[llvm-branch-commits] [llvm-branch] r91608 - in /llvm/branches/Apple/Zoidberg: lib/Transforms/Scalar/ScalarReplAggregates.cpp test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
Bob Wilson
bob.wilson at apple.com
Thu Dec 17 10:42:47 PST 2009
Author: bwilson
Date: Thu Dec 17 12:42:47 2009
New Revision: 91608
URL: http://llvm.org/viewvc/llvm-project?rev=91608&view=rev
Log:
$ svn merge -c 91607 https://bwilson@llvm.org/svn/llvm-project/llvm/trunk
--- Merging r91607 into '.':
D test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
U lib/Transforms/Scalar/ScalarReplAggregates.cpp
Removed:
llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
Modified:
llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp
Modified: llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp?rev=91608&r1=91607&r2=91608&view=diff
==============================================================================
--- llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp (original)
+++ llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp Thu Dec 17 12:42:47 2009
@@ -74,10 +74,6 @@
private:
TargetData *TD;
- /// DeadInsts - Keep track of instructions we have made dead, so that
- /// we can remove them after we are done working.
- SmallVector<WeakVH, 16> DeadInsts;
-
/// AllocaInfo - When analyzing uses of an alloca instruction, this captures
/// information about the uses. All these fields are initialized to false
/// and set to true when something is learned.
@@ -106,30 +102,25 @@
int isSafeAllocaToScalarRepl(AllocaInst *AI);
- void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
- uint64_t ArrayOffset, AllocaInfo &Info);
- void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
- uint64_t &ArrayOffset, AllocaInfo &Info);
- void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t ArrayOffset,
- uint64_t MemSize, const Type *MemOpType, bool isStore,
- AllocaInfo &Info);
- bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
- unsigned FindElementAndOffset(const Type *&T, uint64_t &Offset);
+ void isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
+ AllocaInfo &Info);
+ void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
+ AllocaInfo &Info);
+ void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
+ unsigned OpNo, AllocaInfo &Info);
+ void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocaInst *AI,
+ AllocaInfo &Info);
void DoScalarReplacement(AllocaInst *AI,
std::vector<AllocaInst*> &WorkList);
- void DeleteDeadInstructions();
void CleanupGEP(GetElementPtrInst *GEP);
- void CleanupAllocaUsers(Value *V);
+ void CleanupAllocaUsers(AllocaInst *AI);
AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
- void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
- SmallVector<AllocaInst*, 32> &NewElts);
- void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
- SmallVector<AllocaInst*, 32> &NewElts);
- void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
- SmallVector<AllocaInst*, 32> &NewElts);
- void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
+ void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
+ SmallVector<AllocaInst*, 32> &NewElts);
+
+ void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts);
void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
@@ -369,37 +360,176 @@
}
}
- // Now that we have created the new alloca instructions, rewrite all the
- // uses of the old alloca.
- DeadInsts.push_back(AI);
- RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
+ // Now that we have created the alloca instructions that we want to use,
+ // expand the getelementptr instructions to use them.
+ while (!AI->use_empty()) {
+ Instruction *User = cast<Instruction>(AI->use_back());
+ if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
+ RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
+ BCInst->eraseFromParent();
+ continue;
+ }
+
+ // Replace:
+ // %res = load { i32, i32 }* %alloc
+ // with:
+ // %load.0 = load i32* %alloc.0
+ // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
+ // %load.1 = load i32* %alloc.1
+ // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
+ // (Also works for arrays instead of structs)
+ if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+ Value *Insert = UndefValue::get(LI->getType());
+ for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
+ Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
+ Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
+ }
+ LI->replaceAllUsesWith(Insert);
+ LI->eraseFromParent();
+ continue;
+ }
- // Now erase any instructions that were made dead while rewriting the alloca.
- DeleteDeadInstructions();
+ // Replace:
+ // store { i32, i32 } %val, { i32, i32 }* %alloc
+ // with:
+ // %val.0 = extractvalue { i32, i32 } %val, 0
+ // store i32 %val.0, i32* %alloc.0
+ // %val.1 = extractvalue { i32, i32 } %val, 1
+ // store i32 %val.1, i32* %alloc.1
+ // (Also works for arrays instead of structs)
+ if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+ Value *Val = SI->getOperand(0);
+ for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
+ Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
+ new StoreInst(Extract, ElementAllocas[i], SI);
+ }
+ SI->eraseFromParent();
+ continue;
+ }
+
+ GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
+ // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
+ unsigned Idx =
+ (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
+
+ assert(Idx < ElementAllocas.size() && "Index out of range?");
+ AllocaInst *AllocaToUse = ElementAllocas[Idx];
+
+ Value *RepValue;
+ if (GEPI->getNumOperands() == 3) {
+ // Do not insert a new getelementptr instruction with zero indices, only
+ // to have it optimized out later.
+ RepValue = AllocaToUse;
+ } else {
+ // We are indexing deeply into the structure, so we still need a
+ // getelement ptr instruction to finish the indexing. This may be
+ // expanded itself once the worklist is rerun.
+ //
+ SmallVector<Value*, 8> NewArgs;
+ NewArgs.push_back(Constant::getNullValue(
+ Type::getInt32Ty(AI->getContext())));
+ NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
+ RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
+ NewArgs.end(), "", GEPI);
+ RepValue->takeName(GEPI);
+ }
+
+ // If this GEP is to the start of the aggregate, check for memcpys.
