[llvm-branch-commits] [llvm-branch] r71113 - in /llvm/branches/Apple/Dib: lib/CodeGen/RegAllocLinearScan.cpp lib/CodeGen/VirtRegRewriter.cpp lib/CodeGen/VirtRegRewriter.h test/CodeGen/X86/2009-04-29-RegAllocAssert.ll

Bill Wendling isanbard at gmail.com
Wed May 6 13:15:59 PDT 2009


Author: void
Date: Wed May  6 15:15:59 2009
New Revision: 71113

URL: http://llvm.org/viewvc/llvm-project?rev=71113&view=rev
Log:
Sync with TOT.

Added:
    llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.cpp
    llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.h
    llvm/branches/Apple/Dib/test/CodeGen/X86/2009-04-29-RegAllocAssert.ll
Modified:
    llvm/branches/Apple/Dib/lib/CodeGen/RegAllocLinearScan.cpp

Modified: llvm/branches/Apple/Dib/lib/CodeGen/RegAllocLinearScan.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Dib/lib/CodeGen/RegAllocLinearScan.cpp?rev=71113&r1=71112&r2=71113&view=diff

==============================================================================
--- llvm/branches/Apple/Dib/lib/CodeGen/RegAllocLinearScan.cpp (original)
+++ llvm/branches/Apple/Dib/lib/CodeGen/RegAllocLinearScan.cpp Wed May  6 15:15:59 2009
@@ -13,7 +13,7 @@
 
 #define DEBUG_TYPE "regalloc"
 #include "VirtRegMap.h"
-#include "Spiller.h"
+#include "VirtRegRewriter.h"
 #include "llvm/Function.h"
 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 #include "llvm/CodeGen/LiveStackAnalysis.h"
@@ -125,7 +125,7 @@
     /// vrm_ - Tracks register assignments.
     VirtRegMap* vrm_;
 
-    std::auto_ptr<Spiller> spiller_;
+    std::auto_ptr<VirtRegRewriter> rewriter_;
 
   public:
     virtual const char* getPassName() const {
@@ -404,14 +404,14 @@
   initRegUses();
 
   vrm_ = &getAnalysis<VirtRegMap>();
-  if (!spiller_.get()) spiller_.reset(createSpiller());
+  if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
 
   initIntervalSets();
 
   linearScan();
 
   // Rewrite spill code and update the PhysRegsUsed set.
-  spiller_->runOnMachineFunction(*mf_, *vrm_, li_);
+  rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
 
   assert(unhandled_.empty() && "Unhandled live intervals remain!");
 

Added: llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.cpp?rev=71113&view=auto

