[libc-commits] [libc] [libc] Fix malloc Block alignment issue on riscv32 (PR #117815)
Daniel Thornburgh via libc-commits
libc-commits at lists.llvm.org
Wed Nov 27 12:19:44 PST 2024
https://github.com/mysterymath updated https://github.com/llvm/llvm-project/pull/117815
>From 6886caedc313f2fe030e6184f7fb9f92546bc2f0 Mon Sep 17 00:00:00 2001
From: Daniel Thornburgh <mysterymath at gmail.com>
Date: Sat, 23 Nov 2024 11:30:28 -0800
Subject: [PATCH] [libc] Fix malloc Block alignment issue on riscv32
Aligning blocks to max_align_t is neither necessary nor sufficient to
ensure that the usable_space() is so aligned. Instead, we make this an
invariant of Block and maintain it in init() and split().
This allows targets like riscv32 with small pointers and large
max_align_t to maintain the property that all available blocks are
aligned for malloc(). This change adjusts the tests to match and also
updates them closer to llvm-libc style.
---
libc/fuzzing/__support/freelist_heap_fuzz.cpp | 6 +-
libc/src/__support/CMakeLists.txt | 1 +
libc/src/__support/block.h | 248 +++++++-------
libc/src/__support/freelist_heap.h | 23 +-
libc/src/__support/freestore.h | 10 +-
libc/test/src/__support/block_test.cpp | 317 +++++++-----------
.../test/src/__support/freelist_heap_test.cpp | 106 +++---
.../src/__support/freelist_malloc_test.cpp | 21 +-
8 files changed, 300 insertions(+), 432 deletions(-)
diff --git a/libc/fuzzing/__support/freelist_heap_fuzz.cpp b/libc/fuzzing/__support/freelist_heap_fuzz.cpp
index d152d0f35499f8..d5764adcbb2642 100644
--- a/libc/fuzzing/__support/freelist_heap_fuzz.cpp
+++ b/libc/fuzzing/__support/freelist_heap_fuzz.cpp
@@ -100,13 +100,13 @@ optional<AllocType> choose<AllocType>(const uint8_t *&data, size_t &remainder) {
*raw % static_cast<uint8_t>(AllocType::NUM_ALLOC_TYPES));
}
-constexpr size_t heap_size = 64 * 1024;
+constexpr size_t HEAP_SIZE = 64 * 1024;
optional<size_t> choose_size(const uint8_t *&data, size_t &remainder) {
auto raw = choose<size_t>(data, remainder);
if (!raw)
return nullopt;
- return *raw % heap_size;
+ return *raw % HEAP_SIZE;
}
optional<size_t> choose_alloc_idx(const AllocVec &allocs, const uint8_t *&data,
@@ -126,7 +126,7 @@ optional<size_t> choose_alloc_idx(const AllocVec &allocs, const uint8_t *&data,
TYPE NAME = *maybe_##NAME
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t remainder) {
- LIBC_NAMESPACE::FreeListHeapBuffer<heap_size> heap;
+ LIBC_NAMESPACE::FreeListHeapBuffer<HEAP_SIZE> heap;
AllocVec allocs(heap);
uint8_t canary = 0;
diff --git a/libc/src/__support/CMakeLists.txt b/libc/src/__support/CMakeLists.txt
index 8f85740f70a06e..f11ea3e84af559 100644
--- a/libc/src/__support/CMakeLists.txt
+++ b/libc/src/__support/CMakeLists.txt
@@ -12,6 +12,7 @@ add_header_library(
libc.src.__support.CPP.optional
libc.src.__support.CPP.span
libc.src.__support.CPP.type_traits
+ libc.src.__support.math_extras
)
add_object_library(
diff --git a/libc/src/__support/block.h b/libc/src/__support/block.h
index 9ca3f11530c4ba..29c7f404b3d78d 100644
--- a/libc/src/__support/block.h
+++ b/libc/src/__support/block.h
@@ -18,6 +18,7 @@
#include "src/__support/CPP/type_traits.h"
#include "src/__support/libc_assert.h"
#include "src/__support/macros/config.h"
+#include "src/__support/math_extras.h"
#include <stdint.h>
@@ -49,8 +50,7 @@ LIBC_INLINE constexpr T *align_down(T *value, size_t alignment) {
/// Returns the value rounded up to the nearest multiple of alignment.
