[Libclc-dev] [PATCH] math: Add erf ported from amd-builtins

Jan Vesely via Libclc-dev libclc-dev at lists.llvm.org
Wed May 4 15:08:28 PDT 2016


On Tue, 2016-05-03 at 01:40 +0200, Vedran Miletić via Libclc-dev wrote:
> Trying without attaching...

gmail wrapped the lines in your patch so it fails to apply. if you used
git then git format-patch and git send-email are your friends.

LGTM, passes piglit test on AMD Turks and Kaveri.

do you need somebody to push it for you?

Jan

> 
> The port is straight from amd-builtins, analogous to erfc. Just like
> in
> sinpi, the 32-bit float variant had optional code relying on
> subnormals
> which was removed during porting.
> 
> diff --git a/generic/include/clc/clc.h b/generic/include/clc/clc.h
> index b106923..f53fb7d 100644
> --- a/generic/include/clc/clc.h
> +++ b/generic/include/clc/clc.h
> @@ -47,6 +47,7 @@
>  #include <clc/math/cos.h>
>  #include <clc/math/cospi.h>
>  #include <clc/math/ceil.h>
> +#include <clc/math/erf.h>
>  #include <clc/math/erfc.h>
>  #include <clc/math/exp.h>
>  #include <clc/math/exp10.h>
> diff --git a/generic/include/clc/math/erf.h
> b/generic/include/clc/math/erf.h
> new file mode 100644
> index 0000000..1aaf689
> --- /dev/null
> +++ b/generic/include/clc/math/erf.h
> @@ -0,0 +1,9 @@
> +#undef erfc
> +
> +#define __CLC_BODY <clc/math/unary_decl.inc>
> +#define __CLC_FUNCTION erf
> +
> +#include <clc/math/gentype.inc>
> +
> +#undef __CLC_BODY
> +#undef __CLC_FUNCTION
> diff --git a/generic/lib/SOURCES b/generic/lib/SOURCES
> index facb58b..70dff05 100644
> --- a/generic/lib/SOURCES
> +++ b/generic/lib/SOURCES
> @@ -77,6 +77,7 @@ math/copysign.cl
>  math/cos.cl
>  math/cospi.cl
>  math/ep_log.cl
> +math/erf.cl
>  math/erfc.cl
>  math/exp.cl
>  math/exp_helper.cl
> diff --git a/generic/lib/math/erf.cl b/generic/lib/math/erf.cl
> new file mode 100644
> index 0000000..3dc82d9
> --- /dev/null
> +++ b/generic/lib/math/erf.cl
> @@ -0,0 +1,402 @@
> +/*
> + * Copyright (c) 2014 Advanced Micro Devices, Inc.
> + *
> + * Permission is hereby granted, free of charge, to any person
> obtaining a copy
> + * of this software and associated documentation files (the
> "Software"), to deal
> + * in the Software without restriction, including without limitation
> the rights
> + * to use, copy, modify, merge, publish, distribute, sublicense,
> and/or sell
> + * copies of the Software, and to permit persons to whom the
> Software is
> + * furnished to do so, subject to the following conditions:
> + *
> + * The above copyright notice and this permission notice shall be
> included in
> + * all copies or substantial portions of the Software.
> + *
> + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
> EXPRESS OR
> + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
> MERCHANTABILITY,
> + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
> SHALL THE
> + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
> OTHER
> + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
> ARISING FROM,
> + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
> DEALINGS IN
> + * THE SOFTWARE.
> + */
> +
> +#include <clc/clc.h>
> +
> +#include "math.h"
> +#include "../clcmacro.h"
> +
> +/*
> + * ====================================================
> + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
> + *
> + * Developed at SunPro, a Sun Microsystems, Inc. business.
> + * Permission to use, copy, modify, and distribute this
> + * software is freely granted, provided that this notice
> + * is preserved.