==============================================================================
--- llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.cpp (added)
+++ llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.cpp Wed May  6 15:15:59 2009
@@ -0,0 +1,2141 @@
+//===-- llvm/CodeGen/Rewriter.cpp -  Rewriter -----------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "virtregrewriter"
+#include "VirtRegRewriter.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumDSE     , "Number of dead stores elided");
+STATISTIC(NumDSS     , "Number of dead spill slots removed");
+STATISTIC(NumCommutes, "Number of instructions commuted");
+STATISTIC(NumDRM     , "Number of re-materializable defs elided");
+STATISTIC(NumStores  , "Number of stores added");
+STATISTIC(NumPSpills , "Number of physical register spills");
+STATISTIC(NumOmitted , "Number of reloads omited");
+STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
+STATISTIC(NumCopified, "Number of available reloads turned into copies");
+STATISTIC(NumReMats  , "Number of re-materialization");
+STATISTIC(NumLoads   , "Number of loads added");
+STATISTIC(NumReused  , "Number of values reused");
+STATISTIC(NumDCE     , "Number of copies elided");
+STATISTIC(NumSUnfold , "Number of stores unfolded");
+STATISTIC(NumModRefUnfold, "Number of modref unfolded");
+
+namespace {
+  enum RewriterName { simple, local };
+}
+
+static cl::opt<RewriterName>
+RewriterOpt("rewriter",
+            cl::desc("Rewriter to use: (default: local)"),
+            cl::Prefix,
+            cl::values(clEnumVal(simple, "simple rewriter"),
+                       clEnumVal(local,  "local rewriter"),
+                       clEnumValEnd),
+            cl::init(local));
+
+VirtRegRewriter::~VirtRegRewriter() {}
+
+ 
+// ****************************** //
+// Simple Spiller Implementation  //
+// ****************************** //
+
+struct VISIBILITY_HIDDEN SimpleRewriter : public VirtRegRewriter {
+
+  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+                            LiveIntervals* LIs) {
+    DOUT << "********** REWRITE MACHINE CODE **********\n";
+    DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
+    const TargetMachine &TM = MF.getTarget();
+    const TargetInstrInfo &TII = *TM.getInstrInfo();
+    const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+
+
+    // LoadedRegs - Keep track of which vregs are loaded, so that we only load
+    // each vreg once (in the case where a spilled vreg is used by multiple
+    // operands).  This is always smaller than the number of operands to the
+    // current machine instr, so it should be small.
+    std::vector<unsigned> LoadedRegs;
+
+    for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
+         MBBI != E; ++MBBI) {
+      DOUT << MBBI->getBasicBlock()->getName() << ":\n";
+      MachineBasicBlock &MBB = *MBBI;
+      for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
+           MII != E; ++MII) {
+        MachineInstr &MI = *MII;
+        for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+          MachineOperand &MO = MI.getOperand(i);
+          if (MO.isReg() && MO.getReg()) {
+            if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+              unsigned VirtReg = MO.getReg();
+              unsigned SubIdx = MO.getSubReg();
+              unsigned PhysReg = VRM.getPhys(VirtReg);
+              unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
+              if (!VRM.isAssignedReg(VirtReg)) {
+                int StackSlot = VRM.getStackSlot(VirtReg);
+                const TargetRegisterClass* RC = 
+                                             MF.getRegInfo().getRegClass(VirtReg);
+                
+                if (MO.isUse() &&
+                    std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
+                             == LoadedRegs.end()) {
+                  TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
+                  MachineInstr *LoadMI = prior(MII);
+                  VRM.addSpillSlotUse(StackSlot, LoadMI);
+                  LoadedRegs.push_back(VirtReg);
+                  ++NumLoads;
+                  DOUT << '\t' << *LoadMI;
+                }
+
+                if (MO.isDef()) {
+                  TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,   
+                                          StackSlot, RC);
+                  MachineInstr *StoreMI = next(MII);
+                  VRM.addSpillSlotUse(StackSlot, StoreMI);
+                  ++NumStores;
+                }
+              }
+              MF.getRegInfo().setPhysRegUsed(RReg);
+              MI.getOperand(i).setReg(RReg);
+              MI.getOperand(i).setSubReg(0);
+            } else {
+              MF.getRegInfo().setPhysRegUsed(MO.getReg());
+            }
+          }
+        }
+
+        DOUT << '\t' << MI;
+        LoadedRegs.clear();
+      }
+    }
+    return true;
+  }
+
+};
+ 
+// ************************************************************************ //
+
+/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
+/// from top down, keep track of which spill slots or remat are available in
+/// each register.
+///
+/// Note that not all physregs are created equal here.  In particular, some
+/// physregs are reloads that we are allowed to clobber or ignore at any time.
+/// Other physregs are values that the register allocated program is using
+/// that we cannot CHANGE, but we can read if we like.  We keep track of this
+/// on a per-stack-slot / remat id basis as the low bit in the value of the
+/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
+/// this bit and addAvailable sets it if.
+class VISIBILITY_HIDDEN AvailableSpills {
+  const TargetRegisterInfo *TRI;
+  const TargetInstrInfo *TII;
+
+  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
+  // or remat'ed virtual register values that are still available, due to
+  // being loaded or stored to, but not invalidated yet.
+  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
+
+  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
+  // indicating which stack slot values are currently held by a physreg.  This
+  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
+  // physreg is modified.
+  std::multimap<unsigned, int> PhysRegsAvailable;
+
+  void disallowClobberPhysRegOnly(unsigned PhysReg);
+
+  void ClobberPhysRegOnly(unsigned PhysReg);
+public:
+  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
+    : TRI(tri), TII(tii) {
+  }
+
+  /// clear - Reset the state.
+  void clear() {
+    SpillSlotsOrReMatsAvailable.clear();
+    PhysRegsAvailable.clear();
+  }
+
+  const TargetRegisterInfo *getRegInfo() const { return TRI; }
+
+  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
+  /// available in a physical register, return that PhysReg, otherwise
+  /// return 0.
+  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
+    std::map<int, unsigned>::const_iterator I =
+      SpillSlotsOrReMatsAvailable.find(Slot);
+    if (I != SpillSlotsOrReMatsAvailable.end()) {
+      return I->second >> 1;  // Remove the CanClobber bit.
+    }
+    return 0;
+  }
+
+  /// addAvailable - Mark that the specified stack slot / remat is available
+  /// in the specified physreg.  If CanClobber is true, the physreg can be
+  /// modified at any time without changing the semantics of the program.
+  void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
+    // If this stack slot is thought to be available in some other physreg, 
+    // remove its record.
+    ModifyStackSlotOrReMat(SlotOrReMat);
+
+    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
+    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
+                                              (unsigned)CanClobber;
+
+    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
+    else
+      DOUT << "Remembering SS#" << SlotOrReMat;
+    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
+  }
+
+  /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
+  /// the value of the specified stackslot register if it desires. The
+  /// specified stack slot must be available in a physreg for this query to
+  /// make sense.
+  bool canClobberPhysRegForSS(int SlotOrReMat) const {
+    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
+           "Value not available!");
+    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
+  }
+
+  /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
+  /// physical register where values for some stack slot(s) might be
+  /// available.
+  bool canClobberPhysReg(unsigned PhysReg) const {
+    std::multimap<unsigned, int>::const_iterator I =
+      PhysRegsAvailable.lower_bound(PhysReg);
+    while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+      int SlotOrReMat = I->second;
+      I++;
+      if (!canClobberPhysRegForSS(SlotOrReMat))
+        return false;
+    }
+    return true;
+  }
+
+  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+  /// stackslot register. The register is still available but is no longer
+  /// allowed to be modifed.
+  void disallowClobberPhysReg(unsigned PhysReg);
+
+  /// ClobberPhysReg - This is called when the specified physreg changes
+  /// value.  We use this to invalidate any info about stuff that lives in
+  /// it and any of its aliases.
+  void ClobberPhysReg(unsigned PhysReg);
+
+  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
+  /// slot changes.  This removes information about which register the
+  /// previous value for this slot lives in (as the previous value is dead
+  /// now).
+  void ModifyStackSlotOrReMat(int SlotOrReMat);
+
+  /// AddAvailableRegsToLiveIn - Availability information is being kept coming
+  /// into the specified MBB. Add available physical registers as potential
+  /// live-in's. If they are reused in the MBB, they will be added to the
+  /// live-in set to make register scavenger and post-allocation scheduler.
+  void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
+                                std::vector<MachineOperand*> &KillOps);
+};
+
+// ************************************************************************ //
+
+// ReusedOp - For each reused operand, we keep track of a bit of information,
+// in case we need to rollback upon processing a new operand.  See comments
+// below.
+struct ReusedOp {
+  // The MachineInstr operand that reused an available value.
+  unsigned Operand;
+
+  // StackSlotOrReMat - The spill slot or remat id of the value being reused.
+  unsigned StackSlotOrReMat;
+
+  // PhysRegReused - The physical register the value was available in.
+  unsigned PhysRegReused;
+
+  // AssignedPhysReg - The physreg that was assigned for use by the reload.
+  unsigned AssignedPhysReg;
+  
+  // VirtReg - The virtual register itself.
+  unsigned VirtReg;
+
+  ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
+           unsigned vreg)
+    : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
+      AssignedPhysReg(apr), VirtReg(vreg) {}
+};
+
+/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
+/// is reused instead of reloaded.
+class VISIBILITY_HIDDEN ReuseInfo {
+  MachineInstr &MI;
+  std::vector<ReusedOp> Reuses;
+  BitVector PhysRegsClobbered;
+public:
+  ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
+    PhysRegsClobbered.resize(tri->getNumRegs());
+  }
+  
+  bool hasReuses() const {
+    return !Reuses.empty();
+  }
+  
+  /// addReuse - If we choose to reuse a virtual register that is already
+  /// available instead of reloading it, remember that we did so.
+  void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
+                unsigned PhysRegReused, unsigned AssignedPhysReg,
+                unsigned VirtReg) {
+    // If the reload is to the assigned register anyway, no undo will be
+    // required.
+    if (PhysRegReused == AssignedPhysReg) return;
+    
+    // Otherwise, remember this.
+    Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, 
+                              AssignedPhysReg, VirtReg));
+  }
+
+  void markClobbered(unsigned PhysReg) {
+    PhysRegsClobbered.set(PhysReg);
+  }
+
+  bool isClobbered(unsigned PhysReg) const {
+    return PhysRegsClobbered.test(PhysReg);
+  }
+  
+  /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
+  /// is some other operand that is using the specified register, either pick
+  /// a new register to use, or evict the previous reload and use this reg. 
+  unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+                           AvailableSpills &Spills,
+                           std::vector<MachineInstr*> &MaybeDeadStores,
+                           SmallSet<unsigned, 8> &Rejected,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps,
+                           VirtRegMap &VRM);
+
+  /// GetRegForReload - Helper for the above GetRegForReload(). Add a
+  /// 'Rejected' set to remember which registers have been considered and
+  /// rejected for the reload. This avoids infinite looping in case like
+  /// this:
+  /// t1 := op t2, t3
+  /// t2 <- assigned r0 for use by the reload but ended up reuse r1
+  /// t3 <- assigned r1 for use by the reload but ended up reuse r0
+  /// t1 <- desires r1
+  ///       sees r1 is taken by t2, tries t2's reload register r0
+  ///       sees r0 is taken by t3, tries t3's reload register r1
+  ///       sees r1 is taken by t2, tries t2's reload register r0 ...
+  unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+                           AvailableSpills &Spills,
+                           std::vector<MachineInstr*> &MaybeDeadStores,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps,
+                           VirtRegMap &VRM) {
+    SmallSet<unsigned, 8> Rejected;
+    return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
+                           RegKills, KillOps, VRM);
+  }
+};
+
+
+// ****************** //
+// Utility Functions  //
+// ****************** //
+
+/// InvalidateKill - A MI that defines the specified register is being deleted,
+/// invalidate the register kill information.
+static void InvalidateKill(unsigned Reg, BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps) {
+  if (RegKills[Reg]) {
+    KillOps[Reg]->setIsKill(false);
+    KillOps[Reg] = NULL;
+    RegKills.reset(Reg);
+  }
+}
+
+/// findSinglePredSuccessor - Return via reference a vector of machine basic
+/// blocks each of which is a successor of the specified BB and has no other
+/// predecessor.
+static void findSinglePredSuccessor(MachineBasicBlock *MBB,
+                                   SmallVectorImpl<MachineBasicBlock *> &Succs) {
+  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+         SE = MBB->succ_end(); SI != SE; ++SI) {
+    MachineBasicBlock *SuccMBB = *SI;
+    if (SuccMBB->pred_size() == 1)
+      Succs.push_back(SuccMBB);
+  }
+}
+
+/// InvalidateKills - MI is going to be deleted. If any of its operands are
+/// marked kill, then invalidate the information.
+static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
+                            std::vector<MachineOperand*> &KillOps,
+                            SmallVector<unsigned, 2> *KillRegs = NULL) {
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (TargetRegisterInfo::isVirtualRegister(Reg))
+      continue;
+    if (KillRegs)
+      KillRegs->push_back(Reg);
+    assert(Reg < KillOps.size());
+    if (KillOps[Reg] == &MO) {
+      RegKills.reset(Reg);
+      KillOps[Reg] = NULL;
+    }
+  }
+}
+
+/// InvalidateRegDef - If the def operand of the specified def MI is now dead
+/// (since it's spill instruction is removed), mark it isDead. Also checks if
+/// the def MI has other definition operands that are not dead. Returns it by
+/// reference.
+static bool InvalidateRegDef(MachineBasicBlock::iterator I,
+                             MachineInstr &NewDef, unsigned Reg,
+                             bool &HasLiveDef) {
+  // Due to remat, it's possible this reg isn't being reused. That is,
+  // the def of this reg (by prev MI) is now dead.
+  MachineInstr *DefMI = I;
+  MachineOperand *DefOp = NULL;
+  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = DefMI->getOperand(i);
+    if (MO.isReg() && MO.isDef()) {
+      if (MO.getReg() == Reg)
+        DefOp = &MO;
+      else if (!MO.isDead())
+        HasLiveDef = true;
+    }
+  }
+  if (!DefOp)
+    return false;
+
+  bool FoundUse = false, Done = false;
+  MachineBasicBlock::iterator E = &NewDef;
+  ++I; ++E;
+  for (; !Done && I != E; ++I) {
+    MachineInstr *NMI = I;
+    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
+      MachineOperand &MO = NMI->getOperand(j);
+      if (!MO.isReg() || MO.getReg() != Reg)
+        continue;
+      if (MO.isUse())
+        FoundUse = true;
+      Done = true; // Stop after scanning all the operands of this MI.
+    }
+  }
+  if (!FoundUse) {
+    // Def is dead!
+    DefOp->setIsDead();
+    return true;
+  }
+  return false;
+}
+
+/// UpdateKills - Track and update kill info. If a MI reads a register that is
+/// marked kill, then it must be due to register reuse. Transfer the kill info
+/// over.
+static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
