[libc-commits] [libc] [libc] Implement efficient 'malloc' on the GPU (PR #140156)
Michael Jones via libc-commits
libc-commits at lists.llvm.org
Fri May 16 10:21:00 PDT 2025
================
@@ -27,21 +50,445 @@ void *rpc_allocate(uint64_t size) {
return ptr;
}
-void rpc_free(void *ptr) {
+// Deallocates the associated system memory.
+static void rpc_free(void *ptr) {
rpc::Client::Port port = rpc::client.open<LIBC_FREE>();
port.send([=](rpc::Buffer *buffer, uint32_t) {
buffer->data[0] = reinterpret_cast<uintptr_t>(ptr);
});
port.close();
}
-} // namespace
+// Convert a potentially disjoint bitmask into an increasing integer for use
+// with indexing between gpu lanes.
+static inline uint32_t lane_count(uint64_t lane_mask) {
+ return cpp::popcount(lane_mask & ((1ull << gpu::get_lane_id()) - 1));
+}
+
+// Obtain an initial value to seed a random number generator. We use the rounded
+// multiples of the golden ratio from xorshift* as additional spreading.
+static inline uint32_t entropy() {
+ return (static_cast<uint32_t>(gpu::processor_clock()) ^
+ (gpu::get_thread_id_x() * 0x632be59b) ^
+ (gpu::get_block_id_x() * 0x85157af5)) *
+ 0x9e3779bb;
+}
+
+// Generate a random number and update the state using the xorshift*32 PRNG.
+static inline uint32_t xorshift32(uint32_t &state) {
+ state ^= state << 13;
+ state ^= state >> 17;
+ state ^= state << 5;
+ return state * 0x9e3779bb;
+}
+
+// Final stage of murmurhash used to get a unique index for the global array
+static inline uint32_t hash(uint32_t x) {
+ x ^= x >> 16;
+ x *= 0x85ebca6b;
+ x ^= x >> 13;
+ x *= 0xc2b2ae35;
+ x ^= x >> 16;
+ return x;
+}
+
+// Rounds the input value to the closest permitted chunk size. Here we accept
+// the sum of the closest three powers of two. For a 2MiB slab size this is 48
+// different chunk sizes. This gives us average internal fragmentation of 87.5%.
+static inline uint32_t get_chunk_size(uint32_t x) {
+ uint32_t y = x < MIN_SIZE ? MIN_SIZE : x;
+ uint32_t pow2 = BITS_IN_WORD - cpp::countl_zero(y - 1);
+
+ uint32_t s0 = 0b0100 << (pow2 - 3);
+ uint32_t s1 = 0b0110 << (pow2 - 3);
+ uint32_t s2 = 0b0111 << (pow2 - 3);
+ uint32_t s3 = 0b1000 << (pow2 - 3);
+
+ if (s0 > y)
+ return (s0 + 15) & ~15;
+ if (s1 > y)
+ return (s1 + 15) & ~15;
+ if (s2 > y)
+ return (s2 + 15) & ~15;
+ return (s3 + 15) & ~15;
+}
+
+// Rounds to the nearest power of two.
+template <uint32_t N, typename T>
+static inline constexpr T round_up(const T x) {
+ static_assert(((N - 1) & N) == 0, "N must be a power of two");
+ return (x + N) & ~(N - 1);
+}
+
+} // namespace impl
+
+/// A slab allocator used to hand out indentically sized slabs of memory.
+/// Allocation is done through random walks of a bitfield until a free bit is
+/// encountered. This reduces contention and is highly parallel on a GPU.
+///
+/// 0 4 8 16 ... 2 MiB
+/// ┌────────┬──────────┬────────┬──────────────────┬──────────────────────────┐
+/// │ chunk │ index │ pad │ bitfield[] │ memory[] │
+/// └────────┴──────────┴────────┴──────────────────┴──────────────────────────┘
+///
+/// The size of the bitfield is the slab size divided by the chunk size divided
+/// by the number of bits per word. We pad the interface to ensure 16 byte
+/// alignment and to indicate that if the pointer is not aligned by 2MiB it
+/// belongs to a slab rather than the global allocator.