+ if (Idx == 0 && GEPI->hasAllZeroIndices())
+ RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
+
+ // Move all of the users over to the new GEP.
+ GEPI->replaceAllUsesWith(RepValue);
+ // Delete the old GEP
+ GEPI->eraseFromParent();
+ }
+ // Finally, delete the Alloca instruction
+ AI->eraseFromParent();
NumReplaced++;
}
-/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
-/// recursively including all their operands that become trivially dead.
-void SROA::DeleteDeadInstructions() {
- while (!DeadInsts.empty()) {
- Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
- if (I == 0)
- continue;
-
- for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
- if (Instruction *U = dyn_cast<Instruction>(*OI)) {
- // Zero out the operand and see if it becomes trivially dead.
- *OI = 0;
- if (isInstructionTriviallyDead(U))
- DeadInsts.push_back(U);
- }
+/// isSafeElementUse - Check to see if this use is an allowed use for a
+/// getelementptr instruction of an array aggregate allocation. isFirstElt
+/// indicates whether Ptr is known to the start of the aggregate.
+void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
+ AllocaInfo &Info) {
+ for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
+ I != E; ++I) {
+ Instruction *User = cast<Instruction>(*I);
+ switch (User->getOpcode()) {
+ case Instruction::Load: break;
+ case Instruction::Store:
+ // Store is ok if storing INTO the pointer, not storing the pointer
+ if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
+ break;
+ case Instruction::GetElementPtr: {
+ GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
+ bool AreAllZeroIndices = isFirstElt;
+ if (GEP->getNumOperands() > 1 &&
+ (!isa<ConstantInt>(GEP->getOperand(1)) ||
+ !cast<ConstantInt>(GEP->getOperand(1))->isZero()))
+ // Using pointer arithmetic to navigate the array.
+ return MarkUnsafe(Info);
+
+ // Verify that any array subscripts are in range.
+ for (gep_type_iterator GEPIt = gep_type_begin(GEP),
+ E = gep_type_end(GEP); GEPIt != E; ++GEPIt) {
+ // Ignore struct elements, no extra checking needed for these.
+ if (isa<StructType>(*GEPIt))
+ continue;
- I->eraseFromParent();
+ // This GEP indexes an array. Verify that this is an in-range
+ // constant integer. Specifically, consider A[0][i]. We cannot know that
+ // the user isn't doing invalid things like allowing i to index an
+ // out-of-range subscript that accesses A[1]. Because of this, we have
+ // to reject SROA of any accesses into structs where any of the
+ // components are variables.
+ ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
+ if (!IdxVal) return MarkUnsafe(Info);
+
+ // Are all indices still zero?
+ AreAllZeroIndices &= IdxVal->isZero();
+
+ if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
+ if (IdxVal->getZExtValue() >= AT->getNumElements())
+ return MarkUnsafe(Info);
+ } else if (const VectorType *VT = dyn_cast<VectorType>(*GEPIt)) {
+ if (IdxVal->getZExtValue() >= VT->getNumElements())
+ return MarkUnsafe(Info);
+ }
+ }
+
+ isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
+ if (Info.isUnsafe) return;
+ break;
+ }
+ case Instruction::BitCast:
+ if (isFirstElt) {
+ isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
+ if (Info.isUnsafe) return;
+ break;
+ }
+ DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
+ return MarkUnsafe(Info);
+ case Instruction::Call:
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
+ if (isFirstElt) {
+ isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
+ if (Info.isUnsafe) return;
+ break;
+ }
+ }
+ DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
+ return MarkUnsafe(Info);
+ default:
+ DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
+ return MarkUnsafe(Info);
+ }
}
+ return; // All users look ok :)
}
-
+
/// AllUsersAreLoads - Return true if all users of this value are loads.
static bool AllUsersAreLoads(Value *Ptr) {
for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
@@ -409,116 +539,72 @@
return true;
}
-/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
-/// performing scalar replacement of alloca AI. The results are flagged in
-/// the Info parameter. Offset and ArrayOffset indicate the position within
-/// AI that is referenced by this instruction.
-void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
- uint64_t ArrayOffset, AllocaInfo &Info) {
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
- Instruction *User = cast<Instruction>(*UI);
-
- if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
- isSafeForScalarRepl(BC, AI, Offset, ArrayOffset, Info);
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
- uint64_t GEPArrayOffset = ArrayOffset;
- uint64_t GEPOffset = Offset;
- isSafeGEP(GEPI, AI, GEPOffset, GEPArrayOffset, Info);
- if (!Info.isUnsafe)
- isSafeForScalarRepl(GEPI, AI, GEPOffset, GEPArrayOffset, Info);
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
- ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
- if (Length)
- isSafeMemAccess(AI, Offset, ArrayOffset, Length->getZExtValue(), 0,
- UI.getOperandNo() == 1, Info);
- else
- MarkUnsafe(Info);
- } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- if (!LI->isVolatile()) {
- const Type *LIType = LI->getType();
- isSafeMemAccess(AI, Offset, ArrayOffset, TD->getTypeAllocSize(LIType),
- LIType, false, Info);
- } else
- MarkUnsafe(Info);
- } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- // Store is ok if storing INTO the pointer, not storing the pointer
- if (!SI->isVolatile() && SI->getOperand(0) != I) {
- const Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(AI, Offset, ArrayOffset, TD->getTypeAllocSize(SIType),
- SIType, true, Info);
- } else
- MarkUnsafe(Info);
- } else if (isa<DbgInfoIntrinsic>(UI)) {
- // If one user is DbgInfoIntrinsic then check if all users are
- // DbgInfoIntrinsics.