+                        std::vector<MachineOperand*> &KillOps,
+                        const TargetRegisterInfo* TRI) {
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isUse())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0)
+      continue;
+    
+    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
+      // That can't be right. Register is killed but not re-defined and it's
+      // being reused. Let's fix that.
+      KillOps[Reg]->setIsKill(false);
+      KillOps[Reg] = NULL;
+      RegKills.reset(Reg);
+      if (!MI.isRegTiedToDefOperand(i))
+        // Unless it's a two-address operand, this is the new kill.
+        MO.setIsKill();
+    }
+    if (MO.isKill()) {
+      RegKills.set(Reg);
+      KillOps[Reg] = &MO;
+    }
+  }
+
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isDef())
+      continue;
+    unsigned Reg = MO.getReg();
+    RegKills.reset(Reg);
+    KillOps[Reg] = NULL;
+    // It also defines (or partially define) aliases.
+    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
+      RegKills.reset(*AS);
+      KillOps[*AS] = NULL;
+    }
+  }
+}
+
+/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
+///
+static void ReMaterialize(MachineBasicBlock &MBB,
+                          MachineBasicBlock::iterator &MII,
+                          unsigned DestReg, unsigned Reg,
+                          const TargetInstrInfo *TII,
+                          const TargetRegisterInfo *TRI,
+                          VirtRegMap &VRM) {
+  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
+  MachineInstr *NewMI = prior(MII);
+  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = NewMI->getOperand(i);
+    if (!MO.isReg() || MO.getReg() == 0)
+      continue;
+    unsigned VirtReg = MO.getReg();
+    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
+      continue;
+    assert(MO.isUse());
+    unsigned SubIdx = MO.getSubReg();
+    unsigned Phys = VRM.getPhys(VirtReg);
+    assert(Phys);
+    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
+    MO.setReg(RReg);
+    MO.setSubReg(0);
+  }
+  ++NumReMats;
+}
+
+/// findSuperReg - Find the SubReg's super-register of given register class
+/// where its SubIdx sub-register is SubReg.
+static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
+                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
+  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+       I != E; ++I) {
+    unsigned Reg = *I;
+    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
+      return Reg;
+  }
+  return 0;
+}
+
+// ******************************** //
+// Available Spills Implementation  //
+// ******************************** //
+
+/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
+/// stackslot register. The register is still available but is no longer
+/// allowed to be modifed.
+void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
+  std::multimap<unsigned, int>::iterator I =
+    PhysRegsAvailable.lower_bound(PhysReg);
+  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+    int SlotOrReMat = I->second;
+    I++;
+    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+           "Bidirectional map mismatch!");
+    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
+    DOUT << "PhysReg " << TRI->getName(PhysReg)
+         << " copied, it is available for use but can no longer be modified\n";
+  }
+}
+
+/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+/// stackslot register and its aliases. The register and its aliases may
+/// still available but is no longer allowed to be modifed.
+void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
+  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+    disallowClobberPhysRegOnly(*AS);
+  disallowClobberPhysRegOnly(PhysReg);
+}
+
+/// ClobberPhysRegOnly - This is called when the specified physreg changes
+/// value.  We use this to invalidate any info about stuff we thing lives in it.
+void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
+  std::multimap<unsigned, int>::iterator I =
+    PhysRegsAvailable.lower_bound(PhysReg);
+  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+    int SlotOrReMat = I->second;
+    PhysRegsAvailable.erase(I++);
+    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+           "Bidirectional map mismatch!");
+    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
+    DOUT << "PhysReg " << TRI->getName(PhysReg)
+         << " clobbered, invalidating ";
+    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
+    else
+      DOUT << "SS#" << SlotOrReMat << "\n";
+  }
+}
+
+/// ClobberPhysReg - This is called when the specified physreg changes
+/// value.  We use this to invalidate any info about stuff we thing lives in
+/// it and any of its aliases.
+void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
+  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+    ClobberPhysRegOnly(*AS);
+  ClobberPhysRegOnly(PhysReg);
+}
+
+/// AddAvailableRegsToLiveIn - Availability information is being kept coming
+/// into the specified MBB. Add available physical registers as potential
+/// live-in's. If they are reused in the MBB, they will be added to the
+/// live-in set to make register scavenger and post-allocation scheduler.
+void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
+                                        BitVector &RegKills,
+                                        std::vector<MachineOperand*> &KillOps) {
+  std::set<unsigned> NotAvailable;
+  for (std::multimap<unsigned, int>::iterator
+         I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
+       I != E; ++I) {
+    unsigned Reg = I->first;
+    const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
+    // FIXME: A temporary workaround. We can't reuse available value if it's
+    // not safe to move the def of the virtual register's class. e.g.
+    // X86::RFP* register classes. Do not add it as a live-in.
+    if (!TII->isSafeToMoveRegClassDefs(RC))
+      // This is no longer available.
+      NotAvailable.insert(Reg);
+    else {
+      MBB.addLiveIn(Reg);
+      InvalidateKill(Reg, RegKills, KillOps);
+    }
+
+    // Skip over the same register.
+    std::multimap<unsigned, int>::iterator NI = next(I);
+    while (NI != E && NI->first == Reg) {
+      ++I;
+      ++NI;
+    }
+  }
+
+  for (std::set<unsigned>::iterator I = NotAvailable.begin(),
+         E = NotAvailable.end(); I != E; ++I) {
+    ClobberPhysReg(*I);
+    for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
+       *SubRegs; ++SubRegs)
+      ClobberPhysReg(*SubRegs);
+  }
+}
+
+/// ModifyStackSlotOrReMat - This method is called when the value in a stack
+/// slot changes.  This removes information about which register the previous
+/// value for this slot lives in (as the previous value is dead now).
+void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
+  std::map<int, unsigned>::iterator It =
+    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
+  if (It == SpillSlotsOrReMatsAvailable.end()) return;
+  unsigned Reg = It->second >> 1;
+  SpillSlotsOrReMatsAvailable.erase(It);
+  
+  // This register may hold the value of multiple stack slots, only remove this
+  // stack slot from the set of values the register contains.
+  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
+  for (; ; ++I) {
+    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
+           "Map inverse broken!");
+    if (I->second == SlotOrReMat) break;
+  }
+  PhysRegsAvailable.erase(I);
+}
+
+// ************************** //
+// Reuse Info Implementation  //
+// ************************** //
+
+/// GetRegForReload - We are about to emit a reload into PhysReg.  If there
+/// is some other operand that is using the specified register, either pick
+/// a new register to use, or evict the previous reload and use this reg.
+unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+                         AvailableSpills &Spills,
+                         std::vector<MachineInstr*> &MaybeDeadStores,
+                         SmallSet<unsigned, 8> &Rejected,
+                         BitVector &RegKills,
+                         std::vector<MachineOperand*> &KillOps,
+                         VirtRegMap &VRM) {
+  const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
+                               .getInstrInfo();
+  
+  if (Reuses.empty()) return PhysReg;  // This is most often empty.
+
+  for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
+    ReusedOp &Op = Reuses[ro];
+    // If we find some other reuse that was supposed to use this register
+    // exactly for its reload, we can change this reload to use ITS reload
+    // register. That is, unless its reload register has already been
+    // considered and subsequently rejected because it has also been reused
+    // by another operand.
+    if (Op.PhysRegReused == PhysReg &&
+        Rejected.count(Op.AssignedPhysReg) == 0) {
+      // Yup, use the reload register that we didn't use before.
+      unsigned NewReg = Op.AssignedPhysReg;
+      Rejected.insert(PhysReg);
+      return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
+                             RegKills, KillOps, VRM);
+    } else {
+      // Otherwise, we might also have a problem if a previously reused
+      // value aliases the new register.  If so, codegen the previous reload
+      // and use this one.          
+      unsigned PRRU = Op.PhysRegReused;
+      const TargetRegisterInfo *TRI = Spills.getRegInfo();
+      if (TRI->areAliases(PRRU, PhysReg)) {
+        // Okay, we found out that an alias of a reused register
+        // was used.  This isn't good because it means we have
+        // to undo a previous reuse.
+        MachineBasicBlock *MBB = MI->getParent();
+        const TargetRegisterClass *AliasRC =
+          MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
+
+        // Copy Op out of the vector and remove it, we're going to insert an
+        // explicit load for it.
+        ReusedOp NewOp = Op;
+        Reuses.erase(Reuses.begin()+ro);
+
+        // Ok, we're going to try to reload the assigned physreg into the
+        // slot that we were supposed to in the first place.  However, that
+        // register could hold a reuse.  Check to see if it conflicts or
+        // would prefer us to use a different register.
+        unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
+                                              MI, Spills, MaybeDeadStores,
+                                          Rejected, RegKills, KillOps, VRM);
+        
+        MachineBasicBlock::iterator MII = MI;
+        if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
+          ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
+        } else {
+          TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
+                                    NewOp.StackSlotOrReMat, AliasRC);
+          MachineInstr *LoadMI = prior(MII);
+          VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
+          // Any stores to this stack slot are not dead anymore.
+          MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;            
+          ++NumLoads;
+        }
+        Spills.ClobberPhysReg(NewPhysReg);
+        Spills.ClobberPhysReg(NewOp.PhysRegReused);
+
+        unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
+        unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
+        MI->getOperand(NewOp.Operand).setReg(RReg);
+        MI->getOperand(NewOp.Operand).setSubReg(0);
+
+        Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
+        --MII;
+        UpdateKills(*MII, RegKills, KillOps, TRI);
+        DOUT << '\t' << *MII;
+        
+        DOUT << "Reuse undone!\n";
+        --NumReused;
+        
+        // Finally, PhysReg is now available, go ahead and use it.
+        return PhysReg;
+      }
+    }
+  }
+  return PhysReg;
+}
+
+// ************************************************************************ //
+
+/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
+/// stack slot mod/ref. It also checks if it's possible to unfold the
+/// instruction by having it define a specified physical register instead.
+static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
+                                 const TargetInstrInfo *TII,
+                                 const TargetRegisterInfo *TRI,
+                                 VirtRegMap &VRM) {
+  if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
+    return false;
+
+  bool Found = false;
+  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
+    unsigned VirtReg = I->second.first;
+    VirtRegMap::ModRef MR = I->second.second;
+    if (MR & VirtRegMap::isModRef)
+      if (VRM.getStackSlot(VirtReg) == SS) {
+        Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
+        break;
+      }
+  }
+  if (!Found)
+    return false;
+
+  // Does the instruction uses a register that overlaps the scratch register?
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || MO.getReg() == 0)
+      continue;
+    unsigned Reg = MO.getReg();
+    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+      if (!VRM.hasPhys(Reg))
+        continue;
+      Reg = VRM.getPhys(Reg);
+    }
+    if (TRI->regsOverlap(PhysReg, Reg))
+      return false;
+  }
+  return true;
+}
+
+/// FindFreeRegister - Find a free register of a given register class by looking
+/// at (at most) the last two machine instructions.
+static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
+                                 MachineBasicBlock &MBB,
+                                 const TargetRegisterClass *RC,
+                                 const TargetRegisterInfo *TRI,
+                                 BitVector &AllocatableRegs) {
+  BitVector Defs(TRI->getNumRegs());
+  BitVector Uses(TRI->getNumRegs());
+  SmallVector<unsigned, 4> LocalUses;
+  SmallVector<unsigned, 4> Kills;
+
+  // Take a look at 2 instructions at most.
+  for (unsigned Count = 0; Count < 2; ++Count) {
+    if (MII == MBB.begin())
+      break;
+    MachineInstr *PrevMI = prior(MII);
+    for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = PrevMI->getOperand(i);
+      if (!MO.isReg() || MO.getReg() == 0)
+        continue;
+      unsigned Reg = MO.getReg();
+      if (MO.isDef()) {
+        Defs.set(Reg);
+        for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+          Defs.set(*AS);
+      } else  {
+        LocalUses.push_back(Reg);
+        if (MO.isKill() && AllocatableRegs[Reg])
+          Kills.push_back(Reg);
+      }
+    }
+
+    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
+      unsigned Kill = Kills[i];
+      if (!Defs[Kill] && !Uses[Kill] &&
+          TRI->getPhysicalRegisterRegClass(Kill) == RC)
+        return Kill;
+    }
+    for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
+      unsigned Reg = LocalUses[i];
+      Uses.set(Reg);
+      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+        Uses.set(*AS);
+    }
+
+    MII = PrevMI;
+  }
+
+  return 0;
+}
+
+static
+void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (MO.isReg() && MO.getReg() == VirtReg)
+      MO.setReg(PhysReg);
+  }
+}
+
+
+// ***************************** //
+// Local Spiller Implementation  //
+// ***************************** //
+
+class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
+  MachineRegisterInfo *RegInfo;
+  const TargetRegisterInfo *TRI;
+  const TargetInstrInfo *TII;
+  BitVector AllocatableRegs;
+  DenseMap<MachineInstr*, unsigned> DistanceMap;
+public:
+
+  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+                            LiveIntervals* LIs) {
+    RegInfo = &MF.getRegInfo(); 
+    TRI = MF.getTarget().getRegisterInfo();
+    TII = MF.getTarget().getInstrInfo();
+    AllocatableRegs = TRI->getAllocatableSet(MF);
+    DOUT << "\n**** Local spiller rewriting function '"
+         << MF.getFunction()->getName() << "':\n";
+    DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
+            " ****\n";
+    DEBUG(MF.dump());
+
+    // Spills - Keep track of which spilled values are available in physregs
+    // so that we can choose to reuse the physregs instead of emitting
+    // reloads. This is usually refreshed per basic block.
+    AvailableSpills Spills(TRI, TII);
+
+    // Keep track of kill information.
+    BitVector RegKills(TRI->getNumRegs());
+    std::vector<MachineOperand*> KillOps;
+    KillOps.resize(TRI->getNumRegs(), NULL);
+
+    // SingleEntrySuccs - Successor blocks which have a single predecessor.
+    SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
+    SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
+
+    // Traverse the basic blocks depth first.
+    MachineBasicBlock *Entry = MF.begin();
+    SmallPtrSet<MachineBasicBlock*,16> Visited;
+    for (df_ext_iterator<MachineBasicBlock*,
+           SmallPtrSet<MachineBasicBlock*,16> >
+           DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+         DFI != E; ++DFI) {
+      MachineBasicBlock *MBB = *DFI;
+      if (!EarlyVisited.count(MBB))
+        RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
+