LIBC_INLINE constexpr size_t align_up(size_t value, size_t alignment) {
- __builtin_add_overflow(value, alignment - 1, &value);
- return align_down(value, alignment);
+ return align_down(value + alignment - 1, alignment);
}
/// Returns the value rounded up to the nearest multiple of alignment.
@@ -68,8 +68,8 @@ using cpp::optional;
/// The blocks store their offsets to the previous and next blocks. The latter
/// is also the block's size.
///
-/// Blocks will always be aligned to a `ALIGNMENT` boundary. Block sizes will
-/// always be rounded up to a multiple of `ALIGNMENT`.
+/// All blocks have their usable space aligned to some multiple of max_align_t.
+/// This also implies that block outer sizes are aligned to max_align_t.
///
/// As an example, the diagram below represents two contiguous `Block`s. The
/// indices indicate byte offsets:
@@ -122,15 +122,13 @@ class Block {
static constexpr size_t SIZE_MASK = ~(PREV_FREE_MASK | LAST_MASK);
public:
- static constexpr size_t ALIGNMENT = cpp::max(alignof(max_align_t), size_t{4});
- static const size_t BLOCK_OVERHEAD;
-
// No copy or move.
Block(const Block &other) = delete;
Block &operator=(const Block &other) = delete;
- /// Creates the first block for a given memory region, followed by a sentinel
- /// last block. Returns the first block.
+ /// Initializes a given memory region into a first block and a sentinel last
+ /// block. Returns the first block, which has its usable space aligned to
+ /// max_align_t.
static optional<Block *> init(ByteSpan region);
/// @returns A pointer to a `Block`, given a pointer to the start of the
@@ -142,11 +140,11 @@ class Block {
/// pointer will return a non-null pointer.
LIBC_INLINE static Block *from_usable_space(void *usable_space) {
auto *bytes = reinterpret_cast<cpp::byte *>(usable_space);
- return reinterpret_cast<Block *>(bytes - BLOCK_OVERHEAD);
+ return reinterpret_cast<Block *>(bytes - sizeof(Block));
}
LIBC_INLINE static const Block *from_usable_space(const void *usable_space) {
const auto *bytes = reinterpret_cast<const cpp::byte *>(usable_space);
- return reinterpret_cast<const Block *>(bytes - BLOCK_OVERHEAD);
+ return reinterpret_cast<const Block *>(bytes - sizeof(Block));
}
/// @returns The total size of the block in bytes, including the header.
@@ -154,7 +152,7 @@ class Block {
LIBC_INLINE static size_t outer_size(size_t inner_size) {
// The usable region includes the prev_ field of the next block.
- return inner_size - sizeof(prev_) + BLOCK_OVERHEAD;
+ return inner_size - sizeof(prev_) + sizeof(Block);
}
/// @returns The number of usable bytes inside the block were it to be
@@ -182,15 +180,18 @@ class Block {
/// @returns The number of usable bytes inside a block with the given outer
/// size if it remains free.
LIBC_INLINE static size_t inner_size_free(size_t outer_size) {
- return outer_size - BLOCK_OVERHEAD;
+ return outer_size - sizeof(Block);
}
/// @returns A pointer to the usable space inside this block.
+ ///
+ /// Unless specifically requested otherwise, this will be aligned to
+ /// max_align_t.
LIBC_INLINE cpp::byte *usable_space() {
- return reinterpret_cast<cpp::byte *>(this) + BLOCK_OVERHEAD;
+ return reinterpret_cast<cpp::byte *>(this) + sizeof(Block);
}
LIBC_INLINE const cpp::byte *usable_space() const {
- return reinterpret_cast<const cpp::byte *>(this) + BLOCK_OVERHEAD;
+ return reinterpret_cast<const cpp::byte *>(this) + sizeof(Block);
}
// @returns The region of memory the block manages, including the header.
@@ -201,11 +202,12 @@ class Block {
/// Attempts to split this block.
///
/// If successful, the block will have an inner size of at least
- /// `new_inner_size`, rounded to ensure that the split point is on an
- /// ALIGNMENT boundary. The remaining space will be returned as a new block.
- /// Note that the prev_ field of the next block counts as part of the inner
- /// size of the returnd block.
