[libc-commits] [libc] [llvm] [libc][math] Refactor tan implementation to header-only in src/__support/math folder. (PR #177224)

Muhammad Bassiouni via libc-commits libc-commits at lists.llvm.org
Fri Jan 23 13:51:52 PST 2026


https://github.com/bassiounix updated https://github.com/llvm/llvm-project/pull/177224

>From cdb7a826dd7c8fb1040c7e9fa394f66151d0ace2 Mon Sep 17 00:00:00 2001
From: Nico Weber <thakis at chromium.org>
Date: Wed, 21 Jan 2026 14:39:34 -0500
Subject: [PATCH 1/2] [libc][math] Refactor tan implementation to header-only
 in src/__support/math folder.

Part of #147386

in preparation for:

https://discourse.llvm.org/t/rfc-make-clang-builtin-math-functions-constexpr-with-llvm-libc-to-support-c-23-constexpr-math-functions/86450
---
 libc/shared/math.h                            |   1 +
 libc/shared/math/tan.h                        |  23 ++
 libc/src/__support/math/CMakeLists.txt        |  16 +
 libc/src/__support/math/tan.h                 | 305 ++++++++++++++++++
 libc/src/math/generic/CMakeLists.txt          |  11 +-
 libc/src/math/generic/tan.cpp                 | 284 +---------------
 libc/test/shared/CMakeLists.txt               |   1 +
 libc/test/shared/shared_math_test.cpp         |   1 +
 .../llvm-project-overlay/libc/BUILD.bazel     |  18 +-
 9 files changed, 363 insertions(+), 297 deletions(-)
 create mode 100644 libc/shared/math/tan.h
 create mode 100644 libc/src/__support/math/tan.h

diff --git a/libc/shared/math.h b/libc/shared/math.h
index bad2b07ecb993..2339efe1278c9 100644
--- a/libc/shared/math.h
+++ b/libc/shared/math.h
@@ -82,5 +82,6 @@
 #include "math/rsqrtf.h"
 #include "math/rsqrtf16.h"
 #include "math/sin.h"
+#include "math/tan.h"
 
 #endif // LLVM_LIBC_SHARED_MATH_H
diff --git a/libc/shared/math/tan.h b/libc/shared/math/tan.h
new file mode 100644
index 0000000000000..368626624677a
--- /dev/null
+++ b/libc/shared/math/tan.h
@@ -0,0 +1,23 @@
+//===-- Shared tan function -------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SHARED_MATH_TAN_H
+#define LLVM_LIBC_SHARED_MATH_TAN_H
+
+#include "shared/libc_common.h"
+#include "src/__support/math/tan.h"
+
+namespace LIBC_NAMESPACE_DECL {
+namespace shared {
+
+using math::tan;
+
+} // namespace shared
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SHARED_MATH_TAN_H
diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index bcc5b1024b8da..bf67f09ea9cb9 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -1234,3 +1234,19 @@ add_header_library(
     libc.src.__support.macros.config
 )
 