+      // If this MBB is the only predecessor of a successor. Keep the
+      // availability information and visit it next.
+      do {
+        // Keep visiting single predecessor successor as long as possible.
+        SinglePredSuccs.clear();
+        findSinglePredSuccessor(MBB, SinglePredSuccs);
+        if (SinglePredSuccs.empty())
+          MBB = 0;
+        else {
+          // FIXME: More than one successors, each of which has MBB has
+          // the only predecessor.
+          MBB = SinglePredSuccs[0];
+          if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
+            Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
+            RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
+          }
+        }
+      } while (MBB);
+
+      // Clear the availability info.
+      Spills.clear();
+    }
+
+    DOUT << "**** Post Machine Instrs ****\n";
+    DEBUG(MF.dump());
+
+    // Mark unused spill slots.
+    MachineFrameInfo *MFI = MF.getFrameInfo();
+    int SS = VRM.getLowSpillSlot();
+    if (SS != VirtRegMap::NO_STACK_SLOT)
+      for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
+        if (!VRM.isSpillSlotUsed(SS)) {
+          MFI->RemoveStackObject(SS);
+          ++NumDSS;
+        }
+
+    return true;
+  }
+
+private:
+
+  /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
+  /// a scratch register is available.
+  ///     xorq  %r12<kill>, %r13
+  ///     addq  %rax, -184(%rbp)
+  ///     addq  %r13, -184(%rbp)
+  /// ==>
+  ///     xorq  %r12<kill>, %r13
+  ///     movq  -184(%rbp), %r12
+  ///     addq  %rax, %r12
+  ///     addq  %r13, %r12
+  ///     movq  %r12, -184(%rbp)
+  bool OptimizeByUnfold2(unsigned VirtReg, int SS,
+                         MachineBasicBlock &MBB,
+                         MachineBasicBlock::iterator &MII,
+                         std::vector<MachineInstr*> &MaybeDeadStores,
+                         AvailableSpills &Spills,
+                         BitVector &RegKills,
+                         std::vector<MachineOperand*> &KillOps,
+                         VirtRegMap &VRM) {
+
+    MachineBasicBlock::iterator NextMII = next(MII);
+    if (NextMII == MBB.end())
+      return false;
+
+    if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
+      return false;
+
+    // Now let's see if the last couple of instructions happens to have freed up
+    // a register.
+    const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+    unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
+    if (!PhysReg)
+      return false;
+
+    MachineFunction &MF = *MBB.getParent();
+    TRI = MF.getTarget().getRegisterInfo();
+    MachineInstr &MI = *MII;
+    if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
+      return false;
+
+    // If the next instruction also folds the same SS modref and can be unfoled,
+    // then it's worthwhile to issue a load from SS into the free register and
+    // then unfold these instructions.
+    if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
+      return false;
+
+    // Load from SS to the spare physical register.
+    TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
+    // This invalidates Phys.
+    Spills.ClobberPhysReg(PhysReg);
+    // Remember it's available.
+    Spills.addAvailable(SS, PhysReg);
+    MaybeDeadStores[SS] = NULL;
+
+    // Unfold current MI.
+    SmallVector<MachineInstr*, 4> NewMIs;
+    if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
+      assert(0 && "Unable unfold the load / store folding instruction!");
+    assert(NewMIs.size() == 1);
+    AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
+    VRM.transferRestorePts(&MI, NewMIs[0]);
+    MII = MBB.insert(MII, NewMIs[0]);
+    InvalidateKills(MI, RegKills, KillOps);
+    VRM.RemoveMachineInstrFromMaps(&MI);
+    MBB.erase(&MI);
+    ++NumModRefUnfold;
+
+    // Unfold next instructions that fold the same SS.
+    do {
+      MachineInstr &NextMI = *NextMII;
+      NextMII = next(NextMII);
+      NewMIs.clear();
+      if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
+        assert(0 && "Unable unfold the load / store folding instruction!");
+      assert(NewMIs.size() == 1);
+      AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
+      VRM.transferRestorePts(&NextMI, NewMIs[0]);
+      MBB.insert(NextMII, NewMIs[0]);
+      InvalidateKills(NextMI, RegKills, KillOps);
+      VRM.RemoveMachineInstrFromMaps(&NextMI);
+      MBB.erase(&NextMI);
+      ++NumModRefUnfold;
+    } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
+
+    // Store the value back into SS.
+    TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
+    MachineInstr *StoreMI = prior(NextMII);
+    VRM.addSpillSlotUse(SS, StoreMI);
+    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+
+    return true;
+  }
+
+  /// OptimizeByUnfold - Turn a store folding instruction into a load folding
+  /// instruction. e.g.
+  ///     xorl  %edi, %eax
+  ///     movl  %eax, -32(%ebp)
+  ///     movl  -36(%ebp), %eax
+  ///     orl   %eax, -32(%ebp)
+  /// ==>
+  ///     xorl  %edi, %eax
+  ///     orl   -36(%ebp), %eax
+  ///     mov   %eax, -32(%ebp)
+  /// This enables unfolding optimization for a subsequent instruction which will
+  /// also eliminate the newly introduced store instruction.
+  bool OptimizeByUnfold(MachineBasicBlock &MBB,
+                        MachineBasicBlock::iterator &MII,
+                        std::vector<MachineInstr*> &MaybeDeadStores,
+                        AvailableSpills &Spills,
+                        BitVector &RegKills,
+                        std::vector<MachineOperand*> &KillOps,
+                        VirtRegMap &VRM) {
+    MachineFunction &MF = *MBB.getParent();
+    MachineInstr &MI = *MII;
+    unsigned UnfoldedOpc = 0;
+    unsigned UnfoldPR = 0;
+    unsigned UnfoldVR = 0;
+    int FoldedSS = VirtRegMap::NO_STACK_SLOT;
+    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
+      // Only transform a MI that folds a single register.
+      if (UnfoldedOpc)
+        return false;
+      UnfoldVR = I->second.first;
+      VirtRegMap::ModRef MR = I->second.second;
+      // MI2VirtMap be can updated which invalidate the iterator.
+      // Increment the iterator first.
+      ++I; 
+      if (VRM.isAssignedReg(UnfoldVR))
+        continue;
+      // If this reference is not a use, any previous store is now dead.
+      // Otherwise, the store to this stack slot is not dead anymore.
+      FoldedSS = VRM.getStackSlot(UnfoldVR);
+      MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
+      if (DeadStore && (MR & VirtRegMap::isModRef)) {
+        unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
+        if (!PhysReg || !DeadStore->readsRegister(PhysReg))
+          continue;
+        UnfoldPR = PhysReg;
+        UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
+                                                      false, true);
+      }
+    }
+
+    if (!UnfoldedOpc) {
+      if (!UnfoldVR)
+        return false;
+
+      // Look for other unfolding opportunities.
+      return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
+                               MaybeDeadStores, Spills, RegKills, KillOps, VRM);
+    }
+
+    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI.getOperand(i);
+      if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
+        continue;
+      unsigned VirtReg = MO.getReg();
+      if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
+        continue;
+      if (VRM.isAssignedReg(VirtReg)) {
+        unsigned PhysReg = VRM.getPhys(VirtReg);
+        if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
+          return false;
+      } else if (VRM.isReMaterialized(VirtReg))
+        continue;
+      int SS = VRM.getStackSlot(VirtReg);
+      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+      if (PhysReg) {
+        if (TRI->regsOverlap(PhysReg, UnfoldPR))
+          return false;
+        continue;
+      }
+      if (VRM.hasPhys(VirtReg)) {
+        PhysReg = VRM.getPhys(VirtReg);
+        if (!TRI->regsOverlap(PhysReg, UnfoldPR))
+          continue;
+      }
+
+      // Ok, we'll need to reload the value into a register which makes
+      // it impossible to perform the store unfolding optimization later.
+      // Let's see if it is possible to fold the load if the store is
+      // unfolded. This allows us to perform the store unfolding
+      // optimization.
+      SmallVector<MachineInstr*, 4> NewMIs;
+      if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
+        assert(NewMIs.size() == 1);
+        MachineInstr *NewMI = NewMIs.back();
+        NewMIs.clear();
+        int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
+        assert(Idx != -1);
+        SmallVector<unsigned, 1> Ops;
+        Ops.push_back(Idx);
+        MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
+        if (FoldedMI) {
+          VRM.addSpillSlotUse(SS, FoldedMI);
+          if (!VRM.hasPhys(UnfoldVR))
+            VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
+          VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+          MII = MBB.insert(MII, FoldedMI);
+          InvalidateKills(MI, RegKills, KillOps);
+          VRM.RemoveMachineInstrFromMaps(&MI);
+          MBB.erase(&MI);
+          MF.DeleteMachineInstr(NewMI);
+          return true;
+        }
+        MF.DeleteMachineInstr(NewMI);
+      }
+    }
+
+    return false;
+  }
+
+  /// CommuteToFoldReload -
+  /// Look for
+  /// r1 = load fi#1
+  /// r1 = op r1, r2<kill>
+  /// store r1, fi#1
+  ///
+  /// If op is commutable and r2 is killed, then we can xform these to
+  /// r2 = op r2, fi#1
+  /// store r2, fi#1
+  bool CommuteToFoldReload(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator &MII,
+                           unsigned VirtReg, unsigned SrcReg, int SS,
+                           AvailableSpills &Spills,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps,
+                           const TargetRegisterInfo *TRI,
+                           VirtRegMap &VRM) {
+    if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
+      return false;
+
+    MachineFunction &MF = *MBB.getParent();
+    MachineInstr &MI = *MII;
+    MachineBasicBlock::iterator DefMII = prior(MII);
+    MachineInstr *DefMI = DefMII;
+    const TargetInstrDesc &TID = DefMI->getDesc();
+    unsigned NewDstIdx;
+    if (DefMII != MBB.begin() &&
+        TID.isCommutable() &&
+        TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
+      MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+      unsigned NewReg = NewDstMO.getReg();
+      if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
+        return false;
+      MachineInstr *ReloadMI = prior(DefMII);
+      int FrameIdx;
+      unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
+      if (DestReg != SrcReg || FrameIdx != SS)
+        return false;
+      int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
+      if (UseIdx == -1)
+        return false;
+      unsigned DefIdx;
+      if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
+        return false;
+      assert(DefMI->getOperand(DefIdx).isReg() &&
+             DefMI->getOperand(DefIdx).getReg() == SrcReg);
+
+      // Now commute def instruction.
+      MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
+      if (!CommutedMI)
+        return false;
+      SmallVector<unsigned, 1> Ops;
+      Ops.push_back(NewDstIdx);
+      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
+      // Not needed since foldMemoryOperand returns new MI.
+      MF.DeleteMachineInstr(CommutedMI);
+      if (!FoldedMI)
+        return false;
+
+      VRM.addSpillSlotUse(SS, FoldedMI);
+      VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+      // Insert new def MI and spill MI.
+      const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+      TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
+      MII = prior(MII);
+      MachineInstr *StoreMI = MII;
+      VRM.addSpillSlotUse(SS, StoreMI);
+      VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+      MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
+
+      // Delete all 3 old instructions.
+      InvalidateKills(*ReloadMI, RegKills, KillOps);
+      VRM.RemoveMachineInstrFromMaps(ReloadMI);
+      MBB.erase(ReloadMI);
+      InvalidateKills(*DefMI, RegKills, KillOps);
+      VRM.RemoveMachineInstrFromMaps(DefMI);
+      MBB.erase(DefMI);
+      InvalidateKills(MI, RegKills, KillOps);
+      VRM.RemoveMachineInstrFromMaps(&MI);
+      MBB.erase(&MI);
+
+      // If NewReg was previously holding value of some SS, it's now clobbered.
+      // This has to be done now because it's a physical register. When this
+      // instruction is re-visited, it's ignored.
+      Spills.ClobberPhysReg(NewReg);
+
+      ++NumCommutes;
+      return true;
+    }
+
+    return false;
+  }
+
+  /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
+  /// the last store to the same slot is now dead. If so, remove the last store.
+  void SpillRegToStackSlot(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator &MII,
+                           int Idx, unsigned PhysReg, int StackSlot,
+                           const TargetRegisterClass *RC,
+                           bool isAvailable, MachineInstr *&LastStore,
+                           AvailableSpills &Spills,
+                           SmallSet<MachineInstr*, 4> &ReMatDefs,
+                           BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps,
+                           VirtRegMap &VRM) {
+
+    TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
+    MachineInstr *StoreMI = next(MII);
+    VRM.addSpillSlotUse(StackSlot, StoreMI);
+    DOUT << "Store:\t" << *StoreMI;
+
+    // If there is a dead store to this stack slot, nuke it now.
+    if (LastStore) {
+      DOUT << "Removed dead store:\t" << *LastStore;
+      ++NumDSE;
+      SmallVector<unsigned, 2> KillRegs;
+      InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
+      MachineBasicBlock::iterator PrevMII = LastStore;
+      bool CheckDef = PrevMII != MBB.begin();
+      if (CheckDef)
+        --PrevMII;
+      VRM.RemoveMachineInstrFromMaps(LastStore);
+      MBB.erase(LastStore);
+      if (CheckDef) {
+        // Look at defs of killed registers on the store. Mark the defs
+        // as dead since the store has been deleted and they aren't
+        // being reused.
+        for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
+          bool HasOtherDef = false;
+          if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
+            MachineInstr *DeadDef = PrevMII;
+            if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
+              // FIXME: This assumes a remat def does not have side
+              // effects.
+              VRM.RemoveMachineInstrFromMaps(DeadDef);
+              MBB.erase(DeadDef);
+              ++NumDRM;
+            }
+          }
+        }
+      }
+    }
+
+    LastStore = next(MII);
+
+    // If the stack slot value was previously available in some other
+    // register, change it now.  Otherwise, make the register available,
+    // in PhysReg.
+    Spills.ModifyStackSlotOrReMat(StackSlot);
+    Spills.ClobberPhysReg(PhysReg);
+    Spills.addAvailable(StackSlot, PhysReg, isAvailable);
+    ++NumStores;
+  }
+
+  /// TransferDeadness - A identity copy definition is dead and it's being
+  /// removed. Find the last def or use and mark it as dead / kill.
+  void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
+                        unsigned Reg, BitVector &RegKills,
+                        std::vector<MachineOperand*> &KillOps) {
+    int LastUDDist = -1;
+    MachineInstr *LastUDMI = NULL;
+    for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
+           RE = RegInfo->reg_end(); RI != RE; ++RI) {
+      MachineInstr *UDMI = &*RI;
+      if (UDMI->getParent() != MBB)
+        continue;
+      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
+      if (DI == DistanceMap.end() || DI->second > CurDist)
+        continue;
+      if ((int)DI->second < LastUDDist)
+        continue;
+      LastUDDist = DI->second;
+      LastUDMI = UDMI;
+    }
+
+    if (LastUDMI) {
+      MachineOperand *LastUD = NULL;
+      for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = LastUDMI->getOperand(i);
+        if (!MO.isReg() || MO.getReg() != Reg)
+          continue;
+        if (!LastUD || (LastUD->isUse() && MO.isDef()))
+          LastUD = &MO;
+        if (LastUDMI->isRegTiedToDefOperand(i))
+          return;
+      }
+      if (LastUD->isDef())
+        LastUD->setIsDead();
+      else {
+        LastUD->setIsKill();
+        RegKills.set(Reg);
+        KillOps[Reg] = LastUD;
+      }
+    }
+  }
+
+  /// rewriteMBB - Keep track of which spills are available even after the
+  /// register allocator is done with them.  If possible, avid reloading vregs.
+  void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
+                  LiveIntervals *LIs,
+                  AvailableSpills &Spills, BitVector &RegKills,