- optional<Block *> split(size_t new_inner_size);
+ /// `new_inner_size`. The remaining space will be returned as a new block,
+ /// with usable space aligned to `usable_space_alignment`. Note that the prev_
+ /// field of the next block counts as part of the inner size of the block.
+ /// `usable_space_alignment` must be a multiple of max_align_t.
+ optional<Block *> split(size_t new_inner_size,
+ size_t usable_space_alignment = alignof(max_align_t));
/// Merges this block with the one that comes after it.
bool merge_next();
@@ -249,45 +251,49 @@ class Block {
LIBC_INLINE void mark_last() { next_ |= LAST_MASK; }
LIBC_INLINE constexpr Block(size_t outer_size) : next_(outer_size) {
- LIBC_ASSERT(outer_size % ALIGNMENT == 0 && "block sizes must be aligned");
+ LIBC_ASSERT(outer_size % alignof(Block) == 0 &&
+ "block sizes must be aligned");
+ LIBC_ASSERT(is_usable_space_aligned(alignof(max_align_t)) &&
+ "usable space must be aligned to a multiple of max_align_t");
}
LIBC_INLINE bool is_usable_space_aligned(size_t alignment) const {
return reinterpret_cast<uintptr_t>(usable_space()) % alignment == 0;
}
- /// @returns The new inner size of this block that would give the usable
- /// space of the next block the given alignment.
- LIBC_INLINE size_t padding_for_alignment(size_t alignment) const {
- if (is_usable_space_aligned(alignment))
- return 0;
-
- // We need to ensure we can always split this block into a "padding" block
- // and the aligned block. To do this, we need enough extra space for at
- // least one block.
- //
- // |block |usable_space |
- // |........|......................................|
- // ^
- // Alignment requirement
+ // Returns the minimum inner size necessary for a block of that size to
+ // always be able to allocate at the given size and alignment.
+ //
+ // Returns 0 if there is no such size.
+ LIBC_INLINE static size_t min_size_for_allocation(size_t alignment,
+ size_t size) {
+ LIBC_ASSERT(alignment >= alignof(max_align_t) &&
+ alignment % alignof(max_align_t) == 0 &&
+ "alignment must be multiple of max_align_t");
+
+ if (alignment == alignof(max_align_t))
+ return size;
+
+ // We must create a padding block to align the usable space of the next
+ // block. The next block's usable space can be found by advancing by
+ // sizeof(Block) then aligning up. The amount advanced is the amount of
+ // additional inner size required.
//
- //
- // |block |space |block |usable_space |
- // |........|........|........|....................|
- // ^
- // Alignment requirement
- //
- alignment = cpp::max(alignment, ALIGNMENT);
- uintptr_t start = reinterpret_cast<uintptr_t>(usable_space());
- uintptr_t next_usable_space = align_up(start + BLOCK_OVERHEAD, alignment);
- uintptr_t next_block = next_usable_space - BLOCK_OVERHEAD;
- return next_block - start + sizeof(prev_);
+ // The minimum advancment is sizeof(Block), since the resulting position
+ // may happen to be aligned. What is the maximum? Advancing by
+ // sizeof(Block) leaves the result still aligned to max_align_t. So the
+ // most additional advancement required would be if the point is exactly
+ // alignof(max_align_t) past alignment. The remaining size to the next
+ // alignment would then be alignment - alignof(max_align_t). So the total
+ // maximum advancement required is sizeof(Block) + alignment -
+ // alignof(max_align_t).
+ if (add_overflow(size, sizeof(Block), size))
+ return 0;
+ if (add_overflow(size, alignment - alignof(max_align_t), size))
+ return 0;
+ return size;
}
- // Check that we can `allocate` a block with a given alignment and size from
- // this existing block.
- bool can_allocate(size_t alignment, size_t size) const;
-
// This is the return type for `allocate` which can split one block into up to
// three blocks.
struct BlockInfo {
@@ -309,21 +315,30 @@ class Block {
Block *next;
};
- // Divide a block into up to 3 blocks according to `BlockInfo`. This should
- // only be called if `can_allocate` returns true.