- if (OnlyUsedByDbgInfoIntrinsics(I)) {
- Info.needsCleanup = true;
- return;
- }
- MarkUnsafe(Info);
- } else {
- DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
- MarkUnsafe(Info);
- }
- if (Info.isUnsafe) return;
- }
-}
+/// isSafeUseOfAllocation - Check if this user is an allowed use for an
+/// aggregate allocation.
+void SROA::isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
+ AllocaInfo &Info) {
+ if (BitCastInst *C = dyn_cast<BitCastInst>(User))
+ return isSafeUseOfBitCastedAllocation(C, AI, Info);
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(User))
+ if (!LI->isVolatile())
+ return;// Loads (returning a first class aggregrate) are always rewritable
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(User))
+ if (!SI->isVolatile() && SI->getOperand(0) != AI)
+ return;// Store is ok if storing INTO the pointer, not storing the pointer
+
+ GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
+ if (GEPI == 0)
+ return MarkUnsafe(Info);
-/// isSafeGEP - Check if a GEP instruction can be handled for scalar
-/// replacement. It is safe when all the indices are constant, in-bounds
-/// references, and when the resulting offset corresponds to an element within
-/// the alloca type. The results are flagged in the Info parameter. Upon
-/// return, Offset is adjusted as specified by the GEP indices. For the
-/// special case of a variable index to a 2-element array, ArrayOffset is set
-/// to the array element size.
-void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
- uint64_t &Offset, uint64_t &ArrayOffset,
- AllocaInfo &Info) {
- gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
- if (GEPIt == E)
- return;
+ gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
- // The first GEP index must be zero.
- if (!isa<ConstantInt>(GEPIt.getOperand()) ||
- !cast<ConstantInt>(GEPIt.getOperand())->isZero())
+ // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
+ if (I == E ||
+ I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
return MarkUnsafe(Info);
- if (++GEPIt == E)
- return;
+ }
+ ++I;
+ if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
+
+ bool IsAllZeroIndices = true;
+
// If the first index is a non-constant index into an array, see if we can
// handle it as a special case.
- const Type *ArrayEltTy = 0;
- if (ArrayOffset == 0 && Offset == 0) {
- if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
- if (!isa<ConstantInt>(GEPIt.getOperand())) {
- uint64_t NumElements = AT->getNumElements();
-
- // If this is an array index and the index is not constant, we cannot
- // promote... that is unless the array has exactly one or two elements
- // in it, in which case we CAN promote it, but we have to canonicalize
- // this out if this is the only problem.
- if ((NumElements != 1 && NumElements != 2) || !AllUsersAreLoads(GEPI))
- return MarkUnsafe(Info);
+ if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
+ if (!isa<ConstantInt>(I.getOperand())) {
+ IsAllZeroIndices = 0;
+ uint64_t NumElements = AT->getNumElements();
+
+ // If this is an array index and the index is not constant, we cannot
+ // promote... that is unless the array has exactly one or two elements in
+ // it, in which case we CAN promote it, but we have to canonicalize this
+ // out if this is the only problem.
+ if ((NumElements == 1 || NumElements == 2) &&
+ AllUsersAreLoads(GEPI)) {
Info.needsCleanup = true;
- ArrayOffset = TD->getTypeAllocSizeInBits(AT->getElementType());
- ArrayEltTy = AT->getElementType();
- ++GEPIt;
+ return; // Canonicalization required!
}
+ return MarkUnsafe(Info);
}
}
-
+
// Walk through the GEP type indices, checking the types that this indexes
// into.
- for (; GEPIt != E; ++GEPIt) {
+ for (; I != E; ++I) {
// Ignore struct elements, no extra checking needed for these.
- if (isa<StructType>(*GEPIt))
+ if (isa<StructType>(*I))
continue;
+
+ ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
+ if (!IdxVal) return MarkUnsafe(Info);
- ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
- if (!IdxVal)
- return MarkUnsafe(Info);
-
- if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
+ // Are all indices still zero?
+ IsAllZeroIndices &= IdxVal->isZero();
+
+ if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
// This GEP indexes an array. Verify that this is an in-range constant
// integer. Specifically, consider A[0][i]. We cannot know that the user
// isn't doing invalid things like allowing i to index an out-of-range
@@ -526,255 +612,147 @@
// of any accesses into structs where any of the components are variables.
if (IdxVal->getZExtValue() >= AT->getNumElements())
return MarkUnsafe(Info);
- } else {
- const VectorType *VT = dyn_cast<VectorType>(*GEPIt);
- assert(VT && "unexpected type in GEP type iterator");
+ } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
if (IdxVal->getZExtValue() >= VT->getNumElements())
return MarkUnsafe(Info);
}
}
-
- // All the indices are safe. Now compute the offset due to this GEP and
- // check if the alloca has a component element at that offset.
- if (ArrayOffset == 0) {
- SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
- Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
- &Indices[0], Indices.size());
- } else {
- // Both array elements have the same type, so it suffices to check one of
- // them. Copy the GEP indices starting from the array index, but replace
- // that variable index with a constant zero.