+                  std::vector<MachineOperand*> &KillOps) {
+
+    DOUT << "\n**** Local spiller rewriting MBB '"
+         << MBB.getBasicBlock()->getName() << "':\n";
+
+    MachineFunction &MF = *MBB.getParent();
+    
+    // MaybeDeadStores - When we need to write a value back into a stack slot,
+    // keep track of the inserted store.  If the stack slot value is never read
+    // (because the value was used from some available register, for example), and
+    // subsequently stored to, the original store is dead.  This map keeps track
+    // of inserted stores that are not used.  If we see a subsequent store to the
+    // same stack slot, the original store is deleted.
+    std::vector<MachineInstr*> MaybeDeadStores;
+    MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
+
+    // ReMatDefs - These are rematerializable def MIs which are not deleted.
+    SmallSet<MachineInstr*, 4> ReMatDefs;
+
+    // Clear kill info.
+    SmallSet<unsigned, 2> KilledMIRegs;
+    RegKills.reset();
+    KillOps.clear();
+    KillOps.resize(TRI->getNumRegs(), NULL);
+
+    unsigned Dist = 0;
+    DistanceMap.clear();
+    for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
+         MII != E; ) {
+      MachineBasicBlock::iterator NextMII = next(MII);
+
+      VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+      bool Erased = false;
+      bool BackTracked = false;
+      if (OptimizeByUnfold(MBB, MII,
+                           MaybeDeadStores, Spills, RegKills, KillOps, VRM))
+        NextMII = next(MII);
+
+      MachineInstr &MI = *MII;
+
+      if (VRM.hasEmergencySpills(&MI)) {
+        // Spill physical register(s) in the rare case the allocator has run out
+        // of registers to allocate.
+        SmallSet<int, 4> UsedSS;
+        std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
+        for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
+          unsigned PhysReg = EmSpills[i];
+          const TargetRegisterClass *RC =
+            TRI->getPhysicalRegisterRegClass(PhysReg);
+          assert(RC && "Unable to determine register class!");
+          int SS = VRM.getEmergencySpillSlot(RC);
+          if (UsedSS.count(SS))
+            assert(0 && "Need to spill more than one physical registers!");
+          UsedSS.insert(SS);
+          TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
+          MachineInstr *StoreMI = prior(MII);
+          VRM.addSpillSlotUse(SS, StoreMI);
+          TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
+          MachineInstr *LoadMI = next(MII);
+          VRM.addSpillSlotUse(SS, LoadMI);
+          ++NumPSpills;
+        }
+        NextMII = next(MII);
+      }
+
+      // Insert restores here if asked to.
+      if (VRM.isRestorePt(&MI)) {
+        std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
+        for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
+          unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
+          if (!VRM.getPreSplitReg(VirtReg))
+            continue; // Split interval spilled again.
+          unsigned Phys = VRM.getPhys(VirtReg);
+          RegInfo->setPhysRegUsed(Phys);
+
+          // Check if the value being restored if available. If so, it must be
+          // from a predecessor BB that fallthrough into this BB. We do not
+          // expect:
+          // BB1:
+          // r1 = load fi#1
+          // ...
+          //    = r1<kill>
+          // ... # r1 not clobbered
+          // ...
+          //    = load fi#1
+          bool DoReMat = VRM.isReMaterialized(VirtReg);
+          int SSorRMId = DoReMat
+            ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
+          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+          unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+          if (InReg == Phys) {
+            // If the value is already available in the expected register, save
+            // a reload / remat.
+            if (SSorRMId)
+              DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
+            else
+              DOUT << "Reusing SS#" << SSorRMId;
+            DOUT << " from physreg "
+                 << TRI->getName(InReg) << " for vreg"
+                 << VirtReg <<" instead of reloading into physreg "
+                 << TRI->getName(Phys) << "\n";
+            ++NumOmitted;
+            continue;
+          } else if (InReg && InReg != Phys) {
+            if (SSorRMId)
+              DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
+            else
+              DOUT << "Reusing SS#" << SSorRMId;
+            DOUT << " from physreg "
+                 << TRI->getName(InReg) << " for vreg"
+                 << VirtReg <<" by copying it into physreg "
+                 << TRI->getName(Phys) << "\n";
+
+            // If the reloaded / remat value is available in another register,
+            // copy it to the desired register.
+            TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
+
+            // This invalidates Phys.
+            Spills.ClobberPhysReg(Phys);
+            // Remember it's available.
+            Spills.addAvailable(SSorRMId, Phys);
+
+            // Mark is killed.
+            MachineInstr *CopyMI = prior(MII);
+            MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
+            KillOpnd->setIsKill();
+            UpdateKills(*CopyMI, RegKills, KillOps, TRI);
+
+            DOUT << '\t' << *CopyMI;
+            ++NumCopified;
+            continue;
+          }
+
+          if (VRM.isReMaterialized(VirtReg)) {
+            ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
+          } else {
+            const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+            TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
+            MachineInstr *LoadMI = prior(MII);
+            VRM.addSpillSlotUse(SSorRMId, LoadMI);
+            ++NumLoads;
+          }
+
+          // This invalidates Phys.
+          Spills.ClobberPhysReg(Phys);
+          // Remember it's available.
+          Spills.addAvailable(SSorRMId, Phys);
+
+          UpdateKills(*prior(MII), RegKills, KillOps, TRI);
+          DOUT << '\t' << *prior(MII);
+        }
+      }
+
+      // Insert spills here if asked to.
+      if (VRM.isSpillPt(&MI)) {
+        std::vector<std::pair<unsigned,bool> > &SpillRegs =
+          VRM.getSpillPtSpills(&MI);
+        for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
+          unsigned VirtReg = SpillRegs[i].first;
+          bool isKill = SpillRegs[i].second;
+          if (!VRM.getPreSplitReg(VirtReg))
+            continue; // Split interval spilled again.
+          const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+          unsigned Phys = VRM.getPhys(VirtReg);
+          int StackSlot = VRM.getStackSlot(VirtReg);
+          TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
+          MachineInstr *StoreMI = next(MII);
+          VRM.addSpillSlotUse(StackSlot, StoreMI);
+          DOUT << "Store:\t" << *StoreMI;
+          VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+        }
+        NextMII = next(MII);
+      }
+
+      /// ReusedOperands - Keep track of operand reuse in case we need to undo
+      /// reuse.
+      ReuseInfo ReusedOperands(MI, TRI);
+      SmallVector<unsigned, 4> VirtUseOps;
+      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = MI.getOperand(i);
+        if (!MO.isReg() || MO.getReg() == 0)
+          continue;   // Ignore non-register operands.
+        
+        unsigned VirtReg = MO.getReg();
+        if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
+          // Ignore physregs for spilling, but remember that it is used by this
+          // function.
+          RegInfo->setPhysRegUsed(VirtReg);
+          continue;
+        }
+
+        // We want to process implicit virtual register uses first.
+        if (MO.isImplicit())
+          // If the virtual register is implicitly defined, emit a implicit_def
+          // before so scavenger knows it's "defined".
+          VirtUseOps.insert(VirtUseOps.begin(), i);
+        else
+          VirtUseOps.push_back(i);
+      }
+
+      // Process all of the spilled uses and all non spilled reg references.
+      SmallVector<int, 2> PotentialDeadStoreSlots;
+      KilledMIRegs.clear();
+      for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
+        unsigned i = VirtUseOps[j];
+        MachineOperand &MO = MI.getOperand(i);
+        unsigned VirtReg = MO.getReg();
+        assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+               "Not a virtual register?");
+
+        unsigned SubIdx = MO.getSubReg();
+        if (VRM.isAssignedReg(VirtReg)) {
+          // This virtual register was assigned a physreg!
+          unsigned Phys = VRM.getPhys(VirtReg);
+          RegInfo->setPhysRegUsed(Phys);
+          if (MO.isDef())
+            ReusedOperands.markClobbered(Phys);
+          unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
+          MI.getOperand(i).setReg(RReg);
+          MI.getOperand(i).setSubReg(0);
+          if (VRM.isImplicitlyDefined(VirtReg))
+            BuildMI(MBB, &MI, MI.getDebugLoc(),
+                    TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
+          continue;
+        }
+        
+        // This virtual register is now known to be a spilled value.
+        if (!MO.isUse())
+          continue;  // Handle defs in the loop below (handle use&def here though)
+
+        bool AvoidReload = false;
+        if (LIs->hasInterval(VirtReg)) {
+          LiveInterval &LI = LIs->getInterval(VirtReg);
+          if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber())))
+            // Must be defined by an implicit def. It should not be spilled. Note,
+            // this is for correctness reason. e.g.
+            // 8   %reg1024<def> = IMPLICIT_DEF
+            // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+            // The live range [12, 14) are not part of the r1024 live interval since
+            // it's defined by an implicit def. It will not conflicts with live
+            // interval of r1025. Now suppose both registers are spilled, you can
+            // easily see a situation where both registers are reloaded before
+            // the INSERT_SUBREG and both target registers that would overlap.
+            AvoidReload = true;
+        }
+
+        bool DoReMat = VRM.isReMaterialized(VirtReg);
+        int SSorRMId = DoReMat
+          ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
+        int ReuseSlot = SSorRMId;
+
+        // Check to see if this stack slot is available.
+        unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+
+        // If this is a sub-register use, make sure the reuse register is in the
+        // right register class. For example, for x86 not all of the 32-bit
+        // registers have accessible sub-registers.
+        // Similarly so for EXTRACT_SUBREG. Consider this:
+        // EDI = op
+        // MOV32_mr fi#1, EDI
+        // ...
+        //       = EXTRACT_SUBREG fi#1
+        // fi#1 is available in EDI, but it cannot be reused because it's not in
+        // the right register file.
+        if (PhysReg && !AvoidReload &&
+            (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
+          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+          if (!RC->contains(PhysReg))
+            PhysReg = 0;
+        }
+
+        if (PhysReg && !AvoidReload) {
+          // This spilled operand might be part of a two-address operand.  If this
+          // is the case, then changing it will necessarily require changing the 
+          // def part of the instruction as well.  However, in some cases, we
+          // aren't allowed to modify the reused register.  If none of these cases
+          // apply, reuse it.
+          bool CanReuse = true;
+          bool isTied = MI.isRegTiedToDefOperand(i);
+          if (isTied) {
+            // Okay, we have a two address operand.  We can reuse this physreg as
+            // long as we are allowed to clobber the value and there isn't an
+            // earlier def that has already clobbered the physreg.
+            CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
+              Spills.canClobberPhysReg(PhysReg);
+          }
+          
+          if (CanReuse) {
+            // If this stack slot value is already available, reuse it!
+            if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+              DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
+            else
+              DOUT << "Reusing SS#" << ReuseSlot;
+            DOUT << " from physreg "
+                 << TRI->getName(PhysReg) << " for vreg"
+                 << VirtReg <<" instead of reloading into physreg "
+                 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
+            unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+            MI.getOperand(i).setReg(RReg);
+            MI.getOperand(i).setSubReg(0);
+
+            // The only technical detail we have is that we don't know that
+            // PhysReg won't be clobbered by a reloaded stack slot that occurs
+            // later in the instruction.  In particular, consider 'op V1, V2'.
+            // If V1 is available in physreg R0, we would choose to reuse it
+            // here, instead of reloading it into the register the allocator
+            // indicated (say R1).  However, V2 might have to be reloaded
+            // later, and it might indicate that it needs to live in R0.  When
+            // this occurs, we need to have information available that
+            // indicates it is safe to use R1 for the reload instead of R0.
+            //
+            // To further complicate matters, we might conflict with an alias,
+            // or R0 and R1 might not be compatible with each other.  In this
+            // case, we actually insert a reload for V1 in R1, ensuring that
+            // we can get at R0 or its alias.
+            ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
+                                    VRM.getPhys(VirtReg), VirtReg);
+            if (isTied)
+              // Only mark it clobbered if this is a use&def operand.
+              ReusedOperands.markClobbered(PhysReg);
+            ++NumReused;
+
+            if (MI.getOperand(i).isKill() &&
+                ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
+
+              // The store of this spilled value is potentially dead, but we
+              // won't know for certain until we've confirmed that the re-use
+              // above is valid, which means waiting until the other operands
+              // are processed. For now we just track the spill slot, we'll
+              // remove it after the other operands are processed if valid.
+
+              PotentialDeadStoreSlots.push_back(ReuseSlot);
+            }
+
+            // Mark is isKill if it's there no other uses of the same virtual
+            // register and it's not a two-address operand. IsKill will be
+            // unset if reg is reused.
+            if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
+              MI.getOperand(i).setIsKill();
+              KilledMIRegs.insert(VirtReg);
+            }
+
+            continue;
+          }  // CanReuse
+          
+          // Otherwise we have a situation where we have a two-address instruction
+          // whose mod/ref operand needs to be reloaded.  This reload is already
+          // available in some register "PhysReg", but if we used PhysReg as the
+          // operand to our 2-addr instruction, the instruction would modify
+          // PhysReg.  This isn't cool if something later uses PhysReg and expects
+          // to get its initial value.
+          //
+          // To avoid this problem, and to avoid doing a load right after a store,
+          // we emit a copy from PhysReg into the designated register for this
+          // operand.
+          unsigned DesignatedReg = VRM.getPhys(VirtReg);
+          assert(DesignatedReg && "Must map virtreg to physreg!");
+
+          // Note that, if we reused a register for a previous operand, the
+          // register we want to reload into might not actually be
+          // available.  If this occurs, use the register indicated by the
+          // reuser.
+          if (ReusedOperands.hasReuses())
+            DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
+                                 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+          
+          // If the mapped designated register is actually the physreg we have
+          // incoming, we don't need to inserted a dead copy.
+          if (DesignatedReg == PhysReg) {
+            // If this stack slot value is already available, reuse it!
+            if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+              DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
+            else
+              DOUT << "Reusing SS#" << ReuseSlot;
+            DOUT << " from physreg " << TRI->getName(PhysReg)
+                 << " for vreg" << VirtReg
