[llvm-branch-commits] [llvm-branch] r91608 - in /llvm/branches/Apple/Zoidberg: lib/Transforms/Scalar/ScalarReplAggregates.cpp test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll

Bob Wilson bob.wilson at apple.com
Thu Dec 17 10:42:47 PST 2009


Author: bwilson
Date: Thu Dec 17 12:42:47 2009
New Revision: 91608

URL: http://llvm.org/viewvc/llvm-project?rev=91608&view=rev
Log:
$ svn merge -c 91607 https://bwilson@llvm.org/svn/llvm-project/llvm/trunk
--- Merging r91607 into '.':
D    test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
U    lib/Transforms/Scalar/ScalarReplAggregates.cpp

Removed:
    llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
Modified:
    llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp

Modified: llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp?rev=91608&r1=91607&r2=91608&view=diff

==============================================================================
--- llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp (original)
+++ llvm/branches/Apple/Zoidberg/lib/Transforms/Scalar/ScalarReplAggregates.cpp Thu Dec 17 12:42:47 2009
@@ -74,10 +74,6 @@
   private:
     TargetData *TD;
     
-    /// DeadInsts - Keep track of instructions we have made dead, so that
-    /// we can remove them after we are done working.
-    SmallVector<WeakVH, 16> DeadInsts;
-
     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
     /// information about the uses.  All these fields are initialized to false
     /// and set to true when something is learned.
@@ -106,30 +102,25 @@
 
     int isSafeAllocaToScalarRepl(AllocaInst *AI);
 
-    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
-                             uint64_t ArrayOffset, AllocaInfo &Info);
-    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
-                   uint64_t &ArrayOffset, AllocaInfo &Info);
-    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t ArrayOffset,
-                         uint64_t MemSize, const Type *MemOpType, bool isStore,
-                         AllocaInfo &Info);
-    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
-    unsigned FindElementAndOffset(const Type *&T, uint64_t &Offset);
+    void isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
+                               AllocaInfo &Info);
+    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
+                          AllocaInfo &Info);
+    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
+                                        unsigned OpNo, AllocaInfo &Info);
+    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocaInst *AI,
+                                        AllocaInfo &Info);
     
     void DoScalarReplacement(AllocaInst *AI, 
                              std::vector<AllocaInst*> &WorkList);
-    void DeleteDeadInstructions();
     void CleanupGEP(GetElementPtrInst *GEP);
-    void CleanupAllocaUsers(Value *V);
+    void CleanupAllocaUsers(AllocaInst *AI);
     AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
     
-    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
-                              SmallVector<AllocaInst*, 32> &NewElts);
-    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
-                        SmallVector<AllocaInst*, 32> &NewElts);
-    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
-                    SmallVector<AllocaInst*, 32> &NewElts);
-    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
+    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
+                                    SmallVector<AllocaInst*, 32> &NewElts);
+    
+    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
                                       AllocaInst *AI,
                                       SmallVector<AllocaInst*, 32> &NewElts);
     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
@@ -369,37 +360,176 @@
     }
   }
 
-  // Now that we have created the new alloca instructions, rewrite all the
-  // uses of the old alloca.
-  DeadInsts.push_back(AI);
-  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
+  // Now that we have created the alloca instructions that we want to use,
+  // expand the getelementptr instructions to use them.
+  while (!AI->use_empty()) {
+    Instruction *User = cast<Instruction>(AI->use_back());
+    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
+      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
+      BCInst->eraseFromParent();
+      continue;
+    }
+    
+    // Replace:
+    //   %res = load { i32, i32 }* %alloc
+    // with:
+    //   %load.0 = load i32* %alloc.0
+    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 
+    //   %load.1 = load i32* %alloc.1
+    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 
+    // (Also works for arrays instead of structs)
+    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+      Value *Insert = UndefValue::get(LI->getType());
+      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
+        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
+        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
+      }
+      LI->replaceAllUsesWith(Insert);
+      LI->eraseFromParent();
+      continue;
+    }
 
-  // Now erase any instructions that were made dead while rewriting the alloca.
-  DeleteDeadInstructions();
+    // Replace:
+    //   store { i32, i32 } %val, { i32, i32 }* %alloc
+    // with:
+    //   %val.0 = extractvalue { i32, i32 } %val, 0 
+    //   store i32 %val.0, i32* %alloc.0
+    //   %val.1 = extractvalue { i32, i32 } %val, 1 
+    //   store i32 %val.1, i32* %alloc.1
+    // (Also works for arrays instead of structs)
+    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+      Value *Val = SI->getOperand(0);
+      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
+        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
+        new StoreInst(Extract, ElementAllocas[i], SI);
+      }
+      SI->eraseFromParent();
+      continue;
+    }
+    
+    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
+    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
+    unsigned Idx =
+       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
+
+    assert(Idx < ElementAllocas.size() && "Index out of range?");
+    AllocaInst *AllocaToUse = ElementAllocas[Idx];
+
+    Value *RepValue;
+    if (GEPI->getNumOperands() == 3) {
+      // Do not insert a new getelementptr instruction with zero indices, only
+      // to have it optimized out later.
+      RepValue = AllocaToUse;
+    } else {
+      // We are indexing deeply into the structure, so we still need a
+      // getelement ptr instruction to finish the indexing.  This may be
+      // expanded itself once the worklist is rerun.
+      //
+      SmallVector<Value*, 8> NewArgs;
+      NewArgs.push_back(Constant::getNullValue(
+                                           Type::getInt32Ty(AI->getContext())));
+      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
+      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
+                                           NewArgs.end(), "", GEPI);
+      RepValue->takeName(GEPI);
+    }
+    
+    // If this GEP is to the start of the aggregate, check for memcpys.
+    if (Idx == 0 && GEPI->hasAllZeroIndices())
+      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
+
+    // Move all of the users over to the new GEP.
+    GEPI->replaceAllUsesWith(RepValue);
+    // Delete the old GEP
+    GEPI->eraseFromParent();
+  }
 
