[libc-commits] [libc] [llvm] [libc][math] Refactor sqrtf128 to header only (PR #177760)
via libc-commits
libc-commits at lists.llvm.org
Tue Jan 27 05:09:20 PST 2026
https://github.com/Iasonaskrpr updated https://github.com/llvm/llvm-project/pull/177760
>From b67810b39210a1c1e2dc85240422af143e7f7fa4 Mon Sep 17 00:00:00 2001
From: Iasonaskrpr <iaskarapro at gmail.com>
Date: Sat, 24 Jan 2026 13:41:32 +0200
Subject: [PATCH 1/7] [libc][math] Refactor sqrtf128 to Header Only
---
libc/shared/math.h | 1 +
libc/shared/math/sqrtf128.h | 29 ++
libc/src/__support/math/CMakeLists.txt | 15 +
libc/src/__support/math/sqrtf128.h | 445 ++++++++++++++++++
libc/src/math/generic/CMakeLists.txt | 8 +-
libc/src/math/generic/sqrtf128.cpp | 424 +----------------
libc/test/shared/CMakeLists.txt | 1 +
libc/test/shared/shared_math_test.cpp | 1 +
.../llvm-project-overlay/libc/BUILD.bazel | 17 +-
9 files changed, 512 insertions(+), 429 deletions(-)
create mode 100644 libc/shared/math/sqrtf128.h
create mode 100644 libc/src/__support/math/sqrtf128.h
diff --git a/libc/shared/math.h b/libc/shared/math.h
index a331abcc033c7..1e3f0f96073e9 100644
--- a/libc/shared/math.h
+++ b/libc/shared/math.h
@@ -84,6 +84,7 @@
#include "math/rsqrtf.h"
#include "math/rsqrtf16.h"
#include "math/sin.h"
+#include "math/sqrtf128.h"
#include "math/tan.h"
#endif // LLVM_LIBC_SHARED_MATH_H
diff --git a/libc/shared/math/sqrtf128.h b/libc/shared/math/sqrtf128.h
new file mode 100644
index 0000000000000..caea1df2a57d8
--- /dev/null
+++ b/libc/shared/math/sqrtf128.h
@@ -0,0 +1,29 @@
+//===-- Shared sqrtf128 function -------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SHARED_MATH_SQRTF128_H
+#define LLVM_LIBC_SHARED_MATH_SQRTF128_H
+
+#include "include/llvm-libc-types/float128.h"
+
+#ifdef LIBC_TYPES_HAS_FLOAT128
+
+#include "shared/libc_common.h"
+#include "src/__support/math/sqrtf128.h"
+
+namespace LIBC_NAMESPACE_DECL {
+namespace shared {
+
+using math::sqrtf128;
+
+} // namespace shared
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LIBC_TYPES_HAS_FLOAT128
+
+#endif // LLVM_LIBC_SHARED_MATH_LDEXPF128_H
\ No newline at end of file
diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index a03952d5c5ed0..bcb699d963c6c 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -1255,6 +1255,21 @@ add_header_library(
libc.include.llvm-libc-types.float128
)
+add_header_library(
+ sqrtf128
+ HDRS
+ sqrtf128.h
+ DEPENDS
+ libc.src.__support.cpp.bit
+ libc.src.__support.FPUtil.fenv_impl
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.rounding_mode
+ libc.src.__support.common
+ libc.src.__support.macros.optimization
+ libc.src.__support.uint128
+ libc.include.llvm-libc-types.float128
+)
+
add_header_library(
tan
HDRS
diff --git a/libc/src/__support/math/sqrtf128.h b/libc/src/__support/math/sqrtf128.h
new file mode 100644
index 0000000000000..e25bfc7c92e3b
--- /dev/null
+++ b/libc/src/__support/math/sqrtf128.h
@@ -0,0 +1,445 @@
+//===-- Implementation header of sqrtf128 function -------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_SQRTF128_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_SQRTF128_H
+
+#include "src/math/sqrtf128.h"
+#include "src/__support/CPP/bit.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/rounding_mode.h"
+#include "src/__support/common.h"
+#include "src/__support/macros/optimization.h"
+#include "src/__support/uint128.h"
+
+// Compute sqrtf128 with correct rounding for all rounding modes using integer
+// arithmetic by Alexei Sibidanov (sibid at uvic.ca):
+// https://github.com/sibidanov/llvm-project/tree/as_sqrt_v2
+// https://github.com/sibidanov/llvm-project/tree/as_sqrt_v3
+// TODO: Update the reference once Alexei's implementation is in the CORE-MATH
+// project. https://github.com/llvm/llvm-project/issues/126794
+
+// Let the input be expressed as x = 2^e * m_x,
+// - Step 1: Range reduction
+// Let x_reduced = 2^(e % 2) * m_x,
+// Then sqrt(x) = 2^(e / 2) * sqrt(x_reduced), with
+// 1 <= x_reduced < 4.
+// - Step 2: Polynomial approximation
+// Approximate 1/sqrt(x_reduced) using polynomial approximation with the
+// result errors bounded by:
+// |r0 - 1/sqrt(x_reduced)| < 2^-32.
+// The computations are done in uint64_t.
+// - Step 3: First Newton iteration
+// Let the scaled error defined by:
+// h0 = r0^2 * x_reduced - 1.
+// Then we compute the first Newton iteration:
+// r1 = r0 - r0 * h0 / 2.
+// The result is then bounded by:
+// |r1 - 1 / sqrt(x_reduced)| < 2^-62.
+// - Step 4: Second Newton iteration
+// We calculate the scaled error from Step 3:
+// h1 = r1^2 * x_reduced - 1.
+// Then the second Newton iteration is computed by:
+// r2 = x_reduced * (r1 - r1 * h0 / 2)
+// ~ x_reduced * (1/sqrt(x_reduced)) = sqrt(x_reduced)
+// - Step 5: Perform rounding test and correction if needed.
+// Rounding correction is done by computing the exact rounding errors:
+// x_reduced - r2^2.
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math{
+
+using FPBits = fputil::FPBits<float128>;
+
+namespace {
+
+template <typename T, typename U = T> static inline constexpr T prod_hi(T, U);
+
+// Get high part of integer multiplications.
+// Use template to prevent implicit conversion.
+template <>
+inline constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) {
+ return static_cast<uint64_t>(
+ (static_cast<UInt128>(x) * static_cast<UInt128>(y)) >> 64);
+}
+
+// Get high part of unsigned 128x64 bit multiplication.
+template <>
+inline constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) {
+ uint64_t x_lo = static_cast<uint64_t>(x);
+ uint64_t x_hi = static_cast<uint64_t>(x >> 64);
+ UInt128 xyl = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y);
+ UInt128 xyh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y);
+ return xyh + (xyl >> 64);
+}
+
+// Get high part of signed 64x64 bit multiplication.
+template <> inline constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) {
+ return static_cast<int64_t>(
+ (static_cast<Int128>(x) * static_cast<Int128>(y)) >> 64);
+}
+
+// Get high 128-bit part of unsigned 128x128 bit multiplication.
+template <> inline constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
+ uint64_t x_lo = static_cast<uint64_t>(x);
+ uint64_t x_hi = static_cast<uint64_t>(x >> 64);
+ uint64_t y_lo = static_cast<uint64_t>(y);
+ uint64_t y_hi = static_cast<uint64_t>(y >> 64);
+
+ UInt128 xh_yh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_hi);
+ UInt128 xh_yl = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_lo);
+ UInt128 xl_yh = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y_hi);
+
+ xh_yh += xh_yl >> 64;
+
+ return xh_yh + (xl_yh >> 64);
+}
+
+// Get high 128-bit part of mixed sign 128x128 bit multiplication.
+template <>
+inline constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) {
+ UInt128 mask = static_cast<UInt128>(x >> 127);
+ UInt128 negative_part = y & mask;
+ UInt128 prod = prod_hi(static_cast<UInt128>(x), y);
+ return static_cast<Int128>(prod - negative_part);
+}
+
+// Newton-Raphson first order step to improve accuracy of the result.
+// For the initial approximation r0 ~ 1/sqrt(x), let
+// h = r0^2 * x - 1
+// be its scaled error. Then the first-order Newton-Raphson iteration is:
+// r1 = r0 - r0 * h / 2
+// which has error bounded by:
+// |r1 - 1/sqrt(x)| < h^2 / 2.
+LIBC_INLINE uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) {
+ uint64_t r2 = prod_hi(r, r);
+ // h = r0^2*x - 1.
+ int64_t h = static_cast<int64_t>(prod_hi(m, r2) + r2);
+ // hr = r * h / 2
+ int64_t hr = prod_hi(h, static_cast<int64_t>(r >> 1));
+ return r - hr;
+}
+
+#ifdef LIBC_MATH_HAS_SMALL_TABLES
+// Degree-12 minimax polynomials for 1/sqrt(x) on [1, 2].
+constexpr uint32_t RSQRT_COEFFS[12] = {
+ 0xb5947a4a, 0x2d651e32, 0x9ad50532, 0x2d28d093, 0x0d8be653, 0x04239014,
+ 0x01492449, 0x0066ff7d, 0x001e74a1, 0x000984cc, 0x00049abc, 0x00018340,
+};
+
+LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
+ int64_t x = static_cast<uint64_t>(m) ^ (uint64_t(1) << 63);
+ int64_t x_26 = x >> 2;
+ int64_t z = x >> 31;
+
+ if (LIBC_UNLIKELY(z <= -4294967296))
+ return ~(m >> 1);
+
+ uint64_t x2 = static_cast<uint64_t>(z) * static_cast<uint64_t>(z);
+ uint64_t x2_26 = x2 >> 5;
+ x2 >>= 32;
+ // Calculate the odd part of the polynomial using Horner's method.