+ // Divide a block into up to 3 blocks according to `BlockInfo`. Behavior is
+ // undefined if allocation is not possible for the given size and alignment.
static BlockInfo allocate(Block *block, size_t alignment, size_t size);
+ LIBC_INLINE static uintptr_t next_possible_block_start(
+ uintptr_t ptr, size_t usable_space_alignment = alignof(max_align_t)) {
+ return align_up(ptr + sizeof(Block), usable_space_alignment) -
+ sizeof(Block);
+ }
+ LIBC_INLINE static uintptr_t prev_possible_block_start(
+ uintptr_t ptr, size_t usable_space_alignment = alignof(max_align_t)) {
+ return align_down(ptr, usable_space_alignment) - sizeof(Block);
+ }
+
private:
/// Construct a block to represent a span of bytes. Overwrites only enough
/// memory for the block header; the rest of the span is left alone.
LIBC_INLINE static Block *as_block(ByteSpan bytes) {
+ LIBC_ASSERT(reinterpret_cast<uintptr_t>(bytes.data()) % alignof(Block) ==
+ 0 &&
+ "block start must be suitably aligned");
return ::new (bytes.data()) Block(bytes.size());
}
- /// Like `split`, but assumes the caller has already checked to parameters to
- /// ensure the split will succeed.
- Block *split_impl(size_t new_inner_size);
-
/// Offset from this block to the previous block. 0 if this is the first
/// block. This field is only alive when the previous block is free;
/// otherwise, its memory is reused as part of the previous block's usable
@@ -343,93 +358,56 @@ class Block {
/// previous block is free.
/// * If the `last` flag is set, the block is the sentinel last block. It is
/// summarily considered used and has no next block.
-} __attribute__((packed, aligned(cpp::max(alignof(max_align_t), size_t{4}))));
-
-inline constexpr size_t Block::BLOCK_OVERHEAD =
- align_up(sizeof(Block), ALIGNMENT);
-
-LIBC_INLINE ByteSpan get_aligned_subspan(ByteSpan bytes, size_t alignment) {
- if (bytes.data() == nullptr)
- return ByteSpan();
-
- auto unaligned_start = reinterpret_cast<uintptr_t>(bytes.data());
- auto aligned_start = align_up(unaligned_start, alignment);
- auto unaligned_end = unaligned_start + bytes.size();
- auto aligned_end = align_down(unaligned_end, alignment);
-
- if (aligned_end <= aligned_start)
- return ByteSpan();
+};
- return bytes.subspan(aligned_start - unaligned_start,
- aligned_end - aligned_start);
-}
+static_assert(alignof(max_align_t) >= 4,
+ "the low two bits of block sizes must be free for use as flags");
LIBC_INLINE
optional<Block *> Block::init(ByteSpan region) {
- optional<ByteSpan> result = get_aligned_subspan(region, ALIGNMENT);
- if (!result)
+ if (!region.data())
return {};
- region = result.value();
- // Two blocks are allocated: a free block and a sentinel last block.
- if (region.size() < 2 * BLOCK_OVERHEAD)
- return {};
+ uintptr_t start = reinterpret_cast<uintptr_t>(region.data());
+ uintptr_t end = start + region.size();
- if (cpp::numeric_limits<size_t>::max() < region.size())
+ uintptr_t block_start = next_possible_block_start(start);
+ uintptr_t last_start = prev_possible_block_start(end);
+ if (block_start + sizeof(Block) > last_start)
return {};
- Block *block = as_block(region.first(region.size() - BLOCK_OVERHEAD));
- Block *last = as_block(region.last(BLOCK_OVERHEAD));
+ auto *last_start_ptr = reinterpret_cast<cpp::byte *>(last_start);
+ Block *block =
+ as_block({reinterpret_cast<cpp::byte *>(block_start), last_start_ptr});
+ Block *last = as_block({last_start_ptr, sizeof(Block)});
block->mark_free();
last->mark_last();
return block;
}
-LIBC_INLINE
-bool Block::can_allocate(size_t alignment, size_t size) const {
- if (inner_size() < size)
- return false;
- if (is_usable_space_aligned(alignment))
- return true;
-
- // Alignment isn't met, so a padding block is needed. Determine amount of
- // inner_size() consumed by the padding block.
- size_t padding_size = padding_for_alignment(alignment) - sizeof(prev_);
-
- // Check that there is room for the allocation in the following aligned block.