- SmallVector<Value*, 8> Indices(GEPI->op_begin() + 2, GEPI->op_end());
- Indices[0] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
- const Type *ArrayEltPtr = PointerType::getUnqual(ArrayEltTy);
- Offset += TD->getIndexedOffset(ArrayEltPtr, &Indices[0], Indices.size());
- }
- if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
- MarkUnsafe(Info);
-}
-
-/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
-/// alloca or has an offset and size that corresponds to a component element
-/// within it. The offset checked here may have been formed from a GEP with a
-/// pointer bitcasted to a different type.
-void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset,
- uint64_t ArrayOffset, uint64_t MemSize,
- const Type *MemOpType, bool isStore,
- AllocaInfo &Info) {
- // Check if this is a load/store of the entire alloca.
- if (Offset == 0 && ArrayOffset == 0 &&
- MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
- bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
- // This is safe for MemIntrinsics (where MemOpType is 0), integer types
- // (which are essentially the same as the MemIntrinsics, especially with
- // regard to copying padding between elements), or references using the
- // aggregate type of the alloca.
- if (!MemOpType || isa<IntegerType>(MemOpType) || UsesAggregateType) {
- if (!UsesAggregateType) {
- if (isStore)
- Info.isMemCpyDst = true;
- else
- Info.isMemCpySrc = true;
- }
- return;
- }
- }
- // Check if the offset/size correspond to a component within the alloca type.
- const Type *T = AI->getAllocatedType();
- if (TypeHasComponent(T, Offset, MemSize) &&
- (ArrayOffset == 0 || TypeHasComponent(T, Offset + ArrayOffset, MemSize)))
- return;
-
- return MarkUnsafe(Info);
+
+ // If there are any non-simple uses of this getelementptr, make sure to reject
+ // them.
+ return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
}
-/// TypeHasComponent - Return true if T has a component type with the
-/// specified offset and size. If Size is zero, do not check the size.
-bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
- const Type *EltTy;
- uint64_t EltSize;
- if (const StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = TD->getStructLayout(ST);
- unsigned EltIdx = Layout->getElementContainingOffset(Offset);
- EltTy = ST->getContainedType(EltIdx);
- EltSize = TD->getTypeAllocSize(EltTy);
- Offset -= Layout->getElementOffset(EltIdx);
- } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
- EltTy = AT->getElementType();
- EltSize = TD->getTypeAllocSize(EltTy);
- Offset %= EltSize;
- } else {
- return false;
+/// isSafeMemIntrinsicOnAllocation - Check if the specified memory
+/// intrinsic can be promoted by SROA. At this point, we know that the operand
+/// of the memintrinsic is a pointer to the beginning of the allocation.
+void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
+ unsigned OpNo, AllocaInfo &Info) {
+ // If not constant length, give up.
+ ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
+ if (!Length) return MarkUnsafe(Info);
+
+ // If not the whole aggregate, give up.
+ if (Length->getZExtValue() !=
+ TD->getTypeAllocSize(AI->getType()->getElementType()))
+ return MarkUnsafe(Info);
+
+ // We only know about memcpy/memset/memmove.
+ if (!isa<MemIntrinsic>(MI))
+ return MarkUnsafe(Info);
+
+ // Otherwise, we can transform it. Determine whether this is a memcpy/set
+ // into or out of the aggregate.
+ if (OpNo == 1)
+ Info.isMemCpyDst = true;
+ else {
+ assert(OpNo == 2);
+ Info.isMemCpySrc = true;
}
- if (Offset == 0 && (Size == 0 || EltSize == Size))
- return true;
- // Check if the component spans multiple elements.
- if (Offset + Size > EltSize)
- return false;
- return TypeHasComponent(EltTy, Offset, Size);
}
-/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
-/// the instruction I, which references it, to use the separate elements.
-/// Offset indicates the position within AI that is referenced by this
-/// instruction.
-void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
- SmallVector<AllocaInst*, 32> &NewElts) {
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
- Instruction *User = cast<Instruction>(*UI);
+/// isSafeUseOfBitCastedAllocation - Check if all users of this bitcast
+/// from an alloca are safe for SROA of that alloca.
+void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocaInst *AI,
+ AllocaInfo &Info) {
+ for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
+ UI != E; ++UI) {
+ if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
+ isSafeUseOfBitCastedAllocation(BCU, AI, Info);
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
+ isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
+ if (SI->isVolatile())
+ return MarkUnsafe(Info);
+
+ // If storing the entire alloca in one chunk through a bitcasted pointer
+ // to integer, we can transform it. This happens (for example) when you
+ // cast a {i32,i32}* to i64* and store through it. This is similar to the
+ // memcpy case and occurs in various "byval" cases and emulated memcpys.