+ uint64_t c0 = RSQRT_COEFFS[8] + ((x2 * RSQRT_COEFFS[10]) >> 32);
+ uint64_t c1 = RSQRT_COEFFS[6] + ((x2 * c0) >> 32);
+ uint64_t c2 = RSQRT_COEFFS[4] + ((x2 * c1) >> 32);
+ uint64_t c3 = RSQRT_COEFFS[2] + ((x2 * c2) >> 32);
+ uint64_t c4 = RSQRT_COEFFS[0] + ((x2 * c3) >> 32);
+ uint64_t odd =
+ static_cast<uint64_t>((x >> 34) * static_cast<int64_t>(c4 >> 3)) + x_26;
+ // Calculate the even part of the polynomial using Horner's method.
+ uint64_t d0 = RSQRT_COEFFS[9] + ((x2 * RSQRT_COEFFS[11]) >> 32);
+ uint64_t d1 = RSQRT_COEFFS[7] + ((x2 * d0) >> 32);
+ uint64_t d2 = RSQRT_COEFFS[5] + ((x2 * d1) >> 32);
+ uint64_t d3 = RSQRT_COEFFS[3] + ((x2 * d2) >> 32);
+ uint64_t d4 = RSQRT_COEFFS[1] + ((x2 * d3) >> 32);
+ uint64_t even = 0xd105eb806655d608ul + ((x2 * d4) >> 6) + x2_26;
+
+ uint64_t r = even - odd; // error < 1.5e-10
+ // Newton-Raphson first order step to improve accuracy of the result to almost
+ // 64 bits.
+ return rsqrt_newton_raphson(m, r);
+}
+
+#else
+// Cubic minimax polynomials for 1/sqrt(x) on [1 + k/64, 1 + (k + 1)/64]
+// for k = 0..63.
+constexpr uint32_t RSQRT_COEFFS[64][4] = {
+ {0xffffffff, 0xfffff780, 0xbff55815, 0x9bb5b6e7},
+ {0xfc0bd889, 0xfa1d6e7d, 0xb8a95a89, 0x938bf8f0},
+ {0xf82ec882, 0xf473bea9, 0xb1bf4705, 0x8bed0079},
+ {0xf467f280, 0xeefff2a1, 0xab309d4a, 0x84cdb431},
+ {0xf0b6848c, 0xe9bf46f4, 0xa4f76232, 0x7e24037b},
+ {0xed19b75e, 0xe4af2628, 0x9f0e1340, 0x77e6ca62},
+ {0xe990cdad, 0xdfcd2521, 0x996f9b96, 0x720db8df},
+ {0xe61b138e, 0xdb16ffde, 0x94174a00, 0x6c913cff},
+ {0xe2b7dddf, 0xd68a967b, 0x8f00c812, 0x676a6f92},
+ {0xdf6689b7, 0xd225ea80, 0x8a281226, 0x62930308},
+ {0xdc267bea, 0xcde71c63, 0x8589702c, 0x5e05343e},
+ {0xd8f7208e, 0xc9cc6948, 0x81216f2e, 0x59bbbcf8},
+ {0xd5d7ea91, 0xc5d428ee, 0x7cecdb76, 0x55b1c7d6},
+ {0xd2c8534e, 0xc1fccbc9, 0x78e8bb45, 0x51e2e592},
+ {0xcfc7da32, 0xbe44d94a, 0x75124a0a, 0x4e4b0369},
+ {0xccd6045f, 0xbaaaee41, 0x7166f40f, 0x4ae66284},
+ {0xc9f25c5c, 0xb72dbb69, 0x6de45288, 0x47b19045},
+ {0xc71c71c7, 0xb3cc040f, 0x6a882804, 0x44a95f5f},
+ {0xc453d90f, 0xb0849cd4, 0x67505d2a, 0x41cae1a0},
+ {0xc1982b2e, 0xad566a85, 0x643afdc8, 0x3f13625c},
+ {0xbee9056f, 0xaa406113, 0x6146361f, 0x3c806169},
+ {0xbc46092e, 0xa7418293, 0x5e70506d, 0x3a0f8e8e},
+ {0xb9aedba5, 0xa458de58, 0x5bb7b2b1, 0x37bec572},
+ {0xb72325b7, 0xa1859022, 0x591adc9a, 0x358c09e2},
+ {0xb4a293c2, 0x9ec6bf52, 0x569865a7, 0x33758476},
+ {0xb22cd56d, 0x9c1b9e36, 0x542efb6a, 0x31797f8a},
+ {0xafc19d86, 0x9983695c, 0x51dd5ffb, 0x2f96647a},
+ {0xad60a1d1, 0x96fd66f7, 0x4fa2687c, 0x2dcab91f},
+ {0xab099ae9, 0x9488e64b, 0x4d7cfbc9, 0x2c151d8a},
+ {0xa8bc441a, 0x92253f20, 0x4b6c1139, 0x2a7449ef},
+ {0xa6785b42, 0x8fd1d14a, 0x496eaf82, 0x28e70cc3},
+ {0xa43da0ae, 0x8d8e042a, 0x4783eba7, 0x276c4900},
+ {0xa20bd701, 0x8b594648, 0x45aae80a, 0x2602f493},
+ {0x9fe2c315, 0x89330ce4, 0x43e2d382, 0x24aa16ec},
+ {0x9dc22be4, 0x871ad399, 0x422ae88c, 0x2360c7af},
+ {0x9ba9da6c, 0x85101c05, 0x40826c88, 0x22262d7b},
+ {0x99999999, 0x83126d70, 0x3ee8af07, 0x20f97cd2},
+ {0x97913630, 0x81215480, 0x3d5d0922, 0x1fd9f714},
+ {0x95907eb8, 0x7f3c62ef, 0x3bdedce0, 0x1ec6e994},
+ {0x93974369, 0x7d632f45, 0x3a6d94a9, 0x1dbfacbb},
+ {0x91a55615, 0x7b955498, 0x3908a2be, 0x1cc3a33b},
+ {0x8fba8a1c, 0x79d2724e, 0x37af80bf, 0x1bd23960},
+ {0x8dd6b456, 0x781a2be4, 0x3661af39, 0x1aeae458},
+ {0x8bf9ab07, 0x766c28ba, 0x351eb539, 0x1a0d21a2},
+ {0x8a2345cc, 0x74c813dd, 0x33e61feb, 0x19387676},
+ {0x88535d90, 0x732d9bdc, 0x32b7823a, 0x186c6f3e},
+ {0x8689cc7e, 0x719c7297, 0x3192747d, 0x17a89f21},
+ {0x84c66df1, 0x70144d19, 0x30769424, 0x16ec9f89},
+ {0x83091e6a, 0x6e94e36c, 0x2f63836f, 0x16380fbf},
+ {0x8151bb87, 0x6d1df079, 0x2e58e925, 0x158a9484},
+ {0x7fa023f1, 0x6baf31de, 0x2d567053, 0x14e3d7ba},
+ {0x7df43758, 0x6a4867d3, 0x2c5bc811, 0x1443880e},
+ {0x7c4dd664, 0x68e95508, 0x2b68a346, 0x13a958ab},
+ {0x7aace2b0, 0x6791be86, 0x2a7cb871, 0x131500ee},
+ {0x79113ebc, 0x66416b95, 0x2997c17a, 0x12863c29},
+ {0x777acde8, 0x64f825a1, 0x28b97b82, 0x11fcc95c},
+ {0x75e9746a, 0x63b5b822, 0x27e1a6b4, 0x11786b03},
+ {0x745d1746, 0x6279f081, 0x2710061d, 0x10f8e6da},
+ {0x72d59c46, 0x61449e06, 0x26445f86, 0x107e05ac},
+ {0x7152e9f4, 0x601591be, 0x257e7b4d, 0x10079327},
+ {0x6fd4e793, 0x5eec9e6b, 0x24be2445, 0x0f955da9},
+ {0x6e5b7d16, 0x5dc9986e, 0x24032795, 0x0f273620},
+ {0x6ce6931d, 0x5cac55b7, 0x234d5496, 0x0ebcefdb},
+ {0x6b7612ec, 0x5b94adb2, 0x229c7cbc, 0x0e56606e},
+};
+
+// Approximate rsqrt with cubic polynomials.
+// The range [1,2] is splitted into 64 equal sub-ranges and the reciprocal
+// square root is approximated by a cubic polynomial by the minimax method in
+// each subrange. The approximation accuracy fits into 32-33 bits and thus it is
+// natural to round coefficients into 32 bit. The constant coefficient can be
+// rounded to 33 bits since the most significant bit is always 1 and implicitly
+// assumed in the table.
+LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
+ // ULP(m) = 2^-64.
+ // Use the top 6 bits as index for looking up polynomial coeffs.