+add_header_library(
+  tan
+  HDRS
+    tan.h
+  DEPENDS
+    .range_reduction_double
+    libc.hdr.errno_macros
+    libc.src.__support.FPUtil.double_double
+    libc.src.__support.FPUtil.dyadic_float
+    libc.src.__support.FPUtil.except_value_utils
+    libc.src.__support.FPUtil.fenv_impl
+    libc.src.__support.FPUtil.fp_bits
+    libc.src.__support.FPUtil.multiply_add
+    libc.src.__support.macros.optimization
+    libc.src.errno.errno
+)
diff --git a/libc/src/__support/math/tan.h b/libc/src/__support/math/tan.h
new file mode 100644
index 0000000000000..6c60d459ab03b
--- /dev/null
+++ b/libc/src/__support/math/tan.h
@@ -0,0 +1,305 @@
+//===-- Double-precision tan function -------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LIBC_SRC___SUPPORT_MATH_TAN_H
+#define LIBC_SRC___SUPPORT_MATH_TAN_H
+
+#include "hdr/errno_macros.h"
+#include "range_reduction_double_common.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/double_double.h"
+#include "src/__support/FPUtil/dyadic_float.h"
+#include "src/__support/FPUtil/except_value_utils.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/FPUtil/rounding_mode.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
+#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
+
+#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+#include "range_reduction_double_fma.h"
+#else
+#include "range_reduction_double_nofma.h"
+#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+
+namespace LIBC_NAMESPACE_DECL {
+
+namespace math {
+
+namespace tan_internal {
+
+using DoubleDouble = fputil::DoubleDouble;
+using Float128 = typename fputil::DyadicFloat<128>;
+
+LIBC_INLINE static double tan_eval(const DoubleDouble &u,
+                                   DoubleDouble &result) {
+  // Evaluate tan(y) = tan(x - k * (pi/128))
+  // We use the degree-9 Taylor approximation:
+  //   tan(y) ~ P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835
+  // Then the error is bounded by:
+  //   |tan(y) - P(y)| < 2^-6 * |y|^11 < 2^-6 * 2^-66 = 2^-72.
+  // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms
+  // < ulp(u_hi^3) gives us:
+  //   P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835 = ...
+  // ~ u_hi + u_hi^3 * (1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 +
+  //                                                     + u_hi^2 * 62/2835))) +
+  //        + u_lo (1 + u_hi^2 * (1 + u_hi^2 * 2/3))
+  double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58.
+  // p1 ~ 17/315 + u_hi^2 62 / 2835.
+  double p1 =
+      fputil::multiply_add(u_hi_sq, 0x1.664f4882c10fap-6, 0x1.ba1ba1ba1ba1cp-5);
+  // p2 ~ 1/3 + u_hi^2 2 / 15.
+  double p2 =
+      fputil::multiply_add(u_hi_sq, 0x1.1111111111111p-3, 0x1.5555555555555p-2);
+  // q1 ~ 1 + u_hi^2 * 2/3.
+  double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-1, 1.0);
+  double u_hi_3 = u_hi_sq * u.hi;
+  double u_hi_4 = u_hi_sq * u_hi_sq;
+  // p3 ~ 1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 + u_hi^2 * 62/2835))
+  double p3 = fputil::multiply_add(u_hi_4, p1, p2);
+  // q2 ~ 1 + u_hi^2 * (1 + u_hi^2 * 2/3)
+  double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0);
+  double tan_lo = fputil::multiply_add(u_hi_3, p3, u.lo * q2);
+  // Overall, |tan(y) - (u_hi + tan_lo)| < ulp(u_hi^3) <= 2^-71.
+  // And the relative errors is:
+  // |(tan(y) - (u_hi + tan_lo)) / tan(y) | <= 2*ulp(u_hi^2) < 2^-64
+  result = fputil::exact_add(u.hi, tan_lo);
+  return fputil::multiply_add(fputil::FPBits<double>(u_hi_3).abs().get_val(),
+                              0x1.0p-51, 0x1.0p-102);
+}
+
+#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+// Accurate evaluation of tan for small u.
+[[maybe_unused]] LIBC_INLINE static Float128 tan_eval(const Float128 &u) {
+  Float128 u_sq = fputil::quick_mul(u, u);
+
+  // tan(x) ~ x + x^3/3 + x^5 * 2/15 + x^7 * 17/315 + x^9 * 62/2835 +
+  //          + x^11 * 1382/155925 + x^13 * 21844/6081075 +
+  //          + x^15 * 929569/638512875 + x^17 * 6404582/10854718875
+  // Relative errors < 2^-127 for |u| < pi/256.
+  constexpr Float128 TAN_COEFFS[] = {
+      {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1
+      {Sign::POS, -129, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1
+      {Sign::POS, -130, 0x88888888'88888888'88888888'88888889_u128}, // 2/15
+      {Sign::POS, -132, 0xdd0dd0dd'0dd0dd0d'd0dd0dd0'dd0dd0dd_u128}, // 17/315
