningExprResult Result =
- LookupMemberExpr(R, Base, IsArrow, OpLoc,
- SS, /*ObjCImpDecl*/ DeclPtrTy(), TemplateArgs != 0);
-
- if (Result.isInvalid()) {
- Owned(Base);
- return ExprError();
- }
-
- if (Result.get())
- return move(Result);
-
- // LookupMemberExpr can modify Base, and thus change BaseType
- BaseType = Base->getType();
- }
-
- return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
- OpLoc, IsArrow, SS, FirstQualifierInScope,
- R, TemplateArgs);
-}
-
-Sema::OwningExprResult
-Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
- SourceLocation OpLoc, bool IsArrow,
- const CXXScopeSpec &SS,
- NamedDecl *FirstQualifierInScope,
- LookupResult &R,
- const TemplateArgumentListInfo *TemplateArgs,
- bool SuppressQualifierCheck) {
- Expr *BaseExpr = Base.takeAs<Expr>();
- QualType BaseType = BaseExprType;
- if (IsArrow) {
- assert(BaseType->isPointerType());
- BaseType = BaseType->getAs<PointerType>()->getPointeeType();
- }
- R.setBaseObjectType(BaseType);
-
- NestedNameSpecifier *Qualifier =
- static_cast<NestedNameSpecifier*>(SS.getScopeRep());
- DeclarationName MemberName = R.getLookupName();
- SourceLocation MemberLoc = R.getNameLoc();
-
- if (R.isAmbiguous())
- return ExprError();
-
- if (R.empty()) {
- // Rederive where we looked up.
- DeclContext *DC = (SS.isSet()
- ? computeDeclContext(SS, false)
- : BaseType->getAs<RecordType>()->getDecl());
-
- Diag(R.getNameLoc(), diag::err_no_member)
- << MemberName << DC
- << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
- return ExprError();
- }
-
- // Diagnose lookups that find only declarations from a non-base
- // type. This is possible for either qualified lookups (which may
- // have been qualified with an unrelated type) or implicit member
- // expressions (which were found with unqualified lookup and thus
- // may have come from an enclosing scope). Note that it's okay for
- // lookup to find declarations from a non-base type as long as those
- // aren't the ones picked by overload resolution.
- if ((SS.isSet() || !BaseExpr ||
- (isa<CXXThisExpr>(BaseExpr) &&
- cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
- !SuppressQualifierCheck &&
- CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
- return ExprError();
-
- // Construct an unresolved result if we in fact got an unresolved
- // result.
- if (R.isOverloadedResult() || R.isUnresolvableResult()) {
- bool Dependent =
- BaseExprType->isDependentType() ||
- R.isUnresolvableResult() ||
- OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
-
- // Suppress any lookup-related diagnostics; we'll do these when we
- // pick a member.
- R.suppressDiagnostics();
-
- UnresolvedMemberExpr *MemExpr
- = UnresolvedMemberExpr::Create(Context, Dependent,
- R.isUnresolvableResult(),
- BaseExpr, BaseExprType,
- IsArrow, OpLoc,
- Qualifier, SS.getRange(),
- MemberName, MemberLoc,
- TemplateArgs, R.begin(), R.end());
-
- return Owned(MemExpr);
- }
-
- assert(R.isSingleResult());
- DeclAccessPair FoundDecl = R.begin().getPair();
- NamedDecl *MemberDecl = R.getFoundDecl();
-
- // FIXME: diagnose the presence of template arguments now.
-
- // If the decl being referenced had an error, return an error for this
- // sub-expr without emitting another error, in order to avoid cascading
- // error cases.
- if (MemberDecl->isInvalidDecl())
- return ExprError();
-
- // Handle the implicit-member-access case.
- if (!BaseExpr) {
- // If this is not an instance member, convert to a non-member access.
- if (!MemberDecl->isCXXInstanceMember())
- return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
-
- SourceLocation Loc = R.getNameLoc();
- if (SS.getRange().isValid())
- Loc = SS.getRange().getBegin();
- BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
- }
-
- bool ShouldCheckUse = true;
- if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
- // Don't diagnose the use of a virtual member function unless it's
- // explicitly qualified.
- if (MD->isVirtual() && !SS.isSet())
- ShouldCheckUse = false;
- }
-
- // Check the use of this member.
- if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
- Owned(BaseExpr);
- return ExprError();
- }
-
- if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
- // We may have found a field within an anonymous union or struct
- // (C++ [class.union]).
- if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
- !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
- return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
- BaseExpr, OpLoc);
-
- // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
- QualType MemberType = FD->getType();
- if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
- MemberType = Ref->getPointeeType();
- else {
- Qualifiers BaseQuals = BaseType.getQualifiers();
- BaseQuals.removeObjCGCAttr();
- if (FD->isMutable()) BaseQuals.removeConst();
-
- Qualifiers MemberQuals
- = Context.getCanonicalType(MemberType).getQualifiers();
-
- Qualifiers Combined = BaseQuals + MemberQuals;
- if (Combined != MemberQuals)
- MemberType = Context.getQualifiedType(MemberType, Combined);
- }
-
- MarkDeclarationReferenced(MemberLoc, FD);
- if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
- return ExprError();
- return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
- FD, FoundDecl, MemberLoc, MemberType));
- }
-
- if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
- MarkDeclarationReferenced(MemberLoc, Var);
- return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
- Var, FoundDecl, MemberLoc,
- Var->getType().getNonReferenceType()));
- }
-
- if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
- MarkDeclarationReferenced(MemberLoc, MemberDecl);
- return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
- MemberFn, FoundDecl, MemberLoc,
- MemberFn->getType()));
- }
-
- if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
- MarkDeclarationReferenced(MemberLoc, MemberDecl);
- return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
- Enum, FoundDecl, MemberLoc, Enum->getType()));
- }
-
- Owned(BaseExpr);
-
- // We found something that we didn't expect. Complain.
- if (isa<TypeDecl>(MemberDecl))
- Diag(MemberLoc,diag::err_typecheck_member_reference_type)
- << MemberName << BaseType << int(IsArrow);
- else
- Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
- << MemberName << BaseType << int(IsArrow);
-
- Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
- << MemberName;
- R.suppressDiagnostics();
- return ExprError();
-}
-
-/// Look up the given member of the given non-type-dependent
-/// expression. This can return in one of two ways:
-/// * If it returns a sentinel null-but-valid result, the caller will
-/// assume that lookup was performed and the results written into
-/// the provided structure. It will take over from there.
-/// * Otherwise, the returned expression will be produced in place of
-/// an ordinary member expression.
-///
-/// The ObjCImpDecl bit is a gross hack that will need to be properly
-/// fixed for ObjC++.
-Sema::OwningExprResult
-Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
- bool &IsArrow, SourceLocation OpLoc,
- CXXScopeSpec &SS,
- DeclPtrTy ObjCImpDecl, bool HasTemplateArgs) {
- assert(BaseExpr && "no base expression");
-
- // Perform default conversions.
- DefaultFunctionArrayConversion(BaseExpr);
-
- QualType BaseType = BaseExpr->getType();
- assert(!BaseType->isDependentType());
-
- DeclarationName MemberName = R.getLookupName();
- SourceLocation MemberLoc = R.getNameLoc();
-
- // If the user is trying to apply -> or . to a function pointer
- // type, it's probably because they forgot parentheses to call that
- // function. Suggest the addition of those parentheses, build the
- // call, and continue on.
- if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
- if (const FunctionProtoType *Fun
- = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
- QualType ResultTy = Fun->getResultType();
- if (Fun->getNumArgs() == 0 &&
- ((!IsArrow && ResultTy->isRecordType()) ||
- (IsArrow && ResultTy->isPointerType() &&
- ResultTy->getAs<PointerType>()->getPointeeType()
- ->isRecordType()))) {
- SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
- Diag(Loc, diag::err_member_reference_needs_call)
- << QualType(Fun, 0)
- << FixItHint::CreateInsertion(Loc, "()");
-
- OwningExprResult NewBase
- = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
- MultiExprArg(*this, 0, 0), 0, Loc);
- BaseExpr = 0;
- if (NewBase.isInvalid())
- return ExprError();
-
- BaseExpr = NewBase.takeAs<Expr>();
- DefaultFunctionArrayConversion(BaseExpr);
- BaseType = BaseExpr->getType();
- }
- }
- }
-
- // If this is an Objective-C pseudo-builtin and a definition is provided then
- // use that.
- if (BaseType->isObjCIdType()) {
- if (IsArrow) {
- // Handle the following exceptional case PObj->isa.
- if (const ObjCObjectPointerType *OPT =
- BaseType->getAs<ObjCObjectPointerType>()) {
- if (OPT->getObjectType()->isObjCId() &&
- MemberName.getAsIdentifierInfo()->isStr("isa"))
- return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
- Context.getObjCClassType()));
- }
- }
- // We have an 'id' type. Rather than fall through, we check if this
- // is a reference to 'isa'.
- if (BaseType != Context.ObjCIdRedefinitionType) {
- BaseType = Context.ObjCIdRedefinitionType;
- ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
- }
- }
-
- // If this is an Objective-C pseudo-builtin and a definition is provided then
- // use that.
- if (Context.isObjCSelType(BaseType)) {
- // We have an 'SEL' type. Rather than fall through, we check if this
- // is a reference to 'sel_id'.
- if (BaseType != Context.ObjCSelRedefinitionType) {
- BaseType = Context.ObjCSelRedefinitionType;
- ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
- }
- }
-
- assert(!BaseType.isNull() && "no type for member expression");
-
- // Handle properties on ObjC 'Class' types.
- if (!IsArrow && BaseType->isObjCClassType()) {
- // Also must look for a getter name which uses property syntax.
- IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
- Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
- if (ObjCMethodDecl *MD = getCurMethodDecl()) {
- ObjCInterfaceDecl *IFace = MD->getClassInterface();
- ObjCMethodDecl *Getter;
- // FIXME: need to also look locally in the implementation.
- if ((Getter = IFace->lookupClassMethod(Sel))) {
- // Check the use of this method.
- if (DiagnoseUseOfDecl(Getter, MemberLoc))
- return ExprError();
- }
- // If we found a getter then this may be a valid dot-reference, we
- // will look for the matching setter, in case it is needed.
- Selector SetterSel =
- SelectorTable::constructSetterName(PP.getIdentifierTable(),
- PP.getSelectorTable(), Member);
- ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
- if (!Setter) {
- // If this reference is in an @implementation, also check for 'private'
- // methods.
- Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
- }
- // Look through local category implementations associated with the class.
- if (!Setter)
- Setter = IFace->getCategoryClassMethod(SetterSel);
-
- if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
- return ExprError();
-
- if (Getter || Setter) {
- QualType PType;
-
- if (Getter)
- PType = Getter->getSendResultType();
- else
- // Get the expression type from Setter's incoming parameter.
- PType = (*(Setter->param_end() -1))->getType();
- // FIXME: we must check that the setter has property type.
- return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
- PType,
- Setter, MemberLoc, BaseExpr));
- }
- return ExprError(Diag(MemberLoc, diag::err_property_not_found)
- << MemberName << BaseType);
- }
- }
-
- if (BaseType->isObjCClassType() &&
- BaseType != Context.ObjCClassRedefinitionType) {
- BaseType = Context.ObjCClassRedefinitionType;
- ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
- }
-
- if (IsArrow) {
- if (const PointerType *PT = BaseType->getAs<PointerType>())
- BaseType = PT->getPointeeType();
- else if (BaseType->isObjCObjectPointerType())
- ;
- else if (BaseType->isRecordType()) {
- // Recover from arrow accesses to records, e.g.:
- // struct MyRecord foo;
- // foo->bar
- // This is actually well-formed in C++ if MyRecord has an
- // overloaded operator->, but that should have been dealt with
- // by now.
- Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
- << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
- << FixItHint::CreateReplacement(OpLoc, ".");
- IsArrow = false;
- } else {
- Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
- << BaseType << BaseExpr->getSourceRange();
- return ExprError();
- }
- } else {
- // Recover from dot accesses to pointers, e.g.:
- // type *foo;
- // foo.bar
- // This is actually well-formed in two cases:
- // - 'type' is an Objective C type
- // - 'bar' is a pseudo-destructor name which happens to refer to
- // the appropriate pointer type
- if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
- const PointerType *PT = BaseType->getAs<PointerType>();
- if (PT && PT->getPointeeType()->isRecordType()) {
- Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
- << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
- << FixItHint::CreateReplacement(OpLoc, "->");
- BaseType = PT->getPointeeType();
- IsArrow = true;
- }
- }
- }
-
- // Handle field access to simple records.
- if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
- if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
- RTy, OpLoc, SS, HasTemplateArgs))
- return ExprError();
- return Owned((Expr*) 0);
- }
-
- // Handle access to Objective-C instance variables, such as "Obj->ivar" and
- // (*Obj).ivar.
- if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
- (!IsArrow && BaseType->isObjCObjectType())) {
- const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
- ObjCInterfaceDecl *IDecl =
- OPT ? OPT->getInterfaceDecl()
- : BaseType->getAs<ObjCObjectType>()->getInterface();
- if (IDecl) {
- IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
-
- ObjCInterfaceDecl *ClassDeclared;
- ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
-
- if (!IV) {
- // Attempt to correct for typos in ivar names.
- LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
- LookupMemberName);
- if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
- (IV = Res.getAsSingle<ObjCIvarDecl>())) {
- Diag(R.getNameLoc(),
- diag::err_typecheck_member_reference_ivar_suggest)
- << IDecl->getDeclName() << MemberName << IV->getDeclName()
- << FixItHint::CreateReplacement(R.getNameLoc(),
- IV->getNameAsString());
- Diag(IV->getLocation(), diag::note_previous_decl)
- << IV->getDeclName();
- } else {
- Res.clear();
- Res.setLookupName(Member);
- }
- }
-
- if (IV) {
- // If the decl being referenced had an error, return an error for this
- // sub-expr without emitting another error, in order to avoid cascading
- // error cases.
- if (IV->isInvalidDecl())
- return ExprError();
-
- // Check whether we can reference this field.
- if (DiagnoseUseOfDecl(IV, MemberLoc))
- return ExprError();
- if (IV->getAccessControl() != ObjCIvarDecl::Public &&
- IV->getAccessControl() != ObjCIvarDecl::Package) {
- ObjCInterfaceDecl *ClassOfMethodDecl = 0;
- if (ObjCMethodDecl *MD = getCurMethodDecl())
- ClassOfMethodDecl = MD->getClassInterface();
- else if (ObjCImpDecl && getCurFunctionDecl()) {
- // Case of a c-function declared inside an objc implementation.
- // FIXME: For a c-style function nested inside an objc implementation
- // class, there is no implementation context available, so we pass
- // down the context as argument to this routine. Ideally, this context
- // need be passed down in the AST node and somehow calculated from the
- // AST for a function decl.
- Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
- if (ObjCImplementationDecl *IMPD =
- dyn_cast<ObjCImplementationDecl>(ImplDecl))
- ClassOfMethodDecl = IMPD->getClassInterface();
- else if (ObjCCategoryImplDecl* CatImplClass =
- dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
- ClassOfMethodDecl = CatImplClass->getClassInterface();
- }
-
- if (IV->getAccessControl() == ObjCIvarDecl::Private) {
- if (ClassDeclared != IDecl ||
- ClassOfMethodDecl != ClassDeclared)
- Diag(MemberLoc, diag::error_private_ivar_access)
- << IV->getDeclName();
- } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
- // @protected
- Diag(MemberLoc, diag::error_protected_ivar_access)
- << IV->getDeclName();
- }
-
- return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
- MemberLoc, BaseExpr,
- IsArrow));
- }
- return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
- << IDecl->getDeclName() << MemberName
- << BaseExpr->getSourceRange());
- }
- }
- // Handle properties on 'id' and qualified "id".
- if (!IsArrow && (BaseType->isObjCIdType() ||
- BaseType->isObjCQualifiedIdType())) {
- const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
- IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
-
- // Check protocols on qualified interfaces.
- Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
- if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
- if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
- // Check the use of this declaration
- if (DiagnoseUseOfDecl(PD, MemberLoc))
- return ExprError();
-
- return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
- MemberLoc, BaseExpr));
- }
- if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
- // Check the use of this method.
- if (DiagnoseUseOfDecl(OMD, MemberLoc))
- return ExprError();
-
- return Owned(ObjCMessageExpr::Create(Context,
- OMD->getSendResultType(),
- OpLoc, BaseExpr, Sel,
- OMD, NULL, 0, MemberLoc));
- }
- }
-
- return ExprError(Diag(MemberLoc, diag::err_property_not_found)
- << MemberName << BaseType);
- }
-
- // Handle Objective-C property access, which is "Obj.property" where Obj is a
- // pointer to a (potentially qualified) interface type.
- if (!IsArrow)
- if (const ObjCObjectPointerType *OPT =
- BaseType->getAsObjCInterfacePointerType())
- return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
-
- // Handle the following exceptional case (*Obj).isa.
- if (!IsArrow &&
- BaseType->isObjCObjectType() &&
- BaseType->getAs<ObjCObjectType>()->isObjCId() &&
- MemberName.getAsIdentifierInfo()->isStr("isa"))
- return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
- Context.getObjCClassType()));
-
- // Handle 'field access' to vectors, such as 'V.xx'.
- if (BaseType->isExtVectorType()) {
- IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
- QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
- if (ret.isNull())
- return ExprError();
- return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
- MemberLoc));
- }
-
- Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
- << BaseType << BaseExpr->getSourceRange();
-
- return ExprError();
-}
-
-/// The main callback when the parser finds something like
-/// expression . [nested-name-specifier] identifier
-/// expression -> [nested-name-specifier] identifier
-/// where 'identifier' encompasses a fairly broad spectrum of
-/// possibilities, including destructor and operator references.
-///
-/// \param OpKind either tok::arrow or tok::period
-/// \param HasTrailingLParen whether the next token is '(', which
-/// is used to diagnose mis-uses of special members that can
-/// only be called
-/// \param ObjCImpDecl the current ObjC @implementation decl;
-/// this is an ugly hack around the fact that ObjC @implementations
-/// aren't properly put in the context chain
-Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
- SourceLocation OpLoc,
- tok::TokenKind OpKind,
- CXXScopeSpec &SS,
- UnqualifiedId &Id,
- DeclPtrTy ObjCImpDecl,
- bool HasTrailingLParen) {
- if (SS.isSet() && SS.isInvalid())
- return ExprError();
-
- TemplateArgumentListInfo TemplateArgsBuffer;
-
- // Decompose the name into its component parts.
- DeclarationName Name;
- SourceLocation NameLoc;
- const TemplateArgumentListInfo *TemplateArgs;
- DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
- Name, NameLoc, TemplateArgs);
-
- bool IsArrow = (OpKind == tok::arrow);
-
- NamedDecl *FirstQualifierInScope
- = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
- static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
-
- // This is a postfix expression, so get rid of ParenListExprs.
- BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
-
- Expr *Base = BaseArg.takeAs<Expr>();
- OwningExprResult Result(*this);
- if (Base->getType()->isDependentType() || Name.isDependentName() ||
- isDependentScopeSpecifier(SS)) {
- Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
- IsArrow, OpLoc,
- SS, FirstQualifierInScope,
- Name, NameLoc,
- TemplateArgs);
- } else {
- LookupResult R(*this, Name, NameLoc, LookupMemberName);
- Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
- SS, ObjCImpDecl, TemplateArgs != 0);
-
- if (Result.isInvalid()) {
- Owned(Base);
- return ExprError();
- }
-
- if (Result.get()) {
- // The only way a reference to a destructor can be used is to
- // immediately call it, which falls into this case. If the
- // next token is not a '(', produce a diagnostic and build the
- // call now.