> + * ====================================================
> +*/
> +
> +#define erx   8.4506291151e-01f        /* 0x3f58560b */
> +
> +// Coefficients for approximation to  erf on [00.84375]
> +
> +#define efx   1.2837916613e-01f        /* 0x3e0375d4 */
> +#define efx8  1.0270333290e+00f        /* 0x3f8375d4 */
> +
> +#define pp0   1.2837916613e-01f        /* 0x3e0375d4 */
> +#define pp1  -3.2504209876e-01f        /* 0xbea66beb */
> +#define pp2  -2.8481749818e-02f        /* 0xbce9528f */
> +#define pp3  -5.7702702470e-03f        /* 0xbbbd1489 */
> +#define pp4  -2.3763017452e-05f        /* 0xb7c756b1 */
> +#define qq1   3.9791721106e-01f        /* 0x3ecbbbce */
> +#define qq2   6.5022252500e-02f        /* 0x3d852a63 */
> +#define qq3   5.0813062117e-03f        /* 0x3ba68116 */
> +#define qq4   1.3249473704e-04f        /* 0x390aee49 */
> +#define qq5  -3.9602282413e-06f        /* 0xb684e21a */
> +
> +// Coefficients for approximation to  erf  in [0.843751.25]
> +
> +#define pa0  -2.3621185683e-03f        /* 0xbb1acdc6 */
> +#define pa1   4.1485610604e-01f        /* 0x3ed46805 */
> +#define pa2  -3.7220788002e-01f        /* 0xbebe9208 */
> +#define pa3   3.1834661961e-01f        /* 0x3ea2fe54 */
> +#define pa4  -1.1089469492e-01f        /* 0xbde31cc2 */
> +#define pa5   3.5478305072e-02f        /* 0x3d1151b3 */
> +#define pa6  -2.1663755178e-03f        /* 0xbb0df9c0 */
> +#define qa1   1.0642088205e-01f        /* 0x3dd9f331 */
> +#define qa2   5.4039794207e-01f        /* 0x3f0a5785 */
> +#define qa3   7.1828655899e-02f        /* 0x3d931ae7 */
> +#define qa4   1.2617121637e-01f        /* 0x3e013307 */
> +#define qa5   1.3637083583e-02f        /* 0x3c5f6e13 */
> +#define qa6   1.1984500103e-02f        /* 0x3c445aa3 */
> +
> +// Coefficients for approximation to  erfc in [1.251/0.35]
> +
> +#define ra0  -9.8649440333e-03f        /* 0xbc21a093 */
> +#define ra1  -6.9385856390e-01f        /* 0xbf31a0b7 */
> +#define ra2  -1.0558626175e+01f        /* 0xc128f022 */
> +#define ra3  -6.2375331879e+01f        /* 0xc2798057 */
> +#define ra4  -1.6239666748e+02f        /* 0xc322658c */
> +#define ra5  -1.8460508728e+02f        /* 0xc3389ae7 */
> +#define ra6  -8.1287437439e+01f        /* 0xc2a2932b */
> +#define ra7  -9.8143291473e+00f        /* 0xc11d077e */
> +#define sa1   1.9651271820e+01f        /* 0x419d35ce */
> +#define sa2   1.3765776062e+02f        /* 0x4309a863 */
> +#define sa3   4.3456588745e+02f        /* 0x43d9486f */
> +#define sa4   6.4538726807e+02f        /* 0x442158c9 */
> +#define sa5   4.2900814819e+02f        /* 0x43d6810b */
> +#define sa6   1.0863500214e+02f        /* 0x42d9451f */
> +#define sa7   6.5702495575e+00f        /* 0x40d23f7c */
> +#define sa8  -6.0424413532e-02f        /* 0xbd777f97 */
> +
> +// Coefficients for approximation to  erfc in [1/.3528]
> +
> +#define rb0  -9.8649431020e-03f        /* 0xbc21a092 */
> +#define rb1  -7.9928326607e-01f        /* 0xbf4c9dd4 */
> +#define rb2  -1.7757955551e+01f        /* 0xc18e104b */
> +#define rb3  -1.6063638306e+02f        /* 0xc320a2ea */
> +#define rb4  -6.3756646729e+02f        /* 0xc41f6441 */
> +#define rb5  -1.0250950928e+03f        /* 0xc480230b */
> +#define rb6  -4.8351919556e+02f        /* 0xc3f1c275 */
> +#define sb1   3.0338060379e+01f        /* 0x41f2b459 */
> +#define sb2   3.2579251099e+02f        /* 0x43a2e571 */
> +#define sb3   1.5367296143e+03f        /* 0x44c01759 */
> +#define sb4   3.1998581543e+03f        /* 0x4547fdbb */
> +#define sb5   2.5530502930e+03f        /* 0x451f90ce */
> +#define sb6   4.7452853394e+02f        /* 0x43ed43a7 */
> +#define sb7  -2.2440952301e+01f        /* 0xc1b38712 */