+      {Sign::POS, -133, 0xb327a441'6087cf99'6b5dd24e'ec0b327a_u128}, // 62/2835
+      {Sign::POS, -134,
+       0x91371aaf'3611e47a'da8e1cba'7d900eca_u128}, // 1382/155925
+      {Sign::POS, -136,
+       0xeb69e870'abeefdaf'e606d2e4'd1e65fbc_u128}, // 21844/6081075
+      {Sign::POS, -137,
+       0xbed1b229'5baf15b5'0ec9af45'a2619971_u128}, // 929569/638512875
+      {Sign::POS, -138,
+       0x9aac1240'1b3a2291'1b2ac7e3'e4627d0a_u128}, // 6404582/10854718875
+  };
+
+  return fputil::quick_mul(
+      u, fputil::polyeval(u_sq, TAN_COEFFS[0], TAN_COEFFS[1], TAN_COEFFS[2],
+                          TAN_COEFFS[3], TAN_COEFFS[4], TAN_COEFFS[5],
+                          TAN_COEFFS[6], TAN_COEFFS[7], TAN_COEFFS[8]));
+}
+
+// Calculation a / b = a * (1/b) for Float128.
+// Using the initial approximation of q ~ (1/b), then apply 2 Newton-Raphson
+// iterations, before multiplying by a.
+[[maybe_unused]] Float128 newton_raphson_div(const Float128 &a, Float128 b,
+                                             double q) {
+  Float128 q0(q);
+  constexpr Float128 TWO(2.0);
+  b.sign = (b.sign == Sign::POS) ? Sign::NEG : Sign::POS;
+  Float128 q1 =
+      fputil::quick_mul(q0, fputil::quick_add(TWO, fputil::quick_mul(b, q0)));
+  Float128 q2 =
+      fputil::quick_mul(q1, fputil::quick_add(TWO, fputil::quick_mul(b, q1)));
+  return fputil::quick_mul(a, q2);
+}
+#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+} // namespace tan_internal
+
+LIBC_INLINE static double tan(double x) {
+  using namespace tan_internal;
+  using namespace math::range_reduction_double_internal;
+  using FPBits = typename fputil::FPBits<double>;
+  FPBits xbits(x);
+
+  uint16_t x_e = xbits.get_biased_exponent();
+
+  DoubleDouble y;
+  unsigned k;
+  LargeRangeReduction range_reduction_large{};
+
+  // |x| < 2^16
+  if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) {
+    // |x| < 2^-7
+    if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) {
+      // |x| < 2^-27, |tan(x) - x| < ulp(x)/2.
+      if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) {
+        // Signed zeros.
+        if (LIBC_UNLIKELY(x == 0.0))
+          return x + x; // Make sure it works with FTZ/DAZ.
+
+#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+        return fputil::multiply_add(x, 0x1.0p-54, x);
+#else
+        if (LIBC_UNLIKELY(x_e < 4)) {
+          int rounding_mode = fputil::quick_get_round();
+          if ((xbits.sign() == Sign::POS && rounding_mode == FE_UPWARD) ||
+              (xbits.sign() == Sign::NEG && rounding_mode == FE_DOWNWARD))
+            return FPBits(xbits.uintval() + 1).get_val();
+        }
+        return fputil::multiply_add(x, 0x1.0p-54, x);
+#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+      }
+      // No range reduction needed.
+      k = 0;
+      y.lo = 0.0;
+      y.hi = x;
+    } else {
+      // Small range reduction.
+      k = range_reduction_small(x, y);
+    }
+  } else {
+    // Inf or NaN
+    if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) {
+      if (xbits.is_signaling_nan()) {
+        fputil::raise_except_if_required(FE_INVALID);
+        return FPBits::quiet_nan().get_val();
+      }
+      // tan(+-Inf) = NaN
+      if (xbits.get_mantissa() == 0) {
+        fputil::set_errno_if_required(EDOM);
+        fputil::raise_except_if_required(FE_INVALID);
+      }
+      return x + FPBits::quiet_nan().get_val();
+    }
+
+    // Large range reduction.
+    k = range_reduction_large.fast(x, y);
+  }
+
+  DoubleDouble tan_y;
+  [[maybe_unused]] double err = tan_eval(y, tan_y);
+
+  // Look up sin(k * pi/128) and cos(k * pi/128)
+#ifdef LIBC_MATH_HAS_SMALL_TABLES
+  // Memory saving versions. Use 65-entry table:
+  auto get_idx_dd = [](unsigned kk) -> DoubleDouble {
+    unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
+    DoubleDouble ans = SIN_K_PI_OVER_128[idx];
+    if (kk & 128) {
+      ans.hi = -ans.hi;
+      ans.lo = -ans.lo;
+    }
+    return ans;
+  };
+  DoubleDouble msin_k = get_idx_dd(k + 128);
+  DoubleDouble cos_k = get_idx_dd(k + 64);
+#else
+  // Fast look up version, but needs 256-entry table.
+  // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
+  DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255];
+  DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255];
+#endif // LIBC_MATH_HAS_SMALL_TABLES
+
+  // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128).