- if (!HasTrailingLParen &&
- Id.getKind() == UnqualifiedId::IK_DestructorName)
- return DiagnoseDtorReference(NameLoc, move(Result));
-
- return move(Result);
- }
-
- Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
- OpLoc, IsArrow, SS, FirstQualifierInScope,
- R, TemplateArgs);
- }
-
- return move(Result);
-}
-
-Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
- FunctionDecl *FD,
- ParmVarDecl *Param) {
- if (Param->hasUnparsedDefaultArg()) {
- Diag (CallLoc,
- diag::err_use_of_default_argument_to_function_declared_later) <<
- FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
- Diag(UnparsedDefaultArgLocs[Param],
- diag::note_default_argument_declared_here);
- } else {
- if (Param->hasUninstantiatedDefaultArg()) {
- Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
-
- // Instantiate the expression.
- MultiLevelTemplateArgumentList ArgList
- = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
-
- std::pair<const TemplateArgument *, unsigned> Innermost
- = ArgList.getInnermost();
- InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
- Innermost.second);
-
- OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
- if (Result.isInvalid())
- return ExprError();
-
- // Check the expression as an initializer for the parameter.
- InitializedEntity Entity
- = InitializedEntity::InitializeParameter(Param);
- InitializationKind Kind
- = InitializationKind::CreateCopy(Param->getLocation(),
- /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
- Expr *ResultE = Result.takeAs<Expr>();
-
- InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
- Result = InitSeq.Perform(*this, Entity, Kind,
- MultiExprArg(*this, (void**)&ResultE, 1));
- if (Result.isInvalid())
- return ExprError();
-
- // Build the default argument expression.
- return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
- Result.takeAs<Expr>()));
- }
-
- // If the default expression creates temporaries, we need to
- // push them to the current stack of expression temporaries so they'll
- // be properly destroyed.
- // FIXME: We should really be rebuilding the default argument with new
- // bound temporaries; see the comment in PR5810.
- for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
- ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
- }
-
- // We already type-checked the argument, so we know it works.
- return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
-}
-
-/// ConvertArgumentsForCall - Converts the arguments specified in
-/// Args/NumArgs to the parameter types of the function FDecl with
-/// function prototype Proto. Call is the call expression itself, and
-/// Fn is the function expression. For a C++ member function, this
-/// routine does not attempt to convert the object argument. Returns
-/// true if the call is ill-formed.
-bool
-Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
- FunctionDecl *FDecl,
- const FunctionProtoType *Proto,
- Expr **Args, unsigned NumArgs,
- SourceLocation RParenLoc) {
- // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
- // assignment, to the types of the corresponding parameter, ...
- unsigned NumArgsInProto = Proto->getNumArgs();
- bool Invalid = false;
-
- // If too few arguments are available (and we don't have default
- // arguments for the remaining parameters), don't make the call.
- if (NumArgs < NumArgsInProto) {
- if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
- return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
- << Fn->getType()->isBlockPointerType()
- << NumArgsInProto << NumArgs << Fn->getSourceRange();
- Call->setNumArgs(Context, NumArgsInProto);
- }
-
- // If too many are passed and not variadic, error on the extras and drop
- // them.
- if (NumArgs > NumArgsInProto) {
- if (!Proto->isVariadic()) {
- Diag(Args[NumArgsInProto]->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << Fn->getType()->isBlockPointerType()
- << NumArgsInProto << NumArgs << Fn->getSourceRange()
- << SourceRange(Args[NumArgsInProto]->getLocStart(),
- Args[NumArgs-1]->getLocEnd());
- // This deletes the extra arguments.
- Call->setNumArgs(Context, NumArgsInProto);
- return true;
- }
- }
- llvm::SmallVector<Expr *, 8> AllArgs;
- VariadicCallType CallType =
- Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
- if (Fn->getType()->isBlockPointerType())
- CallType = VariadicBlock; // Block
- else if (isa<MemberExpr>(Fn))
- CallType = VariadicMethod;
- Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
- Proto, 0, Args, NumArgs, AllArgs, CallType);
- if (Invalid)
- return true;
- unsigned TotalNumArgs = AllArgs.size();
- for (unsigned i = 0; i < TotalNumArgs; ++i)
- Call->setArg(i, AllArgs[i]);
-
- return false;
-}
-
-bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
- FunctionDecl *FDecl,
- const FunctionProtoType *Proto,
- unsigned FirstProtoArg,
- Expr **Args, unsigned NumArgs,
- llvm::SmallVector<Expr *, 8> &AllArgs,
- VariadicCallType CallType) {
- unsigned NumArgsInProto = Proto->getNumArgs();
- unsigned NumArgsToCheck = NumArgs;
- bool Invalid = false;
- if (NumArgs != NumArgsInProto)
- // Use default arguments for missing arguments
- NumArgsToCheck = NumArgsInProto;
- unsigned ArgIx = 0;
- // Continue to check argument types (even if we have too few/many args).
- for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
- QualType ProtoArgType = Proto->getArgType(i);
-
- Expr *Arg;
- if (ArgIx < NumArgs) {
- Arg = Args[ArgIx++];
-
- if (RequireCompleteType(Arg->getSourceRange().getBegin(),
- ProtoArgType,
- PDiag(diag::err_call_incomplete_argument)
- << Arg->getSourceRange()))
- return true;
-
- // Pass the argument
- ParmVarDecl *Param = 0;
- if (FDecl && i < FDecl->getNumParams())
- Param = FDecl->getParamDecl(i);
-
-
- InitializedEntity Entity =
- Param? InitializedEntity::InitializeParameter(Param)
- : InitializedEntity::InitializeParameter(ProtoArgType);
- OwningExprResult ArgE = PerformCopyInitialization(Entity,
- SourceLocation(),
- Owned(Arg));
- if (ArgE.isInvalid())
- return true;
-
- Arg = ArgE.takeAs<Expr>();
- } else {
- ParmVarDecl *Param = FDecl->getParamDecl(i);
-
- OwningExprResult ArgExpr =
- BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
- if (ArgExpr.isInvalid())
- return true;
-
- Arg = ArgExpr.takeAs<Expr>();
- }
- AllArgs.push_back(Arg);
- }
-
- // If this is a variadic call, handle args passed through "...".
- if (CallType != VariadicDoesNotApply) {
- // Promote the arguments (C99 6.5.2.2p7).
- for (unsigned i = ArgIx; i != NumArgs; ++i) {
- Expr *Arg = Args[i];
- Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
- AllArgs.push_back(Arg);
- }
- }
- return Invalid;
-}
-
-/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
-/// This provides the location of the left/right parens and a list of comma
-/// locations.
-Action::OwningExprResult
-Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
- MultiExprArg args,
- SourceLocation *CommaLocs, SourceLocation RParenLoc) {
- unsigned NumArgs = args.size();
-
- // Since this might be a postfix expression, get rid of ParenListExprs.
- fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
-
- Expr *Fn = fn.takeAs<Expr>();
- Expr **Args = reinterpret_cast<Expr**>(args.release());
- assert(Fn && "no function call expression");
-
- if (getLangOptions().CPlusPlus) {
- // If this is a pseudo-destructor expression, build the call immediately.
- if (isa<CXXPseudoDestructorExpr>(Fn)) {
- if (NumArgs > 0) {
- // Pseudo-destructor calls should not have any arguments.
- Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
- << FixItHint::CreateRemoval(
- SourceRange(Args[0]->getLocStart(),
- Args[NumArgs-1]->getLocEnd()));
-
- NumArgs = 0;
- }
-
- return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
- RParenLoc));
- }
-
- // Determine whether this is a dependent call inside a C++ template,
- // in which case we won't do any semantic analysis now.
- // FIXME: Will need to cache the results of name lookup (including ADL) in
- // Fn.
- bool Dependent = false;
- if (Fn->isTypeDependent())
- Dependent = true;
- else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
- Dependent = true;
-
- if (Dependent)
- return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
- Context.DependentTy, RParenLoc));
-
- // Determine whether this is a call to an object (C++ [over.call.object]).
- if (Fn->getType()->isRecordType())
- return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
- CommaLocs, RParenLoc));
-
- Expr *NakedFn = Fn->IgnoreParens();
-
- // Determine whether this is a call to an unresolved member function.
- if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
- // If lookup was unresolved but not dependent (i.e. didn't find
- // an unresolved using declaration), it has to be an overloaded
- // function set, which means it must contain either multiple
- // declarations (all methods or method templates) or a single
- // method template.
- assert((MemE->getNumDecls() > 1) ||
- isa<FunctionTemplateDecl>(
- (*MemE->decls_begin())->getUnderlyingDecl()));
- (void)MemE;
-
- return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
- CommaLocs, RParenLoc);
- }
-
- // Determine whether this is a call to a member function.
- if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
- NamedDecl *MemDecl = MemExpr->getMemberDecl();
- if (isa<CXXMethodDecl>(MemDecl))
- return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
- CommaLocs, RParenLoc);
- }
-
- // Determine whether this is a call to a pointer-to-member function.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
- if (BO->getOpcode() == BinaryOperator::PtrMemD ||
- BO->getOpcode() == BinaryOperator::PtrMemI) {
- if (const FunctionProtoType *FPT
- = BO->getType()->getAs<FunctionProtoType>()) {
- QualType ResultTy = FPT->getCallResultType(Context);
-
- ExprOwningPtr<CXXMemberCallExpr>
- TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
- NumArgs, ResultTy,
- RParenLoc));
-
- if (CheckCallReturnType(FPT->getResultType(),
- BO->getRHS()->getSourceRange().getBegin(),
- TheCall.get(), 0))
- return ExprError();
-
- if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
- RParenLoc))
- return ExprError();
-
- return Owned(MaybeBindToTemporary(TheCall.release()).release());
- }
- return ExprError(Diag(Fn->getLocStart(),
- diag::err_typecheck_call_not_function)
- << Fn->getType() << Fn->getSourceRange());
- }
- }
- }
-
- // If we're directly calling a function, get the appropriate declaration.
- // Also, in C++, keep track of whether we should perform argument-dependent
- // lookup and whether there were any explicitly-specified template arguments.
-
- Expr *NakedFn = Fn->IgnoreParens();
- if (isa<UnresolvedLookupExpr>(NakedFn)) {
- UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
- return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
- CommaLocs, RParenLoc);
- }
-
- NamedDecl *NDecl = 0;
- if (isa<DeclRefExpr>(NakedFn))
- NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
-
- return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
-}
-
-/// BuildResolvedCallExpr - Build a call to a resolved expression,
-/// i.e. an expression not of \p OverloadTy. The expression should
-/// unary-convert to an expression of function-pointer or
-/// block-pointer type.
-///
-/// \param NDecl the declaration being called, if available
-Sema::OwningExprResult
-Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
- SourceLocation LParenLoc,
- Expr **Args, unsigned NumArgs,
- SourceLocation RParenLoc) {
- FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
-
- // Promote the function operand.
- UsualUnaryConversions(Fn);
-
- // Make the call expr early, before semantic checks. This guarantees cleanup
- // of arguments and function on error.
- ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
- Args, NumArgs,
- Context.BoolTy,
- RParenLoc));
-
- const FunctionType *FuncT;
- if (!Fn->getType()->isBlockPointerType()) {
- // C99 6.5.2.2p1 - "The expression that denotes the called function shall
- // have type pointer to function".
- const PointerType *PT = Fn->getType()->getAs<PointerType>();
- if (PT == 0)
- return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
- << Fn->getType() << Fn->getSourceRange());
- FuncT = PT->getPointeeType()->getAs<FunctionType>();
- } else { // This is a block call.
- FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
- getAs<FunctionType>();
- }
- if (FuncT == 0)
- return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
- << Fn->getType() << Fn->getSourceRange());
-
- // Check for a valid return type
- if (CheckCallReturnType(FuncT->getResultType(),
- Fn->getSourceRange().getBegin(), TheCall.get(),
- FDecl))
- return ExprError();
-
- // We know the result type of the call, set it.
- TheCall->setType(FuncT->getCallResultType(Context));
-
- if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
- if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
- RParenLoc))
- return ExprError();
- } else {
- assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
-
- if (FDecl) {
- // Check if we have too few/too many template arguments, based
- // on our knowledge of the function definition.
- const FunctionDecl *Def = 0;
- if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
- const FunctionProtoType *Proto =
- Def->getType()->getAs<FunctionProtoType>();
- if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
- Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
- << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
- }
- }
- }
-
- // Promote the arguments (C99 6.5.2.2p6).
- for (unsigned i = 0; i != NumArgs; i++) {
- Expr *Arg = Args[i];
- DefaultArgumentPromotion(Arg);
- if (RequireCompleteType(Arg->getSourceRange().getBegin(),
- Arg->getType(),
- PDiag(diag::err_call_incomplete_argument)
- << Arg->getSourceRange()))
- return ExprError();
- TheCall->setArg(i, Arg);
- }
- }
-
- if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
- if (!Method->isStatic())
- return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
- << Fn->getSourceRange());
-
- // Check for sentinels
- if (NDecl)
- DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
-
- // Do special checking on direct calls to functions.
- if (FDecl) {
- if (CheckFunctionCall(FDecl, TheCall.get()))
- return ExprError();
-
- if (unsigned BuiltinID = FDecl->getBuiltinID())
- return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
- } else if (NDecl) {
- if (CheckBlockCall(NDecl, TheCall.get()))
- return ExprError();
- }
-
- return MaybeBindToTemporary(TheCall.take());
-}
-
-Action::OwningExprResult
-Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
- SourceLocation RParenLoc, ExprArg InitExpr) {
- assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
- // FIXME: put back this assert when initializers are worked out.
- //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
-
- TypeSourceInfo *TInfo;
- QualType literalType = GetTypeFromParser(Ty, &TInfo);
- if (!TInfo)
- TInfo = Context.getTrivialTypeSourceInfo(literalType);
-
- return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
-}
-
-Action::OwningExprResult
-Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
- SourceLocation RParenLoc, ExprArg InitExpr) {
- QualType literalType = TInfo->getType();
- Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
-
- if (literalType->isArrayType()) {
- if (literalType->isVariableArrayType())
- return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
- << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
- } else if (!literalType->isDependentType() &&
- RequireCompleteType(LParenLoc, literalType,
- PDiag(diag::err_typecheck_decl_incomplete_type)
- << SourceRange(LParenLoc,
- literalExpr->getSourceRange().getEnd())))
- return ExprError();
-
- InitializedEntity Entity
- = InitializedEntity::InitializeTemporary(literalType);
- InitializationKind Kind
- = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
- /*IsCStyleCast=*/true);
- InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
- OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
- MultiExprArg(*this, (void**)&literalExpr, 1),
- &literalType);
- if (Result.isInvalid())
- return ExprError();
- InitExpr.release();
- literalExpr = static_cast<Expr*>(Result.get());
-
- bool isFileScope = getCurFunctionOrMethodDecl() == 0;
- if (isFileScope) { // 6.5.2.5p3
- if (CheckForConstantInitializer(literalExpr, literalType))
- return ExprError();
- }
-
- Result.release();
-
- return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
- literalExpr, isFileScope));
-}
-
-Action::OwningExprResult
-Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
- SourceLocation RBraceLoc) {
- unsigned NumInit = initlist.size();
- Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
-
- // Semantic analysis for initializers is done by ActOnDeclarator() and
- // CheckInitializer() - it requires knowledge of the object being intialized.
-
- InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
- NumInit, RBraceLoc);
- E->setType(Context.VoidTy); // FIXME: just a place holder for now.
- return Owned(E);
-}
-
-static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
- QualType SrcTy, QualType DestTy) {
- if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
- return CastExpr::CK_NoOp;
-
- if (SrcTy->hasPointerRepresentation()) {
- if (DestTy->hasPointerRepresentation())
- return DestTy->isObjCObjectPointerType() ?
- CastExpr::CK_AnyPointerToObjCPointerCast :
- CastExpr::CK_BitCast;
- if (DestTy->isIntegerType())
- return CastExpr::CK_PointerToIntegral;
- }
-
- if (SrcTy->isIntegerType()) {
- if (DestTy->isIntegerType())
- return CastExpr::CK_IntegralCast;
- if (DestTy->hasPointerRepresentation())
- return CastExpr::CK_IntegralToPointer;
- if (DestTy->isRealFloatingType())
- return CastExpr::CK_IntegralToFloating;
- }
-
- if (SrcTy->isRealFloatingType()) {
- if (DestTy->isRealFloatingType())
- return CastExpr::CK_FloatingCast;
- if (DestTy->isIntegerType())
- return CastExpr::CK_FloatingToIntegral;
- }
-
- // FIXME: Assert here.
- // assert(false && "Unhandled cast combination!");
- return CastExpr::CK_Unknown;
-}
-
-/// CheckCastTypes - Check type constraints for casting between types.
-bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
- CastExpr::CastKind& Kind,
- CXXBaseSpecifierArray &BasePath,
- bool FunctionalStyle) {
- if (getLangOptions().CPlusPlus)
- return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
- FunctionalStyle);
-
- DefaultFunctionArrayLvalueConversion(castExpr);
-
- // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
- // type needs to be scalar.
- if (castType->isVoidType()) {
- // Cast to void allows any expr type.
- Kind = CastExpr::CK_ToVoid;
- return false;
- }
-
- if (RequireCompleteType(TyR.getBegin(), castType,
- diag::err_typecheck_cast_to_incomplete))
- return true;
-
- if (!castType->isScalarType() && !castType->isVectorType()) {
- if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
- (castType->isStructureType() || castType->isUnionType())) {
- // GCC struct/union extension: allow cast to self.
- // FIXME: Check that the cast destination type is complete.
- Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
- << castType << castExpr->getSourceRange();
- Kind = CastExpr::CK_NoOp;
- return false;
- }
-
- if (castType->isUnionType()) {
- // GCC cast to union extension
- RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
- RecordDecl::field_iterator Field, FieldEnd;
- for (Field = RD->field_begin(), FieldEnd = RD->field_end();
- Field != FieldEnd; ++Field) {
- if (Context.hasSameUnqualifiedType(Field->getType(),
- castExpr->getType())) {
- Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
- << castExpr->getSourceRange();
- break;
- }
- }
- if (Field == FieldEnd)
- return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
- << castExpr->getType() << castExpr->getSourceRange();
- Kind = CastExpr::CK_ToUnion;
- return false;
- }
-
- // Reject any other conversions to non-scalar types.
- return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
- << castType << castExpr->getSourceRange();
- }
-
- if (!castExpr->getType()->isScalarType() &&
- !castExpr->getType()->isVectorType()) {
- return Diag(castExpr->getLocStart(),
- diag::err_typecheck_expect_scalar_operand)
- << castExpr->getType() << castExpr->getSourceRange();
- }
-
- if (castType->isExtVectorType())
- return CheckExtVectorCast(TyR, castType, castExpr, Kind);
-
- if (castType->isVectorType())
- return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
- if (castExpr->getType()->isVectorType())
- return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
-
- if (isa<ObjCSelectorExpr>(castExpr))
- return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
-
- if (!castType->isArithmeticType()) {
- QualType castExprType = castExpr->getType();
- if (!castExprType->isIntegralType(Context) &&
- castExprType->isArithmeticType())
- return Diag(castExpr->getLocStart(),
- diag::err_cast_pointer_from_non_pointer_int)
- << castExprType << castExpr->getSourceRange();
- } else if (!castExpr->getType()->isArithmeticType()) {
- if (!castType->isIntegralType(Context) && castType->isArithmeticType())
- return Diag(castExpr->getLocStart(),
- diag::err_cast_pointer_to_non_pointer_int)
- << castType << castExpr->getSourceRange();
- }
-
- Kind = getScalarCastKind(Context, castExpr->getType(), castType);
- return false;
-}
-
-bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
- CastExpr::CastKind &Kind) {
- assert(VectorTy->isVectorType() && "Not a vector type!");
-
- if (Ty->isVectorType() || Ty->isIntegerType()) {
- if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
- return Diag(R.getBegin(),
- Ty->isVectorType() ?