> +
> +_CLC_OVERLOAD _CLC_DEF float erf(float x) {
> +    int hx = as_uint(x);
> +    int ix = hx & 0x7fffffff;
> +    float absx = as_float(ix);
> +
> +    float x2 = absx * absx;
> +    float t = 1.0f / x2;
> +    float tt = absx - 1.0f;
> +    t = absx < 1.25f ? tt : t;
> +    t = absx < 0.84375f ? x2 : t;
> +
> +    float u, v, tu, tv;
> +
> +    // |x| < 6
> +    u = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, rb6, rb5), rb4),
> rb3), rb2), rb1), rb0);
> +    v = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, sb7, sb6), sb5),
> sb4), sb3), sb2), sb1);
> +
> +    tu = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, ra7, ra6),
> ra5), ra4), ra3), ra2), ra1), ra0);
> +    tv = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, sa8, sa7),
> sa6), sa5), sa4), sa3), sa2), sa1);
> +    u = absx < 0x1.6db6dcp+1f ? tu : u;
> +    v = absx < 0x1.6db6dcp+1f ? tv : v;
> +
> +    tu = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, pa6, pa5), pa4),
> pa3), pa2), pa1), pa0);
> +    tv = mad(t, mad(t, mad(t, mad(t, mad(t, qa6, qa5), qa4), qa3),
> qa2), qa1);
> +    u = absx < 1.25f ? tu : u;
> +    v = absx < 1.25f ? tv : v;
> +
> +    tu = mad(t, mad(t, mad(t, mad(t, pp4, pp3), pp2), pp1), pp0);
> +    tv = mad(t, mad(t, mad(t, mad(t, qq5, qq4), qq3), qq2), qq1);
> +    u = absx < 0.84375f ? tu : u;
> +    v = absx < 0.84375f ? tv : v;
> +
> +    v = mad(t, v, 1.0f);
> +    float q = MATH_DIVIDE(u, v);
> +
> +    float ret = 1.0f;
> +
> +    // |x| < 6
> +    float z = as_float(ix & 0xfffff000);
> +    float r = exp(mad(-z, z, -0.5625f)) * exp(mad(z-absx, z+absx,
> q));
> +    r = 1.0f - MATH_DIVIDE(r,  absx);
> +    ret = absx < 6.0f ? r : ret;
> +
> +    r = erx + q;
> +    ret = absx < 1.25f ? r : ret;
> +
> +    ret = as_float((hx & 0x80000000) | as_int(ret));
> +
> +    r = mad(x, q, x);
> +    ret = absx < 0.84375f ? r : ret;
> +
> +    // Prevent underflow
> +    r = 0.125f * mad(8.0f, x, efx8 * x);
> +    ret = absx < 0x1.0p-28f ? r : ret;
> +
> +    ret = isnan(x) ? x : ret;
> +
> +    return ret;
> +}
> +
> +_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, erf, float);
> +
> +#ifdef cl_khr_fp64
> +
> +#pragma OPENCL EXTENSION cl_khr_fp64 : enable
> +
> +/*
> + * ====================================================
> + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
> + *
> + * Developed at SunPro, a Sun Microsystems, Inc. business.
> + * Permission to use, copy, modify, and distribute this
> + * software is freely granted, provided that this notice
> + * is preserved.
> + * ====================================================
> + */
> +
> +/* double erf(double x)
> + * double erfc(double x)
> + *                             x
> + *                      2      |\
> + *     erf(x)  =  ---------  | exp(-t*t)dt
> + *                    sqrt(pi) \|
> + *                             0
> + *
> + *     erfc(x) =  1-erf(x)
> + *  Note that
> + *                erf(-x) = -erf(x)
> + *                erfc(-x) = 2 - erfc(x)
> + *
> + * Method:
> + *        1. For |x| in [0, 0.84375]
> + *            erf(x)  = x + x*R(x^2)
> + *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
> + *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
> + *           where R = P/Q where P is an odd poly of degree 8 and
> + *           Q is an odd poly of degree 10.
> + *                                                 -57.90
> + *                        | R - (erf(x)-x)/x | <= 2
> + *
> + *
> + *           Remark. The formula is derived by noting
> + *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 +
> ....)
