[llvm-branch-commits] [llvm-branch] r86313 - in /llvm/branches/Apple/Leela: lib/Transforms/Scalar/JumpThreading.cpp test/Transforms/JumpThreading/basic.ll
Bill Wendling
isanbard at gmail.com
Fri Nov 6 16:22:07 PST 2009
Author: void
Date: Fri Nov 6 18:22:07 2009
New Revision: 86313
URL: http://llvm.org/viewvc/llvm-project?rev=86313&view=rev
Log:
$ svn merge -c -86264 https://llvm.org/svn/llvm-project/llvm/trunk
--- Reverse-merging r86264 into '.':
U test/Transforms/JumpThreading/basic.ll
U lib/Transforms/Scalar/JumpThreading.cpp
Modified:
llvm/branches/Apple/Leela/lib/Transforms/Scalar/JumpThreading.cpp
llvm/branches/Apple/Leela/test/Transforms/JumpThreading/basic.ll
Modified: llvm/branches/Apple/Leela/lib/Transforms/Scalar/JumpThreading.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Leela/lib/Transforms/Scalar/JumpThreading.cpp?rev=86313&r1=86312&r2=86313&view=diff
==============================================================================
--- llvm/branches/Apple/Leela/lib/Transforms/Scalar/JumpThreading.cpp (original)
+++ llvm/branches/Apple/Leela/lib/Transforms/Scalar/JumpThreading.cpp Fri Nov 6 18:22:07 2009
@@ -78,16 +78,8 @@
bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
BasicBlock *PredBB);
+
BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
-
- typedef SmallVectorImpl<std::pair<ConstantInt*,
- BasicBlock*> > PredValueInfo;
-
- bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
- PredValueInfo &Result);
- bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
-
-
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
@@ -231,133 +223,7 @@
&CommonPreds[0], CommonPreds.size(),
".thr_comm", this);
}
-
-/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
-/// hand sides of the compare instruction, try to determine the result. If the
-/// result can not be determined, a null pointer is returned.
-static Constant *GetResultOfComparison(CmpInst::Predicate pred,
- Value *LHS, Value *RHS) {
- if (Constant *CLHS = dyn_cast<Constant>(LHS))
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantExpr::getCompare(pred, CLHS, CRHS);
-
- if (LHS == RHS)
- if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
- if (ICmpInst::isTrueWhenEqual(pred))
- return ConstantInt::getTrue(LHS->getContext());
- else
- return ConstantInt::getFalse(LHS->getContext());
- return 0;
-}
-
-
-/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
-/// if we can infer that the value is a known ConstantInt in any of our
-/// predecessors. If so, return the known the list of value and pred BB in the
-/// result vector. If a value is known to be undef, it is returned as null.
-///
-/// The BB basic block is known to start with a PHI node.
-///
-/// This returns true if there were any known values.
-///
-///
-/// TODO: Per PR2563, we could infer value range information about a predecessor
-/// based on its terminator.
-bool JumpThreading::
-ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
- PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
-
- // If V is a constantint, then it is known in all predecessors.
- if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
- ConstantInt *CI = dyn_cast<ConstantInt>(V);
- Result.resize(TheFirstPHI->getNumIncomingValues());
- for (unsigned i = 0, e = Result.size(); i != e; ++i)
- Result.push_back(std::make_pair(CI, TheFirstPHI->getIncomingBlock(i)));
- return true;
- }
- // If V is a non-instruction value, or an instruction in a different block,
- // then it can't be derived from a PHI.
- Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0 || I->getParent() != BB)
- return false;
-
- /// If I is a PHI node, then we know the incoming values for any constants.
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *InVal = PN->getIncomingValue(i);
- if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
- ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
- Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
- }
- }
- return !Result.empty();
- }
-
- SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
-
- // Handle some boolean conditions.