+                 << " instead of reloading into same physreg.\n";
+            unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+            MI.getOperand(i).setReg(RReg);
+            MI.getOperand(i).setSubReg(0);
+            ReusedOperands.markClobbered(RReg);
+            ++NumReused;
+            continue;
+          }
+          
+          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+          RegInfo->setPhysRegUsed(DesignatedReg);
+          ReusedOperands.markClobbered(DesignatedReg);
+          TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
+
+          MachineInstr *CopyMI = prior(MII);
+          UpdateKills(*CopyMI, RegKills, KillOps, TRI);
+
+          // This invalidates DesignatedReg.
+          Spills.ClobberPhysReg(DesignatedReg);
+          
+          Spills.addAvailable(ReuseSlot, DesignatedReg);
+          unsigned RReg =
+            SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
+          MI.getOperand(i).setReg(RReg);
+          MI.getOperand(i).setSubReg(0);
+          DOUT << '\t' << *prior(MII);
+          ++NumReused;
+          continue;
+        } // if (PhysReg)
+        
+        // Otherwise, reload it and remember that we have it.
+        PhysReg = VRM.getPhys(VirtReg);
+        assert(PhysReg && "Must map virtreg to physreg!");
+
+        // Note that, if we reused a register for a previous operand, the
+        // register we want to reload into might not actually be
+        // available.  If this occurs, use the register indicated by the
+        // reuser.
+        if (ReusedOperands.hasReuses())
+          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
+                                 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+        
+        RegInfo->setPhysRegUsed(PhysReg);
+        ReusedOperands.markClobbered(PhysReg);
+        if (AvoidReload)
+          ++NumAvoided;
+        else {
+          if (DoReMat) {
+            ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
+          } else {
+            const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+            TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
+            MachineInstr *LoadMI = prior(MII);
+            VRM.addSpillSlotUse(SSorRMId, LoadMI);
+            ++NumLoads;
+          }
+          // This invalidates PhysReg.
+          Spills.ClobberPhysReg(PhysReg);
+
+          // Any stores to this stack slot are not dead anymore.
+          if (!DoReMat)
+            MaybeDeadStores[SSorRMId] = NULL;
+          Spills.addAvailable(SSorRMId, PhysReg);
+          // Assumes this is the last use. IsKill will be unset if reg is reused
+          // unless it's a two-address operand.
+          if (!MI.isRegTiedToDefOperand(i) &&
+              KilledMIRegs.count(VirtReg) == 0) {
+            MI.getOperand(i).setIsKill();
+            KilledMIRegs.insert(VirtReg);
+          }
+
+          UpdateKills(*prior(MII), RegKills, KillOps, TRI);
+          DOUT << '\t' << *prior(MII);
+        }
+        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+        MI.getOperand(i).setReg(RReg);
+        MI.getOperand(i).setSubReg(0);
+      }
+
+      // Ok - now we can remove stores that have been confirmed dead.
+      for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
+        // This was the last use and the spilled value is still available
+        // for reuse. That means the spill was unnecessary!
+        int PDSSlot = PotentialDeadStoreSlots[j];
+        MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
+        if (DeadStore) {
+          DOUT << "Removed dead store:\t" << *DeadStore;
+          InvalidateKills(*DeadStore, RegKills, KillOps);
+          VRM.RemoveMachineInstrFromMaps(DeadStore);
+          MBB.erase(DeadStore);
+          MaybeDeadStores[PDSSlot] = NULL;
+          ++NumDSE;
+        }
+      }
+
+
+      DOUT << '\t' << MI;
+
+
+      // If we have folded references to memory operands, make sure we clear all
+      // physical registers that may contain the value of the spilled virtual
+      // register
+      SmallSet<int, 2> FoldedSS;
+      for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
+        unsigned VirtReg = I->second.first;
+        VirtRegMap::ModRef MR = I->second.second;
+        DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
+
+        // MI2VirtMap be can updated which invalidate the iterator.
+        // Increment the iterator first.
+        ++I;
+        int SS = VRM.getStackSlot(VirtReg);
+        if (SS == VirtRegMap::NO_STACK_SLOT)
+          continue;
+        FoldedSS.insert(SS);
+        DOUT << " - StackSlot: " << SS << "\n";
+        
+        // If this folded instruction is just a use, check to see if it's a
+        // straight load from the virt reg slot.
+        if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
+          int FrameIdx;
+          unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
+          if (DestReg && FrameIdx == SS) {
+            // If this spill slot is available, turn it into a copy (or nothing)
+            // instead of leaving it as a load!
+            if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
+              DOUT << "Promoted Load To Copy: " << MI;
+              if (DestReg != InReg) {
+                const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+                TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
+                MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
+                unsigned SubIdx = DefMO->getSubReg();
+                // Revisit the copy so we make sure to notice the effects of the
+                // operation on the destreg (either needing to RA it if it's 
+                // virtual or needing to clobber any values if it's physical).
+                NextMII = &MI;
+                --NextMII;  // backtrack to the copy.
+                // Propagate the sub-register index over.
+                if (SubIdx) {
+                  DefMO = NextMII->findRegisterDefOperand(DestReg);
+                  DefMO->setSubReg(SubIdx);
+                }
+
+                // Mark is killed.
+                MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
+                KillOpnd->setIsKill();
+
+                BackTracked = true;
+              } else {
+                DOUT << "Removing now-noop copy: " << MI;
+                // Unset last kill since it's being reused.
+                InvalidateKill(InReg, RegKills, KillOps);
+                Spills.disallowClobberPhysReg(InReg);
+              }
+
+              InvalidateKills(MI, RegKills, KillOps);
+              VRM.RemoveMachineInstrFromMaps(&MI);
+              MBB.erase(&MI);
+              Erased = true;
+              goto ProcessNextInst;
+            }
+          } else {
+            unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+            SmallVector<MachineInstr*, 4> NewMIs;
+            if (PhysReg &&
+                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
+              MBB.insert(MII, NewMIs[0]);
+              InvalidateKills(MI, RegKills, KillOps);
+              VRM.RemoveMachineInstrFromMaps(&MI);
+              MBB.erase(&MI);
+              Erased = true;
+              --NextMII;  // backtrack to the unfolded instruction.
+              BackTracked = true;
+              goto ProcessNextInst;
+            }
+          }
+        }
+
+        // If this reference is not a use, any previous store is now dead.
+        // Otherwise, the store to this stack slot is not dead anymore.
+        MachineInstr* DeadStore = MaybeDeadStores[SS];
+        if (DeadStore) {
+          bool isDead = !(MR & VirtRegMap::isRef);
+          MachineInstr *NewStore = NULL;
+          if (MR & VirtRegMap::isModRef) {
+            unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+            SmallVector<MachineInstr*, 4> NewMIs;
+            // We can reuse this physreg as long as we are allowed to clobber
+            // the value and there isn't an earlier def that has already clobbered
+            // the physreg.
+            if (PhysReg &&
+                !ReusedOperands.isClobbered(PhysReg) &&
+                Spills.canClobberPhysReg(PhysReg) &&
+                !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
+              MachineOperand *KillOpnd =
+                DeadStore->findRegisterUseOperand(PhysReg, true);
+              // Note, if the store is storing a sub-register, it's possible the
+              // super-register is needed below.
+              if (KillOpnd && !KillOpnd->getSubReg() &&
+                  TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
+                MBB.insert(MII, NewMIs[0]);
+                NewStore = NewMIs[1];
+                MBB.insert(MII, NewStore);
+                VRM.addSpillSlotUse(SS, NewStore);
+                InvalidateKills(MI, RegKills, KillOps);
+                VRM.RemoveMachineInstrFromMaps(&MI);
+                MBB.erase(&MI);
+                Erased = true;
+                --NextMII;
+                --NextMII;  // backtrack to the unfolded instruction.
+                BackTracked = true;
+                isDead = true;
+                ++NumSUnfold;
+              }
+            }
+          }
+
+          if (isDead) {  // Previous store is dead.
+            // If we get here, the store is dead, nuke it now.
+            DOUT << "Removed dead store:\t" << *DeadStore;
+            InvalidateKills(*DeadStore, RegKills, KillOps);
+            VRM.RemoveMachineInstrFromMaps(DeadStore);
+            MBB.erase(DeadStore);
+            if (!NewStore)
+              ++NumDSE;
+          }
+
+          MaybeDeadStores[SS] = NULL;
+          if (NewStore) {
+            // Treat this store as a spill merged into a copy. That makes the
+            // stack slot value available.
+            VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
+            goto ProcessNextInst;
+          }
+        }
+
+        // If the spill slot value is available, and this is a new definition of
+        // the value, the value is not available anymore.
+        if (MR & VirtRegMap::isMod) {
+          // Notice that the value in this stack slot has been modified.
+          Spills.ModifyStackSlotOrReMat(SS);
+          
+          // If this is *just* a mod of the value, check to see if this is just a
+          // store to the spill slot (i.e. the spill got merged into the copy). If
+          // so, realize that the vreg is available now, and add the store to the
+          // MaybeDeadStore info.
+          int StackSlot;
+          if (!(MR & VirtRegMap::isRef)) {
+            if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
+              assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+                     "Src hasn't been allocated yet?");
+
+              if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
+                                      Spills, RegKills, KillOps, TRI, VRM)) {
+                NextMII = next(MII);
+                BackTracked = true;
+                goto ProcessNextInst;
+              }
+
+              // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
+              // this as a potentially dead store in case there is a subsequent
+              // store into the stack slot without a read from it.
+              MaybeDeadStores[StackSlot] = &MI;
+
+              // If the stack slot value was previously available in some other
+              // register, change it now.  Otherwise, make the register
+              // available in PhysReg.
+              Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
+            }
+          }
+        }
+      }
+
+      // Process all of the spilled defs.
+      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = MI.getOperand(i);
+        if (!(MO.isReg() && MO.getReg() && MO.isDef()))
+          continue;
+
+        unsigned VirtReg = MO.getReg();
+        if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
+          // Check to see if this is a noop copy.  If so, eliminate the
+          // instruction before considering the dest reg to be changed.
+          unsigned Src, Dst, SrcSR, DstSR;
+          if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
+            ++NumDCE;
+            DOUT << "Removing now-noop copy: " << MI;
+            SmallVector<unsigned, 2> KillRegs;
+            InvalidateKills(MI, RegKills, KillOps, &KillRegs);
+            if (MO.isDead() && !KillRegs.empty()) {
+              // Source register or an implicit super/sub-register use is killed.
+              assert(KillRegs[0] == Dst ||
+                     TRI->isSubRegister(KillRegs[0], Dst) ||
+                     TRI->isSuperRegister(KillRegs[0], Dst));
+              // Last def is now dead.
+              TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
+            }
+            VRM.RemoveMachineInstrFromMaps(&MI);
+            MBB.erase(&MI);
+            Erased = true;
+            Spills.disallowClobberPhysReg(VirtReg);
+            goto ProcessNextInst;
+          }
+            
+          // If it's not a no-op copy, it clobbers the value in the destreg.
+          Spills.ClobberPhysReg(VirtReg);
+          ReusedOperands.markClobbered(VirtReg);
+   
+          // Check to see if this instruction is a load from a stack slot into
+          // a register.  If so, this provides the stack slot value in the reg.
+          int FrameIdx;
+          if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
+            assert(DestReg == VirtReg && "Unknown load situation!");
+
+            // If it is a folded reference, then it's not safe to clobber.
+            bool Folded = FoldedSS.count(FrameIdx);
+            // Otherwise, if it wasn't available, remember that it is now!
+            Spills.addAvailable(FrameIdx, DestReg, !Folded);
+            goto ProcessNextInst;
+          }
+              
+          continue;
+        }
+
+        unsigned SubIdx = MO.getSubReg();
+        bool DoReMat = VRM.isReMaterialized(VirtReg);
+        if (DoReMat)
+          ReMatDefs.insert(&MI);
+
+        // The only vregs left are stack slot definitions.
+        int StackSlot = VRM.getStackSlot(VirtReg);
+        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+
+        // If this def is part of a two-address operand, make sure to execute
+        // the store from the correct physical register.
+        unsigned PhysReg;
+        unsigned TiedOp;
+        if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
+          PhysReg = MI.getOperand(TiedOp).getReg();
+          if (SubIdx) {
+            unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
+            assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
+                   "Can't find corresponding super-register!");
+            PhysReg = SuperReg;
+          }
+        } else {
+          PhysReg = VRM.getPhys(VirtReg);
+          if (ReusedOperands.isClobbered(PhysReg)) {
+            // Another def has taken the assigned physreg. It must have been a
+            // use&def which got it due to reuse. Undo the reuse!
+            PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
+                                 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+          }
+        }
+
+        assert(PhysReg && "VR not assigned a physical register?");
+        RegInfo->setPhysRegUsed(PhysReg);
+        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+        ReusedOperands.markClobbered(RReg);
+        MI.getOperand(i).setReg(RReg);
+        MI.getOperand(i).setSubReg(0);
+
+        if (!MO.isDead()) {
+          MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
+          SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
+                            LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
+          NextMII = next(MII);
+
+          // Check to see if this is a noop copy.  If so, eliminate the
+          // instruction before considering the dest reg to be changed.
+          {
+            unsigned Src, Dst, SrcSR, DstSR;
+            if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
+              ++NumDCE;
+              DOUT << "Removing now-noop copy: " << MI;
+              InvalidateKills(MI, RegKills, KillOps);
+              VRM.RemoveMachineInstrFromMaps(&MI);
+              MBB.erase(&MI);
+              Erased = true;
+              UpdateKills(*LastStore, RegKills, KillOps, TRI);
+              goto ProcessNextInst;
+            }
+          }
+        }    
+      }
+    ProcessNextInst:
+      DistanceMap.insert(std::make_pair(&MI, Dist++));
+      if (!Erased && !BackTracked) {
+        for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
+          UpdateKills(*II, RegKills, KillOps, TRI);
+      }
+      MII = NextMII;
+    }
+
+  }
+
+};
+
+llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
+  switch (RewriterOpt) {
+  default: assert(0 && "Unreachable!");
+  case local:
+    return new LocalRewriter();
+  case simple:
+    return new SimpleRewriter();
+  }
+}