+ uint64_t indx = m >> 58;
+
+ uint64_t c0 = static_cast<uint64_t>(RSQRT_COEFFS[indx][0]);
+ c0 <<= 31; // to 64 bit with the space for the implicit bit
+ c0 |= 1ull << 63; // add implicit bit
+
+ uint64_t c1 = static_cast<uint64_t>(RSQRT_COEFFS[indx][1]);
+ c1 <<= 25; // to 64 bit format
+
+ uint64_t c2 = static_cast<uint64_t>(RSQRT_COEFFS[indx][2]);
+ uint64_t c3 = static_cast<uint64_t>(RSQRT_COEFFS[indx][3]);
+
+ uint64_t d = (m << 6) >> 32; // local coordinate in the subrange [0, 2^32]
+ uint64_t d2 = (d * d) >> 32; // square of the local coordinate
+ uint64_t re = c0 + (d2 * c2 >> 13); // even part of the polynomial (positive)
+ uint64_t ro = d * ((c1 + ((d2 * c3) >> 19)) >> 26) >>
+ 6; // odd part of the polynomial (negative)
+ uint64_t r = re - ro; // maximal error < 1.55e-10 and it is less than 2^-32
+ // Newton-Raphson first order step to improve accuracy of the result to almost
+ // 64 bits.
+ r = rsqrt_newton_raphson(m, r);
+ // Adjust in the unlucky case x~1;
+ if (LIBC_UNLIKELY(!r))
+ --r;
+ return r;
+}
+#endif // LIBC_MATH_HAS_SMALL_TABLES
+
+} // anonymous namespace
+
+static float128 sqrtf128 (float128 x) {
+ using FPBits = fputil::FPBits<float128>;
+ // Get rounding mode.
+ uint32_t rm = fputil::get_round();
+
+ FPBits xbits(x);
+ UInt128 x_u = xbits.uintval();
+ // Bring leading bit of the mantissa to the highest bit.
+ // ulp(x_frac) = 2^-128.
+ UInt128 x_frac = xbits.get_mantissa() << (FPBits::EXP_LEN + 1);
+
+ int sign_exp = static_cast<int>(x_u >> FPBits::FRACTION_LEN);
+
+ if (LIBC_UNLIKELY(sign_exp == 0 || sign_exp >= 0x7fff)) {
+ // Special cases: NAN, inf, negative numbers
+ if (sign_exp >= 0x7fff) {
+ // x = -0 or x = inf
+ if (xbits.is_zero() || xbits == xbits.inf())
+ return x;
+ // x is nan
+ if (xbits.is_nan()) {
+ // pass through quiet nan
+ if (xbits.is_quiet_nan())
+ return x;
+ // transform signaling nan to quiet and return
+ return xbits.quiet_nan().get_val();
+ }
+ // x < 0 or x = -inf
+ fputil::set_errno_if_required(EDOM);
+ fputil::raise_except_if_required(FE_INVALID);
+ return xbits.quiet_nan().get_val();
+ }
+ // Now x is subnormal or x = +0.
+
+ // x is +0.
+ if (x_frac == 0)
+ return x;
+
+ // Normalize subnormal inputs.
+ sign_exp = -cpp::countl_zero(x_frac);
+ int normal_shifts = 1 - sign_exp;
+ x_frac <<= normal_shifts;
+ }
+
+ // For sign_exp = biased exponent of x = real_exponent + 16383,
+ // let f be the real exponent of the output:
+ // f = floor(real_exponent / 2)
+ // Then:
+ // floor((sign_exp + 1) / 2) = f + 8192
+ // Hence, the biased exponent of the final result is:
+ // f + 16383 = floor((sign_exp + 1) / 2) + 8191.
+ // Since the output mantissa will include the hidden bit, we can define the
+ // output exponent part:
+ // e2 = floor((sign_exp + 1) / 2) + 8190
+ unsigned i = static_cast<unsigned>(1 - (sign_exp & 1));
+ uint32_t q2 = (sign_exp + 1) >> 1;
+ // Exponent of the final result
+ uint32_t e2 = q2 + 8190;
+
+ constexpr uint64_t RSQRT_2[2] = {~0ull,
+ 0xb504f333f9de6484 /* 2^64/sqrt(2) */};
+
+ // Approximate 1/sqrt(1 + x_frac)
+ // Error: |r_1 - 1/sqrt(x)| < 2^-62.
+ uint64_t r1 = rsqrt_approx(static_cast<uint64_t>(x_frac >> 64));
+ // Adjust for the even/odd exponent.
+ uint64_t r2 = prod_hi(r1, RSQRT_2[i]);
+ unsigned shift = 2 - i;
+
+ // Normalized input:
+ // 1 <= x_reduced < 4
+ UInt128 x_reduced = (x_frac >> shift) | (UInt128(1) << (126 + i));
+ // With r2 ~ 1/sqrt(x) up to 2^-63, we perform another round of Newton-Raphson
+ // iteration:
+ // r3 = r2 - r2 * h / 2,
+ // for h = r2^2 * x - 1.
+ // Then:
+ // sqrt(x) = x * (1 / sqrt(x))
+ // ~ x * r3
+ // = x * (r2 - r2 * h / 2)
+ // = (x * r2) - (x * r2) * h / 2
+ UInt128 sx = prod_hi(x_reduced, r2);
+ UInt128 h = prod_hi(sx, r2) << 2;
+ UInt128 ds = static_cast<UInt128>(prod_hi(static_cast<Int128>(h), sx));
+ UInt128 v = (sx << 1) - ds;
+
+ uint32_t nrst = rm == FE_TONEAREST;
+ // The result lies within (-2,5) of true square root so we now
+ // test that we can correctly round the result taking into account
+ // the rounding mode.
+ // Check the lowest 14 bits (by clearing and sign-extending the top
+ // 32 - 14 = 18 bits).
+ int dd = (static_cast<int>(v) << 18) >> 18;
+
+ if (LIBC_UNLIKELY(dd < 4 && dd >= -8)) { // can round correctly?
+ // m is almost the final result it can be only 1 ulp off so we
+ // just need to test both possibilities. We square it and
+ // compare with the initial argument.
+ UInt128 m = v >> 15;
+ UInt128 m2 = m * m;
+ // The difference of the squared result and the argument
+ Int128 t0 = static_cast<Int128>(m2 - (x_reduced << 98));
+ if (t0 == 0) {
+ // the square root is exact
+ v = m << 15;
+ } else {
+ // Add +-1 ulp to m depend on the sign of the difference. Here
+ // we do not need to square again since (m+1)^2 = m^2 + 2*m +
+ // 1 so just need to add shifted m and 1.
+ Int128 t1 = t0;
+ Int128 sgn = t0 >> 127; // sign of the difference
+ Int128 m_xor_sgn = static_cast<Int128>(m << 1) ^ sgn;
+ t1 -= m_xor_sgn;
+ t1 += Int128(1) + sgn;
+
+ Int128 sgn1 = t1 >> 127;
+ if (LIBC_UNLIKELY(sgn == sgn1)) {
+ t0 = t1;
+ v -= sgn << 15;
+ t1 -= m_xor_sgn;
+ t1 += Int128(1) + sgn;
+ }
+
+ if (t1 == 0) {
+ // 1 ulp offset brings again an exact root
+ v = (m - static_cast<UInt128>((sgn << 1) + 1)) << 15;
+ } else {
+ t1 += t0;
+ Int128 side = t1 >> 127; // select what is closer m or m+-1
+ v &= ~UInt128(0) << 15; // wipe the fractional bits
+ v -= ((sgn & side) | (~sgn & 1)) << (15 + static_cast<int>(side));
+ v |= 1; // add sticky bit since we cannot have an exact mid-point
+ // situation
+ }
+ }
+ }
+
+ unsigned frac = static_cast<unsigned>(v) & 0x7fff; // fractional part
+ unsigned rnd = 0; // round bit
+ if (LIBC_LIKELY(nrst != 0)) {
+ rnd = frac >> 14; // round to nearest tie to even
+ } else if (rm == FE_UPWARD) {
+ rnd = !!frac; // round up
+ } else {
+ rnd = 0; // round down or round to zero
+ }
+
+ v >>= 15; // position mantissa
+ v += rnd; // round
+
+ // Set inexact flag only if square root is inexact
+ // TODO: We will have to raise FE_INEXACT most of the time, but this
+ // operation is very costly, especially in x86-64, since technically, it
+ // needs to synchronize both SSE and x87 flags. Need to investigate
+ // further to see how we can make this performant.