- diag::err_invalid_conversion_between_vectors :
- diag::err_invalid_conversion_between_vector_and_integer)
- << VectorTy << Ty << R;
- } else
- return Diag(R.getBegin(),
- diag::err_invalid_conversion_between_vector_and_scalar)
- << VectorTy << Ty << R;
-
- Kind = CastExpr::CK_BitCast;
- return false;
-}
-
-bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
- CastExpr::CastKind &Kind) {
- assert(DestTy->isExtVectorType() && "Not an extended vector type!");
-
- QualType SrcTy = CastExpr->getType();
-
- // If SrcTy is a VectorType, the total size must match to explicitly cast to
- // an ExtVectorType.
- if (SrcTy->isVectorType()) {
- if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
- return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
- << DestTy << SrcTy << R;
- Kind = CastExpr::CK_BitCast;
- return false;
- }
-
- // All non-pointer scalars can be cast to ExtVector type. The appropriate
- // conversion will take place first from scalar to elt type, and then
- // splat from elt type to vector.
- if (SrcTy->isPointerType())
- return Diag(R.getBegin(),
- diag::err_invalid_conversion_between_vector_and_scalar)
- << DestTy << SrcTy << R;
-
- QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
- ImpCastExprToType(CastExpr, DestElemTy,
- getScalarCastKind(Context, SrcTy, DestElemTy));
-
- Kind = CastExpr::CK_VectorSplat;
- return false;
-}
-
-Action::OwningExprResult
-Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
- SourceLocation RParenLoc, ExprArg Op) {
- assert((Ty != 0) && (Op.get() != 0) &&
- "ActOnCastExpr(): missing type or expr");
-
- TypeSourceInfo *castTInfo;
- QualType castType = GetTypeFromParser(Ty, &castTInfo);
- if (!castTInfo)
- castTInfo = Context.getTrivialTypeSourceInfo(castType);
-
- // If the Expr being casted is a ParenListExpr, handle it specially.
- Expr *castExpr = (Expr *)Op.get();
- if (isa<ParenListExpr>(castExpr))
- return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
- castTInfo);
-
- return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
-}
-
-Action::OwningExprResult
-Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
- SourceLocation RParenLoc, ExprArg Op) {
- Expr *castExpr = static_cast<Expr*>(Op.get());
-
- CastExpr::CastKind Kind = CastExpr::CK_Unknown;
- CXXBaseSpecifierArray BasePath;
- if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
- Kind, BasePath))
- return ExprError();
-
- Op.release();
- return Owned(new (Context) CStyleCastExpr(
- Ty->getType().getNonLValueExprType(Context),
- Kind, castExpr, BasePath, Ty,
- LParenLoc, RParenLoc));
-}
-
-/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
-/// of comma binary operators.
-Action::OwningExprResult
-Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
- Expr *expr = EA.takeAs<Expr>();
- ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
- if (!E)
- return Owned(expr);
-
- OwningExprResult Result(*this, E->getExpr(0));
-
- for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
- Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
- Owned(E->getExpr(i)));
-
- return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
-}
-
-Action::OwningExprResult
-Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
- SourceLocation RParenLoc, ExprArg Op,
- TypeSourceInfo *TInfo) {
- ParenListExpr *PE = (ParenListExpr *)Op.get();
- QualType Ty = TInfo->getType();
- bool isAltiVecLiteral = false;
-
- // Check for an altivec literal,
- // i.e. all the elements are integer constants.
- if (getLangOptions().AltiVec && Ty->isVectorType()) {
- if (PE->getNumExprs() == 0) {
- Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
- return ExprError();
- }
- if (PE->getNumExprs() == 1) {
- if (!PE->getExpr(0)->getType()->isVectorType())
- isAltiVecLiteral = true;
- }
- else
- isAltiVecLiteral = true;
- }
-
- // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
- // then handle it as such.
- if (isAltiVecLiteral) {
- llvm::SmallVector<Expr *, 8> initExprs;
- for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
- initExprs.push_back(PE->getExpr(i));
-
- // FIXME: This means that pretty-printing the final AST will produce curly
- // braces instead of the original commas.
- Op.release();
- InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
- &initExprs[0],
- initExprs.size(), RParenLoc);
- E->setType(Ty);
- return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
- } else {
- // This is not an AltiVec-style cast, so turn the ParenListExpr into a
- // sequence of BinOp comma operators.
- Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
- return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
- }
-}
-
-Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
- SourceLocation R,
- MultiExprArg Val,
- TypeTy *TypeOfCast) {
- unsigned nexprs = Val.size();
- Expr **exprs = reinterpret_cast<Expr**>(Val.release());
- assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
- Expr *expr;
- if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
- expr = new (Context) ParenExpr(L, R, exprs[0]);
- else
- expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
- return Owned(expr);
-}
-
-/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
-/// In that case, lhs = cond.
-/// C99 6.5.15
-QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
- SourceLocation QuestionLoc) {
- // C++ is sufficiently different to merit its own checker.
- if (getLangOptions().CPlusPlus)
- return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
-
- UsualUnaryConversions(Cond);
- UsualUnaryConversions(LHS);
- UsualUnaryConversions(RHS);
- QualType CondTy = Cond->getType();
- QualType LHSTy = LHS->getType();
- QualType RHSTy = RHS->getType();
-
- // first, check the condition.
- if (!CondTy->isScalarType()) { // C99 6.5.15p2
- Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
- << CondTy;
- return QualType();
- }
-
- // Now check the two expressions.
- if (LHSTy->isVectorType() || RHSTy->isVectorType())
- return CheckVectorOperands(QuestionLoc, LHS, RHS);
-
- // If both operands have arithmetic type, do the usual arithmetic conversions
- // to find a common type: C99 6.5.15p3,5.
- if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
- UsualArithmeticConversions(LHS, RHS);
- return LHS->getType();
- }
-
- // If both operands are the same structure or union type, the result is that
- // type.
- if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
- if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
- if (LHSRT->getDecl() == RHSRT->getDecl())
- // "If both the operands have structure or union type, the result has
- // that type." This implies that CV qualifiers are dropped.
- return LHSTy.getUnqualifiedType();
- // FIXME: Type of conditional expression must be complete in C mode.
- }
-
- // C99 6.5.15p5: "If both operands have void type, the result has void type."
- // The following || allows only one side to be void (a GCC-ism).
- if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
- if (!LHSTy->isVoidType())
- Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
- << RHS->getSourceRange();
- if (!RHSTy->isVoidType())
- Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
- << LHS->getSourceRange();
- ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
- ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
- return Context.VoidTy;
- }
- // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
- // the type of the other operand."
- if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
- RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
- // promote the null to a pointer.
- ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
- return LHSTy;
- }
- if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
- LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
- ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
- return RHSTy;
- }
-
- // All objective-c pointer type analysis is done here.
- QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
- QuestionLoc);
- if (!compositeType.isNull())
- return compositeType;
-
-
- // Handle block pointer types.
- if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
- if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
- if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
- QualType destType = Context.getPointerType(Context.VoidTy);
- ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
- ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
- return destType;
- }
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
- return QualType();
- }
- // We have 2 block pointer types.
- if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
- // Two identical block pointer types are always compatible.
- return LHSTy;
- }
- // The block pointer types aren't identical, continue checking.
- QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
-
- if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
- rhptee.getUnqualifiedType())) {
- Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
- << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
- // In this situation, we assume void* type. No especially good
- // reason, but this is what gcc does, and we do have to pick
- // to get a consistent AST.
- QualType incompatTy = Context.getPointerType(Context.VoidTy);
- ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
- ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
- return incompatTy;
- }
- // The block pointer types are compatible.
- ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
- ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
- return LHSTy;
- }
-
- // Check constraints for C object pointers types (C99 6.5.15p3,6).
- if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
- // get the "pointed to" types
- QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
-
- // ignore qualifiers on void (C99 6.5.15p3, clause 6)
- if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
- // Figure out necessary qualifiers (C99 6.5.15p6)
- QualType destPointee
- = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
- // Promote to void*.
- ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
- return destType;
- }
- if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
- QualType destPointee
- = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
- // Promote to void*.
- ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
- return destType;
- }
-
- if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
- // Two identical pointer types are always compatible.
- return LHSTy;
- }
- if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
- rhptee.getUnqualifiedType())) {
- Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
- << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
- // In this situation, we assume void* type. No especially good
- // reason, but this is what gcc does, and we do have to pick
- // to get a consistent AST.
- QualType incompatTy = Context.getPointerType(Context.VoidTy);
- ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
- ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
- return incompatTy;
- }
- // The pointer types are compatible.
- // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
- // differently qualified versions of compatible types, the result type is
- // a pointer to an appropriately qualified version of the *composite*
- // type.
- // FIXME: Need to calculate the composite type.
- // FIXME: Need to add qualifiers
- ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
- ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
- return LHSTy;
- }
-
- // GCC compatibility: soften pointer/integer mismatch.
- if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
- Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
- << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
- ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
- return RHSTy;
- }
- if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
- Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
- << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
- ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
- return LHSTy;
- }
-
- // Otherwise, the operands are not compatible.
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
- return QualType();
-}
-
-/// FindCompositeObjCPointerType - Helper method to find composite type of
-/// two objective-c pointer types of the two input expressions.
-QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
- SourceLocation QuestionLoc) {
- QualType LHSTy = LHS->getType();
- QualType RHSTy = RHS->getType();
-
- // Handle things like Class and struct objc_class*. Here we case the result
- // to the pseudo-builtin, because that will be implicitly cast back to the
- // redefinition type if an attempt is made to access its fields.
- if (LHSTy->isObjCClassType() &&
- (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
- ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
- return LHSTy;
- }
- if (RHSTy->isObjCClassType() &&
- (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
- ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
- return RHSTy;
- }
- // And the same for struct objc_object* / id
- if (LHSTy->isObjCIdType() &&
- (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
- ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
- return LHSTy;
- }
- if (RHSTy->isObjCIdType() &&
- (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
- ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
- return RHSTy;
- }
- // And the same for struct objc_selector* / SEL
- if (Context.isObjCSelType(LHSTy) &&
- (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
- ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
- return LHSTy;
- }
- if (Context.isObjCSelType(RHSTy) &&
- (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
- ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
- return RHSTy;
- }
- // Check constraints for Objective-C object pointers types.
- if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
-
- if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
- // Two identical object pointer types are always compatible.
- return LHSTy;
- }
- const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
- QualType compositeType = LHSTy;
-
- // If both operands are interfaces and either operand can be
- // assigned to the other, use that type as the composite
- // type. This allows
- // xxx ? (A*) a : (B*) b
- // where B is a subclass of A.
- //
- // Additionally, as for assignment, if either type is 'id'
- // allow silent coercion. Finally, if the types are
- // incompatible then make sure to use 'id' as the composite
- // type so the result is acceptable for sending messages to.
-
- // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
- // It could return the composite type.
- if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
- compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
- } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
- compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
- } else if ((LHSTy->isObjCQualifiedIdType() ||
- RHSTy->isObjCQualifiedIdType()) &&
- Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
- // Need to handle "id<xx>" explicitly.
- // GCC allows qualified id and any Objective-C type to devolve to
- // id. Currently localizing to here until clear this should be
- // part of ObjCQualifiedIdTypesAreCompatible.
- compositeType = Context.getObjCIdType();
- } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
- compositeType = Context.getObjCIdType();
- } else if (!(compositeType =
- Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
- ;
- else {
- Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy
- << LHS->getSourceRange() << RHS->getSourceRange();
- QualType incompatTy = Context.getObjCIdType();
- ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
- ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
- return incompatTy;
- }
- // The object pointer types are compatible.
- ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
- ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
- return compositeType;
- }
- // Check Objective-C object pointer types and 'void *'
- if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
- QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType destPointee
- = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
- // Promote to void*.
- ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
- return destType;
- }
- if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
- QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
- QualType destPointee
- = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
- // Promote to void*.
- ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
- return destType;
- }
- return QualType();
-}
-
-/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
-/// in the case of a the GNU conditional expr extension.
-Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
- SourceLocation ColonLoc,
- ExprArg Cond, ExprArg LHS,
- ExprArg RHS) {
- Expr *CondExpr = (Expr *) Cond.get();
- Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
-
- // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
- // was the condition.
- bool isLHSNull = LHSExpr == 0;
- if (isLHSNull)
- LHSExpr = CondExpr;
-
- QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
- RHSExpr, QuestionLoc);
- if (result.isNull())
- return ExprError();
-
- Cond.release();
- LHS.release();
- RHS.release();
- return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
- isLHSNull ? 0 : LHSExpr,
- ColonLoc, RHSExpr, result));
-}
-
-// CheckPointerTypesForAssignment - This is a very tricky routine (despite
-// being closely modeled after the C99 spec:-). The odd characteristic of this
-// routine is it effectively iqnores the qualifiers on the top level pointee.
-// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
-// FIXME: add a couple examples in this comment.
-Sema::AssignConvertType
-Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
- QualType lhptee, rhptee;
-
- if ((lhsType->isObjCClassType() &&
- (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
- (rhsType->isObjCClassType() &&
- (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
- return Compatible;
- }
-
- // get the "pointed to" type (ignoring qualifiers at the top level)
- lhptee = lhsType->getAs<PointerType>()->getPointeeType();
- rhptee = rhsType->getAs<PointerType>()->getPointeeType();
-
- // make sure we operate on the canonical type
- lhptee = Context.getCanonicalType(lhptee);
- rhptee = Context.getCanonicalType(rhptee);
-
- AssignConvertType ConvTy = Compatible;
-
- // C99 6.5.16.1p1: This following citation is common to constraints
- // 3 & 4 (below). ...and the type *pointed to* by the left has all the
- // qualifiers of the type *pointed to* by the right;
- // FIXME: Handle ExtQualType
- if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
- ConvTy = CompatiblePointerDiscardsQualifiers;
-
- // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
- // incomplete type and the other is a pointer to a qualified or unqualified
- // version of void...
- if (lhptee->isVoidType()) {
- if (rhptee->isIncompleteOrObjectType())
- return ConvTy;
-
- // As an extension, we allow cast to/from void* to function pointer.
- assert(rhptee->isFunctionType());
- return FunctionVoidPointer;
- }
-
- if (rhptee->isVoidType()) {
- if (lhptee->isIncompleteOrObjectType())
- return ConvTy;
-
- // As an extension, we allow cast to/from void* to function pointer.
- assert(lhptee->isFunctionType());
- return FunctionVoidPointer;
- }
- // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
- // unqualified versions of compatible types, ...
- lhptee = lhptee.getUnqualifiedType();
- rhptee = rhptee.getUnqualifiedType();
- if (!Context.typesAreCompatible(lhptee, rhptee)) {
- // Check if the pointee types are compatible ignoring the sign.
- // We explicitly check for char so that we catch "char" vs
- // "unsigned char" on systems where "char" is unsigned.
- if (lhptee->isCharType())
- lhptee = Context.UnsignedCharTy;
- else if (lhptee->hasSignedIntegerRepresentation())
- lhptee = Context.getCorrespondingUnsignedType(lhptee);
-
- if (rhptee->isCharType())
- rhptee = Context.UnsignedCharTy;
- else if (rhptee->hasSignedIntegerRepresentation())
- rhptee = Context.getCorrespondingUnsignedType(rhptee);
-
- if (lhptee == rhptee) {
- // Types are compatible ignoring the sign. Qualifier incompatibility
- // takes priority over sign incompatibility because the sign
- // warning can be disabled.
- if (ConvTy != Compatible)
- return ConvTy;
- return IncompatiblePointerSign;
- }
-
- // If we are a multi-level pointer, it's possible that our issue is simply
- // one of qualification - e.g. char ** -> const char ** is not allowed. If
- // the eventual target type is the same and the pointers have the same
- // level of indirection, this must be the issue.
- if (lhptee->isPointerType() && rhptee->isPointerType()) {
- do {
- lhptee = lhptee->getAs<PointerType>()->getPointeeType();
- rhptee = rhptee->getAs<PointerType>()->getPointeeType();
-
- lhptee = Context.getCanonicalType(lhptee);
- rhptee = Context.getCanonicalType(rhptee);
- } while (lhptee->isPointerType() && rhptee->isPointerType());
-
- if (Context.hasSameUnqualifiedType(lhptee, rhptee))
- return IncompatibleNestedPointerQualifiers;
- }
-
- // General pointer incompatibility takes priority over qualifiers.
- return IncompatiblePointer;
- }
- return ConvTy;
-}
-
-/// CheckBlockPointerTypesForAssignment - This routine determines whether two
-/// block pointer types are compatible or whether a block and normal pointer
-/// are compatible. It is more restrict than comparing two function pointer
-// types.
-Sema::AssignConvertType
-Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
- QualType rhsType) {
- QualType lhptee, rhptee;
-
- // get the "pointed to" type (ignoring qualifiers at the top level)
- lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
- rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
-
- // make sure we operate on the canonical type
- lhptee = Context.getCanonicalType(lhptee);
- rhptee = Context.getCanonicalType(rhptee);
-
- AssignConvertType ConvTy = Compatible;
-
- // For blocks we enforce that qualifiers are identical.
- if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
- ConvTy = CompatiblePointerDiscardsQualifiers;
-
- if (!getLangOptions().CPlusPlus) {
- if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
- return IncompatibleBlockPointer;
- }
- else if (!Context.typesAreCompatible(lhptee, rhptee))
- return IncompatibleBlockPointer;
- return ConvTy;
-}
-
-/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
-/// for assignment compatibility.
-Sema::AssignConvertType
-Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
- if (lhsType->isObjCBuiltinType()) {
- // Class is not compatible with ObjC object pointers.
- if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
- !rhsType->isObjCQualifiedClassType())
- return IncompatiblePointer;
- return Compatible;
- }
- if (rhsType->isObjCBuiltinType()) {
- // Class is not compatible with ObjC object pointers.
- if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
- !lhsType->isObjCQualifiedClassType())
- return IncompatiblePointer;
- return Compatible;
- }
- QualType lhptee =
- lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType rhptee =
- rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
- // make sure we operate on the canonical type
- lhptee = Context.getCanonicalType(lhptee);
- rhptee = Context.getCanonicalType(rhptee);
- if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
- return CompatiblePointerDiscardsQualifiers;
-
- if (Context.typesAreCompatible(lhsType, rhsType))
- return Compatible;
- if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
- return IncompatibleObjCQualifiedId;
- return IncompatiblePointer;
-}
-
-/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
-/// has code to accommodate several GCC extensions when type checking
-/// pointers. Here are some objectionable examples that GCC considers warnings:
-///
-/// int a, *pint;
-/// short *pshort;
-/// struct foo *pfoo;
-///
-/// pint = pshort; // warning: assignment from incompatible pointer type
-/// a = pint; // warning: assignment makes integer from pointer without a cast
-/// pint = a; // warning: assignment makes pointer from integer without a cast
-/// pint = pfoo; // warning: assignment from incompatible pointer type
-///
-/// As a result, the code for dealing with pointers is more complex than the
-/// C99 spec dictates.