Added: llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.h
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.h?rev=71113&view=auto

==============================================================================
--- llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.h (added)
+++ llvm/branches/Apple/Dib/lib/CodeGen/VirtRegRewriter.h Wed May  6 15:15:59 2009
@@ -0,0 +1,56 @@
+//===-- llvm/CodeGen/VirtRegRewriter.h - VirtRegRewriter -*- C++ -*--------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_VIRTREGREWRITER_H
+#define LLVM_CODEGEN_VIRTREGREWRITER_H
+
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "VirtRegMap.h"
+#include <map>
+
+// TODO:
+//       - Finish renaming Spiller -> Rewriter
+//         - SimpleSpiller
+//         - LocalSpiller
+
+namespace llvm {
+  
+  /// VirtRegRewriter interface: Implementations of this interface assign
+  /// spilled virtual registers to stack slots, rewriting the code.
+  struct VirtRegRewriter {
+    virtual ~VirtRegRewriter();
+    virtual bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+                                      LiveIntervals* LIs) = 0;
+  };
+
+  /// createVirtRegRewriter - Create an return a rewriter object, as specified
+  /// on the command line.
+  VirtRegRewriter* createVirtRegRewriter();
+
+}
+
+#endif

Added: llvm/branches/Apple/Dib/test/CodeGen/X86/2009-04-29-RegAllocAssert.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Dib/test/CodeGen/X86/2009-04-29-RegAllocAssert.ll?rev=71113&view=auto