- if (I->getType()->getPrimitiveSizeInBits() == 1) {
- // X | true -> true
- // X & false -> false
- if (I->getOpcode() == Instruction::Or ||
- I->getOpcode() == Instruction::And) {
- ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
- ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
-
- if (LHSVals.empty() && RHSVals.empty())
- return false;
-
- ConstantInt *InterestingVal;
- if (I->getOpcode() == Instruction::Or)
- InterestingVal = ConstantInt::getTrue(I->getContext());
- else
- InterestingVal = ConstantInt::getFalse(I->getContext());
-
- // Scan for the sentinel.
- for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
- if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
- Result.push_back(LHSVals[i]);
- for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
- if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
- Result.push_back(RHSVals[i]);
- return !Result.empty();
- }
-
- // TODO: Should handle the NOT form of XOR.
-
- }
-
- // Handle compare with phi operand, where the PHI is defined in this block.
- if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
- PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
- if (PN && PN->getParent() == BB) {
- // We can do this simplification if any comparisons fold to true or false.
- // See if any do.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *PredBB = PN->getIncomingBlock(i);
- Value *LHS = PN->getIncomingValue(i);
- Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
-
- Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
- if (Res == 0) continue;
-
- if (isa<UndefValue>(Res))
- Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
- Result.push_back(std::make_pair(CI, PredBB));
- }
-
- return !Result.empty();
- }
-
- // TODO: We could also recurse to see if we can determine constants another
- // way.
- }
- return false;
-}
-
-
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
/// in an undefined jump, decide which block is best to revector to.
@@ -388,7 +254,7 @@
// successor, merge the blocks. This encourages recursive jump threading
// because now the condition in this block can be threaded through
// predecessors of our predecessor block.
- if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
+ if (BasicBlock *SinglePred = BB->getSinglePredecessor())
if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
SinglePred != BB) {
// If SinglePred was a loop header, BB becomes one.
@@ -404,10 +270,10 @@
BB->moveBefore(&BB->getParent()->getEntryBlock());
return true;
}
- }
-
- // Look to see if the terminator is a branch of switch, if not we can't thread
- // it.
+
+ // See if this block ends with a branch or switch. If so, see if the
+ // condition is a phi node. If so, and if an entry of the phi node is a
+ // constant, we can thread the block.
Value *Condition;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
// Can't thread an unconditional jump.
@@ -506,7 +372,7 @@
}
// If we have a comparison, loop over the predecessors to see if there is
- // a condition with a lexically identical value.
+ // a condition with the same value.
pred_iterator PI = pred_begin(BB), E = pred_end(BB);
for (; PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
@@ -539,19 +405,6 @@
if (SimplifyPartiallyRedundantLoad(LI))
return true;
-
- // Handle a variety of cases where we are branching on something derived from
- // a PHI node in the current block. If we can prove that any predecessors
- // compute a predictable value based on a PHI node, thread those predecessors.
- //
- // We only bother doing this if the current block has a PHI node and if the
- // conditional instruction lives in the current block. If either condition
- // fail, this won't be a computable value anyway.
- if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
- if (ProcessThreadableEdges(CondInst, BB))
- return true;
-
-
// TODO: If we have: "br (X > 0)" and we have a predecessor where we know
// "(X == 4)" thread through this block.
@@ -840,176 +693,6 @@
return true;
}
-/// FindMostPopularDest - The specified list contains multiple possible
-/// threadable destinations. Pick the one that occurs the most frequently in
-/// the list.
-static BasicBlock *
-FindMostPopularDest(BasicBlock *BB,
- const SmallVectorImpl<std::pair<BasicBlock*,
- BasicBlock*> > &PredToDestList) {
- assert(!PredToDestList.empty());
-
- // Determine popularity. If there are multiple possible destinations, we
- // explicitly choose to ignore 'undef' destinations. We prefer to thread
- // blocks with known and real destinations to threading undef. We'll handle
- // them later if interesting.