+  // So k is an integer and -pi / 256 <= y <= pi / 256.
+  // Then tan(x) = sin(x) / cos(x)
+  //             = sin((k * pi/128 + y) / cos((k * pi/128 + y)
+  //             = (cos(y) * sin(k*pi/128) + sin(y) * cos(k*pi/128)) /
+  //               / (cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128))
+  //             = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) /
+  //               / (cos(k*pi/128) - tan(y) * sin(k*pi/128))
+  DoubleDouble cos_k_tan_y = fputil::quick_mult(tan_y, cos_k);
+  DoubleDouble msin_k_tan_y = fputil::quick_mult(tan_y, msin_k);
+
+  // num_dd = sin(k*pi/128) + tan(y) * cos(k*pi/128)
+  DoubleDouble num_dd = fputil::exact_add<false>(cos_k_tan_y.hi, -msin_k.hi);
+  // den_dd = cos(k*pi/128) - tan(y) * sin(k*pi/128)
+  DoubleDouble den_dd = fputil::exact_add<false>(msin_k_tan_y.hi, cos_k.hi);
+  num_dd.lo += cos_k_tan_y.lo - msin_k.lo;
+  den_dd.lo += msin_k_tan_y.lo + cos_k.lo;
+
+#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+  double tan_x = (num_dd.hi + num_dd.lo) / (den_dd.hi + den_dd.lo);
+  return tan_x;
+#else
+  // Accurate test and pass for correctly rounded implementation.
+
+  // Accurate double-double division
+  DoubleDouble tan_x = fputil::div(num_dd, den_dd);
+
+  // Simple error bound: |1 / den_dd| < 2^(1 + floor(-log2(den_dd)))).
+  uint64_t den_inv = (static_cast<uint64_t>(FPBits::EXP_BIAS + 1)
+                      << (FPBits::FRACTION_LEN + 1)) -
+                     (FPBits(den_dd.hi).uintval() & FPBits::EXP_MASK);
+
+  // For tan_x = (num_dd + err) / (den_dd + err), the error is bounded by:
+  //   | tan_x - num_dd / den_dd |  <= err * ( 1 + | tan_x * den_dd | ).
+  double tan_err =
+      err * fputil::multiply_add(FPBits(den_inv).get_val(),
+                                 FPBits(tan_x.hi).abs().get_val(), 1.0);
+
+  double err_higher = tan_x.lo + tan_err;
+  double err_lower = tan_x.lo - tan_err;
+
+  double tan_upper = tan_x.hi + err_higher;
+  double tan_lower = tan_x.hi + err_lower;
+
+  // Ziv's rounding test.
+  if (LIBC_LIKELY(tan_upper == tan_lower))
+    return tan_upper;
+
+  Float128 u_f128;
+  if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT))
+    u_f128 = range_reduction_small_f128(x);
+  else
+    u_f128 = range_reduction_large.accurate();
+
+  Float128 tan_u = tan_eval(u_f128);
+
+  auto get_sin_k = [](unsigned kk) -> Float128 {
+    unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
+    Float128 ans = SIN_K_PI_OVER_128_F128[idx];
+    if (kk & 128)
+      ans.sign = Sign::NEG;
+    return ans;
+  };
+
+  // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
+  Float128 sin_k_f128 = get_sin_k(k);
+  Float128 cos_k_f128 = get_sin_k(k + 64);
+  Float128 msin_k_f128 = get_sin_k(k + 128);
+
+  // num_f128 = sin(k*pi/128) + tan(y) * cos(k*pi/128)
+  Float128 num_f128 =
+      fputil::quick_add(sin_k_f128, fputil::quick_mul(cos_k_f128, tan_u));
+  // den_f128 = cos(k*pi/128) - tan(y) * sin(k*pi/128)
+  Float128 den_f128 =
+      fputil::quick_add(cos_k_f128, fputil::quick_mul(msin_k_f128, tan_u));
+
+  // tan(x) = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) /
+  //          / (cos(k*pi/128) - tan(y) * sin(k*pi/128))
+  // TODO: The initial seed 1.0/den_dd.hi for Newton-Raphson reciprocal can be
+  // reused from DoubleDouble fputil::div in the fast pass.
+  Float128 result = newton_raphson_div(num_f128, den_f128, 1.0 / den_dd.hi);
+
+  // TODO: Add assertion if Ziv's accuracy tests fail in debug mode.
+  // https://github.com/llvm/llvm-project/issues/96452.
+  return static_cast<double>(result);
+
+#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LIBC_SRC___SUPPORT_MATH_TAN_H
diff --git a/libc/src/math/generic/CMakeLists.txt b/libc/src/math/generic/CMakeLists.txt
index 6e58434415ead..e1756375146af 100644
--- a/libc/src/math/generic/CMakeLists.txt
+++ b/libc/src/math/generic/CMakeLists.txt
@@ -486,16 +486,7 @@ add_entrypoint_object(
   HDRS
     ../tan.h
   DEPENDS
-    libc.src.__support.math.range_reduction_double
-    libc.hdr.errno_macros
-    libc.src.errno.errno
-    libc.src.__support.FPUtil.double_double
-    libc.src.__support.FPUtil.dyadic_float
-    libc.src.__support.FPUtil.except_value_utils
-    libc.src.__support.FPUtil.fenv_impl
-    libc.src.__support.FPUtil.fp_bits
-    libc.src.__support.FPUtil.multiply_add
-    libc.src.__support.macros.optimization
+    libc.src.__support.math.tan
 )
 