+ // https://github.com/llvm/llvm-project/issues/126753
+
+ // if(frac) fputil::raise_except_if_required(FE_INEXACT);
+
+ v += static_cast<UInt128>(e2) << FPBits::FRACTION_LEN; // place exponent
+ return cpp::bit_cast<float128>(v);
+}
+} // namespace math
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif
\ No newline at end of file
diff --git a/libc/src/math/generic/CMakeLists.txt b/libc/src/math/generic/CMakeLists.txt
index 04ad1aa896613..9a45809221570 100644
--- a/libc/src/math/generic/CMakeLists.txt
+++ b/libc/src/math/generic/CMakeLists.txt
@@ -3076,13 +3076,7 @@ add_entrypoint_object(
HDRS
../sqrtf128.h
DEPENDS
- libc.src.__support.CPP.bit
- libc.src.__support.FPUtil.fenv_impl
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.rounding_mode
- libc.src.__support.macros.optimization
- libc.src.__support.macros.properties.types
- libc.src.__support.FPUtil.sqrt
+ libc.src.__support.math.sqrtf128
)
add_entrypoint_object(
diff --git a/libc/src/math/generic/sqrtf128.cpp b/libc/src/math/generic/sqrtf128.cpp
index 3aa7db8362734..852af7f6bb99b 100644
--- a/libc/src/math/generic/sqrtf128.cpp
+++ b/libc/src/math/generic/sqrtf128.cpp
@@ -7,432 +7,14 @@
//===----------------------------------------------------------------------===//
#include "src/math/sqrtf128.h"
-#include "src/__support/CPP/bit.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/rounding_mode.h"
-#include "src/__support/common.h"
-#include "src/__support/macros/optimization.h"
-#include "src/__support/uint128.h"
-
-// Compute sqrtf128 with correct rounding for all rounding modes using integer
-// arithmetic by Alexei Sibidanov (sibid at uvic.ca):
-// https://github.com/sibidanov/llvm-project/tree/as_sqrt_v2
-// https://github.com/sibidanov/llvm-project/tree/as_sqrt_v3
-// TODO: Update the reference once Alexei's implementation is in the CORE-MATH
-// project. https://github.com/llvm/llvm-project/issues/126794
-
-// Let the input be expressed as x = 2^e * m_x,
-// - Step 1: Range reduction
-// Let x_reduced = 2^(e % 2) * m_x,
-// Then sqrt(x) = 2^(e / 2) * sqrt(x_reduced), with
-// 1 <= x_reduced < 4.
-// - Step 2: Polynomial approximation
-// Approximate 1/sqrt(x_reduced) using polynomial approximation with the
-// result errors bounded by:
-// |r0 - 1/sqrt(x_reduced)| < 2^-32.
-// The computations are done in uint64_t.
-// - Step 3: First Newton iteration
-// Let the scaled error defined by:
-// h0 = r0^2 * x_reduced - 1.
-// Then we compute the first Newton iteration:
-// r1 = r0 - r0 * h0 / 2.
-// The result is then bounded by:
-// |r1 - 1 / sqrt(x_reduced)| < 2^-62.
-// - Step 4: Second Newton iteration
-// We calculate the scaled error from Step 3:
-// h1 = r1^2 * x_reduced - 1.
-// Then the second Newton iteration is computed by:
-// r2 = x_reduced * (r1 - r1 * h0 / 2)
-// ~ x_reduced * (1/sqrt(x_reduced)) = sqrt(x_reduced)
-// - Step 5: Perform rounding test and correction if needed.
-// Rounding correction is done by computing the exact rounding errors:
-// x_reduced - r2^2.
+#include "src/__support/math/sqrtf128.h"
namespace LIBC_NAMESPACE_DECL {
-using FPBits = fputil::FPBits<float128>;
-
-namespace {
-
-template <typename T, typename U = T> static inline constexpr T prod_hi(T, U);
-
-// Get high part of integer multiplications.
-// Use template to prevent implicit conversion.
-template <>
-inline constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) {
- return static_cast<uint64_t>(
- (static_cast<UInt128>(x) * static_cast<UInt128>(y)) >> 64);
-}
-
-// Get high part of unsigned 128x64 bit multiplication.
-template <>
-inline constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) {
- uint64_t x_lo = static_cast<uint64_t>(x);
- uint64_t x_hi = static_cast<uint64_t>(x >> 64);
- UInt128 xyl = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y);
- UInt128 xyh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y);
- return xyh + (xyl >> 64);
-}
-
-// Get high part of signed 64x64 bit multiplication.
-template <> inline constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) {
- return static_cast<int64_t>(
- (static_cast<Int128>(x) * static_cast<Int128>(y)) >> 64);
-}
-
-// Get high 128-bit part of unsigned 128x128 bit multiplication.
-template <> inline constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
- uint64_t x_lo = static_cast<uint64_t>(x);
- uint64_t x_hi = static_cast<uint64_t>(x >> 64);
- uint64_t y_lo = static_cast<uint64_t>(y);
- uint64_t y_hi = static_cast<uint64_t>(y >> 64);
-
- UInt128 xh_yh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_hi);
- UInt128 xh_yl = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_lo);
- UInt128 xl_yh = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y_hi);
-
- xh_yh += xh_yl >> 64;
-
- return xh_yh + (xl_yh >> 64);
-}
-
-// Get high 128-bit part of mixed sign 128x128 bit multiplication.
-template <>
-inline constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) {
- UInt128 mask = static_cast<UInt128>(x >> 127);
- UInt128 negative_part = y & mask;
- UInt128 prod = prod_hi(static_cast<UInt128>(x), y);
- return static_cast<Int128>(prod - negative_part);
-}
-
-// Newton-Raphson first order step to improve accuracy of the result.
-// For the initial approximation r0 ~ 1/sqrt(x), let
-// h = r0^2 * x - 1
-// be its scaled error. Then the first-order Newton-Raphson iteration is:
-// r1 = r0 - r0 * h / 2
-// which has error bounded by:
-// |r1 - 1/sqrt(x)| < h^2 / 2.
-LIBC_INLINE uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) {
- uint64_t r2 = prod_hi(r, r);
- // h = r0^2*x - 1.
- int64_t h = static_cast<int64_t>(prod_hi(m, r2) + r2);
- // hr = r * h / 2
- int64_t hr = prod_hi(h, static_cast<int64_t>(r >> 1));
- return r - hr;
-}
-
-#ifdef LIBC_MATH_HAS_SMALL_TABLES
-// Degree-12 minimax polynomials for 1/sqrt(x) on [1, 2].
-constexpr uint32_t RSQRT_COEFFS[12] = {
- 0xb5947a4a, 0x2d651e32, 0x9ad50532, 0x2d28d093, 0x0d8be653, 0x04239014,
- 0x01492449, 0x0066ff7d, 0x001e74a1, 0x000984cc, 0x00049abc, 0x00018340,
-};
-
-LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
- int64_t x = static_cast<uint64_t>(m) ^ (uint64_t(1) << 63);
- int64_t x_26 = x >> 2;
- int64_t z = x >> 31;
-
- if (LIBC_UNLIKELY(z <= -4294967296))
- return ~(m >> 1);
-
- uint64_t x2 = static_cast<uint64_t>(z) * static_cast<uint64_t>(z);
- uint64_t x2_26 = x2 >> 5;
- x2 >>= 32;
- // Calculate the odd part of the polynomial using Horner's method.
- uint64_t c0 = RSQRT_COEFFS[8] + ((x2 * RSQRT_COEFFS[10]) >> 32);
- uint64_t c1 = RSQRT_COEFFS[6] + ((x2 * c0) >> 32);
- uint64_t c2 = RSQRT_COEFFS[4] + ((x2 * c1) >> 32);
- uint64_t c3 = RSQRT_COEFFS[2] + ((x2 * c2) >> 32);
- uint64_t c4 = RSQRT_COEFFS[0] + ((x2 * c3) >> 32);
- uint64_t odd =
- static_cast<uint64_t>((x >> 34) * static_cast<int64_t>(c4 >> 3)) + x_26;
- // Calculate the even part of the polynomial using Horner's method.
- uint64_t d0 = RSQRT_COEFFS[9] + ((x2 * RSQRT_COEFFS[11]) >> 32);
- uint64_t d1 = RSQRT_COEFFS[7] + ((x2 * d0) >> 32);
- uint64_t d2 = RSQRT_COEFFS[5] + ((x2 * d1) >> 32);
- uint64_t d3 = RSQRT_COEFFS[3] + ((x2 * d2) >> 32);
- uint64_t d4 = RSQRT_COEFFS[1] + ((x2 * d3) >> 32);
- uint64_t even = 0xd105eb806655d608ul + ((x2 * d4) >> 6) + x2_26;
-
- uint64_t r = even - odd; // error < 1.5e-10
- // Newton-Raphson first order step to improve accuracy of the result to almost
- // 64 bits.
- return rsqrt_newton_raphson(m, r);
-}
-
-#else
-// Cubic minimax polynomials for 1/sqrt(x) on [1 + k/64, 1 + (k + 1)/64]
-// for k = 0..63.