+  // Finally, delete the Alloca instruction
+  AI->eraseFromParent();
   NumReplaced++;
 }
 
-/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
-/// recursively including all their operands that become trivially dead.
-void SROA::DeleteDeadInstructions() {
-  while (!DeadInsts.empty()) {
-    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
-    if (I == 0)
-      continue;
-
-    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
-      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
-        // Zero out the operand and see if it becomes trivially dead.
-        *OI = 0;
-        if (isInstructionTriviallyDead(U))
-          DeadInsts.push_back(U);
-      }
+/// isSafeElementUse - Check to see if this use is an allowed use for a
+/// getelementptr instruction of an array aggregate allocation.  isFirstElt
+/// indicates whether Ptr is known to the start of the aggregate.
+void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
+                            AllocaInfo &Info) {
+  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
+       I != E; ++I) {
+    Instruction *User = cast<Instruction>(*I);
+    switch (User->getOpcode()) {
+    case Instruction::Load:  break;
+    case Instruction::Store:
+      // Store is ok if storing INTO the pointer, not storing the pointer
+      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
+      break;
+    case Instruction::GetElementPtr: {
+      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
+      bool AreAllZeroIndices = isFirstElt;
+      if (GEP->getNumOperands() > 1 &&
+          (!isa<ConstantInt>(GEP->getOperand(1)) ||
+           !cast<ConstantInt>(GEP->getOperand(1))->isZero()))
+        // Using pointer arithmetic to navigate the array.
+        return MarkUnsafe(Info);
+      
+      // Verify that any array subscripts are in range.
+      for (gep_type_iterator GEPIt = gep_type_begin(GEP),
+           E = gep_type_end(GEP); GEPIt != E; ++GEPIt) {
+        // Ignore struct elements, no extra checking needed for these.
+        if (isa<StructType>(*GEPIt))
+          continue;
 
-    I->eraseFromParent();
+        // This GEP indexes an array.  Verify that this is an in-range
+        // constant integer. Specifically, consider A[0][i]. We cannot know that
+        // the user isn't doing invalid things like allowing i to index an
+        // out-of-range subscript that accesses A[1].  Because of this, we have
+        // to reject SROA of any accesses into structs where any of the
+        // components are variables. 
+        ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
+        if (!IdxVal) return MarkUnsafe(Info);
+        
+        // Are all indices still zero?
+        AreAllZeroIndices &= IdxVal->isZero();
+        
+        if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
+          if (IdxVal->getZExtValue() >= AT->getNumElements())
+            return MarkUnsafe(Info);
+        } else if (const VectorType *VT = dyn_cast<VectorType>(*GEPIt)) {
+          if (IdxVal->getZExtValue() >= VT->getNumElements())
+            return MarkUnsafe(Info);
+        }
+      }
+      
+      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
+      if (Info.isUnsafe) return;
+      break;
+    }
+    case Instruction::BitCast:
+      if (isFirstElt) {
+        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
+        if (Info.isUnsafe) return;
+        break;
+      }
+      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
+      return MarkUnsafe(Info);
+    case Instruction::Call:
+      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
+        if (isFirstElt) {
+          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
+          if (Info.isUnsafe) return;
+          break;
+        }
+      }
+      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
+      return MarkUnsafe(Info);
+    default:
+      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
+      return MarkUnsafe(Info);
+    }
   }
+  return;  // All users look ok :)
 }
-    
+
 /// AllUsersAreLoads - Return true if all users of this value are loads.
 static bool AllUsersAreLoads(Value *Ptr) {
   for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
@@ -409,116 +539,72 @@
   return true;
 }
 
-/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
-/// performing scalar replacement of alloca AI.  The results are flagged in
-/// the Info parameter.  Offset and ArrayOffset indicate the position within
-/// AI that is referenced by this instruction.
-void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
-                               uint64_t ArrayOffset, AllocaInfo &Info) {
-  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
-    Instruction *User = cast<Instruction>(*UI);
-
-    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
-      isSafeForScalarRepl(BC, AI, Offset, ArrayOffset, Info);
-    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
-      uint64_t GEPArrayOffset = ArrayOffset;
-      uint64_t GEPOffset = Offset;
-      isSafeGEP(GEPI, AI, GEPOffset, GEPArrayOffset, Info);
-      if (!Info.isUnsafe)
-        isSafeForScalarRepl(GEPI, AI, GEPOffset, GEPArrayOffset, Info);
-    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
-      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
-      if (Length)
-        isSafeMemAccess(AI, Offset, ArrayOffset, Length->getZExtValue(), 0,
-                        UI.getOperandNo() == 1, Info);
-      else
-        MarkUnsafe(Info);
-    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
-      if (!LI->isVolatile()) {
-        const Type *LIType = LI->getType();
-        isSafeMemAccess(AI, Offset, ArrayOffset, TD->getTypeAllocSize(LIType),
-                        LIType, false, Info);
-      } else
-        MarkUnsafe(Info);
-    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
-      // Store is ok if storing INTO the pointer, not storing the pointer
-      if (!SI->isVolatile() && SI->getOperand(0) != I) {
-        const Type *SIType = SI->getOperand(0)->getType();
-        isSafeMemAccess(AI, Offset, ArrayOffset, TD->getTypeAllocSize(SIType),
-                        SIType, true, Info);
-      } else
-        MarkUnsafe(Info);
-    } else if (isa<DbgInfoIntrinsic>(UI)) {
-      // If one user is DbgInfoIntrinsic then check if all users are
-      // DbgInfoIntrinsics.
-      if (OnlyUsedByDbgInfoIntrinsics(I)) {
-        Info.needsCleanup = true;
-        return;
-      }
-      MarkUnsafe(Info);
-    } else {
-      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
-      MarkUnsafe(Info);
-    }
-    if (Info.isUnsafe) return;
-  }
-}
+/// isSafeUseOfAllocation - Check if this user is an allowed use for an
+/// aggregate allocation.
+void SROA::isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
+                                 AllocaInfo &Info) {
+  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
+    return isSafeUseOfBitCastedAllocation(C, AI, Info);
+
+  if (LoadInst *LI = dyn_cast<LoadInst>(User))
+    if (!LI->isVolatile())
+      return;// Loads (returning a first class aggregrate) are always rewritable
+
+  if (StoreInst *SI = dyn_cast<StoreInst>(User))
+    if (!SI->isVolatile() && SI->getOperand(0) != AI)
+      return;// Store is ok if storing INTO the pointer, not storing the pointer
+ 
+  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
+  if (GEPI == 0)
+    return MarkUnsafe(Info);
 