- DenseMap<BasicBlock*, unsigned> DestPopularity;
- for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
- if (PredToDestList[i].second)
- DestPopularity[PredToDestList[i].second]++;
-
- // Find the most popular dest.
- DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
- BasicBlock *MostPopularDest = DPI->first;
- unsigned Popularity = DPI->second;
- SmallVector<BasicBlock*, 4> SamePopularity;
-
- for (++DPI; DPI != DestPopularity.end(); ++DPI) {
- // If the popularity of this entry isn't higher than the popularity we've
- // seen so far, ignore it.
- if (DPI->second < Popularity)
- ; // ignore.
- else if (DPI->second == Popularity) {
- // If it is the same as what we've seen so far, keep track of it.
- SamePopularity.push_back(DPI->first);
- } else {
- // If it is more popular, remember it.
- SamePopularity.clear();
- MostPopularDest = DPI->first;
- Popularity = DPI->second;
- }
- }
-
- // Okay, now we know the most popular destination. If there is more than
- // destination, we need to determine one. This is arbitrary, but we need
- // to make a deterministic decision. Pick the first one that appears in the
- // successor list.
- if (!SamePopularity.empty()) {
- SamePopularity.push_back(MostPopularDest);
- TerminatorInst *TI = BB->getTerminator();
- for (unsigned i = 0; ; ++i) {
- assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
-
- if (std::find(SamePopularity.begin(), SamePopularity.end(),
- TI->getSuccessor(i)) == SamePopularity.end())
- continue;
-
- MostPopularDest = TI->getSuccessor(i);
- break;
- }
- }
-
- // Okay, we have finally picked the most popular destination.
- return MostPopularDest;
-}
-
-bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
- BasicBlock *BB) {
- // If threading this would thread across a loop header, don't even try to
- // thread the edge.
- if (LoopHeaders.count(BB))
- return false;
-
-
-
- SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
- if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
- return false;
- assert(!PredValues.empty() &&
- "ComputeValueKnownInPredecessors returned true with no values");
-
- DEBUG(errs() << "IN BB: " << *BB;
- for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
- errs() << " BB '" << BB->getName() << "': FOUND condition = ";
- if (PredValues[i].first)
- errs() << *PredValues[i].first;
- else
- errs() << "UNDEF";
- errs() << " for pred '" << PredValues[i].second->getName()
- << "'.\n";
- });
-
- // Decide what we want to thread through. Convert our list of known values to
- // a list of known destinations for each pred. This also discards duplicate
- // predecessors and keeps track of the undefined inputs (which are represented
- // as a null dest in the PredToDestList.
- SmallPtrSet<BasicBlock*, 16> SeenPreds;
- SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
-
- BasicBlock *OnlyDest = 0;
- BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
-
- for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
- BasicBlock *Pred = PredValues[i].second;
- if (!SeenPreds.insert(Pred))
- continue; // Duplicate predecessor entry.
-
- // If the predecessor ends with an indirect goto, we can't change its
- // destination.
- if (isa<IndirectBrInst>(Pred->getTerminator()))
- continue;
-
- ConstantInt *Val = PredValues[i].first;
-
- BasicBlock *DestBB;
- if (Val == 0) // Undef.
- DestBB = 0;
- else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
- DestBB = BI->getSuccessor(Val->isZero());
- else {
- SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
- DestBB = SI->getSuccessor(SI->findCaseValue(Val));
- }
-
- // If we have exactly one destination, remember it for efficiency below.
- if (i == 0)
- OnlyDest = DestBB;
- else if (OnlyDest != DestBB)
- OnlyDest = MultipleDestSentinel;
-
- PredToDestList.push_back(std::make_pair(Pred, DestBB));
- }
-
- // If all edges were unthreadable, we fail.
- if (PredToDestList.empty())
- return false;
-
- // Determine which is the most common successor. If we have many inputs and
- // this block is a switch, we want to start by threading the batch that goes
- // to the most popular destination first. If we only know about one
- // threadable destination (the common case) we can avoid this.