> + *           and that
> + *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
> + *           is close to one. The interval is chosen because the fix
> + *           point of erf(x) is near 0.6174 (i.e., erf(x)=x when x
> is
> + *           near 0.6174), and by some experiment, 0.84375 is chosen
> to
> + *            guarantee the error is less than one ulp for erf.
> + *
> + *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
> + *         c = 0.84506291151 rounded to single (24 bits)
> + *                 erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
> + *                 erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
> + *                          1+(c+P1(s)/Q1(s))    if x < 0
> + *                 |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
> + *           Remark: here we use the taylor series expansion at x=1.
> + *                erf(1+s) = erf(1) + s*Poly(s)
> + *                         = 0.845.. + P1(s)/Q1(s)
> + *           That is, we use rational approximation to approximate
> + *                        erf(1+s) - (c = (single)0.84506291151)
> + *           Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
> + *           where
> + *                P1(s) = degree 6 poly in s
> + *                Q1(s) = degree 6 poly in s
> + *
> + *      3. For x in [1.25,1/0.35(~2.857143)],
> + *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
> + *                 erf(x)  = 1 - erfc(x)
> + *           where
> + *                R1(z) = degree 7 poly in z, (z=1/x^2)
> + *                S1(z) = degree 8 poly in z
> + *
> + *      4. For x in [1/0.35,28]
> + *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
> + *                        = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if
> -6<x<0
> + *                        = 2.0 - tiny                (if x <= -6)
> + *                 erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
> + *                 erf(x)  = sign(x)*(1.0 - tiny)
> + *           where
> + *                R2(z) = degree 6 poly in z, (z=1/x^2)
> + *                S2(z) = degree 7 poly in z
> + *
> + *      Note1:
> + *           To compute exp(-x*x-0.5625+R/S), let s be a single
> + *           precision number and s := x; then
> + *                -x*x = -s*s + (s-x)*(s+x)
> + *                exp(-x*x-0.5626+R/S) =
> + *                        exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
> + *      Note2:
> + *           Here 4 and 5 make use of the asymptotic series
> + *                          exp(-x*x)
> + *                erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
> + *                          x*sqrt(pi)
> + *           We use rational approximation to approximate
> + *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
> + *           Here is the error bound for R1/S1 and R2/S2
> + *              |R1/S1 - f(x)|  < 2**(-62.57)
> + *              |R2/S2 - f(x)|  < 2**(-61.52)
> + *
> + *      5. For inf > x >= 28
> + *                 erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
> + *                 erfc(x) = tiny*tiny (raise underflow) if x > 0
> + *                        = 2 - tiny if x<0
> + *
> + *      7. Special case:
> + *                 erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
> + *                 erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
> + *                   erfc/erf(NaN) is NaN
> + */
> +
> +#define AU0 -9.86494292470009928597e-03
> +#define AU1 -7.99283237680523006574e-01
> +#define AU2 -1.77579549177547519889e+01
> +#define AU3 -1.60636384855821916062e+02
> +#define AU4 -6.37566443368389627722e+02
> +#define AU5 -1.02509513161107724954e+03
> +#define AU6 -4.83519191608651397019e+02
> +
> +#define AV1  3.03380607434824582924e+01
> +#define AV2  3.25792512996573918826e+02
> +#define AV3  1.53672958608443695994e+03
> +#define AV4  3.19985821950859553908e+03
> +#define AV5  2.55305040643316442583e+03
> +#define AV6  4.74528541206955367215e+02
> +#define AV7 -2.24409524465858183362e+01
> +
> +#define BU0 -9.86494403484714822705e-03
> +#define BU1 -6.93858572707181764372e-01
> +#define BU2 -1.05586262253232909814e+01
> +#define BU3 -6.23753324503260060396e+01
