[libcxx-commits] [libcxx] [libc++][math] Mathematical Special Functions: Hermite Polynomial (PR #89982)

via libcxx-commits libcxx-commits at lists.llvm.org
Wed May 8 14:56:51 PDT 2024


================
@@ -0,0 +1,333 @@
+//===----------------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+// UNSUPPORTED: c++03, c++11, c++14
+
+// <cmath>
+
+// double         hermite(unsigned n, double x);
+// float          hermite(unsigned n, float x);
+// long double    hermite(unsigned n, long double x);
+// float          hermitef(unsigned n, float x);
+// long double    hermitel(unsigned n, long double x);
+// template <class Integer>
+// double         hermite(unsigned n, Integer x);
+
+#include <array>
+#include <cassert>
+#include <cmath>
+#include <limits>
+#include <vector>
+
+#include "type_algorithms.h"
+
+inline constexpr unsigned g_max_n = 128;
+
+template <class T>
+std::array<T, 11> sample_points() {
+  return {-12.34, -7.42, -1.0, -0.5, -0.1, 0.0, 0.1, 0.5, 1.0, 5.67, 15.67};
+}
+
+template <class Real>
+class CompareFloatingValues {
+private:
+  Real abs_tol;
+  Real rel_tol;
+
+public:
+  CompareFloatingValues() {
+    abs_tol = []() -> Real {
+      if (std::is_same_v<Real, float>)
+        return 1e-5f;
+      else if (std::is_same_v<Real, double>)
+        return 1e-11;
+      else
+        return 1e-12l;
+    }();
+
+    rel_tol = abs_tol;
+  }
+
+  bool operator()(Real result, Real expected) const {
+    if (std::isinf(expected) && std::isinf(result))
+      return result == expected;
+
+    if (std::isnan(expected) || std::isnan(result))
+      return false;
+
+    Real tol = abs_tol + std::abs(expected) * rel_tol;
+    return std::abs(result - expected) < tol;
+  }
+};
+
+// Roots are taken from
+// Salzer, Herbert E., Ruth Zucker, and Ruth Capuano.
+// Table of the zeros and weight factors of the first twenty Hermite
+// polynomials. US Government Printing Office, 1952.
+template <class T>
+std::vector<T> get_roots(unsigned n) {
+  switch (n) {
+  case 0:
+    return {};
+  case 1:
+    return {T(0)};
+  case 2:
+    return {T(0.707106781186548)};
+  case 3:
+    return {T(0), T(1.224744871391589)};
+  case 4:
+    return {T(0.524647623275290), T(1.650680123885785)};
+  case 5:
+    return {T(0), T(0.958572464613819), T(2.020182870456086)};
+  case 6:
+    return {T(0.436077411927617), T(1.335849074013697), T(2.350604973674492)};
+  case 7:
+    return {T(0), T(0.816287882858965), T(1.673551628767471), T(2.651961356835233)};
+  case 8:
+    return {T(0.381186990207322), T(1.157193712446780), T(1.981656756695843), T(2.930637420257244)};
+  case 9:
+    return {T(0), T(0.723551018752838), T(1.468553289216668), T(2.266580584531843), T(3.190993201781528)};
+  case 10:
+    return {
+        T(0.342901327223705), T(1.036610829789514), T(1.756683649299882), T(2.532731674232790), T(3.436159118837738)};
+  case 11:
+    return {T(0),
+            T(0.65680956682100),
+            T(1.326557084494933),
+            T(2.025948015825755),
+            T(2.783290099781652),
+            T(3.668470846559583)};
+
+  case 12:
+    return {T(0.314240376254359),
+            T(0.947788391240164),
+            T(1.597682635152605),
+            T(2.279507080501060),
+            T(3.020637025120890),
+            T(3.889724897869782)};
+
+  case 13:
+    return {T(0),
+            T(0.605763879171060),
+            T(1.220055036590748),
+            T(1.853107651601512),
+            T(2.519735685678238),
+            T(3.246608978372410),
+            T(4.101337596178640)};
+
+  case 14:
+    return {T(0.29174551067256),
+            T(0.87871378732940),
+            T(1.47668273114114),
+            T(2.09518325850772),
+            T(2.74847072498540),
+            T(3.46265693360227),
+            T(4.30444857047363)};
+
+  case 15:
+    return {T(0.00000000000000),
+            T(0.56506958325558),
+            T(1.13611558521092),
+            T(1.71999257518649),
+            T(2.32573248617386),
+            T(2.96716692790560),
+            T(3.66995037340445),
+            T(4.49999070730939)};
+
+  case 16:
+    return {T(0.27348104613815),
+            T(0.82295144914466),
+            T(1.38025853919888),
+            T(1.95178799091625),
+            T(2.54620215784748),
+            T(3.17699916197996),
+            T(3.86944790486012),
+            T(4.68873893930582)};
+
+  case 17:
+    return {T(0),
+            T(0.5316330013427),
+            T(1.0676487257435),
+            T(1.6129243142212),
+            T(2.1735028266666),
+            T(2.7577629157039),
+            T(3.3789320911415),
+            T(4.0619466758755),
+            T(4.8713451936744)};
+
+  case 18:
+    return {T(0.2582677505191),
+            T(0.7766829192674),
+            T(1.3009208583896),
+            T(1.8355316042616),
+            T(2.3862990891667),