- size_t aligned_inner_size = inner_size() - padding_size - BLOCK_OVERHEAD;
- return size <= aligned_inner_size;
-}
-
LIBC_INLINE
Block::BlockInfo Block::allocate(Block *block, size_t alignment, size_t size) {
- LIBC_ASSERT(
- block->can_allocate(alignment, size) &&
- "Calls to this function for a given alignment and size should only be "
- "done if `can_allocate` for these parameters returns true.");
+ LIBC_ASSERT(alignment % alignof(max_align_t) == 0 &&
+ "alignment must be a multiple of max_align_t");
BlockInfo info{block, /*prev=*/nullptr, /*next=*/nullptr};
if (!info.block->is_usable_space_aligned(alignment)) {
Block *original = info.block;
- optional<Block *> maybe_aligned_block =
- original->split(info.block->padding_for_alignment(alignment));
+ // The padding block has no minimum size requirement.
+ optional<Block *> maybe_aligned_block = original->split(0, alignment);
LIBC_ASSERT(maybe_aligned_block.has_value() &&
- "This split should always result in a new block. The check in "
- "`can_allocate` ensures that we have enough space here to make "
- "two blocks.");
+ "it should always be possible to split for alignment");
if (Block *prev = original->prev_free()) {
- // If there is a free block before this, we can merge the current one with
- // the newly created one.
+ // If there is a free block before this, we can merge the current one
+ // with the newly created one.
prev->merge_next();
} else {
info.prev = original;
}
Block *aligned_block = *maybe_aligned_block;
- LIBC_ASSERT(aligned_block->is_usable_space_aligned(alignment) &&
- "The aligned block isn't aligned somehow.");
info.block = aligned_block;
}
@@ -441,33 +419,35 @@ Block::BlockInfo Block::allocate(Block *block, size_t alignment, size_t size) {
}
LIBC_INLINE
-optional<Block *> Block::split(size_t new_inner_size) {
+optional<Block *> Block::split(size_t new_inner_size,
+ size_t usable_space_alignment) {
+
+ LIBC_ASSERT(usable_space_alignment % alignof(max_align_t) == 0 &&
+ "alignment must be a multiple of max_align_t");
+
if (used())
return {};
- // The prev_ field of the next block is always available, so there is a
- // minimum size to a block created through splitting.
- if (new_inner_size < sizeof(prev_))
- new_inner_size = sizeof(prev_);
-
- size_t old_inner_size = inner_size();
- new_inner_size =
- align_up(new_inner_size - sizeof(prev_), ALIGNMENT) + sizeof(prev_);
- if (old_inner_size < new_inner_size)
- return {};
- if (old_inner_size - new_inner_size < BLOCK_OVERHEAD)
- return {};
+ size_t old_outer_size = outer_size();
- return split_impl(new_inner_size);
-}
+ // Compute the minimum outer size that produces a block of at least
+ // `new_inner_size`.
+ size_t min_outer_size = outer_size(cpp::max(new_inner_size, sizeof(prev_)));
-LIBC_INLINE
-Block *Block::split_impl(size_t new_inner_size) {
- size_t outer_size1 = outer_size(new_inner_size);
- LIBC_ASSERT(outer_size1 % ALIGNMENT == 0 && "new size must be aligned");
- ByteSpan new_region = region().subspan(outer_size1);
+ uintptr_t start = reinterpret_cast<uintptr_t>(this);
+ uintptr_t next_block_start =
+ next_possible_block_start(start + min_outer_size, usable_space_alignment);
+ size_t new_outer_size = next_block_start - start;
+ LIBC_ASSERT(new_outer_size % alignof(max_align_t) == 0 &&
+ "new size must be aligned to max_align_t");
+
+ if (old_outer_size < new_outer_size ||
+ old_outer_size - new_outer_size < sizeof(Block))
+ return {};
+
+ ByteSpan new_region = region().subspan(new_outer_size);
next_ &= ~SIZE_MASK;
- next_ |= outer_size1;
+ next_ |= new_outer_size;
Block *new_block = as_block(new_region);
mark_free(); // Free status for this block is now stored in new_block.
diff --git a/libc/src/__support/freelist_heap.h b/libc/src/__support/freelist_heap.h
index 8fa36257cb91ae..d58685194aeb81 100644
--- a/libc/src/__support/freelist_heap.h
+++ b/libc/src/__support/freelist_heap.h
@@ -89,28 +89,14 @@ LIBC_INLINE void *FreeListHeap::allocate_impl(size_t alignment, size_t size) {
if (!is_initialized)
init();
- size_t request_size = size;
-
- // TODO: usable_space should always be aligned to max_align_t.