+ if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
+ TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
+ TD->getTypeAllocSize(AI->getType()->getElementType())) {
+ Info.isMemCpyDst = true;
+ continue;
+ }
+ return MarkUnsafe(Info);
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
+ if (LI->isVolatile())
+ return MarkUnsafe(Info);
- if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
- RewriteBitCast(BC, AI, Offset, NewElts);
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
- RewriteGEP(GEPI, AI, Offset, NewElts);
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
- ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
- uint64_t MemSize = Length->getZExtValue();
- if (Offset == 0 &&
- MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
- RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
- } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- const Type *LIType = LI->getType();
- if (LIType == AI->getAllocatedType()) {
- // Replace:
- // %res = load { i32, i32 }* %alloc
- // with:
- // %load.0 = load i32* %alloc.0
- // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
- // %load.1 = load i32* %alloc.1
- // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
- // (Also works for arrays instead of structs)
- Value *Insert = UndefValue::get(LIType);
- for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
- Value *Load = new LoadInst(NewElts[i], "load", LI);
- Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
- }
- LI->replaceAllUsesWith(Insert);
- DeadInsts.push_back(LI);
- } else if (isa<IntegerType>(LIType) &&
- TD->getTypeAllocSize(LIType) ==
- TD->getTypeAllocSize(AI->getAllocatedType())) {
- // If this is a load of the entire alloca to an integer, rewrite it.
- RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
+ // If loading the entire alloca in one chunk through a bitcasted pointer
+ // to integer, we can transform it. This happens (for example) when you
+ // cast a {i32,i32}* to i64* and load through it. This is similar to the
+ // memcpy case and occurs in various "byval" cases and emulated memcpys.
+ if (isa<IntegerType>(LI->getType()) &&
+ TD->getTypeAllocSize(LI->getType()) ==
+ TD->getTypeAllocSize(AI->getType()->getElementType())) {
+ Info.isMemCpySrc = true;
+ continue;
}
- } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- Value *Val = SI->getOperand(0);
- const Type *SIType = Val->getType();
- if (SIType == AI->getAllocatedType()) {
- // Replace:
- // store { i32, i32 } %val, { i32, i32 }* %alloc
- // with:
- // %val.0 = extractvalue { i32, i32 } %val, 0
- // store i32 %val.0, i32* %alloc.0
- // %val.1 = extractvalue { i32, i32 } %val, 1
- // store i32 %val.1, i32* %alloc.1
- // (Also works for arrays instead of structs)
- for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
- Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
- new StoreInst(Extract, NewElts[i], SI);
- }
- DeadInsts.push_back(SI);
- } else if (isa<IntegerType>(SIType) &&
- TD->getTypeAllocSize(SIType) ==
- TD->getTypeAllocSize(AI->getAllocatedType())) {
- // If this is a store of the entire alloca from an integer, rewrite it.
- RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
+ return MarkUnsafe(Info);
+ } else if (isa<DbgInfoIntrinsic>(UI)) {
+ // If one user is DbgInfoIntrinsic then check if all users are
+ // DbgInfoIntrinsics.
+ if (OnlyUsedByDbgInfoIntrinsics(BC)) {
+ Info.needsCleanup = true;
+ return;
}
+ else
+ MarkUnsafe(Info);
}
+ else {
+ return MarkUnsafe(Info);
+ }
+ if (Info.isUnsafe) return;
}
}
-/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
-/// and recursively continue updating all of its uses.
-void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
- SmallVector<AllocaInst*, 32> &NewElts) {
- RewriteForScalarRepl(BC, AI, Offset, NewElts);
- if (BC->getOperand(0) != AI)
- return;
+/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
+/// to its first element. Transform users of the cast to use the new values
+/// instead.
+void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
+ SmallVector<AllocaInst*, 32> &NewElts) {
+ Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
+ while (UI != UE) {
+ Instruction *User = cast<Instruction>(*UI++);
+ if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
+ RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
+ if (BCU->use_empty()) BCU->eraseFromParent();
+ continue;
+ }
- // The bitcast references the original alloca. Replace its uses with
- // references to the first new element alloca.
- Instruction *Val = NewElts[0];
- if (Val->getType() != BC->getDestTy()) {
- Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
- Val->takeName(BC);
- }
- BC->replaceAllUsesWith(Val);
- DeadInsts.push_back(BC);
-}
-
-/// FindElementAndOffset - Return the index of the element containing Offset
-/// within the specified type, which must be either a struct or an array.
-/// Sets T to the type of the element and Offset to the offset within that
-/// element.
-unsigned SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset) {
- unsigned Idx = 0;
- if (const StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = TD->getStructLayout(ST);
- Idx = Layout->getElementContainingOffset(Offset);
- T = ST->getContainedType(Idx);
- Offset -= Layout->getElementOffset(Idx);
- } else {
- const ArrayType *AT = dyn_cast<ArrayType>(T);
- assert(AT && "unexpected type for scalar replacement");
- T = AT->getElementType();
- uint64_t EltSize = TD->getTypeAllocSize(T);
- Idx = (unsigned)(Offset / EltSize);
- Offset -= Idx * EltSize;
- }
- return Idx;
-}
-
-/// RewriteGEP - Check if this GEP instruction moves the pointer across
-/// elements of the alloca that are being split apart, and if so, rewrite
-/// the GEP to be relative to the new element.
-void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
- SmallVector<AllocaInst*, 32> &NewElts) {
- uint64_t OldOffset = Offset;
- SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
- Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
- &Indices[0], Indices.size());
-
- RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
-
- const Type *T = AI->getAllocatedType();
- unsigned OldIdx = FindElementAndOffset(T, OldOffset);
- if (GEPI->getOperand(0) == AI)
- OldIdx = ~0U; // Force the GEP to be rewritten.
-
- T = AI->getAllocatedType();
- uint64_t EltOffset = Offset;
- unsigned Idx = FindElementAndOffset(T, EltOffset);
-
- // If this GEP does not move the pointer across elements of the alloca
- // being split, then it does not needs to be rewritten.