 add_entrypoint_object(
diff --git a/libc/src/math/generic/tan.cpp b/libc/src/math/generic/tan.cpp
index 7ea40c9af75d2..2e9f8096b459c 100644
--- a/libc/src/math/generic/tan.cpp
+++ b/libc/src/math/generic/tan.cpp
@@ -7,290 +7,10 @@
 //===----------------------------------------------------------------------===//
 
 #include "src/math/tan.h"
-#include "hdr/errno_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/dyadic_float.h"
-#include "src/__support/FPUtil/except_value_utils.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/rounding_mode.h"
-#include "src/__support/common.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
-#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
-#include "src/__support/math/range_reduction_double_common.h"
-
-#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
-#include "src/__support/math/range_reduction_double_fma.h"
-#else
-#include "src/__support/math/range_reduction_double_nofma.h"
-#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
+#include "src/__support/math/tan.h"
 
 namespace LIBC_NAMESPACE_DECL {
 
-using DoubleDouble = fputil::DoubleDouble;
-using Float128 = typename fputil::DyadicFloat<128>;
-
-namespace {
-
-LIBC_INLINE double tan_eval(const DoubleDouble &u, DoubleDouble &result) {
-  // Evaluate tan(y) = tan(x - k * (pi/128))
-  // We use the degree-9 Taylor approximation:
-  //   tan(y) ~ P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835
-  // Then the error is bounded by:
-  //   |tan(y) - P(y)| < 2^-6 * |y|^11 < 2^-6 * 2^-66 = 2^-72.
-  // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms
-  // < ulp(u_hi^3) gives us:
-  //   P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835 = ...
-  // ~ u_hi + u_hi^3 * (1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 +
-  //                                                     + u_hi^2 * 62/2835))) +
-  //        + u_lo (1 + u_hi^2 * (1 + u_hi^2 * 2/3))
-  double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58.
-  // p1 ~ 17/315 + u_hi^2 62 / 2835.
-  double p1 =
-      fputil::multiply_add(u_hi_sq, 0x1.664f4882c10fap-6, 0x1.ba1ba1ba1ba1cp-5);
-  // p2 ~ 1/3 + u_hi^2 2 / 15.
-  double p2 =
-      fputil::multiply_add(u_hi_sq, 0x1.1111111111111p-3, 0x1.5555555555555p-2);
-  // q1 ~ 1 + u_hi^2 * 2/3.
-  double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-1, 1.0);
-  double u_hi_3 = u_hi_sq * u.hi;
-  double u_hi_4 = u_hi_sq * u_hi_sq;
-  // p3 ~ 1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 + u_hi^2 * 62/2835))
-  double p3 = fputil::multiply_add(u_hi_4, p1, p2);
-  // q2 ~ 1 + u_hi^2 * (1 + u_hi^2 * 2/3)
-  double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0);
-  double tan_lo = fputil::multiply_add(u_hi_3, p3, u.lo * q2);
-  // Overall, |tan(y) - (u_hi + tan_lo)| < ulp(u_hi^3) <= 2^-71.
-  // And the relative errors is:
-  // |(tan(y) - (u_hi + tan_lo)) / tan(y) | <= 2*ulp(u_hi^2) < 2^-64
-  result = fputil::exact_add(u.hi, tan_lo);
-  return fputil::multiply_add(fputil::FPBits<double>(u_hi_3).abs().get_val(),
-                              0x1.0p-51, 0x1.0p-102);
-}
-
-#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-// Accurate evaluation of tan for small u.
-[[maybe_unused]] Float128 tan_eval(const Float128 &u) {
-  Float128 u_sq = fputil::quick_mul(u, u);
-
-  // tan(x) ~ x + x^3/3 + x^5 * 2/15 + x^7 * 17/315 + x^9 * 62/2835 +
-  //          + x^11 * 1382/155925 + x^13 * 21844/6081075 +
-  //          + x^15 * 929569/638512875 + x^17 * 6404582/10854718875
-  // Relative errors < 2^-127 for |u| < pi/256.
-  constexpr Float128 TAN_COEFFS[] = {
-      {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1
-      {Sign::POS, -129, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1
-      {Sign::POS, -130, 0x88888888'88888888'88888888'88888889_u128}, // 2/15
-      {Sign::POS, -132, 0xdd0dd0dd'0dd0dd0d'd0dd0dd0'dd0dd0dd_u128}, // 17/315
-      {Sign::POS, -133, 0xb327a441'6087cf99'6b5dd24e'ec0b327a_u128}, // 62/2835
-      {Sign::POS, -134,
-       0x91371aaf'3611e47a'da8e1cba'7d900eca_u128}, // 1382/155925
-      {Sign::POS, -136,
-       0xeb69e870'abeefdaf'e606d2e4'd1e65fbc_u128}, // 21844/6081075
-      {Sign::POS, -137,
-       0xbed1b229'5baf15b5'0ec9af45'a2619971_u128}, // 929569/638512875
-      {Sign::POS, -138,
-       0x9aac1240'1b3a2291'1b2ac7e3'e4627d0a_u128}, // 6404582/10854718875
-  };
-
-  return fputil::quick_mul(
-      u, fputil::polyeval(u_sq, TAN_COEFFS[0], TAN_COEFFS[1], TAN_COEFFS[2],
-                          TAN_COEFFS[3], TAN_COEFFS[4], TAN_COEFFS[5],
-                          TAN_COEFFS[6], TAN_COEFFS[7], TAN_COEFFS[8]));
-}
-
-// Calculation a / b = a * (1/b) for Float128.
-// Using the initial approximation of q ~ (1/b), then apply 2 Newton-Raphson
-// iterations, before multiplying by a.
-[[maybe_unused]] Float128 newton_raphson_div(const Float128 &a, Float128 b,
-                                             double q) {
-  Float128 q0(q);
-  constexpr Float128 TWO(2.0);
-  b.sign = (b.sign == Sign::POS) ? Sign::NEG : Sign::POS;
-  Float128 q1 =
-      fputil::quick_mul(q0, fputil::quick_add(TWO, fputil::quick_mul(b, q0)));
-  Float128 q2 =
-      fputil::quick_mul(q1, fputil::quick_add(TWO, fputil::quick_mul(b, q1)));
-  return fputil::quick_mul(a, q2);
-}
-#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-
-} // anonymous namespace
-
-LLVM_LIBC_FUNCTION(double, tan, (double x)) {
-  using namespace math::range_reduction_double_internal;
-  using FPBits = typename fputil::FPBits<double>;
-  FPBits xbits(x);
-
-  uint16_t x_e = xbits.get_biased_exponent();
-
-  DoubleDouble y;
-  unsigned k;
-  LargeRangeReduction range_reduction_large{};
-
-  // |x| < 2^16
-  if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) {
-    // |x| < 2^-7
-    if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) {
-      // |x| < 2^-27, |tan(x) - x| < ulp(x)/2.
-      if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) {
-        // Signed zeros.
-        if (LIBC_UNLIKELY(x == 0.0))