-/// isSafeGEP - Check if a GEP instruction can be handled for scalar
-/// replacement.  It is safe when all the indices are constant, in-bounds
-/// references, and when the resulting offset corresponds to an element within
-/// the alloca type.  The results are flagged in the Info parameter.  Upon
-/// return, Offset is adjusted as specified by the GEP indices.  For the
-/// special case of a variable index to a 2-element array, ArrayOffset is set
-/// to the array element size.
-void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
-                     uint64_t &Offset, uint64_t &ArrayOffset,
-                     AllocaInfo &Info) {
-  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
-  if (GEPIt == E)
-    return;
+  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 
-  // The first GEP index must be zero.
-  if (!isa<ConstantInt>(GEPIt.getOperand()) ||
-      !cast<ConstantInt>(GEPIt.getOperand())->isZero())
+  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
+  if (I == E ||
+      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
     return MarkUnsafe(Info);
-  if (++GEPIt == E)
-    return;
+  }
 
+  ++I;
+  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
+
+  bool IsAllZeroIndices = true;
+  
   // If the first index is a non-constant index into an array, see if we can
   // handle it as a special case.
-  const Type *ArrayEltTy = 0;
-  if (ArrayOffset == 0 && Offset == 0) {
-    if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
-      if (!isa<ConstantInt>(GEPIt.getOperand())) {
-        uint64_t NumElements = AT->getNumElements();
-
-        // If this is an array index and the index is not constant, we cannot
-        // promote... that is unless the array has exactly one or two elements
-        // in it, in which case we CAN promote it, but we have to canonicalize
-        // this out if this is the only problem.
-        if ((NumElements != 1 && NumElements != 2) || !AllUsersAreLoads(GEPI))
-          return MarkUnsafe(Info);
+  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
+    if (!isa<ConstantInt>(I.getOperand())) {
+      IsAllZeroIndices = 0;
+      uint64_t NumElements = AT->getNumElements();
+      
+      // If this is an array index and the index is not constant, we cannot
+      // promote... that is unless the array has exactly one or two elements in
+      // it, in which case we CAN promote it, but we have to canonicalize this
+      // out if this is the only problem.
+      if ((NumElements == 1 || NumElements == 2) &&
+          AllUsersAreLoads(GEPI)) {
         Info.needsCleanup = true;
-        ArrayOffset = TD->getTypeAllocSizeInBits(AT->getElementType());
-        ArrayEltTy = AT->getElementType();
-        ++GEPIt;
+        return;  // Canonicalization required!
       }
+      return MarkUnsafe(Info);
     }
   }
-
+ 
   // Walk through the GEP type indices, checking the types that this indexes
   // into.
-  for (; GEPIt != E; ++GEPIt) {
+  for (; I != E; ++I) {
     // Ignore struct elements, no extra checking needed for these.
-    if (isa<StructType>(*GEPIt))
+    if (isa<StructType>(*I))
       continue;
+    
+    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
+    if (!IdxVal) return MarkUnsafe(Info);
 