- if (Idx == OldIdx)
- return;
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
+ // This must be memcpy/memmove/memset of the entire aggregate.
+ // Split into one per element.
+ RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+ // If this is a store of the entire alloca from an integer, rewrite it.
+ RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
+ continue;
+ }
- const Type *i32Ty = Type::getInt32Ty(AI->getContext());
- SmallVector<Value*, 8> NewArgs;
- NewArgs.push_back(Constant::getNullValue(i32Ty));
- while (EltOffset != 0) {
- unsigned EltIdx = FindElementAndOffset(T, EltOffset);
- NewArgs.push_back(ConstantInt::get(i32Ty, EltIdx));
- }
- Instruction *Val = NewElts[Idx];
- if (NewArgs.size() > 1) {
- Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
- NewArgs.end(), "", GEPI);
- Val->takeName(GEPI);
- }
- if (Val->getType() != GEPI->getType())
- Val = new BitCastInst(Val, GEPI->getType(), Val->getNameStr(), GEPI);
- GEPI->replaceAllUsesWith(Val);
- DeadInsts.push_back(GEPI);
+ if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+ // If this is a load of the entire alloca to an integer, rewrite it.
+ RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
+ continue;
+ }
+
+ // Otherwise it must be some other user of a gep of the first pointer. Just
+ // leave these alone.
+ continue;
+ }
}
/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
/// Rewrite it to copy or set the elements of the scalarized memory.
-void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
+void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts) {
+
// If this is a memcpy/memmove, construct the other pointer as the
// appropriate type. The "Other" pointer is the pointer that goes to memory
// that doesn't have anything to do with the alloca that we are promoting. For
@@ -783,41 +761,28 @@
LLVMContext &Context = MI->getContext();
unsigned MemAlignment = MI->getAlignment();
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
- if (Inst == MTI->getRawDest())
+ if (BCInst == MTI->getRawDest())
OtherPtr = MTI->getRawSource();
else {
- assert(Inst == MTI->getRawSource());
+ assert(BCInst == MTI->getRawSource());
OtherPtr = MTI->getRawDest();
}
}
+ // Keep track of the other intrinsic argument, so it can be removed if it
+ // is dead when the intrinsic is replaced.
+ Value *PossiblyDead = OtherPtr;
+
// If there is an other pointer, we want to convert it to the same pointer
// type as AI has, so we can GEP through it safely.
if (OtherPtr) {
-
- // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
- // optimization, but it's also required to detect the corner case where
- // both pointer operands are referencing the same memory, and where
- // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
- // function is only called for mem intrinsics that access the whole
- // aggregate, so non-zero GEPs are not an issue here.)
- while (1) {
- if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
- OtherPtr = BC->getOperand(0);
- continue;
- }
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
- // All zero GEPs are effectively bitcasts.
- if (GEP->hasAllZeroIndices()) {
- OtherPtr = GEP->getOperand(0);
- continue;
- }
- }
- break;
- }
- // If OtherPtr has already been rewritten, this intrinsic will be dead.
- if (OtherPtr == NewElts[0])
- return;
+ // It is likely that OtherPtr is a bitcast, if so, remove it.
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
+ OtherPtr = BC->getOperand(0);
+ // All zero GEPs are effectively bitcasts.
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
+ if (GEP->hasAllZeroIndices())
+ OtherPtr = GEP->getOperand(0);
if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
if (BCE->getOpcode() == Instruction::BitCast)
@@ -833,7 +798,7 @@
// Process each element of the aggregate.
Value *TheFn = MI->getOperand(0);
const Type *BytePtrTy = MI->getRawDest()->getType();
- bool SROADest = MI->getRawDest() == Inst;
+ bool SROADest = MI->getRawDest() == BCInst;
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
@@ -842,15 +807,12 @@
Value *OtherElt = 0;
unsigned OtherEltAlign = MemAlignment;
- if (OtherPtr == AI) {
- OtherElt = NewElts[i];
- OtherEltAlign = 0;
- } else if (OtherPtr) {
+ if (OtherPtr) {
Value *Idx[2] = { Zero,
ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
- OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
+ OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
OtherPtr->getNameStr()+"."+Twine(i),
- MI);
+ MI);
uint64_t EltOffset;
const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
if (const StructType *ST =
@@ -962,7 +924,9 @@
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
}
}
- DeadInsts.push_back(MI);
+ MI->eraseFromParent();
+ if (PossiblyDead)
+ RecursivelyDeleteTriviallyDeadInstructions(PossiblyDead);
}
/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
@@ -973,9 +937,15 @@
// Extract each element out of the integer according to its structure offset
// and store the element value to the individual alloca.
Value *SrcVal = SI->getOperand(0);
- const Type *AllocaEltTy = AI->getAllocatedType();
+ const Type *AllocaEltTy = AI->getType()->getElementType();
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+ // If this isn't a store of an integer to the whole alloca, it may be a store
+ // to the first element. Just ignore the store in this case and normal SROA
+ // will handle it.
+ if (!isa<IntegerType>(SrcVal->getType()) ||
+ TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
+ return;
// Handle tail padding by extending the operand
if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
SrcVal = new ZExtInst(SrcVal,
@@ -1080,7 +1050,7 @@
}
}
- DeadInsts.push_back(SI);
+ SI->eraseFromParent();
}
/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
@@ -1089,9 +1059,16 @@
SmallVector<AllocaInst*, 32> &NewElts) {
// Extract each element out of the NewElts according to its structure offset
// and form the result value.