-          return x + x; // Make sure it works with FTZ/DAZ.
-
-#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
-        return fputil::multiply_add(x, 0x1.0p-54, x);
-#else
-        if (LIBC_UNLIKELY(x_e < 4)) {
-          int rounding_mode = fputil::quick_get_round();
-          if ((xbits.sign() == Sign::POS && rounding_mode == FE_UPWARD) ||
-              (xbits.sign() == Sign::NEG && rounding_mode == FE_DOWNWARD))
-            return FPBits(xbits.uintval() + 1).get_val();
-        }
-        return fputil::multiply_add(x, 0x1.0p-54, x);
-#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
-      }
-      // No range reduction needed.
-      k = 0;
-      y.lo = 0.0;
-      y.hi = x;
-    } else {
-      // Small range reduction.
-      k = range_reduction_small(x, y);
-    }
-  } else {
-    // Inf or NaN
-    if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) {
-      if (xbits.is_signaling_nan()) {
-        fputil::raise_except_if_required(FE_INVALID);
-        return FPBits::quiet_nan().get_val();
-      }
-      // tan(+-Inf) = NaN
-      if (xbits.get_mantissa() == 0) {
-        fputil::set_errno_if_required(EDOM);
-        fputil::raise_except_if_required(FE_INVALID);
-      }
-      return x + FPBits::quiet_nan().get_val();
-    }
-
-    // Large range reduction.
-    k = range_reduction_large.fast(x, y);
-  }
-
-  DoubleDouble tan_y;
-  [[maybe_unused]] double err = tan_eval(y, tan_y);
-
-  // Look up sin(k * pi/128) and cos(k * pi/128)
-#ifdef LIBC_MATH_HAS_SMALL_TABLES
-  // Memory saving versions. Use 65-entry table:
-  auto get_idx_dd = [](unsigned kk) -> DoubleDouble {
-    unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
-    DoubleDouble ans = SIN_K_PI_OVER_128[idx];
-    if (kk & 128) {
-      ans.hi = -ans.hi;
-      ans.lo = -ans.lo;
-    }
-    return ans;
-  };
-  DoubleDouble msin_k = get_idx_dd(k + 128);
-  DoubleDouble cos_k = get_idx_dd(k + 64);
-#else
-  // Fast look up version, but needs 256-entry table.
-  // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
-  DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255];
-  DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255];
-#endif // LIBC_MATH_HAS_SMALL_TABLES
-
-  // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128).
-  // So k is an integer and -pi / 256 <= y <= pi / 256.
-  // Then tan(x) = sin(x) / cos(x)
-  //             = sin((k * pi/128 + y) / cos((k * pi/128 + y)
-  //             = (cos(y) * sin(k*pi/128) + sin(y) * cos(k*pi/128)) /
-  //               / (cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128))
-  //             = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) /
-  //               / (cos(k*pi/128) - tan(y) * sin(k*pi/128))
-  DoubleDouble cos_k_tan_y = fputil::quick_mult(tan_y, cos_k);
-  DoubleDouble msin_k_tan_y = fputil::quick_mult(tan_y, msin_k);
-
-  // num_dd = sin(k*pi/128) + tan(y) * cos(k*pi/128)
-  DoubleDouble num_dd = fputil::exact_add<false>(cos_k_tan_y.hi, -msin_k.hi);
-  // den_dd = cos(k*pi/128) - tan(y) * sin(k*pi/128)
-  DoubleDouble den_dd = fputil::exact_add<false>(msin_k_tan_y.hi, cos_k.hi);
-  num_dd.lo += cos_k_tan_y.lo - msin_k.lo;
-  den_dd.lo += msin_k_tan_y.lo + cos_k.lo;
-
-#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-  double tan_x = (num_dd.hi + num_dd.lo) / (den_dd.hi + den_dd.lo);
-  return tan_x;
-#else
-  // Accurate test and pass for correctly rounded implementation.
-
-  // Accurate double-double division
-  DoubleDouble tan_x = fputil::div(num_dd, den_dd);
-
-  // Simple error bound: |1 / den_dd| < 2^(1 + floor(-log2(den_dd)))).
-  uint64_t den_inv = (static_cast<uint64_t>(FPBits::EXP_BIAS + 1)
-                      << (FPBits::FRACTION_LEN + 1)) -
-                     (FPBits(den_dd.hi).uintval() & FPBits::EXP_MASK);
-
-  // For tan_x = (num_dd + err) / (den_dd + err), the error is bounded by:
-  //   | tan_x - num_dd / den_dd |  <= err * ( 1 + | tan_x * den_dd | ).
-  double tan_err =
-      err * fputil::multiply_add(FPBits(den_inv).get_val(),
-                                 FPBits(tan_x.hi).abs().get_val(), 1.0);
-
-  double err_higher = tan_x.lo + tan_err;
-  double err_lower = tan_x.lo - tan_err;
-
-  double tan_upper = tan_x.hi + err_higher;
-  double tan_lower = tan_x.hi + err_lower;
-
-  // Ziv's rounding test.
-  if (LIBC_LIKELY(tan_upper == tan_lower))
-    return tan_upper;
-
-  Float128 u_f128;
-  if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT))
-    u_f128 = range_reduction_small_f128(x);
-  else
-    u_f128 = range_reduction_large.accurate();
-
-  Float128 tan_u = tan_eval(u_f128);
-
-  auto get_sin_k = [](unsigned kk) -> Float128 {
-    unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
-    Float128 ans = SIN_K_PI_OVER_128_F128[idx];
-    if (kk & 128)
-      ans.sign = Sign::NEG;
-    return ans;
-  };
-
-  // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
-  Float128 sin_k_f128 = get_sin_k(k);
-  Float128 cos_k_f128 = get_sin_k(k + 64);
-  Float128 msin_k_f128 = get_sin_k(k + 128);
-
-  // num_f128 = sin(k*pi/128) + tan(y) * cos(k*pi/128)
-  Float128 num_f128 =
-      fputil::quick_add(sin_k_f128, fputil::quick_mul(cos_k_f128, tan_u));
-  // den_f128 = cos(k*pi/128) - tan(y) * sin(k*pi/128)
-  Float128 den_f128 =
-      fputil::quick_add(cos_k_f128, fputil::quick_mul(msin_k_f128, tan_u));
-
-  // tan(x) = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) /
-  //          / (cos(k*pi/128) - tan(y) * sin(k*pi/128))
-  // TODO: The initial seed 1.0/den_dd.hi for Newton-Raphson reciprocal can be
-  // reused from DoubleDouble fputil::div in the fast pass.
-  Float128 result = newton_raphson_div(num_f128, den_f128, 1.0 / den_dd.hi);
-
-  // TODO: Add assertion if Ziv's accuracy tests fail in debug mode.
-  // https://github.com/llvm/llvm-project/issues/96452.
-  return static_cast<double>(result);
-
-#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
-}
+LLVM_LIBC_FUNCTION(double, tan, (double x)) { return math::tan(x); }
 
 } // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/test/shared/CMakeLists.txt b/libc/test/shared/CMakeLists.txt
index 3fc36ed0c2198..069ab2b9187d0 100644
--- a/libc/test/shared/CMakeLists.txt
+++ b/libc/test/shared/CMakeLists.txt
@@ -78,4 +78,5 @@ add_fp_unittest(
     libc.src.__support.math.rsqrtf
     libc.src.__support.math.rsqrtf16
     libc.src.__support.math.sin
+    libc.src.__support.math.tan
 )
diff --git a/libc/test/shared/shared_math_test.cpp b/libc/test/shared/shared_math_test.cpp
index 45ba79de87226..194d95286d97c 100644
--- a/libc/test/shared/shared_math_test.cpp
+++ b/libc/test/shared/shared_math_test.cpp
@@ -106,6 +106,7 @@ TEST(LlvmLibcSharedMathTest, AllDouble) {
   EXPECT_FP_EQ(0x0p+0, LIBC_NAMESPACE::shared::log1p(0.0));
   EXPECT_FP_EQ(0x0p+0, LIBC_NAMESPACE::shared::log2(1.0));
   EXPECT_FP_EQ(0.0, LIBC_NAMESPACE::shared::sin(0.0));
+  EXPECT_FP_EQ(0.0, LIBC_NAMESPACE::shared::tan(0.0));
 }
 