-    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
-    if (!IdxVal)
-      return MarkUnsafe(Info);
-
-    if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
+    // Are all indices still zero?
+    IsAllZeroIndices &= IdxVal->isZero();
+    
+    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
       // This GEP indexes an array.  Verify that this is an in-range constant
       // integer. Specifically, consider A[0][i]. We cannot know that the user
       // isn't doing invalid things like allowing i to index an out-of-range
@@ -526,255 +612,147 @@
       // of any accesses into structs where any of the components are variables.
       if (IdxVal->getZExtValue() >= AT->getNumElements())
         return MarkUnsafe(Info);
-    } else {
-      const VectorType *VT = dyn_cast<VectorType>(*GEPIt);
-      assert(VT && "unexpected type in GEP type iterator");
+    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
       if (IdxVal->getZExtValue() >= VT->getNumElements())
         return MarkUnsafe(Info);
     }
   }
-
-  // All the indices are safe.  Now compute the offset due to this GEP and
-  // check if the alloca has a component element at that offset.
-  if (ArrayOffset == 0) {
-    SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
-    Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
-                                   &Indices[0], Indices.size());
-  } else {
-    // Both array elements have the same type, so it suffices to check one of
-    // them.  Copy the GEP indices starting from the array index, but replace
-    // that variable index with a constant zero.
-    SmallVector<Value*, 8> Indices(GEPI->op_begin() + 2, GEPI->op_end());
-    Indices[0] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
-    const Type *ArrayEltPtr = PointerType::getUnqual(ArrayEltTy);
-    Offset += TD->getIndexedOffset(ArrayEltPtr, &Indices[0], Indices.size());
-  }
-  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
-    MarkUnsafe(Info);
-}
-
-/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
-/// alloca or has an offset and size that corresponds to a component element
-/// within it.  The offset checked here may have been formed from a GEP with a
-/// pointer bitcasted to a different type.
-void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset,
-                           uint64_t ArrayOffset, uint64_t MemSize,
-                           const Type *MemOpType, bool isStore,
-                           AllocaInfo &Info) {
-  // Check if this is a load/store of the entire alloca.
-  if (Offset == 0 && ArrayOffset == 0 &&
-      MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
-    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
-    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
-    // (which are essentially the same as the MemIntrinsics, especially with
-    // regard to copying padding between elements), or references using the
-    // aggregate type of the alloca.
-    if (!MemOpType || isa<IntegerType>(MemOpType) || UsesAggregateType) {
-      if (!UsesAggregateType) {
-        if (isStore)
-          Info.isMemCpyDst = true;
-        else
-          Info.isMemCpySrc = true;
-      }
-      return;
-    }
-  }
-  // Check if the offset/size correspond to a component within the alloca type.
-  const Type *T = AI->getAllocatedType();
-  if (TypeHasComponent(T, Offset, MemSize) &&
-      (ArrayOffset == 0 || TypeHasComponent(T, Offset + ArrayOffset, MemSize)))
-    return;
-
-  return MarkUnsafe(Info);
+  
+  // If there are any non-simple uses of this getelementptr, make sure to reject
+  // them.
+  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
 }
 
-/// TypeHasComponent - Return true if T has a component type with the
-/// specified offset and size.  If Size is zero, do not check the size.
-bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
-  const Type *EltTy;
-  uint64_t EltSize;
-  if (const StructType *ST = dyn_cast<StructType>(T)) {
-    const StructLayout *Layout = TD->getStructLayout(ST);
-    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
-    EltTy = ST->getContainedType(EltIdx);
-    EltSize = TD->getTypeAllocSize(EltTy);
-    Offset -= Layout->getElementOffset(EltIdx);
-  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
-    EltTy = AT->getElementType();
-    EltSize = TD->getTypeAllocSize(EltTy);
-    Offset %= EltSize;
-  } else {
-    return false;
+/// isSafeMemIntrinsicOnAllocation - Check if the specified memory
+/// intrinsic can be promoted by SROA.  At this point, we know that the operand
+/// of the memintrinsic is a pointer to the beginning of the allocation.
+void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
+                                          unsigned OpNo, AllocaInfo &Info) {
+  // If not constant length, give up.
+  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
+  if (!Length) return MarkUnsafe(Info);
+  
+  // If not the whole aggregate, give up.
+  if (Length->getZExtValue() !=
+      TD->getTypeAllocSize(AI->getType()->getElementType()))
+    return MarkUnsafe(Info);
+  
+  // We only know about memcpy/memset/memmove.
+  if (!isa<MemIntrinsic>(MI))
+    return MarkUnsafe(Info);
+  
+  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
+  // into or out of the aggregate.
+  if (OpNo == 1)
+    Info.isMemCpyDst = true;
+  else {
+    assert(OpNo == 2);
+    Info.isMemCpySrc = true;
   }
-  if (Offset == 0 && (Size == 0 || EltSize == Size))
-    return true;
-  // Check if the component spans multiple elements.
-  if (Offset + Size > EltSize)
-    return false;
-  return TypeHasComponent(EltTy, Offset, Size);
 }
 
-/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
-/// the instruction I, which references it, to use the separate elements.
-/// Offset indicates the position within AI that is referenced by this
-/// instruction.
-void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
-                                SmallVector<AllocaInst*, 32> &NewElts) {
-  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
-    Instruction *User = cast<Instruction>(*UI);
+/// isSafeUseOfBitCastedAllocation - Check if all users of this bitcast
+/// from an alloca are safe for SROA of that alloca.
+void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocaInst *AI,
+                                          AllocaInfo &Info) {
+  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
+       UI != E; ++UI) {
+    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
+      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
+    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
+      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
+      if (SI->isVolatile())
+        return MarkUnsafe(Info);
+      
+      // If storing the entire alloca in one chunk through a bitcasted pointer
+      // to integer, we can transform it.  This happens (for example) when you
+      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
+      // memcpy case and occurs in various "byval" cases and emulated memcpys.
+      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
+          TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
+          TD->getTypeAllocSize(AI->getType()->getElementType())) {
+        Info.isMemCpyDst = true;
+        continue;
+      }
+      return MarkUnsafe(Info);
+    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
+      if (LI->isVolatile())
+        return MarkUnsafe(Info);
 