- if (alignment > alignof(max_align_t) ||
- (Block::BLOCK_OVERHEAD % alignof(max_align_t) != 0)) {
- // TODO: This bound isn't precisely calculated yet. It assumes one extra
- // Block::ALIGNMENT to accomodate the possibility for padding block
- // overhead. (alignment - 1) ensures that there is an aligned point
- // somewhere in usable_space, but this isn't tight either, since
- // usable_space is also already somewhat aligned.
- if (add_overflow(size, (alignment - 1) + Block::ALIGNMENT, request_size))
- return nullptr;
- }
+ size_t request_size = Block::min_size_for_allocation(alignment, size);
+ if (!request_size)
+ return nullptr;
Block *block = free_store.remove_best_fit(request_size);
if (!block)
return nullptr;
- LIBC_ASSERT(block->can_allocate(alignment, size) &&
- "block should always be large enough to allocate at the correct "
- "alignment");
-
auto block_info = Block::allocate(block, alignment, size);
if (block_info.next)
free_store.insert(block_info.next);
@@ -135,6 +121,9 @@ LIBC_INLINE void *FreeListHeap::aligned_allocate(size_t alignment,
if (size % alignment != 0)
return nullptr;
+ // The minimum alignment supported by Block is max_align_t.
+ alignment = cpp::max(alignment, alignof(max_align_t));
+
return allocate_impl(alignment, size);
}
diff --git a/libc/src/__support/freestore.h b/libc/src/__support/freestore.h
index 97197dda4b546b..09f2479debb36a 100644
--- a/libc/src/__support/freestore.h
+++ b/libc/src/__support/freestore.h
@@ -40,13 +40,12 @@ class FreeStore {
Block *remove_best_fit(size_t size);
private:
- static constexpr size_t ALIGNMENT = alignof(max_align_t);
static constexpr size_t MIN_OUTER_SIZE =
- align_up(Block::BLOCK_OVERHEAD + sizeof(FreeList::Node), ALIGNMENT);
+ align_up(sizeof(Block) + sizeof(FreeList::Node), alignof(max_align_t));
static constexpr size_t MIN_LARGE_OUTER_SIZE =
- align_up(Block::BLOCK_OVERHEAD + sizeof(FreeTrie::Node), ALIGNMENT);
+ align_up(sizeof(Block) + sizeof(FreeTrie::Node), alignof(max_align_t));
static constexpr size_t NUM_SMALL_SIZES =
- (MIN_LARGE_OUTER_SIZE - MIN_OUTER_SIZE) / ALIGNMENT;
+ (MIN_LARGE_OUTER_SIZE - MIN_OUTER_SIZE) / alignof(max_align_t);
LIBC_INLINE static bool too_small(Block *block) {
return block->outer_size() < MIN_OUTER_SIZE;
@@ -99,7 +98,8 @@ LIBC_INLINE Block *FreeStore::remove_best_fit(size_t size) {
LIBC_INLINE FreeList &FreeStore::small_list(Block *block) {
LIBC_ASSERT(is_small(block) && "only legal for small blocks");
- return small_lists[(block->outer_size() - MIN_OUTER_SIZE) / ALIGNMENT];
+ return small_lists[(block->outer_size() - MIN_OUTER_SIZE) /
+ alignof(max_align_t)];
}
LIBC_INLINE FreeList *FreeStore::find_best_small_fit(size_t size) {
diff --git a/libc/test/src/__support/block_test.cpp b/libc/test/src/__support/block_test.cpp
index 5e437db51b6092..f39daac88726dc 100644
--- a/libc/test/src/__support/block_test.cpp
+++ b/libc/test/src/__support/block_test.cpp
@@ -21,37 +21,47 @@ using LIBC_NAMESPACE::cpp::byte;
using LIBC_NAMESPACE::cpp::span;
TEST(LlvmLibcBlockTest, CanCreateSingleAlignedBlock) {
- constexpr size_t kN = 1024;
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ alignas(alignof(Block)) array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(block) % alignof(Block), size_t{0});
+ EXPECT_TRUE(block->is_usable_space_aligned(alignof(max_align_t)));