- const Type *AllocaEltTy = AI->getAllocatedType();
+ const Type *AllocaEltTy = AI->getType()->getElementType();
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+ // If this isn't a load of the whole alloca to an integer, it may be a load
+ // of the first element. Just ignore the load in this case and normal SROA
+ // will handle it.
+ if (!isa<IntegerType>(LI->getType()) ||
+ TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
+ return;
+
DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
<< '\n');
@@ -1162,9 +1139,10 @@
ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
LI->replaceAllUsesWith(ResultVal);
- DeadInsts.push_back(LI);
+ LI->eraseFromParent();
}
+
/// HasPadding - Return true if the specified type has any structure or
/// alignment padding, false otherwise.
static bool HasPadding(const Type *Ty, const TargetData &TD) {
@@ -1214,10 +1192,14 @@
// the users are safe to transform.
AllocaInfo Info;
- isSafeForScalarRepl(AI, AI, 0, 0, Info);
- if (Info.isUnsafe) {
- DEBUG(errs() << "Cannot transform: " << *AI << '\n');
- return 0;
+ for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
+ I != E; ++I) {
+ isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
+ if (Info.isUnsafe) {
+ DEBUG(errs() << "Cannot transform: " << *AI << "\n due to user: "
+ << **I << '\n');
+ return 0;
+ }
}
// Okay, we know all the users are promotable. If the aggregate is a memcpy
@@ -1226,7 +1208,7 @@
// types, but may actually be used. In these cases, we refuse to promote the
// struct.
if (Info.isMemCpySrc && Info.isMemCpyDst &&
- HasPadding(AI->getAllocatedType(), *TD))
+ HasPadding(AI->getType()->getElementType(), *TD))
return 0;
// If we require cleanup, return 1, otherwise return 3.
@@ -1263,15 +1245,15 @@
// Insert the new GEP instructions, which are properly indexed.
SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
- Value *ZeroIdx = GetElementPtrInst::CreateInBounds(GEPI->getOperand(0),
- Indices.begin(),
- Indices.end(),
- GEPI->getName()+".0",GEPI);
+ Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
+ Indices.begin(),
+ Indices.end(),
+ GEPI->getName()+".0", GEPI);
Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
- Value *OneIdx = GetElementPtrInst::CreateInBounds(GEPI->getOperand(0),
- Indices.begin(),
- Indices.end(),
- GEPI->getName()+".1", GEPI);
+ Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
+ Indices.begin(),
+ Indices.end(),
+ GEPI->getName()+".1", GEPI);
// Replace all loads of the variable index GEP with loads from both
// indexes and a select.
while (!GEPI->use_empty()) {
@@ -1282,24 +1264,22 @@
LI->replaceAllUsesWith(R);
LI->eraseFromParent();
}
+ GEPI->eraseFromParent();
}
+
/// CleanupAllocaUsers - If SROA reported that it can promote the specified
/// allocation, but only if cleaned up, perform the cleanups required.
-void SROA::CleanupAllocaUsers(Value *V) {
+void SROA::CleanupAllocaUsers(AllocaInst *AI) {
// At this point, we know that the end result will be SROA'd and promoted, so
// we can insert ugly code if required so long as sroa+mem2reg will clean it
// up.
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
+ for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
UI != E; ) {
User *U = *UI++;
- if (isa<BitCastInst>(U)) {
- CleanupAllocaUsers(U);
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
CleanupGEP(GEPI);
- CleanupAllocaUsers(GEPI);
- if (GEPI->use_empty()) GEPI->eraseFromParent();
- } else {
+ else {
Instruction *I = cast<Instruction>(U);
SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
@@ -1415,7 +1395,7 @@
// Compute the offset that this GEP adds to the pointer.
SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
- uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
+ uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
&Indices[0], Indices.size());
// See if all uses can be converted.
if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
@@ -1477,7 +1457,7 @@
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
// Compute the offset that this GEP adds to the pointer.
SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
- uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
+ uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
&Indices[0], Indices.size());
ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
GEP->eraseFromParent();
Removed: llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll?rev=91607&view=auto
==============================================================================
--- llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll (original)
+++ llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll (removed)
@@ -1,89 +0,0 @@
-; RUN: opt < %s -scalarrepl -S | FileCheck %s
-; Radar 7441282
-
-target datalayout = "e-p:32:32:32-i1:8:32-i8:8:32-i16:16:32-i32:32:32-i64:32:32-f32:32:32-f64:32:32-v64:64:64-v128:128:128-a0:0:32-n32"
-target triple = "thumbv7-apple-darwin10"
-
-%struct.__neon_int16x8x2_t = type { <8 x i16>, <8 x i16> }
-%struct.int16x8_t = type { <8 x i16> }
-%struct.int16x8x2_t = type { [2 x %struct.int16x8_t] }
-%union..0anon = type { %struct.int16x8x2_t }
-
-define arm_apcscc void @test(<8 x i16> %tmp.0, %struct.int16x8x2_t* %dst) nounwind {
-; CHECK: @test
-; CHECK-NOT: alloca
-; CHECK: "alloca point"
-entry:
- %tmp_addr = alloca %struct.int16x8_t ; <%struct.int16x8_t*> [#uses=3]
- %dst_addr = alloca %struct.int16x8x2_t* ; <%struct.int16x8x2_t**> [#uses=2]
- %__rv = alloca %union..0anon ; <%union..0anon*> [#uses=2]
- %__bx = alloca %struct.int16x8_t ; <%struct.int16x8_t*> [#uses=2]
- %__ax = alloca %struct.int16x8_t ; <%struct.int16x8_t*> [#uses=2]
- %tmp2 = alloca %struct.int16x8x2_t ; <%struct.int16x8x2_t*> [#uses=2]
- %0 = alloca %struct.int16x8x2_t ; <%struct.int16x8x2_t*> [#uses=2]
- %"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
- %1 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
- store <8 x i16> %tmp.0, <8 x i16>* %1
- store %struct.int16x8x2_t* %dst, %struct.int16x8x2_t** %dst_addr
- %2 = getelementptr inbounds %struct.int16x8_t* %__ax, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
- %3 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
- %4 = load <8 x i16>* %3, align 16 ; <<8 x i16>> [#uses=1]
- store <8 x i16> %4, <8 x i16>* %2, align 16
- %5 = getelementptr inbounds %struct.int16x8_t* %__bx, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
- %6 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
- %7 = load <8 x i16>* %6, align 16 ; <<8 x i16>> [#uses=1]
- store <8 x i16> %7, <8 x i16>* %5, align 16
- %8 = getelementptr inbounds %struct.int16x8_t* %__ax, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
- %9 = load <8 x i16>* %8, align 16 ; <<8 x i16>> [#uses=2]
- %10 = getelementptr inbounds %struct.int16x8_t* %__bx, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
- %11 = load <8 x i16>* %10, align 16 ; <<8 x i16>> [#uses=2]
- %12 = getelementptr inbounds %union..0anon* %__rv, i32 0, i32 0 ; <%struct.int16x8x2_t*> [#uses=1]
- %13 = bitcast %struct.int16x8x2_t* %12 to %struct.__neon_int16x8x2_t* ; <%struct.__neon_int16x8x2_t*> [#uses=2]
- %14 = shufflevector <8 x i16> %9, <8 x i16> %11, <8 x i32> <i32 0, i32 8, i32 2, i32 10, i32 4, i32 12, i32 6, i32 14> ; <<8 x i16>> [#uses=1]
- %15 = getelementptr inbounds %struct.__neon_int16x8x2_t* %13, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
- store <8 x i16> %14, <8 x i16>* %15
- %16 = shufflevector <8 x i16> %9, <8 x i16> %11, <8 x i32> <i32 1, i32 9, i32 3, i32 11, i32 5, i32 13, i32 7, i32 15> ; <<8 x i16>> [#uses=1]
- %17 = getelementptr inbounds %struct.__neon_int16x8x2_t* %13, i32 0, i32 1 ; <<8 x i16>*> [#uses=1]
- store <8 x i16> %16, <8 x i16>* %17
- %18 = getelementptr inbounds %union..0anon* %__rv, i32 0, i32 0 ; <%struct.int16x8x2_t*> [#uses=1]
- %19 = bitcast %struct.int16x8x2_t* %0 to i8* ; <i8*> [#uses=1]
- %20 = bitcast %struct.int16x8x2_t* %18 to i8* ; <i8*> [#uses=1]
- call void @llvm.memcpy.i32(i8* %19, i8* %20, i32 32, i32 16)
- %tmp21 = bitcast %struct.int16x8x2_t* %tmp2 to i8* ; <i8*> [#uses=1]
- %21 = bitcast %struct.int16x8x2_t* %0 to i8* ; <i8*> [#uses=1]
- call void @llvm.memcpy.i32(i8* %tmp21, i8* %21, i32 32, i32 16)
- %22 = load %struct.int16x8x2_t** %dst_addr, align 4 ; <%struct.int16x8x2_t*> [#uses=1]
- %23 = bitcast %struct.int16x8x2_t* %22 to i8* ; <i8*> [#uses=1]
- %tmp22 = bitcast %struct.int16x8x2_t* %tmp2 to i8* ; <i8*> [#uses=1]
- call void @llvm.memcpy.i32(i8* %23, i8* %tmp22, i32 32, i32 16)
- br label %return
-
-; CHECK: store <8 x i16>
-; CHECK: store <8 x i16>
-
-return: ; preds = %entry
- ret void
-}
-
-; Radar 7466574
-%struct._NSRange = type { i64 }
-
-define arm_apcscc void @test_memcpy_self() nounwind {
-; CHECK: @test_memcpy_self
-; CHECK-NOT: alloca
-; CHECK: br i1
-entry:
- %range = alloca %struct._NSRange ; <%struct._NSRange*> [#uses=2]
- br i1 undef, label %cond.true, label %cond.false
-
-cond.true: ; preds = %entry
- %tmp3 = bitcast %struct._NSRange* %range to i8* ; <i8*> [#uses=1]
- %tmp4 = bitcast %struct._NSRange* %range to i8* ; <i8*> [#uses=1]
- call void @llvm.memcpy.i32(i8* %tmp3, i8* %tmp4, i32 8, i32 8)
- ret void
-
-cond.false: ; preds = %entry
- ret void
-}
-
-declare void @llvm.memcpy.i32(i8* nocapture, i8* nocapture, i32, i32) nounwind
More information about the llvm-branch-commits
mailing list