-    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
-      RewriteBitCast(BC, AI, Offset, NewElts);
-    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
-      RewriteGEP(GEPI, AI, Offset, NewElts);
-    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
-      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
-      uint64_t MemSize = Length->getZExtValue();
-      if (Offset == 0 &&
-          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
-        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
-    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
-      const Type *LIType = LI->getType();
-      if (LIType == AI->getAllocatedType()) {
-        // Replace:
-        //   %res = load { i32, i32 }* %alloc
-        // with:
-        //   %load.0 = load i32* %alloc.0
-        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
-        //   %load.1 = load i32* %alloc.1
-        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
-        // (Also works for arrays instead of structs)
-        Value *Insert = UndefValue::get(LIType);
-        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
-          Value *Load = new LoadInst(NewElts[i], "load", LI);
-          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
-        }
-        LI->replaceAllUsesWith(Insert);
-        DeadInsts.push_back(LI);
-      } else if (isa<IntegerType>(LIType) &&
-                 TD->getTypeAllocSize(LIType) ==
-                 TD->getTypeAllocSize(AI->getAllocatedType())) {
-        // If this is a load of the entire alloca to an integer, rewrite it.
-        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
+      // If loading the entire alloca in one chunk through a bitcasted pointer
+      // to integer, we can transform it.  This happens (for example) when you
+      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
+      // memcpy case and occurs in various "byval" cases and emulated memcpys.
+      if (isa<IntegerType>(LI->getType()) &&
+          TD->getTypeAllocSize(LI->getType()) ==
+          TD->getTypeAllocSize(AI->getType()->getElementType())) {
+        Info.isMemCpySrc = true;
+        continue;
       }
-    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
-      Value *Val = SI->getOperand(0);
-      const Type *SIType = Val->getType();
-      if (SIType == AI->getAllocatedType()) {
-        // Replace:
-        //   store { i32, i32 } %val, { i32, i32 }* %alloc
-        // with:
-        //   %val.0 = extractvalue { i32, i32 } %val, 0
-        //   store i32 %val.0, i32* %alloc.0
-        //   %val.1 = extractvalue { i32, i32 } %val, 1
-        //   store i32 %val.1, i32* %alloc.1
-        // (Also works for arrays instead of structs)
-        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
-          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
-          new StoreInst(Extract, NewElts[i], SI);
-        }
-        DeadInsts.push_back(SI);
-      } else if (isa<IntegerType>(SIType) &&
-                 TD->getTypeAllocSize(SIType) ==
-                 TD->getTypeAllocSize(AI->getAllocatedType())) {
-        // If this is a store of the entire alloca from an integer, rewrite it.
-        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
+      return MarkUnsafe(Info);
+    } else if (isa<DbgInfoIntrinsic>(UI)) {
+      // If one user is DbgInfoIntrinsic then check if all users are
+      // DbgInfoIntrinsics.
+      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
+        Info.needsCleanup = true;
+        return;
       }
+      else
+        MarkUnsafe(Info);
     }
+    else {
+      return MarkUnsafe(Info);
+    }
+    if (Info.isUnsafe) return;
   }
 }
 
-/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
-/// and recursively continue updating all of its uses.
-void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
-                          SmallVector<AllocaInst*, 32> &NewElts) {
-  RewriteForScalarRepl(BC, AI, Offset, NewElts);
-  if (BC->getOperand(0) != AI)
-    return;
+/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
+/// to its first element.  Transform users of the cast to use the new values
+/// instead.
+void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
+                                      SmallVector<AllocaInst*, 32> &NewElts) {
+  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
+  while (UI != UE) {
+    Instruction *User = cast<Instruction>(*UI++);
+    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
+      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
+      if (BCU->use_empty()) BCU->eraseFromParent();
+      continue;
+    }
 
-  // The bitcast references the original alloca.  Replace its uses with
-  // references to the first new element alloca.
-  Instruction *Val = NewElts[0];
-  if (Val->getType() != BC->getDestTy()) {
-    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
-    Val->takeName(BC);
-  }
-  BC->replaceAllUsesWith(Val);
-  DeadInsts.push_back(BC);
-}
-
-/// FindElementAndOffset - Return the index of the element containing Offset
-/// within the specified type, which must be either a struct or an array.
-/// Sets T to the type of the element and Offset to the offset within that
-/// element.
-unsigned SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset) {
-  unsigned Idx = 0;
-  if (const StructType *ST = dyn_cast<StructType>(T)) {
-    const StructLayout *Layout = TD->getStructLayout(ST);
-    Idx = Layout->getElementContainingOffset(Offset);
-    T = ST->getContainedType(Idx);
-    Offset -= Layout->getElementOffset(Idx);
-  } else {
-    const ArrayType *AT = dyn_cast<ArrayType>(T);
-    assert(AT && "unexpected type for scalar replacement");
-    T = AT->getElementType();
-    uint64_t EltSize = TD->getTypeAllocSize(T);
-    Idx = (unsigned)(Offset / EltSize);
-    Offset -= Idx * EltSize;
-  }
-  return Idx;
-}
-
-/// RewriteGEP - Check if this GEP instruction moves the pointer across
-/// elements of the alloca that are being split apart, and if so, rewrite
-/// the GEP to be relative to the new element.
-void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
-                      SmallVector<AllocaInst*, 32> &NewElts) {
-  uint64_t OldOffset = Offset;
-  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
-  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
-                                 &Indices[0], Indices.size());
-
-  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
-
-  const Type *T = AI->getAllocatedType();
-  unsigned OldIdx = FindElementAndOffset(T, OldOffset);
-  if (GEPI->getOperand(0) == AI)
-    OldIdx = ~0U; // Force the GEP to be rewritten.
-
-  T = AI->getAllocatedType();
-  uint64_t EltOffset = Offset;
-  unsigned Idx = FindElementAndOffset(T, EltOffset);
-
-  // If this GEP does not move the pointer across elements of the alloca
-  // being split, then it does not needs to be rewritten.
-  if (Idx == OldIdx)
-    return;
+    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
+      // This must be memcpy/memmove/memset of the entire aggregate.
+      // Split into one per element.
+      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
+      continue;
+    }
+      
+    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+      // If this is a store of the entire alloca from an integer, rewrite it.
+      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
+      continue;
+    }
 