-constexpr uint32_t RSQRT_COEFFS[64][4] = {
- {0xffffffff, 0xfffff780, 0xbff55815, 0x9bb5b6e7},
- {0xfc0bd889, 0xfa1d6e7d, 0xb8a95a89, 0x938bf8f0},
- {0xf82ec882, 0xf473bea9, 0xb1bf4705, 0x8bed0079},
- {0xf467f280, 0xeefff2a1, 0xab309d4a, 0x84cdb431},
- {0xf0b6848c, 0xe9bf46f4, 0xa4f76232, 0x7e24037b},
- {0xed19b75e, 0xe4af2628, 0x9f0e1340, 0x77e6ca62},
- {0xe990cdad, 0xdfcd2521, 0x996f9b96, 0x720db8df},
- {0xe61b138e, 0xdb16ffde, 0x94174a00, 0x6c913cff},
- {0xe2b7dddf, 0xd68a967b, 0x8f00c812, 0x676a6f92},
- {0xdf6689b7, 0xd225ea80, 0x8a281226, 0x62930308},
- {0xdc267bea, 0xcde71c63, 0x8589702c, 0x5e05343e},
- {0xd8f7208e, 0xc9cc6948, 0x81216f2e, 0x59bbbcf8},
- {0xd5d7ea91, 0xc5d428ee, 0x7cecdb76, 0x55b1c7d6},
- {0xd2c8534e, 0xc1fccbc9, 0x78e8bb45, 0x51e2e592},
- {0xcfc7da32, 0xbe44d94a, 0x75124a0a, 0x4e4b0369},
- {0xccd6045f, 0xbaaaee41, 0x7166f40f, 0x4ae66284},
- {0xc9f25c5c, 0xb72dbb69, 0x6de45288, 0x47b19045},
- {0xc71c71c7, 0xb3cc040f, 0x6a882804, 0x44a95f5f},
- {0xc453d90f, 0xb0849cd4, 0x67505d2a, 0x41cae1a0},
- {0xc1982b2e, 0xad566a85, 0x643afdc8, 0x3f13625c},
- {0xbee9056f, 0xaa406113, 0x6146361f, 0x3c806169},
- {0xbc46092e, 0xa7418293, 0x5e70506d, 0x3a0f8e8e},
- {0xb9aedba5, 0xa458de58, 0x5bb7b2b1, 0x37bec572},
- {0xb72325b7, 0xa1859022, 0x591adc9a, 0x358c09e2},
- {0xb4a293c2, 0x9ec6bf52, 0x569865a7, 0x33758476},
- {0xb22cd56d, 0x9c1b9e36, 0x542efb6a, 0x31797f8a},
- {0xafc19d86, 0x9983695c, 0x51dd5ffb, 0x2f96647a},
- {0xad60a1d1, 0x96fd66f7, 0x4fa2687c, 0x2dcab91f},
- {0xab099ae9, 0x9488e64b, 0x4d7cfbc9, 0x2c151d8a},
- {0xa8bc441a, 0x92253f20, 0x4b6c1139, 0x2a7449ef},
- {0xa6785b42, 0x8fd1d14a, 0x496eaf82, 0x28e70cc3},
- {0xa43da0ae, 0x8d8e042a, 0x4783eba7, 0x276c4900},
- {0xa20bd701, 0x8b594648, 0x45aae80a, 0x2602f493},
- {0x9fe2c315, 0x89330ce4, 0x43e2d382, 0x24aa16ec},
- {0x9dc22be4, 0x871ad399, 0x422ae88c, 0x2360c7af},
- {0x9ba9da6c, 0x85101c05, 0x40826c88, 0x22262d7b},
- {0x99999999, 0x83126d70, 0x3ee8af07, 0x20f97cd2},
- {0x97913630, 0x81215480, 0x3d5d0922, 0x1fd9f714},
- {0x95907eb8, 0x7f3c62ef, 0x3bdedce0, 0x1ec6e994},
- {0x93974369, 0x7d632f45, 0x3a6d94a9, 0x1dbfacbb},
- {0x91a55615, 0x7b955498, 0x3908a2be, 0x1cc3a33b},
- {0x8fba8a1c, 0x79d2724e, 0x37af80bf, 0x1bd23960},
- {0x8dd6b456, 0x781a2be4, 0x3661af39, 0x1aeae458},
- {0x8bf9ab07, 0x766c28ba, 0x351eb539, 0x1a0d21a2},
- {0x8a2345cc, 0x74c813dd, 0x33e61feb, 0x19387676},
- {0x88535d90, 0x732d9bdc, 0x32b7823a, 0x186c6f3e},
- {0x8689cc7e, 0x719c7297, 0x3192747d, 0x17a89f21},
- {0x84c66df1, 0x70144d19, 0x30769424, 0x16ec9f89},
- {0x83091e6a, 0x6e94e36c, 0x2f63836f, 0x16380fbf},
- {0x8151bb87, 0x6d1df079, 0x2e58e925, 0x158a9484},
- {0x7fa023f1, 0x6baf31de, 0x2d567053, 0x14e3d7ba},
- {0x7df43758, 0x6a4867d3, 0x2c5bc811, 0x1443880e},
- {0x7c4dd664, 0x68e95508, 0x2b68a346, 0x13a958ab},
- {0x7aace2b0, 0x6791be86, 0x2a7cb871, 0x131500ee},
- {0x79113ebc, 0x66416b95, 0x2997c17a, 0x12863c29},
- {0x777acde8, 0x64f825a1, 0x28b97b82, 0x11fcc95c},
- {0x75e9746a, 0x63b5b822, 0x27e1a6b4, 0x11786b03},
- {0x745d1746, 0x6279f081, 0x2710061d, 0x10f8e6da},
- {0x72d59c46, 0x61449e06, 0x26445f86, 0x107e05ac},
- {0x7152e9f4, 0x601591be, 0x257e7b4d, 0x10079327},
- {0x6fd4e793, 0x5eec9e6b, 0x24be2445, 0x0f955da9},
- {0x6e5b7d16, 0x5dc9986e, 0x24032795, 0x0f273620},
- {0x6ce6931d, 0x5cac55b7, 0x234d5496, 0x0ebcefdb},
- {0x6b7612ec, 0x5b94adb2, 0x229c7cbc, 0x0e56606e},
-};
-
-// Approximate rsqrt with cubic polynomials.
-// The range [1,2] is splitted into 64 equal sub-ranges and the reciprocal
-// square root is approximated by a cubic polynomial by the minimax method in
-// each subrange. The approximation accuracy fits into 32-33 bits and thus it is
-// natural to round coefficients into 32 bit. The constant coefficient can be
-// rounded to 33 bits since the most significant bit is always 1 and implicitly
-// assumed in the table.
-LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
- // ULP(m) = 2^-64.
- // Use the top 6 bits as index for looking up polynomial coeffs.
- uint64_t indx = m >> 58;
-
- uint64_t c0 = static_cast<uint64_t>(RSQRT_COEFFS[indx][0]);
- c0 <<= 31; // to 64 bit with the space for the implicit bit
- c0 |= 1ull << 63; // add implicit bit
-
- uint64_t c1 = static_cast<uint64_t>(RSQRT_COEFFS[indx][1]);
- c1 <<= 25; // to 64 bit format
-
- uint64_t c2 = static_cast<uint64_t>(RSQRT_COEFFS[indx][2]);
- uint64_t c3 = static_cast<uint64_t>(RSQRT_COEFFS[indx][3]);
-
- uint64_t d = (m << 6) >> 32; // local coordinate in the subrange [0, 2^32]
- uint64_t d2 = (d * d) >> 32; // square of the local coordinate
- uint64_t re = c0 + (d2 * c2 >> 13); // even part of the polynomial (positive)
- uint64_t ro = d * ((c1 + ((d2 * c3) >> 19)) >> 26) >>
- 6; // odd part of the polynomial (negative)
- uint64_t r = re - ro; // maximal error < 1.55e-10 and it is less than 2^-32
- // Newton-Raphson first order step to improve accuracy of the result to almost
- // 64 bits.
- r = rsqrt_newton_raphson(m, r);
- // Adjust in the unlucky case x~1;
- if (LIBC_UNLIKELY(!r))
- --r;
- return r;
-}
-#endif // LIBC_MATH_HAS_SMALL_TABLES
-
-} // anonymous namespace
-
LLVM_LIBC_FUNCTION(float128, sqrtf128, (float128 x)) {
- using FPBits = fputil::FPBits<float128>;
- // Get rounding mode.
- uint32_t rm = fputil::get_round();
-
- FPBits xbits(x);
- UInt128 x_u = xbits.uintval();
- // Bring leading bit of the mantissa to the highest bit.
- // ulp(x_frac) = 2^-128.
- UInt128 x_frac = xbits.get_mantissa() << (FPBits::EXP_LEN + 1);
-
- int sign_exp = static_cast<int>(x_u >> FPBits::FRACTION_LEN);
-
- if (LIBC_UNLIKELY(sign_exp == 0 || sign_exp >= 0x7fff)) {
- // Special cases: NAN, inf, negative numbers
- if (sign_exp >= 0x7fff) {
- // x = -0 or x = inf
- if (xbits.is_zero() || xbits == xbits.inf())
- return x;
- // x is nan
- if (xbits.is_nan()) {
- // pass through quiet nan
- if (xbits.is_quiet_nan())
- return x;
- // transform signaling nan to quiet and return
- return xbits.quiet_nan().get_val();
- }
- // x < 0 or x = -inf
- fputil::set_errno_if_required(EDOM);
- fputil::raise_except_if_required(FE_INVALID);
- return xbits.quiet_nan().get_val();
- }
- // Now x is subnormal or x = +0.
-
- // x is +0.
- if (x_frac == 0)
- return x;
-
- // Normalize subnormal inputs.
- sign_exp = -cpp::countl_zero(x_frac);
- int normal_shifts = 1 - sign_exp;
- x_frac <<= normal_shifts;
- }
-
- // For sign_exp = biased exponent of x = real_exponent + 16383,
- // let f be the real exponent of the output:
- // f = floor(real_exponent / 2)
- // Then:
- // floor((sign_exp + 1) / 2) = f + 8192
- // Hence, the biased exponent of the final result is:
- // f + 16383 = floor((sign_exp + 1) / 2) + 8191.