 TEST(LlvmLibcSharedMathTest, AllLongDouble) {
diff --git a/utils/bazel/llvm-project-overlay/libc/BUILD.bazel b/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
index 2819824a11857..a2fc52619c66f 100644
--- a/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
+++ b/utils/bazel/llvm-project-overlay/libc/BUILD.bazel
@@ -3458,6 +3458,18 @@ libc_support_library(
     ],
 )
 
+libc_support_library(
+    name = "__support_math_tan",
+    hdrs = ["src/__support/math/tan.h"],
+    deps = [
+        ":__support_fputil_multiply_add",
+        ":__support_macros_optimization",
+        ":__support_macros_properties_cpu_features",
+        ":__support_range_reduction_double",
+        ":__support_sincos_eval",
+    ],
+)
+
 ############################### complex targets ################################
 
 libc_function(
@@ -5124,11 +5136,7 @@ libc_math_function(
 libc_math_function(
     name = "tan",
     additional_deps = [
-        ":__support_fputil_multiply_add",
-        ":__support_macros_optimization",
-        ":__support_macros_properties_cpu_features",
-        ":__support_range_reduction_double",
-        ":__support_sincos_eval",
+        ":__support_math_tan",
     ],
 )
 

>From ac073a24282bb1e10635f558372257a12eb4a49c Mon Sep 17 00:00:00 2001
From: Nico Weber <thakis at chromium.org>
Date: Fri, 23 Jan 2026 14:58:54 -0500
Subject: [PATCH 2/2] errno

---
 libc/src/__support/math/CMakeLists.txt | 1 -
 libc/src/math/generic/CMakeLists.txt   | 1 +
 2 files changed, 1 insertion(+), 1 deletion(-)

diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index bf67f09ea9cb9..b65ed5ed978ce 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -1248,5 +1248,4 @@ add_header_library(
     libc.src.__support.FPUtil.fp_bits
     libc.src.__support.FPUtil.multiply_add
     libc.src.__support.macros.optimization
-    libc.src.errno.errno
 )
diff --git a/libc/src/math/generic/CMakeLists.txt b/libc/src/math/generic/CMakeLists.txt
index e1756375146af..acdd86433374e 100644
--- a/libc/src/math/generic/CMakeLists.txt
+++ b/libc/src/math/generic/CMakeLists.txt
@@ -487,6 +487,7 @@ add_entrypoint_object(
     ../tan.h
   DEPENDS
     libc.src.__support.math.tan
+    libc.src.errno.errno
 )
 
 add_entrypoint_object(



More information about the libc-commits mailing list