> +#define BU4 -1.62396669462573470355e+02
> +#define BU5 -1.84605092906711035994e+02
> +#define BU6 -8.12874355063065934246e+01
> +#define BU7 -9.81432934416914548592e+00
> +
> +#define BV1  1.96512716674392571292e+01
> +#define BV2  1.37657754143519042600e+02
> +#define BV3  4.34565877475229228821e+02
> +#define BV4  6.45387271733267880336e+02
> +#define BV5  4.29008140027567833386e+02
> +#define BV6  1.08635005541779435134e+02
> +#define BV7  6.57024977031928170135e+00
> +#define BV8 -6.04244152148580987438e-02
> +
> +#define CU0 -2.36211856075265944077e-03
> +#define CU1  4.14856118683748331666e-01
> +#define CU2 -3.72207876035701323847e-01
> +#define CU3  3.18346619901161753674e-01
> +#define CU4 -1.10894694282396677476e-01
> +#define CU5  3.54783043256182359371e-02
> +#define CU6 -2.16637559486879084300e-03
> +
> +#define CV1  1.06420880400844228286e-01
> +#define CV2  5.40397917702171048937e-01
> +#define CV3  7.18286544141962662868e-02
> +#define CV4  1.26171219808761642112e-01
> +#define CV5  1.36370839120290507362e-02
> +#define CV6  1.19844998467991074170e-02
> +
> +#define DU0  1.28379167095512558561e-01
> +#define DU1 -3.25042107247001499370e-01
> +#define DU2 -2.84817495755985104766e-02
> +#define DU3 -5.77027029648944159157e-03
> +#define DU4 -2.37630166566501626084e-05
> +
> +#define DV1  3.97917223959155352819e-01
> +#define DV2  6.50222499887672944485e-02
> +#define DV3  5.08130628187576562776e-03
> +#define DV4  1.32494738004321644526e-04
> +#define DV5 -3.96022827877536812320e-06
> +
> +_CLC_OVERLOAD _CLC_DEF double erf(double y) {
> +    double x = fabs(y);
> +    double x2 = x * x;
> +    double xm1 = x - 1.0;
> +
> +    // Poly variable
> +    double t = 1.0 / x2;
> +    t = x < 1.25 ? xm1 : t;
> +    t = x < 0.84375 ? x2 : t;
> +
> +    double u, ut, v, vt;
> +
> +    // Evaluate rational poly
> +    // XXX We need to see of we can grab 16 coefficents from a table
> +    // faster than evaluating 3 of the poly pairs
> +    // if (x < 6.0)
> +    u = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, AU6, AU5), AU4),
> AU3), AU2), AU1), AU0);
> +    v = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, AV7, AV6), AV5),
> AV4), AV3), AV2), AV1);
> +
> +    ut = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, BU7, BU6),
> BU5), BU4), BU3), BU2), BU1), BU0);
> +    vt = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, BV8, BV7),
> BV6), BV5), BV4), BV3), BV2), BV1);
> +    u = x < 0x1.6db6ep+1 ? ut : u;
> +    v = x < 0x1.6db6ep+1 ? vt : v;
> +
> +    ut = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, CU6, CU5), CU4),
> CU3), CU2), CU1), CU0);
> +    vt = fma(t, fma(t, fma(t, fma(t, fma(t, CV6, CV5), CV4), CV3),
> CV2), CV1);
> +    u = x < 1.25 ? ut : u;
> +    v = x < 1.25 ? vt : v;
> +
> +    ut = fma(t, fma(t, fma(t, fma(t, DU4, DU3), DU2), DU1), DU0);
> +    vt = fma(t, fma(t, fma(t, fma(t, DV5, DV4), DV3), DV2), DV1);
> +    u = x < 0.84375 ? ut : u;
> +    v = x < 0.84375 ? vt : v;
> +
> +    v = fma(t, v, 1.0);
> +
> +    // Compute rational approximation
> +    double q = u / v;
> +
> +    // Compute results
> +    double z = as_double(as_long(x) & 0xffffffff00000000L);
> +    double r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + q);
> +    r = 1.0 - r / x;
> +
> +    double ret = x < 6.0 ? r : 1.0;
> +
> +    r = 8.45062911510467529297e-01 + q;
> +    ret = x < 1.25 ? r : ret;
> +
> +    q = x < 0x1.0p-28 ? 1.28379167095512586316e-01 : q;
> +
> +    r = fma(x, q, x);
> +    ret = x < 0.84375 ? r : ret;
> +
> +    ret = isnan(x) ? x : ret;
> +
> +    return y < 0.0 ? -ret : ret;
> +}
> +
> +_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, erf, double);
> +
> +#endif
> _______________________________________________
> Libclc-dev mailing list
> Libclc-dev at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/libclc-dev
-- 
Jan Vesely <jan.vesely at rutgers.edu>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 819 bytes
Desc: This is a digitally signed message part
URL: <http://lists.llvm.org/pipermail/libclc-dev/attachments/20160504/9c04e0ba/attachment-0001.sig>


More information about the Libclc-dev mailing list