- // Since the output mantissa will include the hidden bit, we can define the
- // output exponent part:
- // e2 = floor((sign_exp + 1) / 2) + 8190
- unsigned i = static_cast<unsigned>(1 - (sign_exp & 1));
- uint32_t q2 = (sign_exp + 1) >> 1;
- // Exponent of the final result
- uint32_t e2 = q2 + 8190;
-
- constexpr uint64_t RSQRT_2[2] = {~0ull,
- 0xb504f333f9de6484 /* 2^64/sqrt(2) */};
-
- // Approximate 1/sqrt(1 + x_frac)
- // Error: |r_1 - 1/sqrt(x)| < 2^-62.
- uint64_t r1 = rsqrt_approx(static_cast<uint64_t>(x_frac >> 64));
- // Adjust for the even/odd exponent.
- uint64_t r2 = prod_hi(r1, RSQRT_2[i]);
- unsigned shift = 2 - i;
-
- // Normalized input:
- // 1 <= x_reduced < 4
- UInt128 x_reduced = (x_frac >> shift) | (UInt128(1) << (126 + i));
- // With r2 ~ 1/sqrt(x) up to 2^-63, we perform another round of Newton-Raphson
- // iteration:
- // r3 = r2 - r2 * h / 2,
- // for h = r2^2 * x - 1.
- // Then:
- // sqrt(x) = x * (1 / sqrt(x))
- // ~ x * r3
- // = x * (r2 - r2 * h / 2)
- // = (x * r2) - (x * r2) * h / 2
- UInt128 sx = prod_hi(x_reduced, r2);
- UInt128 h = prod_hi(sx, r2) << 2;
- UInt128 ds = static_cast<UInt128>(prod_hi(static_cast<Int128>(h), sx));
- UInt128 v = (sx << 1) - ds;
-
- uint32_t nrst = rm == FE_TONEAREST;
- // The result lies within (-2,5) of true square root so we now
- // test that we can correctly round the result taking into account
- // the rounding mode.
- // Check the lowest 14 bits (by clearing and sign-extending the top
- // 32 - 14 = 18 bits).
- int dd = (static_cast<int>(v) << 18) >> 18;
-
- if (LIBC_UNLIKELY(dd < 4 && dd >= -8)) { // can round correctly?
- // m is almost the final result it can be only 1 ulp off so we
- // just need to test both possibilities. We square it and
- // compare with the initial argument.
- UInt128 m = v >> 15;
- UInt128 m2 = m * m;
- // The difference of the squared result and the argument
- Int128 t0 = static_cast<Int128>(m2 - (x_reduced << 98));
- if (t0 == 0) {
- // the square root is exact
- v = m << 15;
- } else {
- // Add +-1 ulp to m depend on the sign of the difference. Here
- // we do not need to square again since (m+1)^2 = m^2 + 2*m +
- // 1 so just need to add shifted m and 1.
- Int128 t1 = t0;
- Int128 sgn = t0 >> 127; // sign of the difference
- Int128 m_xor_sgn = static_cast<Int128>(m << 1) ^ sgn;
- t1 -= m_xor_sgn;
- t1 += Int128(1) + sgn;
-
- Int128 sgn1 = t1 >> 127;
- if (LIBC_UNLIKELY(sgn == sgn1)) {
- t0 = t1;
- v -= sgn << 15;
- t1 -= m_xor_sgn;
- t1 += Int128(1) + sgn;
- }
-
- if (t1 == 0) {
- // 1 ulp offset brings again an exact root
- v = (m - static_cast<UInt128>((sgn << 1) + 1)) << 15;
- } else {
- t1 += t0;
- Int128 side = t1 >> 127; // select what is closer m or m+-1
- v &= ~UInt128(0) << 15; // wipe the fractional bits
- v -= ((sgn & side) | (~sgn & 1)) << (15 + static_cast<int>(side));
- v |= 1; // add sticky bit since we cannot have an exact mid-point
- // situation
- }
- }
- }
-
- unsigned frac = static_cast<unsigned>(v) & 0x7fff; // fractional part
- unsigned rnd; // round bit
- if (LIBC_LIKELY(nrst != 0)) {
- rnd = frac >> 14; // round to nearest tie to even
- } else if (rm == FE_UPWARD) {
- rnd = !!frac; // round up
- } else {
- rnd = 0; // round down or round to zero
- }
-
- v >>= 15; // position mantissa
- v += rnd; // round
-
- // Set inexact flag only if square root is inexact
- // TODO: We will have to raise FE_INEXACT most of the time, but this
- // operation is very costly, especially in x86-64, since technically, it
- // needs to synchronize both SSE and x87 flags. Need to investigate
- // further to see how we can make this performant.
- // https://github.com/llvm/llvm-project/issues/126753
-
- // if(frac) fputil::raise_except_if_required(FE_INEXACT);
- v += static_cast<UInt128>(e2) << FPBits::FRACTION_LEN; // place exponent
- return cpp::bit_cast<float128>(v);
+ return math::sqrtf128(x);
+
}
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/test/shared/CMakeLists.txt b/libc/test/shared/CMakeLists.txt
index 4f82d00cc6c84..96a714b9da2f1 100644
--- a/libc/test/shared/CMakeLists.txt
+++ b/libc/test/shared/CMakeLists.txt
@@ -80,5 +80,6 @@ add_fp_unittest(
libc.src.__support.math.rsqrtf
libc.src.__support.math.rsqrtf16
libc.src.__support.math.sin
+ libc.src.__support.math.sqrtf128
libc.src.__support.math.tan
)
diff --git a/libc/test/shared/shared_math_test.cpp b/libc/test/shared/shared_math_test.cpp
index 5ec8a7b23081e..ebb3fde24bb97 100644
--- a/libc/test/shared/shared_math_test.cpp
+++ b/libc/test/shared/shared_math_test.cpp
@@ -137,6 +137,7 @@ TEST(LlvmLibcSharedMathTest, AllFloat128) {
EXPECT_FP_EQ(float128(0.0), LIBC_NAMESPACE::shared::logbf128(float128(1.0)));
EXPECT_FP_EQ(0.0, LIBC_NAMESPACE::shared::dfmaf128(
float128(0.0), float128(0.0), float128(0.0)));
+ EXPECT_FP_EQ(0x1p+0f, LIBC_NAMESPACE::shared::sqrtf128(float128(1.0f)));
}
#endif // LIBC_TYPES_HAS_FLOAT128
diff --git a/utils/bazel/llvm-project-overlay/libc/BUILD.bazel b/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
index 853182ce18b57..d495ab4983ff6 100644
--- a/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
+++ b/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
@@ -3369,6 +3369,20 @@ libc_support_library(
],
)
+libc_support_library(
+ name = "__support_math_sqrtf128",
+ hdrs = ["src/__support/math/sqrtf128.h"],
+ deps = [
+ ":__support_cpp_bit",
+ ":__support_fputil_fenv_impl",
+ ":__support_fputil_fp_bits",
+ ":__support_fputil_rounding_mode",
+ ":__support_common",
+ ":__support_macros_optimization",
+ ":__support_uint128",
+ ],
+)
+
libc_support_library(
name = "__support_range_reduction_double",
hdrs = [
@@ -5145,7 +5159,8 @@ libc_math_function(
libc_math_function(
name = "sqrtf128",
additional_deps = [
- ":__support_fputil_sqrt",
+ ":__support_math_sqrtf128",
+ ":llvm_libc_types_float128",
],
)
>From 96a9c971377ebf5c1dbdc1a4203c0c1ea7d1fa7b Mon Sep 17 00:00:00 2001
From: Iasonaskrpr <iaskarapro at gmail.com>
Date: Sat, 24 Jan 2026 14:18:28 +0200
Subject: [PATCH 2/7] Added new line at the end of sqrt128.h
---
libc/src/__support/math/sqrtf128.h | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/libc/src/__support/math/sqrtf128.h b/libc/src/__support/math/sqrtf128.h
index e25bfc7c92e3b..0cb1cc6fb0b92 100644
--- a/libc/src/__support/math/sqrtf128.h
+++ b/libc/src/__support/math/sqrtf128.h
@@ -442,4 +442,4 @@ static float128 sqrtf128 (float128 x) {
} // namespace math
} // namespace LIBC_NAMESPACE_DECL
-#endif
\ No newline at end of file
+#endif
>From e3b9d23cb970c864050aca519b52619e1c4180aa Mon Sep 17 00:00:00 2001
From: Iasonaskrpr <iaskarapro at gmail.com>
Date: Sat, 24 Jan 2026 14:21:18 +0200
Subject: [PATCH 3/7] Fixed formatting for sqrtf128
---
libc/src/__support/math/sqrtf128.h | 9 +++++----
libc/src/math/generic/sqrtf128.cpp | 1 -
libc/test/shared/shared_math_test.cpp | 2 +-
3 files changed, 6 insertions(+), 6 deletions(-)
diff --git a/libc/src/__support/math/sqrtf128.h b/libc/src/__support/math/sqrtf128.h
index 0cb1cc6fb0b92..7d500ec1bcce4 100644
--- a/libc/src/__support/math/sqrtf128.h
+++ b/libc/src/__support/math/sqrtf128.h
@@ -1,4 +1,5 @@
-//===-- Implementation header of sqrtf128 function -------------------------------===//
+//===-- Implementation header of sqrtf128 function
+//-------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@@ -9,7 +10,6 @@
#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_SQRTF128_H
#define LLVM_LIBC_SRC___SUPPORT_MATH_SQRTF128_H
-#include "src/math/sqrtf128.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
@@ -17,6 +17,7 @@
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h"
#include "src/__support/uint128.h"
+#include "src/math/sqrtf128.h"
// Compute sqrtf128 with correct rounding for all rounding modes using integer
// arithmetic by Alexei Sibidanov (sibid at uvic.ca):
@@ -54,7 +55,7 @@
namespace LIBC_NAMESPACE_DECL {
-namespace math{
+namespace math {
using FPBits = fputil::FPBits<float128>;
@@ -277,7 +278,7 @@ LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
} // anonymous namespace
-static float128 sqrtf128 (float128 x) {
+static float128 sqrtf128(float128 x) {
using FPBits = fputil::FPBits<float128>;
// Get rounding mode.