-  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
-  SmallVector<Value*, 8> NewArgs;
-  NewArgs.push_back(Constant::getNullValue(i32Ty));
-  while (EltOffset != 0) {
-    unsigned EltIdx = FindElementAndOffset(T, EltOffset);
-    NewArgs.push_back(ConstantInt::get(i32Ty, EltIdx));
-  }
-  Instruction *Val = NewElts[Idx];
-  if (NewArgs.size() > 1) {
-    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
-                                            NewArgs.end(), "", GEPI);
-    Val->takeName(GEPI);
-  }
-  if (Val->getType() != GEPI->getType())
-    Val = new BitCastInst(Val, GEPI->getType(), Val->getNameStr(), GEPI);
-  GEPI->replaceAllUsesWith(Val);
-  DeadInsts.push_back(GEPI);
+    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+      // If this is a load of the entire alloca to an integer, rewrite it.
+      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
+      continue;
+    }
+    
+    // Otherwise it must be some other user of a gep of the first pointer.  Just
+    // leave these alone.
+    continue;
+  }
 }
 
 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
 /// Rewrite it to copy or set the elements of the scalarized memory.
-void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
+void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
                                         AllocaInst *AI,
                                         SmallVector<AllocaInst*, 32> &NewElts) {
+  
   // If this is a memcpy/memmove, construct the other pointer as the
   // appropriate type.  The "Other" pointer is the pointer that goes to memory
   // that doesn't have anything to do with the alloca that we are promoting. For
@@ -783,41 +761,28 @@
   LLVMContext &Context = MI->getContext();
   unsigned MemAlignment = MI->getAlignment();
   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
-    if (Inst == MTI->getRawDest())
+    if (BCInst == MTI->getRawDest())
       OtherPtr = MTI->getRawSource();
     else {
-      assert(Inst == MTI->getRawSource());
+      assert(BCInst == MTI->getRawSource());
       OtherPtr = MTI->getRawDest();
     }
   }
 
+  // Keep track of the other intrinsic argument, so it can be removed if it
+  // is dead when the intrinsic is replaced.
+  Value *PossiblyDead = OtherPtr;
+  
   // If there is an other pointer, we want to convert it to the same pointer
   // type as AI has, so we can GEP through it safely.
   if (OtherPtr) {
-
-    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
-    // optimization, but it's also required to detect the corner case where
-    // both pointer operands are referencing the same memory, and where
-    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
-    // function is only called for mem intrinsics that access the whole
-    // aggregate, so non-zero GEPs are not an issue here.)
-    while (1) {
-      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
-        OtherPtr = BC->getOperand(0);
-        continue;
-      }
-      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
-        // All zero GEPs are effectively bitcasts.
-        if (GEP->hasAllZeroIndices()) {
-          OtherPtr = GEP->getOperand(0);
-          continue;
-        }
-      }
-      break;
-    }
-    // If OtherPtr has already been rewritten, this intrinsic will be dead.
-    if (OtherPtr == NewElts[0])
-      return;
+    // It is likely that OtherPtr is a bitcast, if so, remove it.
+    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
+      OtherPtr = BC->getOperand(0);
+    // All zero GEPs are effectively bitcasts.
+    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
+      if (GEP->hasAllZeroIndices())
+        OtherPtr = GEP->getOperand(0);
     
     if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
       if (BCE->getOpcode() == Instruction::BitCast)
@@ -833,7 +798,7 @@
   // Process each element of the aggregate.
   Value *TheFn = MI->getOperand(0);
   const Type *BytePtrTy = MI->getRawDest()->getType();
-  bool SROADest = MI->getRawDest() == Inst;
+  bool SROADest = MI->getRawDest() == BCInst;
   
   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
 
@@ -842,15 +807,12 @@
     Value *OtherElt = 0;
     unsigned OtherEltAlign = MemAlignment;
     
-    if (OtherPtr == AI) {
-      OtherElt = NewElts[i];
-      OtherEltAlign = 0;
-    } else if (OtherPtr) {
+    if (OtherPtr) {
       Value *Idx[2] = { Zero,
                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
-      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
+      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
                                            OtherPtr->getNameStr()+"."+Twine(i),
-                                                   MI);
+                                           MI);
       uint64_t EltOffset;
       const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
       if (const StructType *ST =
@@ -962,7 +924,9 @@
       CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
     }
   }
-  DeadInsts.push_back(MI);
+  MI->eraseFromParent();
+  if (PossiblyDead)
+    RecursivelyDeleteTriviallyDeadInstructions(PossiblyDead);
 }
 
 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
@@ -973,9 +937,15 @@
   // Extract each element out of the integer according to its structure offset
   // and store the element value to the individual alloca.
   Value *SrcVal = SI->getOperand(0);
-  const Type *AllocaEltTy = AI->getAllocatedType();
+  const Type *AllocaEltTy = AI->getType()->getElementType();
   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   
+  // If this isn't a store of an integer to the whole alloca, it may be a store
+  // to the first element.  Just ignore the store in this case and normal SROA
+  // will handle it.
+  if (!isa<IntegerType>(SrcVal->getType()) ||
+      TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
+    return;
   // Handle tail padding by extending the operand
   if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
     SrcVal = new ZExtInst(SrcVal,
@@ -1080,7 +1050,7 @@
     }
   }
   
-  DeadInsts.push_back(SI);
+  SI->eraseFromParent();
 }
 
 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
@@ -1089,9 +1059,16 @@
                                         SmallVector<AllocaInst*, 32> &NewElts) {
   // Extract each element out of the NewElts according to its structure offset
   // and form the result value.
-  const Type *AllocaEltTy = AI->getAllocatedType();
+  const Type *AllocaEltTy = AI->getType()->getElementType();
   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   
+  // If this isn't a load of the whole alloca to an integer, it may be a load
+  // of the first element.  Just ignore the load in this case and normal SROA
+  // will handle it.
+  if (!isa<IntegerType>(LI->getType()) ||
+      TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
+    return;
+  
   DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
                << '\n');
   