+
Block *last = block->next();
ASSERT_NE(last, static_cast<Block *>(nullptr));
- constexpr size_t last_outer_size = Block::BLOCK_OVERHEAD;
- EXPECT_EQ(last->outer_size(), last_outer_size);
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(last) % alignof(Block), size_t{0});
+
+ EXPECT_EQ(last->outer_size(), sizeof(Block));
EXPECT_EQ(last->prev_free(), block);
EXPECT_TRUE(last->used());
- EXPECT_EQ(block->outer_size(), kN - last_outer_size);
- constexpr size_t last_prev_field_size = sizeof(size_t);
- EXPECT_EQ(block->inner_size(), kN - last_outer_size - Block::BLOCK_OVERHEAD +
- last_prev_field_size);
+ size_t block_outer_size =
+ reinterpret_cast<uintptr_t>(last) - reinterpret_cast<uintptr_t>(block);
+ EXPECT_EQ(block->outer_size(), block_outer_size);
+ EXPECT_EQ(block->inner_size(),
+ block_outer_size - sizeof(Block) + sizeof(size_t));
EXPECT_EQ(block->prev_free(), static_cast<Block *>(nullptr));
EXPECT_FALSE(block->used());
}
TEST(LlvmLibcBlockTest, CanCreateUnalignedSingleBlock) {
- constexpr size_t kN = 1024;
-
// Force alignment, so we can un-force it below
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ alignas(alignof(Block)) array<byte, 1024> bytes;
span<byte> aligned(bytes);
auto result = Block::init(aligned.subspan(1));
EXPECT_TRUE(result.has_value());
+
+ Block *block = *result;
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(block) % alignof(Block), size_t{0});
+ EXPECT_TRUE(block->is_usable_space_aligned(alignof(max_align_t)));
+
+ Block *last = block->next();
+ ASSERT_NE(last, static_cast<Block *>(nullptr));
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(last) % alignof(Block), size_t{0});
}
TEST(LlvmLibcBlockTest, CannotCreateTooSmallBlock) {
@@ -61,57 +71,50 @@ TEST(LlvmLibcBlockTest, CannotCreateTooSmallBlock) {
}
TEST(LlvmLibcBlockTest, CanSplitBlock) {
- constexpr size_t kN = 1024;
- constexpr size_t prev_field_size = sizeof(size_t);
// Give the split position a large alignment.
- constexpr size_t kSplitN = 512 + prev_field_size;
+ constexpr size_t SPLIT = 512 + sizeof(size_t);
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
auto *block1 = *result;
size_t orig_size = block1->outer_size();
- result = block1->split(kSplitN);
+ result = block1->split(SPLIT);
ASSERT_TRUE(result.has_value());
auto *block2 = *result;
- EXPECT_EQ(block1->inner_size(), kSplitN);
- EXPECT_EQ(block1->outer_size(),
- kSplitN - prev_field_size + Block::BLOCK_OVERHEAD);
+ EXPECT_EQ(block1->inner_size(), SPLIT);
+ EXPECT_EQ(block1->outer_size(), SPLIT - sizeof(size_t) + sizeof(Block));
EXPECT_EQ(block2->outer_size(), orig_size - block1->outer_size());
EXPECT_FALSE(block2->used());
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(block2) % alignof(Block), size_t{0});
+ EXPECT_TRUE(block2->is_usable_space_aligned(alignof(max_align_t)));
EXPECT_EQ(block1->next(), block2);
EXPECT_EQ(block2->prev_free(), block1);
}
TEST(LlvmLibcBlockTest, CanSplitBlockUnaligned) {
- constexpr size_t kN = 1024;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block1 = *result;
size_t orig_size = block1->outer_size();
- constexpr size_t kSplitN = 513;
- constexpr size_t prev_field_size = sizeof(size_t);
- uintptr_t split_addr =
- reinterpret_cast<uintptr_t>(block1) + (kSplitN - prev_field_size);
- // Round split_addr up to a multiple of the alignment.