uint32_t rm = fputil::get_round();
diff --git a/libc/src/math/generic/sqrtf128.cpp b/libc/src/math/generic/sqrtf128.cpp
index 852af7f6bb99b..1514cc52a2af0 100644
--- a/libc/src/math/generic/sqrtf128.cpp
+++ b/libc/src/math/generic/sqrtf128.cpp
@@ -14,7 +14,6 @@ namespace LIBC_NAMESPACE_DECL {
LLVM_LIBC_FUNCTION(float128, sqrtf128, (float128 x)) {
return math::sqrtf128(x);
-
}
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/test/shared/shared_math_test.cpp b/libc/test/shared/shared_math_test.cpp
index ebb3fde24bb97..e15411e545fd2 100644
--- a/libc/test/shared/shared_math_test.cpp
+++ b/libc/test/shared/shared_math_test.cpp
@@ -137,7 +137,7 @@ TEST(LlvmLibcSharedMathTest, AllFloat128) {
EXPECT_FP_EQ(float128(0.0), LIBC_NAMESPACE::shared::logbf128(float128(1.0)));
EXPECT_FP_EQ(0.0, LIBC_NAMESPACE::shared::dfmaf128(
float128(0.0), float128(0.0), float128(0.0)));
- EXPECT_FP_EQ(0x1p+0f, LIBC_NAMESPACE::shared::sqrtf128(float128(1.0f)));
+ EXPECT_FP_EQ(0x1p+0f, LIBC_NAMESPACE::shared::sqrtf128(float128(1.0f)));
}
#endif // LIBC_TYPES_HAS_FLOAT128
>From f550c76d61c1f919101329f2d41f566334b79504 Mon Sep 17 00:00:00 2001
From: Iasonaskrpr <126663668+Iasonaskrpr at users.noreply.github.com>
Date: Tue, 27 Jan 2026 14:54:11 +0200
Subject: [PATCH 4/7] Applied suggestions from code review
Co-authored-by: Muhammad Bassiouni <60100307+bassiounix at users.noreply.github.com>
---
libc/shared/math/sqrtf128.h | 2 +-
libc/src/__support/math/CMakeLists.txt | 6 ++---
libc/src/__support/math/sqrtf128.h | 36 ++++++++++++++------------
libc/test/shared/shared_math_test.cpp | 2 +-
4 files changed, 24 insertions(+), 22 deletions(-)
diff --git a/libc/shared/math/sqrtf128.h b/libc/shared/math/sqrtf128.h
index caea1df2a57d8..e4c281f895cd9 100644
--- a/libc/shared/math/sqrtf128.h
+++ b/libc/shared/math/sqrtf128.h
@@ -26,4 +26,4 @@ using math::sqrtf128;
#endif // LIBC_TYPES_HAS_FLOAT128
-#endif // LLVM_LIBC_SHARED_MATH_LDEXPF128_H
\ No newline at end of file
+#endif // LLVM_LIBC_SHARED_MATH_LDEXPF128_H
diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index bcb699d963c6c..a29e510ac7687 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -1260,13 +1260,13 @@ add_header_library(
HDRS
sqrtf128.h
DEPENDS
- libc.src.__support.cpp.bit
+ libc.src.__support.CPP.bit
libc.src.__support.FPUtil.fenv_impl
libc.src.__support.FPUtil.fp_bits
libc.src.__support.FPUtil.rounding_mode
- libc.src.__support.common
libc.src.__support.macros.optimization
- libc.src.__support.uint128
+ libc.src.__support.macros.properties.types
+ libc.src.__support.FPUtil.sqrt
libc.include.llvm-libc-types.float128
)
diff --git a/libc/src/__support/math/sqrtf128.h b/libc/src/__support/math/sqrtf128.h
index 7d500ec1bcce4..c7047ad0c60ce 100644
--- a/libc/src/__support/math/sqrtf128.h
+++ b/libc/src/__support/math/sqrtf128.h
@@ -1,5 +1,4 @@
-//===-- Implementation header of sqrtf128 function
-//-------------------------------===//
+//===-- Implementation header of sqrtf128 ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@@ -54,26 +53,27 @@
// x_reduced - r2^2.
namespace LIBC_NAMESPACE_DECL {
-
namespace math {
using FPBits = fputil::FPBits<float128>;
-namespace {
+namespace sqrtf128_internal {
+
+using FPBits = fputil::FPBits<float128>;
-template <typename T, typename U = T> static inline constexpr T prod_hi(T, U);
+template <typename T, typename U = T> LIBC_INLINE static constexpr T prod_hi(T, U);
// Get high part of integer multiplications.
// Use template to prevent implicit conversion.
template <>
-inline constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) {
+LIBC_INLINE static constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) {
return static_cast<uint64_t>(
(static_cast<UInt128>(x) * static_cast<UInt128>(y)) >> 64);
}
// Get high part of unsigned 128x64 bit multiplication.
template <>
-inline constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) {
+LIBC_INLINE static constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) {
uint64_t x_lo = static_cast<uint64_t>(x);
uint64_t x_hi = static_cast<uint64_t>(x >> 64);
UInt128 xyl = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y);
@@ -82,13 +82,13 @@ inline constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) {
}
// Get high part of signed 64x64 bit multiplication.
-template <> inline constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) {
+template <> LIBC_INLINE static constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) {
return static_cast<int64_t>(
(static_cast<Int128>(x) * static_cast<Int128>(y)) >> 64);
}
// Get high 128-bit part of unsigned 128x128 bit multiplication.
-template <> inline constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
+template <> LIBC_INLINE static constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
uint64_t x_lo = static_cast<uint64_t>(x);
uint64_t x_hi = static_cast<uint64_t>(x >> 64);
uint64_t y_lo = static_cast<uint64_t>(y);
@@ -105,7 +105,7 @@ template <> inline constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
// Get high 128-bit part of mixed sign 128x128 bit multiplication.
template <>
-inline constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) {
+LIBC_INLINE static constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) {
UInt128 mask = static_cast<UInt128>(x >> 127);
UInt128 negative_part = y & mask;
UInt128 prod = prod_hi(static_cast<UInt128>(x), y);
@@ -119,7 +119,7 @@ inline constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) {
// r1 = r0 - r0 * h / 2
// which has error bounded by:
// |r1 - 1/sqrt(x)| < h^2 / 2.
-LIBC_INLINE uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) {
+LIBC_INLINE static constexpr uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) {
uint64_t r2 = prod_hi(r, r);
// h = r0^2*x - 1.
int64_t h = static_cast<int64_t>(prod_hi(m, r2) + r2);
@@ -130,12 +130,12 @@ LIBC_INLINE uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) {
#ifdef LIBC_MATH_HAS_SMALL_TABLES
// Degree-12 minimax polynomials for 1/sqrt(x) on [1, 2].
-constexpr uint32_t RSQRT_COEFFS[12] = {
+LIBC_INLINE_VAR constexpr uint32_t RSQRT_COEFFS[12] = {
0xb5947a4a, 0x2d651e32, 0x9ad50532, 0x2d28d093, 0x0d8be653, 0x04239014,
0x01492449, 0x0066ff7d, 0x001e74a1, 0x000984cc, 0x00049abc, 0x00018340,
};
-LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
+LIBC_INLINE static constexpr uint64_t rsqrt_approx(uint64_t m) {
int64_t x = static_cast<uint64_t>(m) ^ (uint64_t(1) << 63);
int64_t x_26 = x >> 2;
int64_t z = x >> 31;
@@ -171,7 +171,7 @@ LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
#else
// Cubic minimax polynomials for 1/sqrt(x) on [1 + k/64, 1 + (k + 1)/64]
// for k = 0..63.
-constexpr uint32_t RSQRT_COEFFS[64][4] = {
+LIBC_INLINE_VAR constexpr uint32_t RSQRT_COEFFS[64][4] = {
{0xffffffff, 0xfffff780, 0xbff55815, 0x9bb5b6e7},
{0xfc0bd889, 0xfa1d6e7d, 0xb8a95a89, 0x938bf8f0},
{0xf82ec882, 0xf473bea9, 0xb1bf4705, 0x8bed0079},
@@ -245,7 +245,7 @@ constexpr uint32_t RSQRT_COEFFS[64][4] = {
// natural to round coefficients into 32 bit. The constant coefficient can be
// rounded to 33 bits since the most significant bit is always 1 and implicitly
// assumed in the table.
-LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
+LIBC_INLINE static constexpr uint64_t rsqrt_approx(uint64_t m) {
// ULP(m) = 2^-64.