-///
-Sema::AssignConvertType
-Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
- // Get canonical types. We're not formatting these types, just comparing
- // them.
- lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
- rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
-
- if (lhsType == rhsType)
- return Compatible; // Common case: fast path an exact match.
-
- if ((lhsType->isObjCClassType() &&
- (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
- (rhsType->isObjCClassType() &&
- (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
- return Compatible;
- }
-
- // If the left-hand side is a reference type, then we are in a
- // (rare!) case where we've allowed the use of references in C,
- // e.g., as a parameter type in a built-in function. In this case,
- // just make sure that the type referenced is compatible with the
- // right-hand side type. The caller is responsible for adjusting
- // lhsType so that the resulting expression does not have reference
- // type.
- if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
- if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
- return Compatible;
- return Incompatible;
- }
- // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
- // to the same ExtVector type.
- if (lhsType->isExtVectorType()) {
- if (rhsType->isExtVectorType())
- return lhsType == rhsType ? Compatible : Incompatible;
- if (rhsType->isArithmeticType())
- return Compatible;
- }
-
- if (lhsType->isVectorType() || rhsType->isVectorType()) {
- // If we are allowing lax vector conversions, and LHS and RHS are both
- // vectors, the total size only needs to be the same. This is a bitcast;
- // no bits are changed but the result type is different.
- if (getLangOptions().LaxVectorConversions &&
- lhsType->isVectorType() && rhsType->isVectorType()) {
- if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
- return IncompatibleVectors;
- }
- return Incompatible;
- }
-
- if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
- !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
- return Compatible;
-
- if (isa<PointerType>(lhsType)) {
- if (rhsType->isIntegerType())
- return IntToPointer;
-
- if (isa<PointerType>(rhsType))
- return CheckPointerTypesForAssignment(lhsType, rhsType);
-
- // In general, C pointers are not compatible with ObjC object pointers.
- if (isa<ObjCObjectPointerType>(rhsType)) {
- if (lhsType->isVoidPointerType()) // an exception to the rule.
- return Compatible;
- return IncompatiblePointer;
- }
- if (rhsType->getAs<BlockPointerType>()) {
- if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
- return Compatible;
-
- // Treat block pointers as objects.
- if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
- return Compatible;
- }
- return Incompatible;
- }
-
- if (isa<BlockPointerType>(lhsType)) {
- if (rhsType->isIntegerType())
- return IntToBlockPointer;
-
- // Treat block pointers as objects.
- if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
- return Compatible;
-
- if (rhsType->isBlockPointerType())
- return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
-
- if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
- if (RHSPT->getPointeeType()->isVoidType())
- return Compatible;
- }
- return Incompatible;
- }
-
- if (isa<ObjCObjectPointerType>(lhsType)) {
- if (rhsType->isIntegerType())
- return IntToPointer;
-
- // In general, C pointers are not compatible with ObjC object pointers.
- if (isa<PointerType>(rhsType)) {
- if (rhsType->isVoidPointerType()) // an exception to the rule.
- return Compatible;
- return IncompatiblePointer;
- }
- if (rhsType->isObjCObjectPointerType()) {
- return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
- }
- if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
- if (RHSPT->getPointeeType()->isVoidType())
- return Compatible;
- }
- // Treat block pointers as objects.
- if (rhsType->isBlockPointerType())
- return Compatible;
- return Incompatible;
- }
- if (isa<PointerType>(rhsType)) {
- // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
- if (lhsType == Context.BoolTy)
- return Compatible;
-
- if (lhsType->isIntegerType())
- return PointerToInt;
-
- if (isa<PointerType>(lhsType))
- return CheckPointerTypesForAssignment(lhsType, rhsType);
-
- if (isa<BlockPointerType>(lhsType) &&
- rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
- return Compatible;
- return Incompatible;
- }
- if (isa<ObjCObjectPointerType>(rhsType)) {
- // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
- if (lhsType == Context.BoolTy)
- return Compatible;
-
- if (lhsType->isIntegerType())
- return PointerToInt;
-
- // In general, C pointers are not compatible with ObjC object pointers.
- if (isa<PointerType>(lhsType)) {
- if (lhsType->isVoidPointerType()) // an exception to the rule.
- return Compatible;
- return IncompatiblePointer;
- }
- if (isa<BlockPointerType>(lhsType) &&
- rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
- return Compatible;
- return Incompatible;
- }
-
- if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
- if (Context.typesAreCompatible(lhsType, rhsType))
- return Compatible;
- }
- return Incompatible;
-}
-
-/// \brief Constructs a transparent union from an expression that is
-/// used to initialize the transparent union.
-static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
- QualType UnionType, FieldDecl *Field) {
- // Build an initializer list that designates the appropriate member
- // of the transparent union.
- InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
- &E, 1,
- SourceLocation());
- Initializer->setType(UnionType);
- Initializer->setInitializedFieldInUnion(Field);
-
- // Build a compound literal constructing a value of the transparent
- // union type from this initializer list.
- TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
- E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
- Initializer, false);
-}
-
-Sema::AssignConvertType
-Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
- QualType FromType = rExpr->getType();
-
- // If the ArgType is a Union type, we want to handle a potential
- // transparent_union GCC extension.
- const RecordType *UT = ArgType->getAsUnionType();
- if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
- return Incompatible;
-
- // The field to initialize within the transparent union.
- RecordDecl *UD = UT->getDecl();
- FieldDecl *InitField = 0;
- // It's compatible if the expression matches any of the fields.
- for (RecordDecl::field_iterator it = UD->field_begin(),
- itend = UD->field_end();
- it != itend; ++it) {
- if (it->getType()->isPointerType()) {
- // If the transparent union contains a pointer type, we allow:
- // 1) void pointer
- // 2) null pointer constant
- if (FromType->isPointerType())
- if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
- ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
- InitField = *it;
- break;
- }
-
- if (rExpr->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
- InitField = *it;
- break;
- }
- }
-
- if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
- == Compatible) {
- InitField = *it;
- break;
- }
- }
-
- if (!InitField)
- return Incompatible;
-
- ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
- return Compatible;
-}
-
-Sema::AssignConvertType
-Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
- if (getLangOptions().CPlusPlus) {
- if (!lhsType->isRecordType()) {
- // C++ 5.17p3: If the left operand is not of class type, the
- // expression is implicitly converted (C++ 4) to the
- // cv-unqualified type of the left operand.
- if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
- AA_Assigning))
- return Incompatible;
- return Compatible;
- }
-
- // FIXME: Currently, we fall through and treat C++ classes like C
- // structures.
- }
-
- // C99 6.5.16.1p1: the left operand is a pointer and the right is
- // a null pointer constant.
- if ((lhsType->isPointerType() ||
- lhsType->isObjCObjectPointerType() ||
- lhsType->isBlockPointerType())
- && rExpr->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
- return Compatible;
- }
-
- // This check seems unnatural, however it is necessary to ensure the proper
- // conversion of functions/arrays. If the conversion were done for all
- // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
- // expressions that surpress this implicit conversion (&, sizeof).
- //
- // Suppress this for references: C++ 8.5.3p5.
- if (!lhsType->isReferenceType())
- DefaultFunctionArrayLvalueConversion(rExpr);
-
- Sema::AssignConvertType result =
- CheckAssignmentConstraints(lhsType, rExpr->getType());
-
- // C99 6.5.16.1p2: The value of the right operand is converted to the
- // type of the assignment expression.
- // CheckAssignmentConstraints allows the left-hand side to be a reference,
- // so that we can use references in built-in functions even in C.
- // The getNonReferenceType() call makes sure that the resulting expression
- // does not have reference type.
- if (result != Incompatible && rExpr->getType() != lhsType)
- ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context),
- CastExpr::CK_Unknown);
- return result;
-}
-
-QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
- Diag(Loc, diag::err_typecheck_invalid_operands)
- << lex->getType() << rex->getType()
- << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
-}
-
-QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
- // For conversion purposes, we ignore any qualifiers.
- // For example, "const float" and "float" are equivalent.
- QualType lhsType =
- Context.getCanonicalType(lex->getType()).getUnqualifiedType();
- QualType rhsType =
- Context.getCanonicalType(rex->getType()).getUnqualifiedType();
-
- // If the vector types are identical, return.
- if (lhsType == rhsType)
- return lhsType;
-
- // Handle the case of a vector & extvector type of the same size and element
- // type. It would be nice if we only had one vector type someday.
- if (getLangOptions().LaxVectorConversions) {
- // FIXME: Should we warn here?
- if (const VectorType *LV = lhsType->getAs<VectorType>()) {
- if (const VectorType *RV = rhsType->getAs<VectorType>())
- if (LV->getElementType() == RV->getElementType() &&
- LV->getNumElements() == RV->getNumElements()) {
- if (lhsType->isExtVectorType()) {
- ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast);
- return lhsType;
- }
-
- ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
- return rhsType;
- }
- }
- }
-
- // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
- // swap back (so that we don't reverse the inputs to a subtract, for instance.
- bool swapped = false;
- if (rhsType->isExtVectorType()) {
- swapped = true;
- std::swap(rex, lex);
- std::swap(rhsType, lhsType);
- }
-
- // Handle the case of an ext vector and scalar.
- if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
- QualType EltTy = LV->getElementType();
- if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
- if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
- ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
- if (swapped) std::swap(rex, lex);
- return lhsType;
- }
- }
- if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
- rhsType->isRealFloatingType()) {
- if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
- ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
- if (swapped) std::swap(rex, lex);
- return lhsType;
- }
- }
- }
-
- // Vectors of different size or scalar and non-ext-vector are errors.
- Diag(Loc, diag::err_typecheck_vector_not_convertable)
- << lex->getType() << rex->getType()
- << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
-}
-
-QualType Sema::CheckMultiplyDivideOperands(
- Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
- if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
- return CheckVectorOperands(Loc, lex, rex);
-
- QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
-
- if (!lex->getType()->isArithmeticType() ||
- !rex->getType()->isArithmeticType())
- return InvalidOperands(Loc, lex, rex);
-
- // Check for division by zero.
- if (isDiv &&
- rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
- DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
- << rex->getSourceRange());
-
- return compType;
-}
-
-QualType Sema::CheckRemainderOperands(
- Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
- if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
- if (lex->getType()->hasIntegerRepresentation() &&
- rex->getType()->hasIntegerRepresentation())
- return CheckVectorOperands(Loc, lex, rex);
- return InvalidOperands(Loc, lex, rex);
- }
-
- QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
-
- if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
- return InvalidOperands(Loc, lex, rex);
-
- // Check for remainder by zero.
- if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
- DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
- << rex->getSourceRange());
-
- return compType;
-}
-
-QualType Sema::CheckAdditionOperands( // C99 6.5.6
- Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
- if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
- QualType compType = CheckVectorOperands(Loc, lex, rex);
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
-
- QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
-
- // handle the common case first (both operands are arithmetic).
- if (lex->getType()->isArithmeticType() &&
- rex->getType()->isArithmeticType()) {
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
-
- // Put any potential pointer into PExp
- Expr* PExp = lex, *IExp = rex;
- if (IExp->getType()->isAnyPointerType())
- std::swap(PExp, IExp);
-
- if (PExp->getType()->isAnyPointerType()) {
-
- if (IExp->getType()->isIntegerType()) {
- QualType PointeeTy = PExp->getType()->getPointeeType();
-
- // Check for arithmetic on pointers to incomplete types.
- if (PointeeTy->isVoidType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
- << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
- }
-
- // GNU extension: arithmetic on pointer to void
- Diag(Loc, diag::ext_gnu_void_ptr)
- << lex->getSourceRange() << rex->getSourceRange();
- } else if (PointeeTy->isFunctionType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
- << lex->getType() << lex->getSourceRange();
- return QualType();
- }
-
- // GNU extension: arithmetic on pointer to function
- Diag(Loc, diag::ext_gnu_ptr_func_arith)
- << lex->getType() << lex->getSourceRange();
- } else {
- // Check if we require a complete type.
- if (((PExp->getType()->isPointerType() &&
- !PExp->getType()->isDependentType()) ||
- PExp->getType()->isObjCObjectPointerType()) &&
- RequireCompleteType(Loc, PointeeTy,
- PDiag(diag::err_typecheck_arithmetic_incomplete_type)
- << PExp->getSourceRange()
- << PExp->getType()))
- return QualType();
- }
- // Diagnose bad cases where we step over interface counts.
- if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
- Diag(Loc, diag::err_arithmetic_nonfragile_interface)
- << PointeeTy << PExp->getSourceRange();
- return QualType();
- }
-
- if (CompLHSTy) {
- QualType LHSTy = Context.isPromotableBitField(lex);
- if (LHSTy.isNull()) {
- LHSTy = lex->getType();
- if (LHSTy->isPromotableIntegerType())
- LHSTy = Context.getPromotedIntegerType(LHSTy);
- }
- *CompLHSTy = LHSTy;
- }
- return PExp->getType();
- }
- }
-
- return InvalidOperands(Loc, lex, rex);
-}
-
-// C99 6.5.6
-QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
- SourceLocation Loc, QualType* CompLHSTy) {
- if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
- QualType compType = CheckVectorOperands(Loc, lex, rex);
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
-
- QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
-
- // Enforce type constraints: C99 6.5.6p3.
-
- // Handle the common case first (both operands are arithmetic).
- if (lex->getType()->isArithmeticType()
- && rex->getType()->isArithmeticType()) {
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
-
- // Either ptr - int or ptr - ptr.
- if (lex->getType()->isAnyPointerType()) {
- QualType lpointee = lex->getType()->getPointeeType();
-
- // The LHS must be an completely-defined object type.
-
- bool ComplainAboutVoid = false;
- Expr *ComplainAboutFunc = 0;
- if (lpointee->isVoidType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
- << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
- }
-
- // GNU C extension: arithmetic on pointer to void
- ComplainAboutVoid = true;
- } else if (lpointee->isFunctionType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
- << lex->getType() << lex->getSourceRange();
- return QualType();
- }
-
- // GNU C extension: arithmetic on pointer to function
- ComplainAboutFunc = lex;
- } else if (!lpointee->isDependentType() &&
- RequireCompleteType(Loc, lpointee,
- PDiag(diag::err_typecheck_sub_ptr_object)
- << lex->getSourceRange()
- << lex->getType()))
- return QualType();
-
- // Diagnose bad cases where we step over interface counts.
- if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
- Diag(Loc, diag::err_arithmetic_nonfragile_interface)
- << lpointee << lex->getSourceRange();
- return QualType();
- }
-
- // The result type of a pointer-int computation is the pointer type.
- if (rex->getType()->isIntegerType()) {
- if (ComplainAboutVoid)
- Diag(Loc, diag::ext_gnu_void_ptr)
- << lex->getSourceRange() << rex->getSourceRange();
- if (ComplainAboutFunc)
- Diag(Loc, diag::ext_gnu_ptr_func_arith)
- << ComplainAboutFunc->getType()
- << ComplainAboutFunc->getSourceRange();
-
- if (CompLHSTy) *CompLHSTy = lex->getType();
- return lex->getType();
- }
-
- // Handle pointer-pointer subtractions.
- if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
- QualType rpointee = RHSPTy->getPointeeType();
-
- // RHS must be a completely-type object type.
- // Handle the GNU void* extension.
- if (rpointee->isVoidType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
- << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
- }
-
- ComplainAboutVoid = true;
- } else if (rpointee->isFunctionType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
- << rex->getType() << rex->getSourceRange();
- return QualType();
- }
-
- // GNU extension: arithmetic on pointer to function
- if (!ComplainAboutFunc)
- ComplainAboutFunc = rex;
- } else if (!rpointee->isDependentType() &&
- RequireCompleteType(Loc, rpointee,
- PDiag(diag::err_typecheck_sub_ptr_object)
- << rex->getSourceRange()
- << rex->getType()))
- return QualType();
-
- if (getLangOptions().CPlusPlus) {
- // Pointee types must be the same: C++ [expr.add]
- if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
- Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
- << lex->getType() << rex->getType()
- << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
- }
- } else {
- // Pointee types must be compatible C99 6.5.6p3
- if (!Context.typesAreCompatible(
- Context.getCanonicalType(lpointee).getUnqualifiedType(),
- Context.getCanonicalType(rpointee).getUnqualifiedType())) {
- Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
- << lex->getType() << rex->getType()
- << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
- }
- }
-
- if (ComplainAboutVoid)
- Diag(Loc, diag::ext_gnu_void_ptr)
- << lex->getSourceRange() << rex->getSourceRange();
- if (ComplainAboutFunc)
- Diag(Loc, diag::ext_gnu_ptr_func_arith)
- << ComplainAboutFunc->getType()
- << ComplainAboutFunc->getSourceRange();
-
- if (CompLHSTy) *CompLHSTy = lex->getType();
- return Context.getPointerDiffType();
- }
- }
-
- return InvalidOperands(Loc, lex, rex);
-}
-
-// C99 6.5.7
-QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
- bool isCompAssign) {
- // C99 6.5.7p2: Each of the operands shall have integer type.
- if (!lex->getType()->hasIntegerRepresentation() ||
- !rex->getType()->hasIntegerRepresentation())
- return InvalidOperands(Loc, lex, rex);
-
- // Vector shifts promote their scalar inputs to vector type.
- if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
- return CheckVectorOperands(Loc, lex, rex);
-
- // Shifts don't perform usual arithmetic conversions, they just do integer
- // promotions on each operand. C99 6.5.7p3
- QualType LHSTy = Context.isPromotableBitField(lex);
- if (LHSTy.isNull()) {
- LHSTy = lex->getType();
- if (LHSTy->isPromotableIntegerType())
- LHSTy = Context.getPromotedIntegerType(LHSTy);
- }
- if (!isCompAssign)
- ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
-
- UsualUnaryConversions(rex);
-
- // Sanity-check shift operands
- llvm::APSInt Right;
- // Check right/shifter operand
- if (!rex->isValueDependent() &&
- rex->isIntegerConstantExpr(Right, Context)) {
- if (Right.isNegative())
- Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
- else {
- llvm::APInt LeftBits(Right.getBitWidth(),
- Context.getTypeSize(lex->getType()));
- if (Right.uge(LeftBits))
- Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
- }
- }
-
- // "The type of the result is that of the promoted left operand."
- return LHSTy;
-}
-
-static bool IsWithinTemplateSpecialization(Decl *D) {
- if (DeclContext *DC = D->getDeclContext()) {
- if (isa<ClassTemplateSpecializationDecl>(DC))
- return true;
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
- return FD->isFunctionTemplateSpecialization();
- }
- return false;
-}
-
-// C99 6.5.8, C++ [expr.rel]
-QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
- unsigned OpaqueOpc, bool isRelational) {
- BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
-
- // Handle vector comparisons separately.
- if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
- return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
-
- QualType lType = lex->getType();
- QualType rType = rex->getType();
-
- if (!lType->hasFloatingRepresentation() &&
- !(lType->isBlockPointerType() && isRelational)) {
- // For non-floating point types, check for self-comparisons of the form
- // x == x, x != x, x < x, etc. These always evaluate to a constant, and
- // often indicate logic errors in the program.
