[libcxx-commits] [libcxx] [libc++][math] Mathematical Special Functions: Hermite Polynomial (PR #89982)
Nikolas Klauser via libcxx-commits
libcxx-commits at lists.llvm.org
Tue Apr 30 11:00:38 PDT 2024
================
@@ -0,0 +1,310 @@
+//===----------------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+// UNSUPPORTED: c++03, c++11, c++14
+
+#include <cassert>
+#include <cmath>
+#include <limits>
+#include <vector>
+#include <array>
+
+#include <assert_macros.h>
+
+namespace {
+
+inline constexpr unsigned MAX_N = 128;
+
+template <class T>
+std::array<T, 7> sample_points() {
+ return {-1.0, -0.5, -0.1, 0.0, 0.1, 0.5, 1.0};
+}
+
+template <class T>
+void test_NaN_propagation() {
+ T NaN = std::numeric_limits<T>::quiet_NaN();
+ for (unsigned n = 0; n < MAX_N; ++n)
+ assert(std::isnan(std::hermite(n, NaN)));
+}
+
+template <class T>
+void test_not_NaN(T x) {
+ assert(!std::isnan(x));
+ for (unsigned n = 0; n < MAX_N; ++n)
+ assert(!std::isnan(std::hermite(n, x)));
+}
+
+template <class T>
+struct CompareFloatingValues {
+ T abs_tol;
+ T rel_tol;
+
+ bool operator()(T result, T expected) const {
+ if (std::isinf(expected) && std::isinf(result))
+ return true;
+
+ if (std::isnan(expected) || std::isnan(result))
+ return false;
+
+ T tol = abs_tol + std::abs(expected) * rel_tol;
+ return std::abs(result - expected) < tol;
+ }
+};
+
+template <class T>
+void test_analytic_solution(T x, T abs_tol, T rel_tol) {
+ assert(!std::isnan(x));
+
+ const auto h0 = [](T) -> T { return 1; };
+ const auto h1 = [](T y) -> T { return 2 * y; };
+ const auto h2 = [](T y) -> T { return 4 * y * y - 2; };
+ const auto h3 = [](T y) -> T { return y * (8 * y * y - 12); };
+ const auto h4 = [](T y) -> T { return (16 * std::pow(y, 4) - 48 * y * y + 12); };
+ const auto h5 = [](T y) -> T { return y * (32 * std::pow(y, 4) - 160 * y * y + 120); };
+
+ const CompareFloatingValues<T> compare{.abs_tol = abs_tol, .rel_tol = rel_tol};
+ assert(compare(std::hermite(0, x), h0(x)));
+ assert(compare(std::hermite(1, x), h1(x)));
+ assert(compare(std::hermite(2, x), h2(x)));
+ assert(compare(std::hermite(3, x), h3(x)));
+ assert(compare(std::hermite(4, x), h4(x)));
+ assert(compare(std::hermite(5, x), h5(x)));
+}
+
+/// \details This method checks if the following recurrence relation holds:
+/// \f[
+/// H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)
+/// \f]
+template <class T>
+void test_recurrence_relation(T x, T abs_tol, T rel_tol) {
+ assert(!std::isnan(x));
+
+ const CompareFloatingValues<T> compare{.abs_tol = abs_tol, .rel_tol = rel_tol};
+ for (unsigned n = 1; n < MAX_N - 1; ++n) {
+ T H_next = std::hermite(n + 1, x);
+ T H_next_recurrence = 2 * (x * std::hermite(n, x) - n * std::hermite(n - 1, x));
+
+ if (std::isinf(H_next))
+ break;
+ assert(compare(H_next, H_next_recurrence));
+ }
+}
+
+template <class T>
+void test_recurrence_relation(T abs_tol, T rel_tol) {
+ for (T x : sample_points<T>())
+ test_recurrence_relation(x, abs_tol, rel_tol);
+}
+
+/// \note Roots are taken from
+/// Salzer, Herbert E., Ruth Zucker, and Ruth Capuano.
+/// Table of the zeros and weight factors of the first twenty Hermite
+/// polynomials. US Government Printing Office, 1952.