@@ -1162,9 +1139,10 @@
     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
 
   LI->replaceAllUsesWith(ResultVal);
-  DeadInsts.push_back(LI);
+  LI->eraseFromParent();
 }
 
+
 /// HasPadding - Return true if the specified type has any structure or
 /// alignment padding, false otherwise.
 static bool HasPadding(const Type *Ty, const TargetData &TD) {
@@ -1214,10 +1192,14 @@
   // the users are safe to transform.
   AllocaInfo Info;
   
-  isSafeForScalarRepl(AI, AI, 0, 0, Info);
-  if (Info.isUnsafe) {
-    DEBUG(errs() << "Cannot transform: " << *AI << '\n');
-    return 0;
+  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
+       I != E; ++I) {
+    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
+    if (Info.isUnsafe) {
+      DEBUG(errs() << "Cannot transform: " << *AI << "\n  due to user: "
+                   << **I << '\n');
+      return 0;
+    }
   }
   
   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
@@ -1226,7 +1208,7 @@
   // types, but may actually be used.  In these cases, we refuse to promote the
   // struct.
   if (Info.isMemCpySrc && Info.isMemCpyDst &&
-      HasPadding(AI->getAllocatedType(), *TD))
+      HasPadding(AI->getType()->getElementType(), *TD))
     return 0;
 
   // If we require cleanup, return 1, otherwise return 3.
@@ -1263,15 +1245,15 @@
   // Insert the new GEP instructions, which are properly indexed.
   SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
   Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
-  Value *ZeroIdx = GetElementPtrInst::CreateInBounds(GEPI->getOperand(0),
-                                                     Indices.begin(),
-                                                     Indices.end(),
-                                                     GEPI->getName()+".0",GEPI);
+  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
+                                             Indices.begin(),
+                                             Indices.end(),
+                                             GEPI->getName()+".0", GEPI);
   Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
-  Value *OneIdx = GetElementPtrInst::CreateInBounds(GEPI->getOperand(0),
-                                                    Indices.begin(),
-                                                    Indices.end(),
-                                                    GEPI->getName()+".1", GEPI);
+  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
+                                            Indices.begin(),
+                                            Indices.end(),
+                                            GEPI->getName()+".1", GEPI);
   // Replace all loads of the variable index GEP with loads from both
   // indexes and a select.
   while (!GEPI->use_empty()) {
@@ -1282,24 +1264,22 @@
     LI->replaceAllUsesWith(R);
     LI->eraseFromParent();
   }
+  GEPI->eraseFromParent();
 }
 
+
 /// CleanupAllocaUsers - If SROA reported that it can promote the specified
 /// allocation, but only if cleaned up, perform the cleanups required.
-void SROA::CleanupAllocaUsers(Value *V) {
+void SROA::CleanupAllocaUsers(AllocaInst *AI) {
   // At this point, we know that the end result will be SROA'd and promoted, so
   // we can insert ugly code if required so long as sroa+mem2reg will clean it
   // up.
-  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
+  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
        UI != E; ) {
     User *U = *UI++;
-    if (isa<BitCastInst>(U)) {
-      CleanupAllocaUsers(U);
-    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
+    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
       CleanupGEP(GEPI);
-      CleanupAllocaUsers(GEPI);
-      if (GEPI->use_empty()) GEPI->eraseFromParent();
-    } else {
+    else {
       Instruction *I = cast<Instruction>(U);
       SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
       if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
@@ -1415,7 +1395,7 @@
       
       // Compute the offset that this GEP adds to the pointer.
       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
-      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
+      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
                                                 &Indices[0], Indices.size());
       // See if all uses can be converted.
       if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
@@ -1477,7 +1457,7 @@
     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
       // Compute the offset that this GEP adds to the pointer.
       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
-      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
+      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
                                                 &Indices[0], Indices.size());
       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
       GEP->eraseFromParent();

Removed: llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll?rev=91607&view=auto