- //
- // NOTE: Don't warn about comparison expressions resulting from macro
- // expansion. Also don't warn about comparisons which are only self
- // comparisons within a template specialization. The warnings should catch
- // obvious cases in the definition of the template anyways. The idea is to
- // warn when the typed comparison operator will always evaluate to the same
- // result.
- Expr *LHSStripped = lex->IgnoreParens();
- Expr *RHSStripped = rex->IgnoreParens();
- if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
- if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
- if (DRL->getDecl() == DRR->getDecl() && !Loc.isMacroID() &&
- !IsWithinTemplateSpecialization(DRL->getDecl())) {
- DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
- << 0 // self-
- << (Opc == BinaryOperator::EQ
- || Opc == BinaryOperator::LE
- || Opc == BinaryOperator::GE));
- } else if (lType->isArrayType() && rType->isArrayType() &&
- !DRL->getDecl()->getType()->isReferenceType() &&
- !DRR->getDecl()->getType()->isReferenceType()) {
- // what is it always going to eval to?
- char always_evals_to;
- switch(Opc) {
- case BinaryOperator::EQ: // e.g. array1 == array2
- always_evals_to = 0; // false
- break;
- case BinaryOperator::NE: // e.g. array1 != array2
- always_evals_to = 1; // true
- break;
- default:
- // best we can say is 'a constant'
- always_evals_to = 2; // e.g. array1 <= array2
- break;
- }
- DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
- << 1 // array
- << always_evals_to);
- }
- }
- }
-
- if (isa<CastExpr>(LHSStripped))
- LHSStripped = LHSStripped->IgnoreParenCasts();
- if (isa<CastExpr>(RHSStripped))
- RHSStripped = RHSStripped->IgnoreParenCasts();
-
- // Warn about comparisons against a string constant (unless the other
- // operand is null), the user probably wants strcmp.
- Expr *literalString = 0;
- Expr *literalStringStripped = 0;
- if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
- !RHSStripped->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- literalString = lex;
- literalStringStripped = LHSStripped;
- } else if ((isa<StringLiteral>(RHSStripped) ||
- isa<ObjCEncodeExpr>(RHSStripped)) &&
- !LHSStripped->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- literalString = rex;
- literalStringStripped = RHSStripped;
- }
-
- if (literalString) {
- std::string resultComparison;
- switch (Opc) {
- case BinaryOperator::LT: resultComparison = ") < 0"; break;
- case BinaryOperator::GT: resultComparison = ") > 0"; break;
- case BinaryOperator::LE: resultComparison = ") <= 0"; break;
- case BinaryOperator::GE: resultComparison = ") >= 0"; break;
- case BinaryOperator::EQ: resultComparison = ") == 0"; break;
- case BinaryOperator::NE: resultComparison = ") != 0"; break;
- default: assert(false && "Invalid comparison operator");
- }
-
- DiagRuntimeBehavior(Loc,
- PDiag(diag::warn_stringcompare)
- << isa<ObjCEncodeExpr>(literalStringStripped)
- << literalString->getSourceRange());
- }
- }
-
- // C99 6.5.8p3 / C99 6.5.9p4
- if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
- UsualArithmeticConversions(lex, rex);
- else {
- UsualUnaryConversions(lex);
- UsualUnaryConversions(rex);
- }
-
- lType = lex->getType();
- rType = rex->getType();
-
- // The result of comparisons is 'bool' in C++, 'int' in C.
- QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
-
- if (isRelational) {
- if (lType->isRealType() && rType->isRealType())
- return ResultTy;
- } else {
- // Check for comparisons of floating point operands using != and ==.
- if (lType->hasFloatingRepresentation())
- CheckFloatComparison(Loc,lex,rex);
-
- if (lType->isArithmeticType() && rType->isArithmeticType())
- return ResultTy;
- }
-
- bool LHSIsNull = lex->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull);
- bool RHSIsNull = rex->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull);
-
- // All of the following pointer-related warnings are GCC extensions, except
- // when handling null pointer constants.
- if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
- QualType LCanPointeeTy =
- Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
- QualType RCanPointeeTy =
- Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
-
- if (getLangOptions().CPlusPlus) {
- if (LCanPointeeTy == RCanPointeeTy)
- return ResultTy;
- if (!isRelational &&
- (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
- // Valid unless comparison between non-null pointer and function pointer
- // This is a gcc extension compatibility comparison.
- // In a SFINAE context, we treat this as a hard error to maintain
- // conformance with the C++ standard.
- if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
- && !LHSIsNull && !RHSIsNull) {
- Diag(Loc,
- isSFINAEContext()?
- diag::err_typecheck_comparison_of_fptr_to_void
- : diag::ext_typecheck_comparison_of_fptr_to_void)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
-
- if (isSFINAEContext())
- return QualType();
-
- ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
- return ResultTy;
- }
- }
- // C++ [expr.rel]p2:
- // [...] Pointer conversions (4.10) and qualification
- // conversions (4.4) are performed on pointer operands (or on
- // a pointer operand and a null pointer constant) to bring
- // them to their composite pointer type. [...]
- //
- // C++ [expr.eq]p1 uses the same notion for (in)equality
- // comparisons of pointers.
- bool NonStandardCompositeType = false;
- QualType T = FindCompositePointerType(Loc, lex, rex,
- isSFINAEContext()? 0 : &NonStandardCompositeType);
- if (T.isNull()) {
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
- } else if (NonStandardCompositeType) {
- Diag(Loc,
- diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
- << lType << rType << T
- << lex->getSourceRange() << rex->getSourceRange();
- }
-
- ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
- ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
- return ResultTy;
- }
- // C99 6.5.9p2 and C99 6.5.8p2
- if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
- RCanPointeeTy.getUnqualifiedType())) {
- // Valid unless a relational comparison of function pointers
- if (isRelational && LCanPointeeTy->isFunctionType()) {
- Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- }
- } else if (!isRelational &&
- (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
- // Valid unless comparison between non-null pointer and function pointer
- if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
- && !LHSIsNull && !RHSIsNull) {
- Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- }
- } else {
- // Invalid
- Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- }
- if (LCanPointeeTy != RCanPointeeTy)
- ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
- return ResultTy;
- }
-
- if (getLangOptions().CPlusPlus) {
- // Comparison of pointers with null pointer constants and equality
- // comparisons of member pointers to null pointer constants.
- if (RHSIsNull &&
- (lType->isPointerType() ||
- (!isRelational && lType->isMemberPointerType()))) {
- ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
- return ResultTy;
- }
- if (LHSIsNull &&
- (rType->isPointerType() ||
- (!isRelational && rType->isMemberPointerType()))) {
- ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
- return ResultTy;
- }
-
- // Comparison of member pointers.
- if (!isRelational &&
- lType->isMemberPointerType() && rType->isMemberPointerType()) {
- // C++ [expr.eq]p2:
- // In addition, pointers to members can be compared, or a pointer to
- // member and a null pointer constant. Pointer to member conversions
- // (4.11) and qualification conversions (4.4) are performed to bring
- // them to a common type. If one operand is a null pointer constant,
- // the common type is the type of the other operand. Otherwise, the
- // common type is a pointer to member type similar (4.4) to the type
- // of one of the operands, with a cv-qualification signature (4.4)
- // that is the union of the cv-qualification signatures of the operand
- // types.
- bool NonStandardCompositeType = false;
- QualType T = FindCompositePointerType(Loc, lex, rex,
- isSFINAEContext()? 0 : &NonStandardCompositeType);
- if (T.isNull()) {
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- return QualType();
- } else if (NonStandardCompositeType) {
- Diag(Loc,
- diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
- << lType << rType << T
- << lex->getSourceRange() << rex->getSourceRange();
- }
-
- ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
- ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
- return ResultTy;
- }
-
- // Comparison of nullptr_t with itself.
- if (lType->isNullPtrType() && rType->isNullPtrType())
- return ResultTy;
- }
-
- // Handle block pointer types.
- if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
- QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
- QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
-
- if (!LHSIsNull && !RHSIsNull &&
- !Context.typesAreCompatible(lpointee, rpointee)) {
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- }
- ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
- return ResultTy;
- }
- // Allow block pointers to be compared with null pointer constants.
- if (!isRelational
- && ((lType->isBlockPointerType() && rType->isPointerType())
- || (lType->isPointerType() && rType->isBlockPointerType()))) {
- if (!LHSIsNull && !RHSIsNull) {
- if (!((rType->isPointerType() && rType->getAs<PointerType>()
- ->getPointeeType()->isVoidType())
- || (lType->isPointerType() && lType->getAs<PointerType>()
- ->getPointeeType()->isVoidType())))
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- }
- ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
- return ResultTy;
- }
-
- if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
- if (lType->isPointerType() || rType->isPointerType()) {
- const PointerType *LPT = lType->getAs<PointerType>();
- const PointerType *RPT = rType->getAs<PointerType>();
- bool LPtrToVoid = LPT ?
- Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
- bool RPtrToVoid = RPT ?
- Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
-
- if (!LPtrToVoid && !RPtrToVoid &&
- !Context.typesAreCompatible(lType, rType)) {
- Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- }
- ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
- return ResultTy;
- }
- if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
- if (!Context.areComparableObjCPointerTypes(lType, rType))
- Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
- return ResultTy;
- }
- }
- if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
- (lType->isIntegerType() && rType->isAnyPointerType())) {
- unsigned DiagID = 0;
- bool isError = false;
- if ((LHSIsNull && lType->isIntegerType()) ||
- (RHSIsNull && rType->isIntegerType())) {
- if (isRelational && !getLangOptions().CPlusPlus)
- DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
- } else if (isRelational && !getLangOptions().CPlusPlus)
- DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
- else if (getLangOptions().CPlusPlus) {
- DiagID = diag::err_typecheck_comparison_of_pointer_integer;
- isError = true;
- } else
- DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
-
- if (DiagID) {
- Diag(Loc, DiagID)
- << lType << rType << lex->getSourceRange() << rex->getSourceRange();
- if (isError)
- return QualType();
- }
-
- if (lType->isIntegerType())
- ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
- else
- ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
- return ResultTy;
- }
-
- // Handle block pointers.
- if (!isRelational && RHSIsNull
- && lType->isBlockPointerType() && rType->isIntegerType()) {
- ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
- return ResultTy;
- }
- if (!isRelational && LHSIsNull
- && lType->isIntegerType() && rType->isBlockPointerType()) {
- ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
- return ResultTy;
- }
- return InvalidOperands(Loc, lex, rex);
-}
-
-/// CheckVectorCompareOperands - vector comparisons are a clang extension that
-/// operates on extended vector types. Instead of producing an IntTy result,
-/// like a scalar comparison, a vector comparison produces a vector of integer
-/// types.
-QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
- SourceLocation Loc,
- bool isRelational) {
- // Check to make sure we're operating on vectors of the same type and width,
- // Allowing one side to be a scalar of element type.
- QualType vType = CheckVectorOperands(Loc, lex, rex);
- if (vType.isNull())
- return vType;
-
- QualType lType = lex->getType();
- QualType rType = rex->getType();
-
- // For non-floating point types, check for self-comparisons of the form
- // x == x, x != x, x < x, etc. These always evaluate to a constant, and
- // often indicate logic errors in the program.
- if (!lType->hasFloatingRepresentation()) {
- if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
- if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
- if (DRL->getDecl() == DRR->getDecl())
- DiagRuntimeBehavior(Loc,
- PDiag(diag::warn_comparison_always)
- << 0 // self-
- << 2 // "a constant"
- );
- }
-
- // Check for comparisons of floating point operands using != and ==.
- if (!isRelational && lType->hasFloatingRepresentation()) {
- assert (rType->hasFloatingRepresentation());
- CheckFloatComparison(Loc,lex,rex);
- }
-
- // Return the type for the comparison, which is the same as vector type for
- // integer vectors, or an integer type of identical size and number of
- // elements for floating point vectors.
- if (lType->hasIntegerRepresentation())
- return lType;
-
- const VectorType *VTy = lType->getAs<VectorType>();
- unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
- if (TypeSize == Context.getTypeSize(Context.IntTy))
- return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
- if (TypeSize == Context.getTypeSize(Context.LongTy))
- return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
-
- assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
- "Unhandled vector element size in vector compare");
- return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
-}
-
-inline QualType Sema::CheckBitwiseOperands(
- Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
- if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
- if (lex->getType()->hasIntegerRepresentation() &&
- rex->getType()->hasIntegerRepresentation())
- return CheckVectorOperands(Loc, lex, rex);
-
- return InvalidOperands(Loc, lex, rex);
- }
-
- QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
-
- if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
- return compType;
- return InvalidOperands(Loc, lex, rex);
-}
-
-inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
- Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
-
- // Diagnose cases where the user write a logical and/or but probably meant a
- // bitwise one. We do this when the LHS is a non-bool integer and the RHS
- // is a constant.
- if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
- rex->getType()->isIntegerType() && !rex->isValueDependent() &&
- // Don't warn in macros.
- !Loc.isMacroID()) {
- // If the RHS can be constant folded, and if it constant folds to something
- // that isn't 0 or 1 (which indicate a potential logical operation that
- // happened to fold to true/false) then warn.
- Expr::EvalResult Result;
- if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
- Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
- Diag(Loc, diag::warn_logical_instead_of_bitwise)
- << rex->getSourceRange()
- << (Opc == BinaryOperator::LAnd ? "&&" : "||")
- << (Opc == BinaryOperator::LAnd ? "&" : "|");
- }
- }
-
- if (!Context.getLangOptions().CPlusPlus) {
- UsualUnaryConversions(lex);
- UsualUnaryConversions(rex);
-
- if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
- return InvalidOperands(Loc, lex, rex);
-
- return Context.IntTy;
- }
-
- // The following is safe because we only use this method for
- // non-overloadable operands.
-
- // C++ [expr.log.and]p1
- // C++ [expr.log.or]p1
- // The operands are both contextually converted to type bool.
- if (PerformContextuallyConvertToBool(lex) ||
- PerformContextuallyConvertToBool(rex))
- return InvalidOperands(Loc, lex, rex);
-
- // C++ [expr.log.and]p2
- // C++ [expr.log.or]p2
- // The result is a bool.
- return Context.BoolTy;
-}
-
-/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
-/// is a read-only property; return true if so. A readonly property expression
-/// depends on various declarations and thus must be treated specially.
-///
-static bool IsReadonlyProperty(Expr *E, Sema &S) {
- if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
- const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
- if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
- QualType BaseType = PropExpr->getBase()->getType();
- if (const ObjCObjectPointerType *OPT =
- BaseType->getAsObjCInterfacePointerType())
- if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
- if (S.isPropertyReadonly(PDecl, IFace))
- return true;
- }
- }
- return false;
-}
-
-/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
-/// emit an error and return true. If so, return false.
-static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
- SourceLocation OrigLoc = Loc;
- Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
- &Loc);
- if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
- IsLV = Expr::MLV_ReadonlyProperty;
- if (IsLV == Expr::MLV_Valid)
- return false;
-
- unsigned Diag = 0;
- bool NeedType = false;
- switch (IsLV) { // C99 6.5.16p2
- case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
- case Expr::MLV_ArrayType:
- Diag = diag::err_typecheck_array_not_modifiable_lvalue;
- NeedType = true;
- break;
- case Expr::MLV_NotObjectType:
- Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
- NeedType = true;
- break;
- case Expr::MLV_LValueCast:
- Diag = diag::err_typecheck_lvalue_casts_not_supported;
- break;
- case Expr::MLV_Valid:
- llvm_unreachable("did not take early return for MLV_Valid");
- case Expr::MLV_InvalidExpression:
- case Expr::MLV_MemberFunction:
- case Expr::MLV_ClassTemporary:
- Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
- break;
- case Expr::MLV_IncompleteType:
- case Expr::MLV_IncompleteVoidType:
- return S.RequireCompleteType(Loc, E->getType(),
- S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
- << E->getSourceRange());
- case Expr::MLV_DuplicateVectorComponents:
- Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
- break;
- case Expr::MLV_NotBlockQualified:
- Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
- break;
- case Expr::MLV_ReadonlyProperty:
- Diag = diag::error_readonly_property_assignment;
- break;
- case Expr::MLV_NoSetterProperty:
- Diag = diag::error_nosetter_property_assignment;
- break;
- case Expr::MLV_SubObjCPropertySetting:
- Diag = diag::error_no_subobject_property_setting;
- break;
- }
-
- SourceRange Assign;
- if (Loc != OrigLoc)
- Assign = SourceRange(OrigLoc, OrigLoc);
- if (NeedType)
- S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
- else
- S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
- return true;
-}
-
-
-
-// C99 6.5.16.1
-QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
- SourceLocation Loc,
- QualType CompoundType) {
- // Verify that LHS is a modifiable lvalue, and emit error if not.
- if (CheckForModifiableLvalue(LHS, Loc, *this))
- return QualType();
-
- QualType LHSType = LHS->getType();
- QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
- AssignConvertType ConvTy;
- if (CompoundType.isNull()) {
- QualType LHSTy(LHSType);
- // Simple assignment "x = y".
- if (const ObjCImplicitSetterGetterRefExpr *OISGE =
- dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
- // If using property-dot syntax notation for assignment, and there is a
- // setter, RHS expression is being passed to the setter argument. So,
- // type conversion (and comparison) is RHS to setter's argument type.
- if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
- ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
- LHSTy = (*P)->getType();
- }
- }
-
- ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
- // Special case of NSObject attributes on c-style pointer types.
- if (ConvTy == IncompatiblePointer &&
- ((Context.isObjCNSObjectType(LHSType) &&
- RHSType->isObjCObjectPointerType()) ||
- (Context.isObjCNSObjectType(RHSType) &&
- LHSType->isObjCObjectPointerType())))
- ConvTy = Compatible;
-
- // If the RHS is a unary plus or minus, check to see if they = and + are
- // right next to each other. If so, the user may have typo'd "x =+ 4"
- // instead of "x += 4".
- Expr *RHSCheck = RHS;
- if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
- RHSCheck = ICE->getSubExpr();
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
- if ((UO->getOpcode() == UnaryOperator::Plus ||
- UO->getOpcode() == UnaryOperator::Minus) &&
- Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
- // Only if the two operators are exactly adjacent.
- Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
- // And there is a space or other character before the subexpr of the
- // unary +/-. We don't want to warn on "x=-1".
- Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
- UO->getSubExpr()->getLocStart().isFileID()) {
- Diag(Loc, diag::warn_not_compound_assign)
- << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
- << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
- }
- }
- } else {
- // Compound assignment "x += y"
- ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
- }
-
- if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
- RHS, AA_Assigning))
- return QualType();
-
-
- // Check to see if the destination operand is a dereferenced null pointer. If
- // so, and if not volatile-qualified, this is undefined behavior that the
- // optimizer will delete, so warn about it. People sometimes try to use this
- // to get a deterministic trap and are surprised by clang's behavior. This
- // only handles the pattern "*null = whatever", which is a very syntactic
- // check.
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
- if (UO->getOpcode() == UnaryOperator::Deref &&
- UO->getSubExpr()->IgnoreParenCasts()->
- isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
- !UO->getType().isVolatileQualified()) {
- Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
- << UO->getSubExpr()->getSourceRange();
- Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
- }
-
- // C99 6.5.16p3: The type of an assignment expression is the type of the
- // left operand unless the left operand has qualified type, in which case
- // it is the unqualified version of the type of the left operand.
- // C99 6.5.16.1p2: In simple assignment, the value of the right operand
- // is converted to the type of the assignment expression (above).