+struct Slab {
+ // Initialize the slab with its chunk size and index in the global table for
+ // use when freeing.
+ Slab(uint32_t chunk_size, uint32_t global_index) {
+ *reinterpret_cast<uint32_t *>(&memory[0]) = chunk_size;
+ *reinterpret_cast<uint32_t *>(&memory[sizeof(uint32_t)]) = global_index;
+
+ // This memset is expensive and likely not necessary for the current 'kfd'
+ // driver. Until zeroed pages are exposed by the API we must be careful.
+ __builtin_memset(get_bitfield(), 0, bitfield_bytes(chunk_size));
+ }
+
+ // Get the number of chunks that can theoretically fit inside this array.
+ static uint32_t num_chunks(uint32_t chunk_size) {
+ return SLAB_SIZE / chunk_size;
+ }
+
+ // Get the number of bytes needed to contain the bitfield bits.
+ static uint32_t bitfield_bytes(uint32_t chunk_size) {
+ return ((num_chunks(chunk_size) + BITS_IN_WORD - 1) / BITS_IN_WORD) *
+ sizeof(uint32_t);
+ }
+
+ // The actual amount of memory available excluding the bitfield and metadata.
+ static uint32_t available_bytes(uint32_t chunk_size) {
+ return SLAB_SIZE - 2 * bitfield_bytes(chunk_size) - MIN_SIZE;
+ }
+
+ // The number of chunks that can be stored in this slab.
+ static uint32_t available_chunks(uint32_t chunk_size) {
+ return available_bytes(chunk_size) / chunk_size;
+ }
+
+ // The length in bits of the bitfield.
+ static uint32_t usable_bits(uint32_t chunk_size) {
+ return ((available_bytes(chunk_size) + chunk_size - 1) / chunk_size);
+ }
+
+ // Get the location in the memory where we will store the chunk size.
+ uint32_t get_chunk_size() const {
+ return *reinterpret_cast<const uint32_t *>(memory);
+ }
+
+ // Get the location in the memory where we will store the global index.
+ uint32_t get_global_index() const {
+ return *reinterpret_cast<const uint32_t *>(memory + sizeof(uint32_t));
+ }
+
+ // Get a pointer to where the bitfield is located in the memory.
+ uint32_t *get_bitfield() {
+ return reinterpret_cast<uint32_t *>(memory + MIN_SIZE);
+ }
+
+ // Get a pointer to where the actual memory to be allocated lives.
+ uint8_t *get_memory(uint32_t chunk_size) {
+ return reinterpret_cast<uint8_t *>(memory) + bitfield_bytes(chunk_size) +
+ MIN_SIZE;
+ }
+
+ // Get a pointer to the actual memory given an index into the bitfield.
+ void *ptr_from_index(uint32_t index, uint32_t chunk_size) {
+ return get_memory(chunk_size) + index * chunk_size;
+ }
+
+ // Convert a pointer back into its bitfield index using its offset.
+ uint32_t index_from_ptr(void *ptr, uint32_t chunk_size) {
+ return static_cast<uint32_t>(reinterpret_cast<uint8_t *>(ptr) -
+ get_memory(chunk_size)) /
+ chunk_size;
+ }
+
+ // Randomly walks the bitfield until it finds a free bit in the bitfield.
+ // Allocations attempt to put lanes right next to eachother for better
+ // caching and convergence.
+ void *allocate(uint64_t lane_mask, uint64_t uniform) {
+ uint32_t chunk_size = get_chunk_size();
+ uint32_t state = impl::entropy();
+ void *result = nullptr;
+ // The uniform mask represents which lanes contain a uniform target pointer.
+ // We attempt to place these next to eachother in the bitfield.
+ // TODO: We should coalesce these bits and use the result of `fetch_or` to
+ // search for free bits in parallel.
+ for (uint64_t mask = ~0ull; mask; mask = gpu::ballot(lane_mask, !result)) {
----------------
michaelrj-google wrote:
nit: use limits max here as well
https://github.com/llvm/llvm-project/pull/140156
More information about the libc-commits
mailing list