+template <class T>
+std::vector<T> get_roots(unsigned n) {
+ switch (n) {
+ case 0:
+ return {};
+ case 1:
+ return {T(0)};
+ case 2:
+ return {T(0.707106781186548)};
+ case 3:
+ return {T(0), T(1.224744871391589)};
+ case 4:
+ return {T(0.524647623275290), T(1.650680123885785)};
+ case 5:
+ return {T(0), T(0.958572464613819), T(2.020182870456086)};
+ case 6:
+ return {T(0.436077411927617), T(1.335849074013697), T(2.350604973674492)};
+ case 7:
+ return {T(0), T(0.816287882858965), T(1.673551628767471), T(2.651961356835233)};
+ case 8:
+ return {T(0.381186990207322), T(1.157193712446780), T(1.981656756695843), T(2.930637420257244)};
+ case 9:
+ return {T(0), T(0.723551018752838), T(1.468553289216668), T(2.266580584531843), T(3.190993201781528)};
+ case 10:
+ return {
+ T(0.342901327223705), T(1.036610829789514), T(1.756683649299882), T(2.532731674232790), T(3.436159118837738)};
+ case 11:
+ return {T(0),
+ T(0.65680956682100),
+ T(1.326557084494933),
+ T(2.025948015825755),
+ T(2.783290099781652),
+ T(3.668470846559583)};
+
+ case 12:
+ return {T(0.314240376254359),
+ T(0.947788391240164),
+ T(1.597682635152605),
+ T(2.279507080501060),
+ T(3.020637025120890),
+ T(3.889724897869782)};
+
+ case 13:
+ return {T(0),
+ T(0.605763879171060),
+ T(1.220055036590748),
+ T(1.853107651601512),
+ T(2.519735685678238),
+ T(3.246608978372410),
+ T(4.101337596178640)};
+
+ case 14:
+ return {T(0.29174551067256),
+ T(0.87871378732940),
+ T(1.47668273114114),
+ T(2.09518325850772),
+ T(2.74847072498540),
+ T(3.46265693360227),
+ T(4.30444857047363)};
+
+ case 15:
+ return {T(0.00000000000000),
+ T(0.56506958325558),
+ T(1.13611558521092),
+ T(1.71999257518649),
+ T(2.32573248617386),
+ T(2.96716692790560),
+ T(3.66995037340445),
+ T(4.49999070730939)};
+
+ case 16:
+ return {T(0.27348104613815),
+ T(0.82295144914466),
+ T(1.38025853919888),
+ T(1.95178799091625),
+ T(2.54620215784748),
+ T(3.17699916197996),
+ T(3.86944790486012),
+ T(4.68873893930582)};
+
+ case 17:
+ return {T(0),
+ T(0.5316330013427),
+ T(1.0676487257435),
+ T(1.6129243142212),
+ T(2.1735028266666),
+ T(2.7577629157039),
+ T(3.3789320911415),
+ T(4.0619466758755),
+ T(4.8713451936744)};
+
+ case 18:
+ return {T(0.2582677505191),
+ T(0.7766829192674),
+ T(1.3009208583896),
+ T(1.8355316042616),
+ T(2.3862990891667),
+ T(2.9613775055316),
+ T(3.5737690684863),
+ T(4.2481178735681),
+ T(5.0483640088745)};
+
+ case 19:
+ return {T(0),
+ T(0.5035201634239),
+ T(1.0103683871343),
+ T(1.5241706193935),
+ T(2.0492317098506),
+ T(2.5911337897945),
+ T(3.1578488183476),
+ T(3.7621873519640),
+ T(4.4285328066038),
+ T(5.2202716905375)};
+
+ case 20:
+ return {T(0.2453407083009),
+ T(0.7374737285454),
+ T(1.2340762153953),
+ T(1.7385377121166),
+ T(2.2549740020893),
+ T(2.7888060584281),
+ T(3.347854567332),
+ T(3.9447640401156),
+ T(4.6036824495507),
+ T(5.3874808900112)};
+
+ default:
+ throw "Roots of Hermite polynomial of order " + std::to_string(n) + " not implemented!\n";
+ }
+}
+
+/// \param [in] Tolerance of the root. This value must be smaller than
+/// the smallest difference between adjacent roots in the given range
+/// with n <= 20.
+template <class T>
+void test_roots(T Tolerance) {
+ const auto is_sign_change = [Tolerance](unsigned n, T x) -> bool {
+ return std::hermite(n, x - Tolerance) * std::hermite(n, x + Tolerance) < 0;
+ };
+
+ for (unsigned n = 0; n <= 20u; ++n) {
+ for (T x : get_roots<T>(n)) {
+ // the roots are symmetric: if x is a root, so is -x
+ if (x > 0)
+ assert(is_sign_change(n, -x));
+ assert(is_sign_change(n, x));
+ }
+ }
+}
+
+template <class T>
+void test_hermite(T abs_tol, T rel_tol) {
+ test_NaN_propagation<T>();
+
+ for (T x : sample_points<T>()) {
+ test_not_NaN(x);
+ test_analytic_solution(x, abs_tol, rel_tol);
+ }
+}
+
+template <class Integer>
+void test_integers() {
+ for (unsigned n = 0; n < MAX_N; ++n)
+ for (Integer x : {-1, 0, 1})
+ assert(std::hermite(n, x) == std::hermite(n, static_cast<double>(x)));
+}
+
+void test_hermitef() {
+ for (unsigned n = 0; n < MAX_N; ++n)
+ for (float x : sample_points<float>())
+ assert(std::hermite(n, x) == std::hermitef(n, x));
+}
+
+void test_hermitel() {
+ for (unsigned n = 0; n < MAX_N; ++n)
+ for (long double x : sample_points<long double>())
+ assert(std::hermite(n, x) == std::hermitel(n, x));
+}
+} // namespace
+
+int main(int, char**) {
+ test_hermite<float>(1e-5f, 1e-5f);
----------------
philnik777 wrote:
yes, exactly
https://github.com/llvm/llvm-project/pull/89982
More information about the libcxx-commits
mailing list