- // C++ 5.17p1: the type of the assignment expression is that of its left
- // operand.
- return LHSType.getUnqualifiedType();
-}
-
-// C99 6.5.17
-QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
- DiagnoseUnusedExprResult(LHS);
-
- // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
- // C++ does not perform this conversion (C++ [expr.comma]p1).
- if (!getLangOptions().CPlusPlus)
- DefaultFunctionArrayLvalueConversion(RHS);
-
- // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
- // incomplete in C++).
-
- return RHS->getType();
-}
-
-/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
-/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
-QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
- bool isInc, bool isPrefix) {
- if (Op->isTypeDependent())
- return Context.DependentTy;
-
- QualType ResType = Op->getType();
- assert(!ResType.isNull() && "no type for increment/decrement expression");
-
- if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
- // Decrement of bool is not allowed.
- if (!isInc) {
- Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
- return QualType();
- }
- // Increment of bool sets it to true, but is deprecated.
- Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
- } else if (ResType->isRealType()) {
- // OK!
- } else if (ResType->isAnyPointerType()) {
- QualType PointeeTy = ResType->getPointeeType();
-
- // C99 6.5.2.4p2, 6.5.6p2
- if (PointeeTy->isVoidType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
- << Op->getSourceRange();
- return QualType();
- }
-
- // Pointer to void is a GNU extension in C.
- Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
- } else if (PointeeTy->isFunctionType()) {
- if (getLangOptions().CPlusPlus) {
- Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
- << Op->getType() << Op->getSourceRange();
- return QualType();
- }
-
- Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
- << ResType << Op->getSourceRange();
- } else if (RequireCompleteType(OpLoc, PointeeTy,
- PDiag(diag::err_typecheck_arithmetic_incomplete_type)
- << Op->getSourceRange()
- << ResType))
- return QualType();
- // Diagnose bad cases where we step over interface counts.
- else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
- Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
- << PointeeTy << Op->getSourceRange();
- return QualType();
- }
- } else if (ResType->isAnyComplexType()) {
- // C99 does not support ++/-- on complex types, we allow as an extension.
- Diag(OpLoc, diag::ext_integer_increment_complex)
- << ResType << Op->getSourceRange();
- } else {
- Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
- << ResType << int(isInc) << Op->getSourceRange();
- return QualType();
- }
- // At this point, we know we have a real, complex or pointer type.
- // Now make sure the operand is a modifiable lvalue.
- if (CheckForModifiableLvalue(Op, OpLoc, *this))
- return QualType();
- // In C++, a prefix increment is the same type as the operand. Otherwise
- // (in C or with postfix), the increment is the unqualified type of the
- // operand.
- return isPrefix && getLangOptions().CPlusPlus
- ? ResType : ResType.getUnqualifiedType();
-}
-
-/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
-/// This routine allows us to typecheck complex/recursive expressions
-/// where the declaration is needed for type checking. We only need to
-/// handle cases when the expression references a function designator
-/// or is an lvalue. Here are some examples:
-/// - &(x) => x
-/// - &*****f => f for f a function designator.
-/// - &s.xx => s
-/// - &s.zz[1].yy -> s, if zz is an array
-/// - *(x + 1) -> x, if x is an array
-/// - &"123"[2] -> 0
-/// - & __real__ x -> x
-static NamedDecl *getPrimaryDecl(Expr *E) {
- switch (E->getStmtClass()) {
- case Stmt::DeclRefExprClass:
- return cast<DeclRefExpr>(E)->getDecl();
- case Stmt::MemberExprClass:
- // If this is an arrow operator, the address is an offset from
- // the base's value, so the object the base refers to is
- // irrelevant.
- if (cast<MemberExpr>(E)->isArrow())
- return 0;
- // Otherwise, the expression refers to a part of the base
- return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
- case Stmt::ArraySubscriptExprClass: {
- // FIXME: This code shouldn't be necessary! We should catch the implicit
- // promotion of register arrays earlier.
- Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
- if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
- if (ICE->getSubExpr()->getType()->isArrayType())
- return getPrimaryDecl(ICE->getSubExpr());
- }
- return 0;
- }
- case Stmt::UnaryOperatorClass: {
- UnaryOperator *UO = cast<UnaryOperator>(E);
-
- switch(UO->getOpcode()) {
- case UnaryOperator::Real:
- case UnaryOperator::Imag:
- case UnaryOperator::Extension:
- return getPrimaryDecl(UO->getSubExpr());
- default:
- return 0;
- }
- }
- case Stmt::ParenExprClass:
- return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
- case Stmt::ImplicitCastExprClass:
- // If the result of an implicit cast is an l-value, we care about
- // the sub-expression; otherwise, the result here doesn't matter.
- return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
- default:
- return 0;
- }
-}
-
-/// CheckAddressOfOperand - The operand of & must be either a function
-/// designator or an lvalue designating an object. If it is an lvalue, the
-/// object cannot be declared with storage class register or be a bit field.
-/// Note: The usual conversions are *not* applied to the operand of the &
-/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
-/// In C++, the operand might be an overloaded function name, in which case
-/// we allow the '&' but retain the overloaded-function type.
-QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
- // Make sure to ignore parentheses in subsequent checks
- op = op->IgnoreParens();
-
- if (op->isTypeDependent())
- return Context.DependentTy;
-
- if (getLangOptions().C99) {
- // Implement C99-only parts of addressof rules.
- if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
- if (uOp->getOpcode() == UnaryOperator::Deref)
- // Per C99 6.5.3.2, the address of a deref always returns a valid result
- // (assuming the deref expression is valid).
- return uOp->getSubExpr()->getType();
- }
- // Technically, there should be a check for array subscript
- // expressions here, but the result of one is always an lvalue anyway.
- }
- NamedDecl *dcl = getPrimaryDecl(op);
- Expr::isLvalueResult lval = op->isLvalue(Context);
-
- MemberExpr *ME = dyn_cast<MemberExpr>(op);
- if (lval == Expr::LV_MemberFunction && ME &&
- isa<CXXMethodDecl>(ME->getMemberDecl())) {
- ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
- // &f where f is a member of the current object, or &o.f, or &p->f
- // All these are not allowed, and we need to catch them before the dcl
- // branch of the if, below.
- Diag(OpLoc, diag::err_unqualified_pointer_member_function)
- << dcl;
- // FIXME: Improve this diagnostic and provide a fixit.
-
- // Now recover by acting as if the function had been accessed qualified.
- return Context.getMemberPointerType(op->getType(),
- Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
- .getTypePtr());
- }
-
- if (lval == Expr::LV_ClassTemporary) {
- Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
- : diag::ext_typecheck_addrof_class_temporary)
- << op->getType() << op->getSourceRange();
- if (isSFINAEContext())
- return QualType();
- } else if (isa<ObjCSelectorExpr>(op))
- return Context.getPointerType(op->getType());
- else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
- // C99 6.5.3.2p1
- // The operand must be either an l-value or a function designator
- if (!op->getType()->isFunctionType()) {
- // FIXME: emit more specific diag...
- Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
- << op->getSourceRange();
- return QualType();
- }
- } else if (op->getBitField()) { // C99 6.5.3.2p1
- // The operand cannot be a bit-field
- Diag(OpLoc, diag::err_typecheck_address_of)
- << "bit-field" << op->getSourceRange();
- return QualType();
- } else if (op->refersToVectorElement()) {
- // The operand cannot be an element of a vector
- Diag(OpLoc, diag::err_typecheck_address_of)
- << "vector element" << op->getSourceRange();
- return QualType();
- } else if (isa<ObjCPropertyRefExpr>(op)) {
- // cannot take address of a property expression.
- Diag(OpLoc, diag::err_typecheck_address_of)
- << "property expression" << op->getSourceRange();
- return QualType();
- } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
- // FIXME: Can LHS ever be null here?
- if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
- return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
- } else if (isa<UnresolvedLookupExpr>(op)) {
- return Context.OverloadTy;
- } else if (dcl) { // C99 6.5.3.2p1
- // We have an lvalue with a decl. Make sure the decl is not declared
- // with the register storage-class specifier.
- if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
- if (vd->getStorageClass() == VarDecl::Register) {
- Diag(OpLoc, diag::err_typecheck_address_of)
- << "register variable" << op->getSourceRange();
- return QualType();
- }
- } else if (isa<FunctionTemplateDecl>(dcl)) {
- return Context.OverloadTy;
- } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
- // Okay: we can take the address of a field.
- // Could be a pointer to member, though, if there is an explicit
- // scope qualifier for the class.
- if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
- DeclContext *Ctx = dcl->getDeclContext();
- if (Ctx && Ctx->isRecord()) {
- if (FD->getType()->isReferenceType()) {
- Diag(OpLoc,
- diag::err_cannot_form_pointer_to_member_of_reference_type)
- << FD->getDeclName() << FD->getType();
- return QualType();
- }
-
- return Context.getMemberPointerType(op->getType(),
- Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
- }
- }
- } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
- // Okay: we can take the address of a function.
- // As above.
- if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
- MD->isInstance())
- return Context.getMemberPointerType(op->getType(),
- Context.getTypeDeclType(MD->getParent()).getTypePtr());
- } else if (!isa<FunctionDecl>(dcl))
- assert(0 && "Unknown/unexpected decl type");
- }
-
- if (lval == Expr::LV_IncompleteVoidType) {
- // Taking the address of a void variable is technically illegal, but we
- // allow it in cases which are otherwise valid.
- // Example: "extern void x; void* y = &x;".
- Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
- }
-
- // If the operand has type "type", the result has type "pointer to type".
- if (op->getType()->isObjCObjectType())
- return Context.getObjCObjectPointerType(op->getType());
- return Context.getPointerType(op->getType());
-}
-
-/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
-QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
- if (Op->isTypeDependent())
- return Context.DependentTy;
-
- UsualUnaryConversions(Op);
- QualType OpTy = Op->getType();
- QualType Result;
-
- // Note that per both C89 and C99, indirection is always legal, even if OpTy
- // is an incomplete type or void. It would be possible to warn about
- // dereferencing a void pointer, but it's completely well-defined, and such a
- // warning is unlikely to catch any mistakes.
- if (const PointerType *PT = OpTy->getAs<PointerType>())
- Result = PT->getPointeeType();
- else if (const ObjCObjectPointerType *OPT =
- OpTy->getAs<ObjCObjectPointerType>())
- Result = OPT->getPointeeType();
-
- if (Result.isNull()) {
- Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
- << OpTy << Op->getSourceRange();
- return QualType();
- }
-
- return Result;
-}
-
-static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
- tok::TokenKind Kind) {
- BinaryOperator::Opcode Opc;
- switch (Kind) {
- default: assert(0 && "Unknown binop!");
- case tok::periodstar: Opc = BinaryOperator::PtrMemD; break;
- case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break;
- case tok::star: Opc = BinaryOperator::Mul; break;
- case tok::slash: Opc = BinaryOperator::Div; break;
- case tok::percent: Opc = BinaryOperator::Rem; break;
- case tok::plus: Opc = BinaryOperator::Add; break;
- case tok::minus: Opc = BinaryOperator::Sub; break;
- case tok::lessless: Opc = BinaryOperator::Shl; break;
- case tok::greatergreater: Opc = BinaryOperator::Shr; break;
- case tok::lessequal: Opc = BinaryOperator::LE; break;
- case tok::less: Opc = BinaryOperator::LT; break;
- case tok::greaterequal: Opc = BinaryOperator::GE; break;
- case tok::greater: Opc = BinaryOperator::GT; break;
- case tok::exclaimequal: Opc = BinaryOperator::NE; break;
- case tok::equalequal: Opc = BinaryOperator::EQ; break;
- case tok::amp: Opc = BinaryOperator::And; break;
- case tok::caret: Opc = BinaryOperator::Xor; break;
- case tok::pipe: Opc = BinaryOperator::Or; break;
- case tok::ampamp: Opc = BinaryOperator::LAnd; break;
- case tok::pipepipe: Opc = BinaryOperator::LOr; break;
- case tok::equal: Opc = BinaryOperator::Assign; break;
- case tok::starequal: Opc = BinaryOperator::MulAssign; break;
- case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
- case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
- case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
- case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
- case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
- case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
- case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
- case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
- case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
- case tok::comma: Opc = BinaryOperator::Comma; break;
- }
- return Opc;
-}
-
-static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
- tok::TokenKind Kind) {
- UnaryOperator::Opcode Opc;
- switch (Kind) {
- default: assert(0 && "Unknown unary op!");
- case tok::plusplus: Opc = UnaryOperator::PreInc; break;
- case tok::minusminus: Opc = UnaryOperator::PreDec; break;
- case tok::amp: Opc = UnaryOperator::AddrOf; break;
- case tok::star: Opc = UnaryOperator::Deref; break;
- case tok::plus: Opc = UnaryOperator::Plus; break;
- case tok::minus: Opc = UnaryOperator::Minus; break;
- case tok::tilde: Opc = UnaryOperator::Not; break;
- case tok::exclaim: Opc = UnaryOperator::LNot; break;
- case tok::kw___real: Opc = UnaryOperator::Real; break;
- case tok::kw___imag: Opc = UnaryOperator::Imag; break;
- case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
- }
- return Opc;
-}
-
-/// CreateBuiltinBinOp - Creates a new built-in binary operation with
-/// operator @p Opc at location @c TokLoc. This routine only supports
-/// built-in operations; ActOnBinOp handles overloaded operators.
-Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
- unsigned Op,
- Expr *lhs, Expr *rhs) {
- QualType ResultTy; // Result type of the binary operator.
- BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
- // The following two variables are used for compound assignment operators
- QualType CompLHSTy; // Type of LHS after promotions for computation
- QualType CompResultTy; // Type of computation result
-
- switch (Opc) {
- case BinaryOperator::Assign:
- ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
- break;
- case BinaryOperator::PtrMemD:
- case BinaryOperator::PtrMemI:
- ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
- Opc == BinaryOperator::PtrMemI);
- break;
- case BinaryOperator::Mul:
- case BinaryOperator::Div:
- ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
- Opc == BinaryOperator::Div);
- break;
- case BinaryOperator::Rem:
- ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
- break;
- case BinaryOperator::Add:
- ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
- break;
- case BinaryOperator::Sub:
- ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
- break;
- case BinaryOperator::Shl:
- case BinaryOperator::Shr:
- ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
- break;
- case BinaryOperator::LE:
- case BinaryOperator::LT:
- case BinaryOperator::GE:
- case BinaryOperator::GT:
- ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
- break;
- case BinaryOperator::EQ:
- case BinaryOperator::NE:
- ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
- break;
- case BinaryOperator::And:
- case BinaryOperator::Xor:
- case BinaryOperator::Or:
- ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
- break;
- case BinaryOperator::LAnd:
- case BinaryOperator::LOr:
- ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
- break;
- case BinaryOperator::MulAssign:
- case BinaryOperator::DivAssign:
- CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
- Opc == BinaryOperator::DivAssign);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull())
- ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
- break;
- case BinaryOperator::RemAssign:
- CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull())
- ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
- break;
- case BinaryOperator::AddAssign:
- CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
- if (!CompResultTy.isNull())
- ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
- break;
- case BinaryOperator::SubAssign:
- CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
- if (!CompResultTy.isNull())
- ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
- break;
- case BinaryOperator::ShlAssign:
- case BinaryOperator::ShrAssign:
- CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull())
- ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
- break;
- case BinaryOperator::AndAssign:
- case BinaryOperator::XorAssign:
- case BinaryOperator::OrAssign:
- CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull())
- ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
- break;
- case BinaryOperator::Comma:
- ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
- break;
- }
- if (ResultTy.isNull())
- return ExprError();
- if (CompResultTy.isNull())
- return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
- else
- return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
- CompLHSTy, CompResultTy,
- OpLoc));
-}
-
-/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
-/// ParenRange in parentheses.
-static void SuggestParentheses(Sema &Self, SourceLocation Loc,
- const PartialDiagnostic &PD,
- const PartialDiagnostic &FirstNote,
- SourceRange FirstParenRange,
- const PartialDiagnostic &SecondNote,
- SourceRange SecondParenRange) {
- Self.Diag(Loc, PD);
-
- if (!FirstNote.getDiagID())
- return;
-
- SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
- if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
- // We can't display the parentheses, so just return.
- return;
- }
-
- Self.Diag(Loc, FirstNote)
- << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
- << FixItHint::CreateInsertion(EndLoc, ")");
-
- if (!SecondNote.getDiagID())
- return;
-
- EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
- if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
- // We can't display the parentheses, so just dig the
- // warning/error and return.
- Self.Diag(Loc, SecondNote);
- return;
- }
-
- Self.Diag(Loc, SecondNote)
- << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
- << FixItHint::CreateInsertion(EndLoc, ")");
-}
-
-/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
-/// operators are mixed in a way that suggests that the programmer forgot that
-/// comparison operators have higher precedence. The most typical example of
-/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
-static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
- SourceLocation OpLoc,Expr *lhs,Expr *rhs){
- typedef BinaryOperator BinOp;
- BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
- rhsopc = static_cast<BinOp::Opcode>(-1);
- if (BinOp *BO = dyn_cast<BinOp>(lhs))
- lhsopc = BO->getOpcode();
- if (BinOp *BO = dyn_cast<BinOp>(rhs))
- rhsopc = BO->getOpcode();
-
- // Subs are not binary operators.
- if (lhsopc == -1 && rhsopc == -1)
- return;
-
- // Bitwise operations are sometimes used as eager logical ops.
- // Don't diagnose this.
- if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
- (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
- return;
-
- if (BinOp::isComparisonOp(lhsopc))
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::warn_precedence_bitwise_rel)
- << SourceRange(lhs->getLocStart(), OpLoc)
- << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
- Self.PDiag(diag::note_precedence_bitwise_first)
- << BinOp::getOpcodeStr(Opc),
- SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
- Self.PDiag(diag::note_precedence_bitwise_silence)
- << BinOp::getOpcodeStr(lhsopc),
- lhs->getSourceRange());
- else if (BinOp::isComparisonOp(rhsopc))
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::warn_precedence_bitwise_rel)
- << SourceRange(OpLoc, rhs->getLocEnd())
- << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
- Self.PDiag(diag::note_precedence_bitwise_first)
- << BinOp::getOpcodeStr(Opc),
- SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
- Self.PDiag(diag::note_precedence_bitwise_silence)
- << BinOp::getOpcodeStr(rhsopc),
- rhs->getSourceRange());
-}
-
-/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
-/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
-/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
-static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
- SourceLocation OpLoc, Expr *lhs, Expr *rhs){
- if (BinaryOperator::isBitwiseOp(Opc))
- DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
-}
-
-// Binary Operators. 'Tok' is the token for the operator.
-Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
- tok::TokenKind Kind,
- ExprArg LHS, ExprArg RHS) {
- BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
- Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
-
- assert((lhs != 0) && "ActOnBinOp(): missing left expression");
- assert((rhs != 0) && "ActOnBinOp(): missing right expression");
-
- // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
- DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
-
- return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
-}
-
-Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
- BinaryOperator::Opcode Opc,
- Expr *lhs, Expr *rhs) {
- if (getLangOptions().CPlusPlus &&
- (lhs->getType()->isOverloadableType() ||
- rhs->getType()->isOverloadableType())) {
- // Find all of the overloaded operators visible from this
- // point. We perform both an operator-name lookup from the local
- // scope and an argument-dependent lookup based on the types of
- // the arguments.