// Use the top 6 bits as index for looking up polynomial coeffs.
uint64_t indx = m >> 58;
@@ -276,9 +276,10 @@ LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
}
#endif // LIBC_MATH_HAS_SMALL_TABLES
-} // anonymous namespace
+} // namespace sqrtf128_internal
-static float128 sqrtf128(float128 x) {
+LIBC_INLINE static constexpr float128 sqrtf128(float128 x) {
+ using namespace sqrtf128_internal;
using FPBits = fputil::FPBits<float128>;
// Get rounding mode.
uint32_t rm = fputil::get_round();
@@ -440,6 +441,7 @@ static float128 sqrtf128(float128 x) {
v += static_cast<UInt128>(e2) << FPBits::FRACTION_LEN; // place exponent
return cpp::bit_cast<float128>(v);
}
+
} // namespace math
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/test/shared/shared_math_test.cpp b/libc/test/shared/shared_math_test.cpp
index e15411e545fd2..5c18b4291e100 100644
--- a/libc/test/shared/shared_math_test.cpp
+++ b/libc/test/shared/shared_math_test.cpp
@@ -137,7 +137,7 @@ TEST(LlvmLibcSharedMathTest, AllFloat128) {
EXPECT_FP_EQ(float128(0.0), LIBC_NAMESPACE::shared::logbf128(float128(1.0)));
EXPECT_FP_EQ(0.0, LIBC_NAMESPACE::shared::dfmaf128(
float128(0.0), float128(0.0), float128(0.0)));
- EXPECT_FP_EQ(0x1p+0f, LIBC_NAMESPACE::shared::sqrtf128(float128(1.0f)));
+ EXPECT_FP_EQ(float128(0x1p+0), LIBC_NAMESPACE::shared::sqrtf128(float128(1.0)));
}
#endif // LIBC_TYPES_HAS_FLOAT128
>From c14188bcca5540271fb97536d47cfe0a650114bc Mon Sep 17 00:00:00 2001
From: Iasonaskrpr <iaskarapro at gmail.com>
Date: Tue, 27 Jan 2026 14:58:39 +0200
Subject: [PATCH 5/7] Applied suggested changes to BUILD.bazel
---
libc/shared/math/sqrtf128.h | 2 +-
utils/bazel/llvm-project-overlay/libc/BUILD.bazel | 5 ++---
2 files changed, 3 insertions(+), 4 deletions(-)
diff --git a/libc/shared/math/sqrtf128.h b/libc/shared/math/sqrtf128.h
index e4c281f895cd9..609b8921ab36b 100644
--- a/libc/shared/math/sqrtf128.h
+++ b/libc/shared/math/sqrtf128.h
@@ -26,4 +26,4 @@ using math::sqrtf128;
#endif // LIBC_TYPES_HAS_FLOAT128
-#endif // LLVM_LIBC_SHARED_MATH_LDEXPF128_H
+#endif // LLVM_LIBC_SHARED_MATH_SQRTF128_H
diff --git a/utils/bazel/llvm-project-overlay/libc/BUILD.bazel b/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
index d495ab4983ff6..07431b81c78b1 100644
--- a/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
+++ b/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
@@ -3377,9 +3377,9 @@ libc_support_library(
":__support_fputil_fenv_impl",
":__support_fputil_fp_bits",
":__support_fputil_rounding_mode",
- ":__support_common",
":__support_macros_optimization",
- ":__support_uint128",
+ ":__support_macros_properties_types",
+ ":__support_fputil_sqrt",
],
)
@@ -5160,7 +5160,6 @@ libc_math_function(
name = "sqrtf128",
additional_deps = [
":__support_math_sqrtf128",
- ":llvm_libc_types_float128",
],
)
>From 67f7b9fefeedbc1053247f0d0456b671e930b1f8 Mon Sep 17 00:00:00 2001
From: Iasonaskrpr <iaskarapro at gmail.com>
Date: Tue, 27 Jan 2026 15:02:18 +0200
Subject: [PATCH 6/7] Formatted changes
---
libc/src/__support/math/sqrtf128.h | 21 ++++++++++++++-------
libc/test/shared/shared_math_test.cpp | 3 ++-
2 files changed, 16 insertions(+), 8 deletions(-)
diff --git a/libc/src/__support/math/sqrtf128.h b/libc/src/__support/math/sqrtf128.h
index c7047ad0c60ce..a0360dd6eaffc 100644
--- a/libc/src/__support/math/sqrtf128.h
+++ b/libc/src/__support/math/sqrtf128.h
@@ -61,19 +61,22 @@ namespace sqrtf128_internal {
using FPBits = fputil::FPBits<float128>;
-template <typename T, typename U = T> LIBC_INLINE static constexpr T prod_hi(T, U);
+template <typename T, typename U = T>
+LIBC_INLINE static constexpr T prod_hi(T, U);
// Get high part of integer multiplications.
// Use template to prevent implicit conversion.
template <>
-LIBC_INLINE static constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) {
+LIBC_INLINE static constexpr uint64_t prod_hi<uint64_t>(uint64_t x,
+ uint64_t y) {
return static_cast<uint64_t>(
(static_cast<UInt128>(x) * static_cast<UInt128>(y)) >> 64);
}
// Get high part of unsigned 128x64 bit multiplication.
template <>
-LIBC_INLINE static constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) {
+LIBC_INLINE static constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x,
+ uint64_t y) {
uint64_t x_lo = static_cast<uint64_t>(x);
uint64_t x_hi = static_cast<uint64_t>(x >> 64);
UInt128 xyl = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y);
@@ -82,13 +85,15 @@ LIBC_INLINE static constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint6
}
// Get high part of signed 64x64 bit multiplication.
-template <> LIBC_INLINE static constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) {
+template <>
+LIBC_INLINE static constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) {
return static_cast<int64_t>(
(static_cast<Int128>(x) * static_cast<Int128>(y)) >> 64);
}
// Get high 128-bit part of unsigned 128x128 bit multiplication.
-template <> LIBC_INLINE static constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
+template <>
+LIBC_INLINE static constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
uint64_t x_lo = static_cast<uint64_t>(x);
uint64_t x_hi = static_cast<uint64_t>(x >> 64);
uint64_t y_lo = static_cast<uint64_t>(y);
@@ -105,7 +110,8 @@ template <> LIBC_INLINE static constexpr UInt128 prod_hi<UInt128>(UInt128 x, UIn
// Get high 128-bit part of mixed sign 128x128 bit multiplication.
template <>
-LIBC_INLINE static constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) {
+LIBC_INLINE static constexpr Int128 prod_hi<Int128, UInt128>(Int128 x,
+ UInt128 y) {
UInt128 mask = static_cast<UInt128>(x >> 127);
UInt128 negative_part = y & mask;
UInt128 prod = prod_hi(static_cast<UInt128>(x), y);
@@ -119,7 +125,8 @@ LIBC_INLINE static constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y
// r1 = r0 - r0 * h / 2
// which has error bounded by:
// |r1 - 1/sqrt(x)| < h^2 / 2.
-LIBC_INLINE static constexpr uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) {
+LIBC_INLINE static constexpr uint64_t rsqrt_newton_raphson(uint64_t m,
+ uint64_t r) {
uint64_t r2 = prod_hi(r, r);
// h = r0^2*x - 1.
int64_t h = static_cast<int64_t>(prod_hi(m, r2) + r2);
diff --git a/libc/test/shared/shared_math_test.cpp b/libc/test/shared/shared_math_test.cpp
index 5c18b4291e100..2d8d4ad69d327 100644
--- a/libc/test/shared/shared_math_test.cpp
+++ b/libc/test/shared/shared_math_test.cpp
@@ -137,7 +137,8 @@ TEST(LlvmLibcSharedMathTest, AllFloat128) {
EXPECT_FP_EQ(float128(0.0), LIBC_NAMESPACE::shared::logbf128(float128(1.0)));
EXPECT_FP_EQ(0.0, LIBC_NAMESPACE::shared::dfmaf128(
float128(0.0), float128(0.0), float128(0.0)));
- EXPECT_FP_EQ(float128(0x1p+0), LIBC_NAMESPACE::shared::sqrtf128(float128(1.0)));
+ EXPECT_FP_EQ(float128(0x1p+0),
+ LIBC_NAMESPACE::shared::sqrtf128(float128(1.0)));
}
#endif // LIBC_TYPES_HAS_FLOAT128
>From ca6e57837ba2b79246954b429803a5aeb2155bbc Mon Sep 17 00:00:00 2001
From: Iasonaskrpr <126663668+Iasonaskrpr at users.noreply.github.com>
Date: Tue, 27 Jan 2026 15:09:08 +0200
Subject: [PATCH 7/7] Update libc/src/__support/math/sqrtf128.h
Co-authored-by: Muhammad Bassiouni <60100307+bassiounix at users.noreply.github.com>
---
libc/src/__support/math/sqrtf128.h | 1 -
1 file changed, 1 deletion(-)
diff --git a/libc/src/__support/math/sqrtf128.h b/libc/src/__support/math/sqrtf128.h
index a0360dd6eaffc..d38c9ced87d48 100644
--- a/libc/src/__support/math/sqrtf128.h
+++ b/libc/src/__support/math/sqrtf128.h
@@ -55,7 +55,6 @@
namespace LIBC_NAMESPACE_DECL {
namespace math {
-using FPBits = fputil::FPBits<float128>;
namespace sqrtf128_internal {
More information about the libc-commits
mailing list