- BasicBlock *MostPopularDest = OnlyDest;
-
- if (MostPopularDest == MultipleDestSentinel)
- MostPopularDest = FindMostPopularDest(BB, PredToDestList);
-
- // Now that we know what the most popular destination is, factor all
- // predecessors that will jump to it into a single predecessor.
- SmallVector<BasicBlock*, 16> PredsToFactor;
- for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
- if (PredToDestList[i].second == MostPopularDest)
- PredsToFactor.push_back(PredToDestList[i].first);
-
- BasicBlock *PredToThread;
- if (PredsToFactor.size() == 1)
- PredToThread = PredsToFactor[0];
- else {
- DEBUG(errs() << " Factoring out " << PredsToFactor.size()
- << " common predecessors.\n");
- PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0],
- PredsToFactor.size(),
- ".thr_comm", this);
- }
-
- // If the threadable edges are branching on an undefined value, we get to pick
- // the destination that these predecessors should get to.
- if (MostPopularDest == 0)
- MostPopularDest = BB->getTerminator()->
- getSuccessor(GetBestDestForJumpOnUndef(BB));
-
- // Ok, try to thread it!
- return ThreadEdge(BB, PredToThread, MostPopularDest);
-}
/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
/// the current block. See if there are any simplifications we can do based on
@@ -1134,6 +817,24 @@
return ThreadEdge(BB, PredBB, SuccBB);
}
+/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
+/// hand sides of the compare instruction, try to determine the result. If the
+/// result can not be determined, a null pointer is returned.
+static Constant *GetResultOfComparison(CmpInst::Predicate pred,
+ Value *LHS, Value *RHS,
+ LLVMContext &Context) {
+ if (Constant *CLHS = dyn_cast<Constant>(LHS))
+ if (Constant *CRHS = dyn_cast<Constant>(RHS))
+ return ConstantExpr::getCompare(pred, CLHS, CRHS);
+
+ if (LHS == RHS)
+ if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
+ return ICmpInst::isTrueWhenEqual(pred) ?
+ ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
+
+ return 0;
+}
+
/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
/// node and a value. If we can identify when the comparison is true between
/// the phi inputs and the value, we can fold the compare for that edge and
@@ -1154,7 +855,8 @@
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
PredVal = PN->getIncomingValue(i);
- Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal, RHS);
+ Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
+ RHS, Cmp->getContext());
if (!Res) {
PredVal = 0;
continue;
Modified: llvm/branches/Apple/Leela/test/Transforms/JumpThreading/basic.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Leela/test/Transforms/JumpThreading/basic.ll?rev=86313&r1=86312&r2=86313&view=diff
==============================================================================
--- llvm/branches/Apple/Leela/test/Transforms/JumpThreading/basic.ll (original)
+++ llvm/branches/Apple/Leela/test/Transforms/JumpThreading/basic.ll Fri Nov 6 18:22:07 2009
@@ -170,36 +170,5 @@
}
-;; This tests that the branch in 'merge' can be cloned up into T1.
-;; rdar://7367025
-define i32 @test7(i1 %cond, i1 %cond2) {
-Entry:
-; CHECK: @test7
- %v1 = call i32 @f1()
- br i1 %cond, label %Merge, label %F1
-F1:
- %v2 = call i32 @f2()
- br label %Merge
-
-Merge:
- %B = phi i32 [%v1, %Entry], [%v2, %F1]
- %M = icmp ne i32 %B, %v1
- %N = icmp eq i32 %B, 47
- %O = and i1 %M, %N
- br i1 %O, label %T2, label %F2
-
-; CHECK: Merge:
-; CHECK-NOT: phi
-; CHECK-NEXT: %v2 = call i32 @f2()
-
-T2:
- call void @f3()
- ret i32 %B
-
-F2:
- ret i32 %B
-; CHECK: F2:
-; CHECK-NEXT: phi i32
-}
More information about the llvm-branch-commits
mailing list