- UnresolvedSet<16> Functions;
- OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
- if (S && OverOp != OO_None)
- LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
- Functions);
-
- // Build the (potentially-overloaded, potentially-dependent)
- // binary operation.
- return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
- }
-
- // Build a built-in binary operation.
- return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
-}
-
-Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
- unsigned OpcIn,
- ExprArg InputArg) {
- UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
-
- // FIXME: Input is modified below, but InputArg is not updated appropriately.
- Expr *Input = (Expr *)InputArg.get();
- QualType resultType;
- switch (Opc) {
- case UnaryOperator::OffsetOf:
- assert(false && "Invalid unary operator");
- break;
-
- case UnaryOperator::PreInc:
- case UnaryOperator::PreDec:
- case UnaryOperator::PostInc:
- case UnaryOperator::PostDec:
- resultType = CheckIncrementDecrementOperand(Input, OpLoc,
- Opc == UnaryOperator::PreInc ||
- Opc == UnaryOperator::PostInc,
- Opc == UnaryOperator::PreInc ||
- Opc == UnaryOperator::PreDec);
- break;
- case UnaryOperator::AddrOf:
- resultType = CheckAddressOfOperand(Input, OpLoc);
- break;
- case UnaryOperator::Deref:
- DefaultFunctionArrayLvalueConversion(Input);
- resultType = CheckIndirectionOperand(Input, OpLoc);
- break;
- case UnaryOperator::Plus:
- case UnaryOperator::Minus:
- UsualUnaryConversions(Input);
- resultType = Input->getType();
- if (resultType->isDependentType())
- break;
- if (resultType->isArithmeticType() || // C99 6.5.3.3p1
- resultType->isVectorType())
- break;
- else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
- resultType->isEnumeralType())
- break;
- else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
- Opc == UnaryOperator::Plus &&
- resultType->isPointerType())
- break;
-
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input->getSourceRange());
- case UnaryOperator::Not: // bitwise complement
- UsualUnaryConversions(Input);
- resultType = Input->getType();
- if (resultType->isDependentType())
- break;
- // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
- if (resultType->isComplexType() || resultType->isComplexIntegerType())
- // C99 does not support '~' for complex conjugation.
- Diag(OpLoc, diag::ext_integer_complement_complex)
- << resultType << Input->getSourceRange();
- else if (!resultType->hasIntegerRepresentation())
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input->getSourceRange());
- break;
- case UnaryOperator::LNot: // logical negation
- // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
- DefaultFunctionArrayLvalueConversion(Input);
- resultType = Input->getType();
- if (resultType->isDependentType())
- break;
- if (!resultType->isScalarType()) // C99 6.5.3.3p1
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input->getSourceRange());
- // LNot always has type int. C99 6.5.3.3p5.
- // In C++, it's bool. C++ 5.3.1p8
- resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
- break;
- case UnaryOperator::Real:
- case UnaryOperator::Imag:
- resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
- break;
- case UnaryOperator::Extension:
- resultType = Input->getType();
- break;
- }
- if (resultType.isNull())
- return ExprError();
-
- InputArg.release();
- return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
-}
-
-Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
- UnaryOperator::Opcode Opc,
- ExprArg input) {
- Expr *Input = (Expr*)input.get();
- if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
- Opc != UnaryOperator::Extension) {
- // Find all of the overloaded operators visible from this
- // point. We perform both an operator-name lookup from the local
- // scope and an argument-dependent lookup based on the types of
- // the arguments.
- UnresolvedSet<16> Functions;
- OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
- if (S && OverOp != OO_None)
- LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
- Functions);
-
- return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
- }
-
- return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
-}
-
-// Unary Operators. 'Tok' is the token for the operator.
-Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
- tok::TokenKind Op, ExprArg input) {
- return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
-}
-
-/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
-Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
- SourceLocation LabLoc,
- IdentifierInfo *LabelII) {
- // Look up the record for this label identifier.
- LabelStmt *&LabelDecl = getLabelMap()[LabelII];
-
- // If we haven't seen this label yet, create a forward reference. It
- // will be validated and/or cleaned up in ActOnFinishFunctionBody.
- if (LabelDecl == 0)
- LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
-
- // Create the AST node. The address of a label always has type 'void*'.
- return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
- Context.getPointerType(Context.VoidTy)));
-}
-
-Sema::OwningExprResult
-Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
- SourceLocation RPLoc) { // "({..})"
- Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
- assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
- CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
-
- bool isFileScope
- = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
- if (isFileScope)
- return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
-
- // FIXME: there are a variety of strange constraints to enforce here, for
- // example, it is not possible to goto into a stmt expression apparently.
- // More semantic analysis is needed.
-
- // If there are sub stmts in the compound stmt, take the type of the last one
- // as the type of the stmtexpr.
- QualType Ty = Context.VoidTy;
-
- if (!Compound->body_empty()) {
- Stmt *LastStmt = Compound->body_back();
- // If LastStmt is a label, skip down through into the body.
- while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
- LastStmt = Label->getSubStmt();
-
- if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
- Ty = LastExpr->getType();
- }
-
- // FIXME: Check that expression type is complete/non-abstract; statement
- // expressions are not lvalues.
-
- substmt.release();
- return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
-}
-
-Sema::OwningExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
- TypeSourceInfo *TInfo,
- OffsetOfComponent *CompPtr,
- unsigned NumComponents,
- SourceLocation RParenLoc) {
- QualType ArgTy = TInfo->getType();
- bool Dependent = ArgTy->isDependentType();
- SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
-
- // We must have at least one component that refers to the type, and the first
- // one is known to be a field designator. Verify that the ArgTy represents
- // a struct/union/class.
- if (!Dependent && !ArgTy->isRecordType())
- return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
- << ArgTy << TypeRange);
-
- // Type must be complete per C99 7.17p3 because a declaring a variable
- // with an incomplete type would be ill-formed.
- if (!Dependent
- && RequireCompleteType(BuiltinLoc, ArgTy,
- PDiag(diag::err_offsetof_incomplete_type)
- << TypeRange))
- return ExprError();
-
- // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
- // GCC extension, diagnose them.
- // FIXME: This diagnostic isn't actually visible because the location is in
- // a system header!
- if (NumComponents != 1)
- Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
- << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
-
- bool DidWarnAboutNonPOD = false;
- QualType CurrentType = ArgTy;
- typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
- llvm::SmallVector<OffsetOfNode, 4> Comps;
- llvm::SmallVector<Expr*, 4> Exprs;
- for (unsigned i = 0; i != NumComponents; ++i) {
- const OffsetOfComponent &OC = CompPtr[i];
- if (OC.isBrackets) {
- // Offset of an array sub-field. TODO: Should we allow vector elements?
- if (!CurrentType->isDependentType()) {
- const ArrayType *AT = Context.getAsArrayType(CurrentType);
- if(!AT)
- return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
- << CurrentType);
- CurrentType = AT->getElementType();
- } else
- CurrentType = Context.DependentTy;
-
- // The expression must be an integral expression.
- // FIXME: An integral constant expression?
- Expr *Idx = static_cast<Expr*>(OC.U.E);
- if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
- !Idx->getType()->isIntegerType())
- return ExprError(Diag(Idx->getLocStart(),
- diag::err_typecheck_subscript_not_integer)
- << Idx->getSourceRange());
-
- // Record this array index.
- Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
- Exprs.push_back(Idx);
- continue;
- }
-
- // Offset of a field.
- if (CurrentType->isDependentType()) {
- // We have the offset of a field, but we can't look into the dependent
- // type. Just record the identifier of the field.
- Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
- CurrentType = Context.DependentTy;
- continue;
- }
-
- // We need to have a complete type to look into.
- if (RequireCompleteType(OC.LocStart, CurrentType,
- diag::err_offsetof_incomplete_type))
- return ExprError();
-
- // Look for the designated field.
- const RecordType *RC = CurrentType->getAs<RecordType>();
- if (!RC)
- return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
- << CurrentType);
- RecordDecl *RD = RC->getDecl();
-
- // C++ [lib.support.types]p5:
- // The macro offsetof accepts a restricted set of type arguments in this
- // International Standard. type shall be a POD structure or a POD union
- // (clause 9).
- if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
- if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
- DiagRuntimeBehavior(BuiltinLoc,
- PDiag(diag::warn_offsetof_non_pod_type)
- << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
- << CurrentType))
- DidWarnAboutNonPOD = true;
- }
-
- // Look for the field.
- LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
- LookupQualifiedName(R, RD);
- FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
- if (!MemberDecl)
- return ExprError(Diag(BuiltinLoc, diag::err_no_member)
- << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
- OC.LocEnd));
-
- // C99 7.17p3:
- // (If the specified member is a bit-field, the behavior is undefined.)
- //
- // We diagnose this as an error.
- if (MemberDecl->getBitWidth()) {
- Diag(OC.LocEnd, diag::err_offsetof_bitfield)
- << MemberDecl->getDeclName()
- << SourceRange(BuiltinLoc, RParenLoc);
- Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
- return ExprError();
- }
-
- // If the member was found in a base class, introduce OffsetOfNodes for
- // the base class indirections.
- CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
- /*DetectVirtual=*/false);
- if (IsDerivedFrom(CurrentType,
- Context.getTypeDeclType(MemberDecl->getParent()),
- Paths)) {
- CXXBasePath &Path = Paths.front();
- for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
- B != BEnd; ++B)
- Comps.push_back(OffsetOfNode(B->Base));
- }
-
- if (cast<RecordDecl>(MemberDecl->getDeclContext())->
- isAnonymousStructOrUnion()) {
- llvm::SmallVector<FieldDecl*, 4> Path;
- BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
- unsigned n = Path.size();
- for (int j = n - 1; j > -1; --j)
- Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
- } else {
- Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
- }
- CurrentType = MemberDecl->getType().getNonReferenceType();
- }
-
- return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
- TInfo, Comps.data(), Comps.size(),
- Exprs.data(), Exprs.size(), RParenLoc));
-}
-
-Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
- SourceLocation BuiltinLoc,
- SourceLocation TypeLoc,
- TypeTy *argty,
- OffsetOfComponent *CompPtr,
- unsigned NumComponents,
- SourceLocation RPLoc) {
-
- TypeSourceInfo *ArgTInfo;
- QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
- if (ArgTy.isNull())
- return ExprError();
-
- if (getLangOptions().CPlusPlus) {
- if (!ArgTInfo)
- ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
-
- return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
- RPLoc);
- }
-
- // FIXME: The code below is marked for death, once we have proper CodeGen
- // support for non-constant OffsetOf expressions.
-
- bool Dependent = ArgTy->isDependentType();
-
- // We must have at least one component that refers to the type, and the first
- // one is known to be a field designator. Verify that the ArgTy represents
- // a struct/union/class.
- if (!Dependent && !ArgTy->isRecordType())
- return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
-
- // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
- // with an incomplete type would be illegal.
-
- // Otherwise, create a null pointer as the base, and iteratively process
- // the offsetof designators.
- QualType ArgTyPtr = Context.getPointerType(ArgTy);
- Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
- Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
- ArgTy, SourceLocation());
-
- // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
- // GCC extension, diagnose them.
- // FIXME: This diagnostic isn't actually visible because the location is in
- // a system header!
- if (NumComponents != 1)
- Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
- << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
-
- if (!Dependent) {
- bool DidWarnAboutNonPOD = false;
-
- if (RequireCompleteType(TypeLoc, Res->getType(),
- diag::err_offsetof_incomplete_type))
- return ExprError();
-
- // FIXME: Dependent case loses a lot of information here. And probably
- // leaks like a sieve.
- for (unsigned i = 0; i != NumComponents; ++i) {
- const OffsetOfComponent &OC = CompPtr[i];
- if (OC.isBrackets) {
- // Offset of an array sub-field. TODO: Should we allow vector elements?
- const ArrayType *AT = Context.getAsArrayType(Res->getType());
- if (!AT)
- return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
- << Res->getType());
-
- // FIXME: C++: Verify that operator[] isn't overloaded.
-
- // Promote the array so it looks more like a normal array subscript
- // expression.
- DefaultFunctionArrayLvalueConversion(Res);
-
- // C99 6.5.2.1p1
- Expr *Idx = static_cast<Expr*>(OC.U.E);
- // FIXME: Leaks Res
- if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
- return ExprError(Diag(Idx->getLocStart(),
- diag::err_typecheck_subscript_not_integer)
- << Idx->getSourceRange());
-
- Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
- OC.LocEnd);
- continue;
- }
-
- const RecordType *RC = Res->getType()->getAs<RecordType>();
- if (!RC)
- return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
- << Res->getType());
-
- // Get the decl corresponding to this.
- RecordDecl *RD = RC->getDecl();
- if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
- if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
- DiagRuntimeBehavior(BuiltinLoc,
- PDiag(diag::warn_offsetof_non_pod_type)
- << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
- << Res->getType()))
- DidWarnAboutNonPOD = true;
- }
-
- LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
- LookupQualifiedName(R, RD);
-
- FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
- // FIXME: Leaks Res
- if (!MemberDecl)
- return ExprError(Diag(BuiltinLoc, diag::err_no_member)
- << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
-
- // C99 7.17p3:
- // (If the specified member is a bit-field, the behavior is undefined.)
- //
- // We diagnose this as an error.
- if (MemberDecl->getBitWidth()) {
- Diag(OC.LocEnd, diag::err_offsetof_bitfield)
- << MemberDecl->getDeclName()
- << SourceRange(BuiltinLoc, RPLoc);
- Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
- return ExprError();
- }
-
- // FIXME: C++: Verify that MemberDecl isn't a static field.
- // FIXME: Verify that MemberDecl isn't a bitfield.
- if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
- Res = BuildAnonymousStructUnionMemberReference(
- OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
- } else {
- PerformObjectMemberConversion(Res, /*Qualifier=*/0,
- *R.begin(), MemberDecl);
- // MemberDecl->getType() doesn't get the right qualifiers, but it
- // doesn't matter here.
- Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
- MemberDecl->getType().getNonReferenceType());
- }
- }
- }
-
- return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
- Context.getSizeType(), BuiltinLoc));
-}
-
-
-Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
- TypeTy *arg1,TypeTy *arg2,
- SourceLocation RPLoc) {
- // FIXME: Preserve type source info.
- QualType argT1 = GetTypeFromParser(arg1);
- QualType argT2 = GetTypeFromParser(arg2);
-
- assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
-
- if (getLangOptions().CPlusPlus) {
- Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
- << SourceRange(BuiltinLoc, RPLoc);
- return ExprError();
- }
-
- return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
- argT1, argT2, RPLoc));
-}
-
-Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
- ExprArg cond,
- ExprArg expr1, ExprArg expr2,
- SourceLocation RPLoc) {
- Expr *CondExpr = static_cast<Expr*>(cond.get());
- Expr *LHSExpr = static_cast<Expr*>(expr1.get());
- Expr *RHSExpr = static_cast<Expr*>(expr2.get());
-
- assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
-
- QualType resType;
- bool ValueDependent = false;
- if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
- resType = Context.DependentTy;
- ValueDependent = true;
- } else {
- // The conditional expression is required to be a constant expression.
- llvm::APSInt condEval(32);
- SourceLocation ExpLoc;
- if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
- return ExprError(Diag(ExpLoc,
- diag::err_typecheck_choose_expr_requires_constant)
- << CondExpr->getSourceRange());
-
- // If the condition is > zero, then the AST type is the same as the LSHExpr.
- resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
- ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
- : RHSExpr->isValueDependent();
- }
-
- cond.release(); expr1.release(); expr2.release();
- return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
- resType, RPLoc,
- resType->isDependentType(),
- ValueDependent));
-}
-
-//===----------------------------------------------------------------------===//
-// Clang Extensions.
-//===----------------------------------------------------------------------===//
-
-/// ActOnBlockStart - This callback is invoked when a block literal is started.
-void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
- BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
- PushBlockScope(BlockScope, Block);
- CurContext->addDecl(Block);
- if (BlockScope)
- PushDeclContext(BlockScope, Block);
- else
- CurContext = Block;
-}
-
-void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
- assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
- BlockScopeInfo *CurBlock = getCurBlock();
-
- TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
- CurBlock->TheDecl->setSignatureAsWritten(Sig);
- QualType T = Sig->getType();
-
- bool isVariadic;
- QualType RetTy;
- if (const FunctionType *Fn = T->getAs<FunctionType>()) {
- CurBlock->FunctionType = T;
- RetTy = Fn->getResultType();
- isVariadic =
- !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
- } else {
- RetTy = T;
- isVariadic = false;
- }
-
- CurBlock->TheDecl->setIsVariadic(isVariadic);
-
- // Don't allow returning an array by value.
- if (RetTy->isArrayType()) {
- Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
- return;
- }
-
- // Don't allow returning a objc interface by value.
- if (RetTy->isObjCObjectType()) {
- Diag(ParamInfo.getSourceRange().getBegin(),
- diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
- return;
- }
-
- // Context.DependentTy is used as a placeholder for a missing block
- // return type. TODO: what should we do with declarators like:
- // ^ * { ... }
- // If the answer is "apply template argument deduction"....
- if (RetTy != Context.DependentTy)
- CurBlock->ReturnType = RetTy;
-
- // Push block parameters from the declarator if we had them.
- llvm::SmallVector<ParmVarDecl*, 8> Params;
- if (isa<FunctionProtoType>(T)) {
- FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
- for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
- ParmVarDecl *Param = TL.getArg(I);
- if (Param->getIdentifier() == 0 &&
- !Param->isImplicit() &&
- !Param->isInvalidDecl() &&
- !getLangOptions().CPlusPlus)
- Diag(Param->getLocation(), diag::err_parameter_name_omitted);
- Params.push_back(Param);
- }
-
- // Fake up parameter variables if we have a typedef, like
- // ^ fntype { ... }
- } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
- for (FunctionProtoType::arg_type_iterator
- I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
- ParmVarDecl *Param =
- BuildParmVarDeclForTypedef(CurBlock->TheDecl,
- ParamInfo.getSourceRange().getBegin(),
- *I);
- Params.push_back(Param);
- }
- }
-
- // Set the parameters on the block decl.
- if (!Params.empty())
- CurBlock->TheDecl->setParams(Params.data(), Params.size());
-
- // Finally we can process decl attributes.
- ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
-
- if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
- Diag(ParamInfo.getAttributes()->getLoc(),
- diag::warn_attribute_sentinel_not_variadic) << 1;
- // FIXME: remove the attribute.
- }
-
- // Put the parameter variables in scope. We can bail out immediately
- // if we don't have any.
- if (Params.empty())
- return;
-
- bool ShouldCheckShadow =
- Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
-
- for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
- E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
- (*AI)->setOwningFunction(CurBlock->TheDecl);
-
- // If this has an identifier, add it to the scope stack.
- if ((*AI)->getIdentifier()) {
- if (ShouldCheckShadow)
- CheckShadow(CurBlock->TheScope, *AI);
-
- PushOnScopeChains(*AI, CurBlock->TheScope);
- }
- }
-}
-
-/// ActOnBlockError - If there is an error parsing a block, this callback
-/// is invoked to pop the information about the block from the action impl.
-void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
- // Pop off CurBlock, handle nested blocks.
- PopDeclContext();
- PopFunctionOrBlockScope();
- // FIXME: Delete the ParmVarDecl objects as well???
-}
-
-/// ActOnBlockStmtExpr - This is called when the body of a block statement
-/// literal was successfully completed. ^(int x){...}
-Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
- StmtArg body, Scope *CurScope) {
- // If blocks are disabled, emit an error.