==============================================================================
--- llvm/branches/Apple/Dib/test/CodeGen/X86/2009-04-29-RegAllocAssert.ll (added)
+++ llvm/branches/Apple/Dib/test/CodeGen/X86/2009-04-29-RegAllocAssert.ll Wed May  6 15:15:59 2009
@@ -0,0 +1,117 @@
+; RUN: llvm-as < %s | llc -mtriple=x86_64-apple-darwin10 -disable-fp-elim -relocation-model=pic
+; PR4099
+
+	type { [62 x %struct.Bitvec*] }		; type %0
+	type { i8* }		; type %1
+	type { double }		; type %2
+	%struct..5sPragmaType = type { i8*, i32 }
+	%struct.AggInfo = type { i8, i8, i32, %struct.ExprList*, i32, %struct.AggInfo_col*, i32, i32, i32, %struct.AggInfo_func*, i32, i32 }
+	%struct.AggInfo_col = type { %struct.Table*, i32, i32, i32, i32, %struct.Expr* }
+	%struct.AggInfo_func = type { %struct.Expr*, %struct.FuncDef*, i32, i32 }
+	%struct.AuxData = type { i8*, void (i8*)* }
+	%struct.Bitvec = type { i32, i32, i32, %0 }
+	%struct.BtCursor = type { %struct.Btree*, %struct.BtShared*, %struct.BtCursor*, %struct.BtCursor*, i32 (i8*, i32, i8*, i32, i8*)*, i8*, i32, %struct.MemPage*, i32, %struct.CellInfo, i8, i8, i8*, i64, i32, i8, i32* }
+	%struct.BtLock = type { %struct.Btree*, i32, i8, %struct.BtLock* }
+	%struct.BtShared = type { %struct.Pager*, %struct.sqlite3*, %struct.BtCursor*, %struct.MemPage*, i8, i8, i8, i8, i8, i8, i8, i8, i32, i16, i16, i32, i32, i32, i32, i8, i32, i8*, void (i8*)*, %struct.sqlite3_mutex*, %struct.BusyHandler, i32, %struct.BtShared*, %struct.BtLock*, %struct.Btree* }
+	%struct.Btree = type { %struct.sqlite3*, %struct.BtShared*, i8, i8, i8, i32, %struct.Btree*, %struct.Btree* }
+	%struct.BtreeMutexArray = type { i32, [11 x %struct.Btree*] }
+	%struct.BusyHandler = type { i32 (i8*, i32)*, i8*, i32 }
+	%struct.CellInfo = type { i8*, i64, i32, i32, i16, i16, i16, i16 }
+	%struct.CollSeq = type { i8*, i8, i8, i8*, i32 (i8*, i32, i8*, i32, i8*)*, void (i8*)* }
+	%struct.Column = type { i8*, %struct.Expr*, i8*, i8*, i8, i8, i8, i8 }
+	%struct.Context = type { i64, i32, %struct.Fifo }
+	%struct.CountCtx = type { i64 }
+	%struct.Cursor = type { %struct.BtCursor*, i32, i64, i64, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i64, %struct.Btree*, i32, i8*, i64, i8*, %struct.KeyInfo*, i32, i64, %struct.sqlite3_vtab_cursor*, %struct.sqlite3_module*, i32, i32, i32*, i32*, i8* }
+	%struct.Db = type { i8*, %struct.Btree*, i8, i8, i8*, void (i8*)*, %struct.Schema* }
+	%struct.DbPage = type { %struct.Pager*, i32, %struct.DbPage*, %struct.DbPage*, %struct.PagerLruLink, %struct.DbPage*, i8, i8, i8, i8, i8, i16, %struct.DbPage*, %struct.DbPage*, i8* }
+	%struct.Expr = type { i8, i8, i16, %struct.CollSeq*, %struct.Expr*, %struct.Expr*, %struct.ExprList*, %struct..5sPragmaType, %struct..5sPragmaType, i32, i32, %struct.AggInfo*, i32, i32, %struct.Select*, %struct.Table*, i32 }
+	%struct.ExprList = type { i32, i32, i32, %struct.ExprList_item* }
+	%struct.ExprList_item = type { %struct.Expr*, i8*, i8, i8, i8 }
+	%struct.FKey = type { %struct.Table*, %struct.FKey*, i8*, %struct.FKey*, i32, %struct.sColMap*, i8, i8, i8, i8 }
+	%struct.Fifo = type { i32, %struct.FifoPage*, %struct.FifoPage* }
+	%struct.FifoPage = type { i32, i32, i32, %struct.FifoPage*, [1 x i64] }
+	%struct.FuncDef = type { i16, i8, i8, i8, i8*, %struct.FuncDef*, void (%struct.sqlite3_context*, i32, %struct.Mem**)*, void (%struct.sqlite3_context*, i32, %struct.Mem**)*, void (%struct.sqlite3_context*)*, [1 x i8] }
+	%struct.Hash = type { i8, i8, i32, i32, %struct.HashElem*, %struct._ht* }
+	%struct.HashElem = type { %struct.HashElem*, %struct.HashElem*, i8*, i8*, i32 }
+	%struct.IdList = type { %struct..5sPragmaType*, i32, i32 }
+	%struct.Index = type { i8*, i32, i32*, i32*, %struct.Table*, i32, i8, i8, i8*, %struct.Index*, %struct.Schema*, i8*, i8** }
+	%struct.KeyInfo = type { %struct.sqlite3*, i8, i8, i8, i32, i8*, [1 x %struct.CollSeq*] }
+	%struct.Mem = type { %struct.CountCtx, double, %struct.sqlite3*, i8*, i32, i16, i8, i8, void (i8*)* }
+	%struct.MemPage = type { i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i16, i16, i16, i16, i16, i16, [5 x %struct._OvflCell], %struct.BtShared*, i8*, %struct.DbPage*, i32, %struct.MemPage* }
+	%struct.Module = type { %struct.sqlite3_module*, i8*, i8*, void (i8*)* }
+	%struct.Op = type { i8, i8, i8, i8, i32, i32, i32, %1 }
+	%struct.Pager = type { %struct.sqlite3_vfs*, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, %struct.Bitvec*, %struct.Bitvec*, i8*, i8*, i8*, i8*, %struct.sqlite3_file*, %struct.sqlite3_file*, %struct.sqlite3_file*, %struct.BusyHandler*, %struct.PagerLruList, %struct.DbPage*, %struct.DbPage*, %struct.DbPage*, i64, i64, i64, i64, i64, i32, void (%struct.DbPage*, i32)*, void (%struct.DbPage*, i32)*, i32, %struct.DbPage**, i8*, [16 x i8] }
+	%struct.PagerLruLink = type { %struct.DbPage*, %struct.DbPage* }
+	%struct.PagerLruList = type { %struct.DbPage*, %struct.DbPage*, %struct.DbPage* }
+	%struct.Schema = type { i32, %struct.Hash, %struct.Hash, %struct.Hash, %struct.Hash, %struct.Table*, i8, i8, i16, i32, %struct.sqlite3* }
+	%struct.Select = type { %struct.ExprList*, i8, i8, i8, i8, i8, i8, i8, %struct.SrcList*, %struct.Expr*, %struct.ExprList*, %struct.Expr*, %struct.ExprList*, %struct.Select*, %struct.Select*, %struct.Select*, %struct.Expr*, %struct.Expr*, i32, i32, [3 x i32] }
+	%struct.SrcList = type { i16, i16, [1 x %struct.SrcList_item] }
+	%struct.SrcList_item = type { i8*, i8*, i8*, %struct.Table*, %struct.Select*, i8, i8, i32, %struct.Expr*, %struct.IdList*, i64 }
+	%struct.Table = type { i8*, i32, %struct.Column*, i32, %struct.Index*, i32, %struct.Select*, i32, %struct.Trigger*, %struct.FKey*, i8*, %struct.Expr*, i32, i8, i8, i8, i8, i8, i8, i8, %struct.Module*, %struct.sqlite3_vtab*, i32, i8**, %struct.Schema* }
+	%struct.Trigger = type { i8*, i8*, i8, i8, %struct.Expr*, %struct.IdList*, %struct..5sPragmaType, %struct.Schema*, %struct.Schema*, %struct.TriggerStep*, %struct.Trigger* }
+	%struct.TriggerStep = type { i32, i32, %struct.Trigger*, %struct.Select*, %struct..5sPragmaType, %struct.Expr*, %struct.ExprList*, %struct.IdList*, %struct.TriggerStep*, %struct.TriggerStep* }
+	%struct.Vdbe = type { %struct.sqlite3*, %struct.Vdbe*, %struct.Vdbe*, i32, i32, %struct.Op*, i32, i32, i32*, %struct.Mem**, %struct.Mem*, i32, %struct.Cursor**, i32, %struct.Mem*, i8**, i32, i32, i32, %struct.Mem*, i32, i32, %struct.Fifo, i32, i32, %struct.Context*, i32, i32, i32, i32, i32, [25 x i32], i32, i32, i8**, i8*, %struct.Mem*, i8, i8, i8, i8, i8, i8, i32, i64, i32, %struct.BtreeMutexArray, i32, i8*, i32 }
+	%struct.VdbeFunc = type { %struct.FuncDef*, i32, [1 x %struct.AuxData] }
+	%struct._OvflCell = type { i8*, i16 }
+	%struct._ht = type { i32, %struct.HashElem* }
+	%struct.sColMap = type { i32, i8* }
+	%struct.sqlite3 = type { %struct.sqlite3_vfs*, i32, %struct.Db*, i32, i32, i32, i32, i8, i8, i8, i8, i32, %struct.CollSeq*, i64, i64, i32, i32, i32, %struct.sqlite3_mutex*, %struct.sqlite3InitInfo, i32, i8**, %struct.Vdbe*, i32, void (i8*, i8*)*, i8*, void (i8*, i8*, i64)*, i8*, i8*, i32 (i8*)*, i8*, void (i8*)*, i8*, void (i8*, i32, i8*, i8*, i64)*, void (i8*, %struct.sqlite3*, i32, i8*)*, void (i8*, %struct.sqlite3*, i32, i8*)*, i8*, %struct.Mem*, i8*, i8*, %2, i32 (i8*, i32, i8*, i8*, i8*, i8*)*, i8*, i32 (i8*)*, i8*, i32, %struct.Hash, %struct.Table*, %struct.sqlite3_vtab**, i32, %struct.Hash, %struct.Hash, %struct.BusyHandler, i32, [2 x %struct.Db], i8 }
+	%struct.sqlite3InitInfo = type { i32, i32, i8 }
+	%struct.sqlite3_context = type { %struct.FuncDef*, %struct.VdbeFunc*, %struct.Mem, %struct.Mem*, i32, %struct.CollSeq* }
+	%struct.sqlite3_file = type { %struct.sqlite3_io_methods* }
+	%struct.sqlite3_index_constraint = type { i32, i8, i8, i32 }
+	%struct.sqlite3_index_constraint_usage = type { i32, i8 }
+	%struct.sqlite3_index_info = type { i32, %struct.sqlite3_index_constraint*, i32, %struct.sqlite3_index_constraint_usage*, %struct.sqlite3_index_constraint_usage*, i32, i8*, i32, i32, double }
+	%struct.sqlite3_io_methods = type { i32, i32 (%struct.sqlite3_file*)*, i32 (%struct.sqlite3_file*, i8*, i32, i64)*, i32 (%struct.sqlite3_file*, i8*, i32, i64)*, i32 (%struct.sqlite3_file*, i64)*, i32 (%struct.sqlite3_file*, i32)*, i32 (%struct.sqlite3_file*, i64*)*, i32 (%struct.sqlite3_file*, i32)*, i32 (%struct.sqlite3_file*, i32)*, i32 (%struct.sqlite3_file*)*, i32 (%struct.sqlite3_file*, i32, i8*)*, i32 (%struct.sqlite3_file*)*, i32 (%struct.sqlite3_file*)* }
+	%struct.sqlite3_module = type { i32, i32 (%struct.sqlite3*, i8*, i32, i8**, %struct.sqlite3_vtab**, i8**)*, i32 (%struct.sqlite3*, i8*, i32, i8**, %struct.sqlite3_vtab**, i8**)*, i32 (%struct.sqlite3_vtab*, %struct.sqlite3_index_info*)*, i32 (%struct.sqlite3_vtab*)*, i32 (%struct.sqlite3_vtab*)*, i32 (%struct.sqlite3_vtab*, %struct.sqlite3_vtab_cursor**)*, i32 (%struct.sqlite3_vtab_cursor*)*, i32 (%struct.sqlite3_vtab_cursor*, i32, i8*, i32, %struct.Mem**)*, i32 (%struct.sqlite3_vtab_cursor*)*, i32 (%struct.sqlite3_vtab_cursor*)*, i32 (%struct.sqlite3_vtab_cursor*, %struct.sqlite3_context*, i32)*, i32 (%struct.sqlite3_vtab_cursor*, i64*)*, i32 (%struct.sqlite3_vtab*, i32, %struct.Mem**, i64*)*, i32 (%struct.sqlite3_vtab*)*, i32 (%struct.sqlite3_vtab*)*, i32 (%struct.sqlite3_vtab*)*, i32 (%struct.sqlite3_vtab*)*, i32 (%struct.sqlite3_vtab*, i32, i8*, void (%struct.sqlite3_context*, i32, %struct.Mem**)**, i8**)*, i32 (%struct.sqlite3_vtab*, i8*)* }
+	%struct.sqlite3_mutex = type opaque
+	%struct.sqlite3_vfs = type { i32, i32, i32, %struct.sqlite3_vfs*, i8*, i8*, i32 (%struct.sqlite3_vfs*, i8*, %struct.sqlite3_file*, i32, i32*)*, i32 (%struct.sqlite3_vfs*, i8*, i32)*, i32 (%struct.sqlite3_vfs*, i8*, i32)*, i32 (%struct.sqlite3_vfs*, i32, i8*)*, i32 (%struct.sqlite3_vfs*, i8*, i32, i8*)*, i8* (%struct.sqlite3_vfs*, i8*)*, void (%struct.sqlite3_vfs*, i32, i8*)*, i8* (%struct.sqlite3_vfs*, i8*, i8*)*, void (%struct.sqlite3_vfs*, i8*)*, i32 (%struct.sqlite3_vfs*, i32, i8*)*, i32 (%struct.sqlite3_vfs*, i32)*, i32 (%struct.sqlite3_vfs*, double*)* }
+	%struct.sqlite3_vtab = type { %struct.sqlite3_module*, i32, i8* }
+	%struct.sqlite3_vtab_cursor = type { %struct.sqlite3_vtab* }
+
+define fastcc void @dropCell(%struct.MemPage* nocapture %pPage, i32 %idx, i32 %sz) nounwind ssp {
+entry:
+	%0 = load i8** null, align 8		; <i8*> [#uses=4]
+	%1 = or i32 0, 0		; <i32> [#uses=1]
+	%2 = icmp slt i32 %sz, 4		; <i1> [#uses=1]
+	%size_addr.0.i = select i1 %2, i32 4, i32 %sz		; <i32> [#uses=1]
+	br label %bb3.i
+
+bb3.i:		; preds = %bb3.i, %entry
+	%3 = icmp eq i32 0, 0		; <i1> [#uses=1]
+	%or.cond.i = or i1 %3, false		; <i1> [#uses=1]
+	br i1 %or.cond.i, label %bb5.i, label %bb3.i
+
+bb5.i:		; preds = %bb3.i
+	%4 = getelementptr i8* %0, i64 0		; <i8*> [#uses=1]
+	store i8 0, i8* %4, align 1
+	%5 = getelementptr i8* %0, i64 0		; <i8*> [#uses=1]
+	store i8 0, i8* %5, align 1
+	%6 = add i32 %1, 2		; <i32> [#uses=1]
+	%7 = zext i32 %6 to i64		; <i64> [#uses=2]
+	%8 = getelementptr i8* %0, i64 %7		; <i8*> [#uses=1]
+	%9 = lshr i32 %size_addr.0.i, 8		; <i32> [#uses=1]
+	%10 = trunc i32 %9 to i8		; <i8> [#uses=1]
+	store i8 %10, i8* %8, align 1
+	%.sum31.i = add i64 %7, 1		; <i64> [#uses=1]
+	%11 = getelementptr i8* %0, i64 %.sum31.i		; <i8*> [#uses=1]
+	store i8 0, i8* %11, align 1
+	br label %bb11.outer.i
+
+bb11.outer.i:		; preds = %bb11.outer.i, %bb5.i
+	%12 = icmp eq i32 0, 0		; <i1> [#uses=1]
+	br i1 %12, label %bb12.i, label %bb11.outer.i
+
+bb12.i:		; preds = %bb11.outer.i
+	%i.08 = add i32 %idx, 1		; <i32> [#uses=1]
+	%13 = icmp sgt i32 0, %i.08		; <i1> [#uses=1]
+	br i1 %13, label %bb, label %bb2
+
+bb:		; preds = %bb12.i
+	br label %bb2
+
+bb2:		; preds = %bb, %bb12.i
+	%14 = getelementptr %struct.MemPage* %pPage, i64 0, i32 1		; <i8*> [#uses=1]
+	store i8 1, i8* %14, align 1
+	ret void
+}





More information about the llvm-branch-commits mailing list