+            T(2.9613775055316),
+            T(3.5737690684863),
+            T(4.2481178735681),
+            T(5.0483640088745)};
+
+  case 19:
+    return {T(0),
+            T(0.5035201634239),
+            T(1.0103683871343),
+            T(1.5241706193935),
+            T(2.0492317098506),
+            T(2.5911337897945),
+            T(3.1578488183476),
+            T(3.7621873519640),
+            T(4.4285328066038),
+            T(5.2202716905375)};
+
+  case 20:
+    return {T(0.2453407083009),
+            T(0.7374737285454),
+            T(1.2340762153953),
+            T(1.7385377121166),
+            T(2.2549740020893),
+            T(2.7888060584281),
+            T(3.347854567332),
+            T(3.9447640401156),
+            T(4.6036824495507),
+            T(5.3874808900112)};
+
+  default:
+    assert(false);
+  }
+}
+
+template <class Real>
+void test() {
+  { // checks if NaNs are reported correctly (i.e. output == input for input == NaN)
+    using nl = std::numeric_limits<Real>;
+    for (Real NaN : {nl::quiet_NaN(), nl::signaling_NaN()})
+      for (unsigned n = 0; n < g_max_n; ++n)
+        assert(std::isnan(std::hermite(n, NaN)));
+  }
+
+  { // simple sample points for n=0..127 should not produce NaNs.
+    for (Real x : sample_points<Real>())
+      for (unsigned n = 0; n < g_max_n; ++n)
+        assert(!std::isnan(std::hermite(n, x)));
+  }
+
+  { // checks std::hermite(n, x) for n=0..5 against analytic polynoms
+    const auto h0 = [](Real) -> Real { return 1; };
+    const auto h1 = [](Real y) -> Real { return 2 * y; };
+    const auto h2 = [](Real y) -> Real { return 4 * y * y - 2; };
+    const auto h3 = [](Real y) -> Real { return y * (8 * y * y - 12); };
+    const auto h4 = [](Real y) -> Real { return (16 * std::pow(y, 4) - 48 * y * y + 12); };
+    const auto h5 = [](Real y) -> Real { return y * (32 * std::pow(y, 4) - 160 * y * y + 120); };
+
+    for (Real x : sample_points<Real>()) {
+      const CompareFloatingValues<Real> compare;
+      assert(compare(std::hermite(0, x), h0(x)));
+      assert(compare(std::hermite(1, x), h1(x)));
+      assert(compare(std::hermite(2, x), h2(x)));
+      assert(compare(std::hermite(3, x), h3(x)));
+      assert(compare(std::hermite(4, x), h4(x)));
+      assert(compare(std::hermite(5, x), h5(x)));
+    }
+  }
+
+  { // checks std::hermitef for bitwise equality with std::hermite(unsigned, float)
+    if constexpr (std::is_same_v<Real, float>)
+      for (unsigned n = 0; n < g_max_n; ++n)
+        for (float x : sample_points<float>())
+          assert(std::hermite(n, x) == std::hermitef(n, x));
+  }
+
+  { // checks std::hermitel for bitwise equality with std::hermite(unsigned, long double)
+    if constexpr (std::is_same_v<Real, long double>)
+      for (unsigned n = 0; n < g_max_n; ++n)
+        for (long double x : sample_points<long double>())
+          assert(std::hermite(n, x) == std::hermitel(n, x));
+  }
+
+  { // Checks if the characteristic recurrence relation holds:    H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)
+    for (Real x : sample_points<Real>()) {
+      for (unsigned n = 1; n < g_max_n - 1; ++n) {
+        Real H_next            = std::hermite(n + 1, x);
+        Real H_next_recurrence = 2 * (x * std::hermite(n, x) - n * std::hermite(n - 1, x));
+
+        if (std::isinf(H_next))
+          break;
+        const CompareFloatingValues<Real> compare;
+        assert(compare(H_next, H_next_recurrence));
+      }
+    }
+  }
+
+  { // sanity checks: hermite polynoms need to change signs at (simple) roots. checked upto order n<=20.
+
+    // root tolerance: must be smaller than the smallest difference between adjacent roots
+    Real tol = []() -> Real {
+      if (std::is_same_v<Real, float>)
+        return 1e-5f;
+      else if (std::is_same_v<Real, double>)
+        return 1e-9;
+      else
+        return 1e-10l;
+    }();
+
+    const auto is_sign_change = [tol](unsigned n, Real x) -> bool {
+      return std::hermite(n, x - tol) * std::hermite(n, x + tol) < 0;
+    };
+
+    for (unsigned n = 0; n <= 20u; ++n) {
+      for (Real x : get_roots<Real>(n)) {
+        // the roots are symmetric: if x is a root, so is -x
+        if (x > 0)
+          assert(is_sign_change(n, -x));
+        assert(is_sign_change(n, x));
+      }
+    }
+  }
+
+  { // check input infinity is handled correctly
+    Real inf = std::numeric_limits<Real>::infinity();
----------------
PaulXiCao wrote:

Implemented in 55ec209c8a261e8a48cbefc7a63e0ca776905b90. This contains only tests for `T=double`. It is dependent on the size of the type. `long double` can be different on other platforms which would result in quite messy test code. Let me know if I should generalize this test some more.

https://github.com/llvm/llvm-project/pull/89982


More information about the libcxx-commits mailing list