==============================================================================
--- llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll (original)
+++ llvm/branches/Apple/Zoidberg/test/Transforms/ScalarRepl/2009-12-11-NeonTypes.ll (removed)
@@ -1,89 +0,0 @@
-; RUN: opt < %s -scalarrepl -S | FileCheck %s
-; Radar 7441282
-
-target datalayout = "e-p:32:32:32-i1:8:32-i8:8:32-i16:16:32-i32:32:32-i64:32:32-f32:32:32-f64:32:32-v64:64:64-v128:128:128-a0:0:32-n32"
-target triple = "thumbv7-apple-darwin10"
-
-%struct.__neon_int16x8x2_t = type { <8 x i16>, <8 x i16> }
-%struct.int16x8_t = type { <8 x i16> }
-%struct.int16x8x2_t = type { [2 x %struct.int16x8_t] }
-%union..0anon = type { %struct.int16x8x2_t }
-
-define arm_apcscc void @test(<8 x i16> %tmp.0, %struct.int16x8x2_t* %dst) nounwind {
-; CHECK: @test
-; CHECK-NOT: alloca
-; CHECK: "alloca point"
-entry:
-  %tmp_addr = alloca %struct.int16x8_t            ; <%struct.int16x8_t*> [#uses=3]
-  %dst_addr = alloca %struct.int16x8x2_t*         ; <%struct.int16x8x2_t**> [#uses=2]
-  %__rv = alloca %union..0anon                    ; <%union..0anon*> [#uses=2]
-  %__bx = alloca %struct.int16x8_t                ; <%struct.int16x8_t*> [#uses=2]
-  %__ax = alloca %struct.int16x8_t                ; <%struct.int16x8_t*> [#uses=2]
-  %tmp2 = alloca %struct.int16x8x2_t              ; <%struct.int16x8x2_t*> [#uses=2]
-  %0 = alloca %struct.int16x8x2_t                 ; <%struct.int16x8x2_t*> [#uses=2]
-  %"alloca point" = bitcast i32 0 to i32          ; <i32> [#uses=0]
-  %1 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
-  store <8 x i16> %tmp.0, <8 x i16>* %1
-  store %struct.int16x8x2_t* %dst, %struct.int16x8x2_t** %dst_addr
-  %2 = getelementptr inbounds %struct.int16x8_t* %__ax, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
-  %3 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
-  %4 = load <8 x i16>* %3, align 16               ; <<8 x i16>> [#uses=1]
-  store <8 x i16> %4, <8 x i16>* %2, align 16
-  %5 = getelementptr inbounds %struct.int16x8_t* %__bx, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
-  %6 = getelementptr inbounds %struct.int16x8_t* %tmp_addr, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
-  %7 = load <8 x i16>* %6, align 16               ; <<8 x i16>> [#uses=1]
-  store <8 x i16> %7, <8 x i16>* %5, align 16
-  %8 = getelementptr inbounds %struct.int16x8_t* %__ax, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
-  %9 = load <8 x i16>* %8, align 16               ; <<8 x i16>> [#uses=2]
-  %10 = getelementptr inbounds %struct.int16x8_t* %__bx, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
-  %11 = load <8 x i16>* %10, align 16             ; <<8 x i16>> [#uses=2]
-  %12 = getelementptr inbounds %union..0anon* %__rv, i32 0, i32 0 ; <%struct.int16x8x2_t*> [#uses=1]
-  %13 = bitcast %struct.int16x8x2_t* %12 to %struct.__neon_int16x8x2_t* ; <%struct.__neon_int16x8x2_t*> [#uses=2]
-  %14 = shufflevector <8 x i16> %9, <8 x i16> %11, <8 x i32> <i32 0, i32 8, i32 2, i32 10, i32 4, i32 12, i32 6, i32 14> ; <<8 x i16>> [#uses=1]
-  %15 = getelementptr inbounds %struct.__neon_int16x8x2_t* %13, i32 0, i32 0 ; <<8 x i16>*> [#uses=1]
-  store <8 x i16> %14, <8 x i16>* %15
-  %16 = shufflevector <8 x i16> %9, <8 x i16> %11, <8 x i32> <i32 1, i32 9, i32 3, i32 11, i32 5, i32 13, i32 7, i32 15> ; <<8 x i16>> [#uses=1]
-  %17 = getelementptr inbounds %struct.__neon_int16x8x2_t* %13, i32 0, i32 1 ; <<8 x i16>*> [#uses=1]
-  store <8 x i16> %16, <8 x i16>* %17
-  %18 = getelementptr inbounds %union..0anon* %__rv, i32 0, i32 0 ; <%struct.int16x8x2_t*> [#uses=1]
-  %19 = bitcast %struct.int16x8x2_t* %0 to i8*    ; <i8*> [#uses=1]
-  %20 = bitcast %struct.int16x8x2_t* %18 to i8*   ; <i8*> [#uses=1]
-  call void @llvm.memcpy.i32(i8* %19, i8* %20, i32 32, i32 16)
-  %tmp21 = bitcast %struct.int16x8x2_t* %tmp2 to i8* ; <i8*> [#uses=1]
-  %21 = bitcast %struct.int16x8x2_t* %0 to i8*    ; <i8*> [#uses=1]
-  call void @llvm.memcpy.i32(i8* %tmp21, i8* %21, i32 32, i32 16)
-  %22 = load %struct.int16x8x2_t** %dst_addr, align 4 ; <%struct.int16x8x2_t*> [#uses=1]
-  %23 = bitcast %struct.int16x8x2_t* %22 to i8*   ; <i8*> [#uses=1]
-  %tmp22 = bitcast %struct.int16x8x2_t* %tmp2 to i8* ; <i8*> [#uses=1]
-  call void @llvm.memcpy.i32(i8* %23, i8* %tmp22, i32 32, i32 16)
-  br label %return
-
-; CHECK: store <8 x i16>
-; CHECK: store <8 x i16>
-
-return:                                           ; preds = %entry
-  ret void
-}
-
-; Radar 7466574
-%struct._NSRange = type { i64 }
-
-define arm_apcscc void @test_memcpy_self() nounwind {
-; CHECK: @test_memcpy_self
-; CHECK-NOT: alloca
-; CHECK: br i1
-entry:
-  %range = alloca %struct._NSRange                ; <%struct._NSRange*> [#uses=2]
-  br i1 undef, label %cond.true, label %cond.false
-
-cond.true:                                        ; preds = %entry
-  %tmp3 = bitcast %struct._NSRange* %range to i8* ; <i8*> [#uses=1]
-  %tmp4 = bitcast %struct._NSRange* %range to i8* ; <i8*> [#uses=1]
-  call void @llvm.memcpy.i32(i8* %tmp3, i8* %tmp4, i32 8, i32 8)
-  ret void
-
-cond.false:                                       ; preds = %entry
-  ret void
-}
-
-declare void @llvm.memcpy.i32(i8* nocapture, i8* nocapture, i32, i32) nounwind





More information about the llvm-branch-commits mailing list