- if (!LangOpts.Blocks)
- Diag(CaretLoc, diag::err_blocks_disable);
-
- BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
-
- PopDeclContext();
-
- QualType RetTy = Context.VoidTy;
- if (!BSI->ReturnType.isNull())
- RetTy = BSI->ReturnType;
-
- bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
- QualType BlockTy;
-
- // If the user wrote a function type in some form, try to use that.
- if (!BSI->FunctionType.isNull()) {
- const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
-
- FunctionType::ExtInfo Ext = FTy->getExtInfo();
- if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
-
- // Turn protoless block types into nullary block types.
- if (isa<FunctionNoProtoType>(FTy)) {
- BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
- false, false, 0, 0, Ext);
-
- // Otherwise, if we don't need to change anything about the function type,
- // preserve its sugar structure.
- } else if (FTy->getResultType() == RetTy &&
- (!NoReturn || FTy->getNoReturnAttr())) {
- BlockTy = BSI->FunctionType;
-
- // Otherwise, make the minimal modifications to the function type.
- } else {
- const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
- BlockTy = Context.getFunctionType(RetTy,
- FPT->arg_type_begin(),
- FPT->getNumArgs(),
- FPT->isVariadic(),
- /*quals*/ 0,
- FPT->hasExceptionSpec(),
- FPT->hasAnyExceptionSpec(),
- FPT->getNumExceptions(),
- FPT->exception_begin(),
- Ext);
- }
-
- // If we don't have a function type, just build one from nothing.
- } else {
- BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
- false, false, 0, 0,
- FunctionType::ExtInfo(NoReturn, 0, CC_Default));
- }
-
- // FIXME: Check that return/parameter types are complete/non-abstract
- DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
- BSI->TheDecl->param_end());
- BlockTy = Context.getBlockPointerType(BlockTy);
-
- // If needed, diagnose invalid gotos and switches in the block.
- if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
- DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
-
- BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
-
- bool Good = true;
- // Check goto/label use.
- for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
- I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
- LabelStmt *L = I->second;
-
- // Verify that we have no forward references left. If so, there was a goto
- // or address of a label taken, but no definition of it.
- if (L->getSubStmt() != 0)
- continue;
-
- // Emit error.
- Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
- Good = false;
- }
- if (!Good) {
- PopFunctionOrBlockScope();
- return ExprError();
- }
-
- // Issue any analysis-based warnings.
- const sema::AnalysisBasedWarnings::Policy &WP =
- AnalysisWarnings.getDefaultPolicy();
- AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
-
- Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
- BSI->hasBlockDeclRefExprs);
- PopFunctionOrBlockScope();
- return Owned(Result);
-}
-
-Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
- ExprArg expr, TypeTy *type,
- SourceLocation RPLoc) {
- QualType T = GetTypeFromParser(type);
- Expr *E = static_cast<Expr*>(expr.get());
- Expr *OrigExpr = E;
-
- InitBuiltinVaListType();
-
- // Get the va_list type
- QualType VaListType = Context.getBuiltinVaListType();
- if (VaListType->isArrayType()) {
- // Deal with implicit array decay; for example, on x86-64,
- // va_list is an array, but it's supposed to decay to
- // a pointer for va_arg.
- VaListType = Context.getArrayDecayedType(VaListType);
- // Make sure the input expression also decays appropriately.
- UsualUnaryConversions(E);
- } else {
- // Otherwise, the va_list argument must be an l-value because
- // it is modified by va_arg.
- if (!E->isTypeDependent() &&
- CheckForModifiableLvalue(E, BuiltinLoc, *this))
- return ExprError();
- }
-
- if (!E->isTypeDependent() &&
- !Context.hasSameType(VaListType, E->getType())) {
- return ExprError(Diag(E->getLocStart(),
- diag::err_first_argument_to_va_arg_not_of_type_va_list)
- << OrigExpr->getType() << E->getSourceRange());
- }
-
- // FIXME: Check that type is complete/non-abstract
- // FIXME: Warn if a non-POD type is passed in.
-
- expr.release();
- return Owned(new (Context) VAArgExpr(BuiltinLoc, E,
- T.getNonLValueExprType(Context),
- RPLoc));
-}
-
-Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
- // The type of __null will be int or long, depending on the size of
- // pointers on the target.
- QualType Ty;
- if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
- Ty = Context.IntTy;
- else
- Ty = Context.LongTy;
-
- return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
-}
-
-static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
- Expr *SrcExpr, FixItHint &Hint) {
- if (!SemaRef.getLangOptions().ObjC1)
- return;
-
- const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
- if (!PT)
- return;
-
- // Check if the destination is of type 'id'.
- if (!PT->isObjCIdType()) {
- // Check if the destination is the 'NSString' interface.
- const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
- if (!ID || !ID->getIdentifier()->isStr("NSString"))
- return;
- }
-
- // Strip off any parens and casts.
- StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
- if (!SL || SL->isWide())
- return;
-
- Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
-}
-
-bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
- SourceLocation Loc,
- QualType DstType, QualType SrcType,
- Expr *SrcExpr, AssignmentAction Action,
- bool *Complained) {
- if (Complained)
- *Complained = false;
-
- // Decode the result (notice that AST's are still created for extensions).
- bool isInvalid = false;
- unsigned DiagKind;
- FixItHint Hint;
-
- switch (ConvTy) {
- default: assert(0 && "Unknown conversion type");
- case Compatible: return false;
- case PointerToInt:
- DiagKind = diag::ext_typecheck_convert_pointer_int;
- break;
- case IntToPointer:
- DiagKind = diag::ext_typecheck_convert_int_pointer;
- break;
- case IncompatiblePointer:
- MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
- DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
- break;
- case IncompatiblePointerSign:
- DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
- break;
- case FunctionVoidPointer:
- DiagKind = diag::ext_typecheck_convert_pointer_void_func;
- break;
- case CompatiblePointerDiscardsQualifiers:
- // If the qualifiers lost were because we were applying the
- // (deprecated) C++ conversion from a string literal to a char*
- // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
- // Ideally, this check would be performed in
- // CheckPointerTypesForAssignment. However, that would require a
- // bit of refactoring (so that the second argument is an
- // expression, rather than a type), which should be done as part
- // of a larger effort to fix CheckPointerTypesForAssignment for
- // C++ semantics.
- if (getLangOptions().CPlusPlus &&
- IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
- return false;
- DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
- break;
- case IncompatibleNestedPointerQualifiers:
- DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
- break;
- case IntToBlockPointer:
- DiagKind = diag::err_int_to_block_pointer;
- break;
- case IncompatibleBlockPointer:
- DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
- break;
- case IncompatibleObjCQualifiedId:
- // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
- // it can give a more specific diagnostic.
- DiagKind = diag::warn_incompatible_qualified_id;
- break;
- case IncompatibleVectors:
- DiagKind = diag::warn_incompatible_vectors;
- break;
- case Incompatible:
- DiagKind = diag::err_typecheck_convert_incompatible;
- isInvalid = true;
- break;
- }
-
- QualType FirstType, SecondType;
- switch (Action) {
- case AA_Assigning:
- case AA_Initializing:
- // The destination type comes first.
- FirstType = DstType;
- SecondType = SrcType;
- break;
-
- case AA_Returning:
- case AA_Passing:
- case AA_Converting:
- case AA_Sending:
- case AA_Casting:
- // The source type comes first.
- FirstType = SrcType;
- SecondType = DstType;
- break;
- }
-
- Diag(Loc, DiagKind) << FirstType << SecondType << Action
- << SrcExpr->getSourceRange() << Hint;
- if (Complained)
- *Complained = true;
- return isInvalid;
-}
-
-bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
- llvm::APSInt ICEResult;
- if (E->isIntegerConstantExpr(ICEResult, Context)) {
- if (Result)
- *Result = ICEResult;
- return false;
- }
-
- Expr::EvalResult EvalResult;
-
- if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
- EvalResult.HasSideEffects) {
- Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
-
- if (EvalResult.Diag) {
- // We only show the note if it's not the usual "invalid subexpression"
- // or if it's actually in a subexpression.
- if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
- E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
- Diag(EvalResult.DiagLoc, EvalResult.Diag);
- }
-
- return true;
- }
-
- Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
- E->getSourceRange();
-
- if (EvalResult.Diag &&
- Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
- Diag(EvalResult.DiagLoc, EvalResult.Diag);
-
- if (Result)
- *Result = EvalResult.Val.getInt();
- return false;
-}
-
-void
-Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
- ExprEvalContexts.push_back(
- ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
-}
-
-void
-Sema::PopExpressionEvaluationContext() {
- // Pop the current expression evaluation context off the stack.
- ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
- ExprEvalContexts.pop_back();
-
- if (Rec.Context == PotentiallyPotentiallyEvaluated) {
- if (Rec.PotentiallyReferenced) {
- // Mark any remaining declarations in the current position of the stack
- // as "referenced". If they were not meant to be referenced, semantic
- // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
- for (PotentiallyReferencedDecls::iterator
- I = Rec.PotentiallyReferenced->begin(),
- IEnd = Rec.PotentiallyReferenced->end();
- I != IEnd; ++I)
- MarkDeclarationReferenced(I->first, I->second);
- }
-
- if (Rec.PotentiallyDiagnosed) {
- // Emit any pending diagnostics.
- for (PotentiallyEmittedDiagnostics::iterator
- I = Rec.PotentiallyDiagnosed->begin(),
- IEnd = Rec.PotentiallyDiagnosed->end();
- I != IEnd; ++I)
- Diag(I->first, I->second);
- }
- }
-
- // When are coming out of an unevaluated context, clear out any
- // temporaries that we may have created as part of the evaluation of
- // the expression in that context: they aren't relevant because they
- // will never be constructed.
- if (Rec.Context == Unevaluated &&
- ExprTemporaries.size() > Rec.NumTemporaries)
- ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
- ExprTemporaries.end());
-
- // Destroy the popped expression evaluation record.
- Rec.Destroy();
-}
-
-/// \brief Note that the given declaration was referenced in the source code.
-///
-/// This routine should be invoke whenever a given declaration is referenced
-/// in the source code, and where that reference occurred. If this declaration
-/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
-/// C99 6.9p3), then the declaration will be marked as used.
-///
-/// \param Loc the location where the declaration was referenced.
-///
-/// \param D the declaration that has been referenced by the source code.
-void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
- assert(D && "No declaration?");
-
- if (D->isUsed(false))
- return;
-
- // Mark a parameter or variable declaration "used", regardless of whether we're in a
- // template or not. The reason for this is that unevaluated expressions
- // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
- // -Wunused-parameters)
- if (isa<ParmVarDecl>(D) ||
- (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
- D->setUsed(true);
- return;
- }
-
- if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
- return;
-
- // Do not mark anything as "used" within a dependent context; wait for
- // an instantiation.
- if (CurContext->isDependentContext())
- return;
-
- switch (ExprEvalContexts.back().Context) {
- case Unevaluated:
- // We are in an expression that is not potentially evaluated; do nothing.
- return;
-
- case PotentiallyEvaluated:
- // We are in a potentially-evaluated expression, so this declaration is
- // "used"; handle this below.
- break;
-
- case PotentiallyPotentiallyEvaluated:
- // We are in an expression that may be potentially evaluated; queue this
- // declaration reference until we know whether the expression is
- // potentially evaluated.
- ExprEvalContexts.back().addReferencedDecl(Loc, D);
- return;
- }
-
- // Note that this declaration has been used.
- if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
- unsigned TypeQuals;
- if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
- if (!Constructor->isUsed(false))
- DefineImplicitDefaultConstructor(Loc, Constructor);
- } else if (Constructor->isImplicit() &&
- Constructor->isCopyConstructor(TypeQuals)) {
- if (!Constructor->isUsed(false))
- DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
- }
-
- MarkVTableUsed(Loc, Constructor->getParent());
- } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
- if (Destructor->isImplicit() && !Destructor->isUsed(false))
- DefineImplicitDestructor(Loc, Destructor);
- if (Destructor->isVirtual())
- MarkVTableUsed(Loc, Destructor->getParent());
- } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
- if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
- MethodDecl->getOverloadedOperator() == OO_Equal) {
- if (!MethodDecl->isUsed(false))
- DefineImplicitCopyAssignment(Loc, MethodDecl);
- } else if (MethodDecl->isVirtual())
- MarkVTableUsed(Loc, MethodDecl->getParent());
- }
- if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
- // Implicit instantiation of function templates and member functions of
- // class templates.
- if (Function->isImplicitlyInstantiable()) {
- bool AlreadyInstantiated = false;
- if (FunctionTemplateSpecializationInfo *SpecInfo
- = Function->getTemplateSpecializationInfo()) {
- if (SpecInfo->getPointOfInstantiation().isInvalid())
- SpecInfo->setPointOfInstantiation(Loc);
- else if (SpecInfo->getTemplateSpecializationKind()
- == TSK_ImplicitInstantiation)
- AlreadyInstantiated = true;
- } else if (MemberSpecializationInfo *MSInfo
- = Function->getMemberSpecializationInfo()) {
- if (MSInfo->getPointOfInstantiation().isInvalid())
- MSInfo->setPointOfInstantiation(Loc);
- else if (MSInfo->getTemplateSpecializationKind()
- == TSK_ImplicitInstantiation)
- AlreadyInstantiated = true;
- }
-
- if (!AlreadyInstantiated) {
- if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
- cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
- PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
- Loc));
- else
- PendingImplicitInstantiations.push_back(std::make_pair(Function,
- Loc));
- }
- }
-
- // FIXME: keep track of references to static functions
- Function->setUsed(true);
-
- return;
- }
-
- if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
- // Implicit instantiation of static data members of class templates.
- if (Var->isStaticDataMember() &&
- Var->getInstantiatedFromStaticDataMember()) {
- MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
- assert(MSInfo && "Missing member specialization information?");
- if (MSInfo->getPointOfInstantiation().isInvalid() &&
- MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
- MSInfo->setPointOfInstantiation(Loc);
- PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
- }
- }
-
- // FIXME: keep track of references to static data?
-
- D->setUsed(true);
- return;
- }
-}
-
-namespace {
- // Mark all of the declarations referenced
- // FIXME: Not fully implemented yet! We need to have a better understanding
- // of when we're entering
- class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
- Sema &S;
- SourceLocation Loc;
-
- public:
- typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
-
- MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
-
- bool TraverseTemplateArgument(const TemplateArgument &Arg);
- bool TraverseRecordType(RecordType *T);
- };
-}
-
-bool MarkReferencedDecls::TraverseTemplateArgument(
- const TemplateArgument &Arg) {
- if (Arg.getKind() == TemplateArgument::Declaration) {
- S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
- }
-
- return Inherited::TraverseTemplateArgument(Arg);
-}
-
-bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
- if (ClassTemplateSpecializationDecl *Spec
- = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
- const TemplateArgumentList &Args = Spec->getTemplateArgs();
- return TraverseTemplateArguments(Args.getFlatArgumentList(),
- Args.flat_size());
- }
-
- return true;
-}
-
-void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
- MarkReferencedDecls Marker(*this, Loc);
- Marker.TraverseType(Context.getCanonicalType(T));
-}
-
-/// \brief Emit a diagnostic that describes an effect on the run-time behavior
-/// of the program being compiled.
-///
-/// This routine emits the given diagnostic when the code currently being
-/// type-checked is "potentially evaluated", meaning that there is a
-/// possibility that the code will actually be executable. Code in sizeof()
-/// expressions, code used only during overload resolution, etc., are not
-/// potentially evaluated. This routine will suppress such diagnostics or,
-/// in the absolutely nutty case of potentially potentially evaluated
-/// expressions (C++ typeid), queue the diagnostic to potentially emit it
-/// later.
-///
-/// This routine should be used for all diagnostics that describe the run-time
-/// behavior of a program, such as passing a non-POD value through an ellipsis.
-/// Failure to do so will likely result in spurious diagnostics or failures
-/// during overload resolution or within sizeof/alignof/typeof/typeid.
-bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
- const PartialDiagnostic &PD) {
- switch (ExprEvalContexts.back().Context ) {
- case Unevaluated:
- // The argument will never be evaluated, so don't complain.
- break;
-
- case PotentiallyEvaluated:
- Diag(Loc, PD);
- return true;
-
- case PotentiallyPotentiallyEvaluated:
- ExprEvalContexts.back().addDiagnostic(Loc, PD);
- break;
- }
-
- return false;
-}
-
-bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
- CallExpr *CE, FunctionDecl *FD) {
- if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
- return false;
-
- PartialDiagnostic Note =
- FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
- << FD->getDeclName() : PDiag();
- SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
-
- if (RequireCompleteType(Loc, ReturnType,
- FD ?
- PDiag(diag::err_call_function_incomplete_return)
- << CE->getSourceRange() << FD->getDeclName() :
- PDiag(diag::err_call_incomplete_return)
- << CE->getSourceRange(),
- std::make_pair(NoteLoc, Note)))
- return true;
-
- return false;
-}
-
-// Diagnose the common s/=/==/ typo. Note that adding parentheses
-// will prevent this condition from triggering, which is what we want.
-void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
- SourceLocation Loc;
-
- unsigned diagnostic = diag::warn_condition_is_assignment;
-
- if (isa<BinaryOperator>(E)) {
- BinaryOperator *Op = cast<BinaryOperator>(E);
- if (Op->getOpcode() != BinaryOperator::Assign)
- return;
-
- // Greylist some idioms by putting them into a warning subcategory.
- if (ObjCMessageExpr *ME
- = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
- Selector Sel = ME->getSelector();
-
- // self = [<foo> init...]
- if (isSelfExpr(Op->getLHS())
- && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
- diagnostic = diag::warn_condition_is_idiomatic_assignment;
-
- // <foo> = [<bar> nextObject]
- else if (Sel.isUnarySelector() &&
- Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
- diagnostic = diag::warn_condition_is_idiomatic_assignment;
- }
-
- Loc = Op->getOperatorLoc();
- } else if (isa<CXXOperatorCallExpr>(E)) {
- CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
- if (Op->getOperator() != OO_Equal)
- return;
-
- Loc = Op->getOperatorLoc();
- } else {
- // Not an assignment.
- return;
- }
-
- SourceLocation Open = E->getSourceRange().getBegin();
- SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
-
- Diag(Loc, diagnostic) << E->getSourceRange();
- Diag(Loc, diag::note_condition_assign_to_comparison)
- << FixItHint::CreateReplacement(Loc, "==");
- Diag(Loc, diag::note_condition_assign_silence)
- << FixItHint::CreateInsertion(Open, "(")
- << FixItHint::CreateInsertion(Close, ")");
-}
-
-bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
- DiagnoseAssignmentAsCondition(E);
-
- if (!E->isTypeDependent()) {
- DefaultFunctionArrayLvalueConversion(E);
-
- QualType T = E->getType();
-
- if (getLangOptions().CPlusPlus) {
- if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
- return true;
- } else if (!T->isScalarType()) { // C99 6.8.4.1p1
- Diag(Loc, diag::err_typecheck_statement_requires_scalar)
- << T << E->getSourceRange();
- return true;
- }
- }
-
- return false;
-}
-
-Sema::OwningExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
- ExprArg SubExpr) {
- Expr *Sub = SubExpr.takeAs<Expr>();
- if (!Sub)
- return ExprError();
-
- if (CheckBooleanCondition(Sub, Loc))
- return ExprError();
-
- return Owned(Sub);
-}
More information about the llvm-branch-commits
mailing list