- split_addr += alignof(Block) - (split_addr % alignof(Block));
- uintptr_t split_len = split_addr - (uintptr_t)&bytes + prev_field_size;
+ constexpr size_t SPLIT = 513;
- result = block1->split(kSplitN);
+ result = block1->split(SPLIT);
ASSERT_TRUE(result.has_value());
Block *block2 = *result;
- EXPECT_EQ(block1->inner_size(), split_len);
+ EXPECT_GE(block1->inner_size(), SPLIT);
EXPECT_EQ(block2->outer_size(), orig_size - block1->outer_size());
EXPECT_FALSE(block2->used());
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(block2) % alignof(Block), size_t{0});
+ EXPECT_TRUE(block2->is_usable_space_aligned(alignof(max_align_t)));
EXPECT_EQ(block1->next(), block2);
EXPECT_EQ(block2->prev_free(), block1);
@@ -127,20 +130,16 @@ TEST(LlvmLibcBlockTest, CanSplitMidBlock) {
// block1->split()
// [[ BLOCK1 ]][[ BLOCK3 ]][[ BLOCK2 ]]
- constexpr size_t kN = 1024;
- constexpr size_t kSplit1 = 512;
- constexpr size_t kSplit2 = 256;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ alignas(alignof(Block)) array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block1 = *result;
- result = block1->split(kSplit1);
+ result = block1->split(512);
ASSERT_TRUE(result.has_value());
Block *block2 = *result;
- result = block1->split(kSplit2);
+ result = block1->split(256);
ASSERT_TRUE(result.has_value());
Block *block3 = *result;
@@ -151,36 +150,28 @@ TEST(LlvmLibcBlockTest, CanSplitMidBlock) {
}
TEST(LlvmLibcBlockTest, CannotSplitTooSmallBlock) {
- constexpr size_t kN = 64;
- constexpr size_t kSplitN = kN + 1;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 64> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
- result = block->split(kSplitN);
+ result = block->split(block->inner_size() + 1);
ASSERT_FALSE(result.has_value());
}
TEST(LlvmLibcBlockTest, CannotSplitBlockWithoutHeaderSpace) {
- constexpr size_t kN = 1024;
- constexpr size_t kSplitN = kN - 2 * Block::BLOCK_OVERHEAD - 1;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
- result = block->split(kSplitN);
+ result = block->split(block->inner_size() - sizeof(Block) + 1);
ASSERT_FALSE(result.has_value());
}
+// Ensure that we can't ask for more space than the block actually has...
TEST(LlvmLibcBlockTest, CannotMakeBlockLargerInSplit) {
- // Ensure that we can't ask for more space than the block actually has...
- constexpr size_t kN = 1024;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
@@ -189,55 +180,35 @@ TEST(LlvmLibcBlockTest, CannotMakeBlockLargerInSplit) {
ASSERT_FALSE(result.has_value());
}
-TEST(LlvmLibcBlockTest, CannotMakeSecondBlockLargerInSplit) {
- // Ensure that the second block in split is at least of the size of header.
- constexpr size_t kN = 1024;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
- auto result = Block::init(bytes);
- ASSERT_TRUE(result.has_value());
- Block *block = *result;
-
- result = block->split(block->inner_size() - Block::BLOCK_OVERHEAD + 1);
- ASSERT_FALSE(result.has_value());
-}
-
+// This block does support splitting with minimal payload size.
TEST(LlvmLibcBlockTest, CanMakeMinimalSizeFirstBlock) {
- // This block does support splitting with minimal payload size.
- constexpr size_t kN = 1024;
- constexpr size_t minimal_size = sizeof(size_t);
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
- result = block->split(minimal_size);
+ result = block->split(0);
ASSERT_TRUE(result.has_value());
- EXPECT_EQ(block->inner_size(), minimal_size);
+ EXPECT_LE(block->outer_size(), sizeof(Block) + alignof(max_align_t));
}
+// Likewise, the split block can be minimal-width.
TEST(LlvmLibcBlockTest, CanMakeMinimalSizeSecondBlock) {
- // Likewise, the split block can be minimal-width.
- constexpr size_t kN = 1024;
- constexpr size_t minimal_size = sizeof(size_t);
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block1 = *result;
- result = block1->split(block1->inner_size() - Block::BLOCK_OVERHEAD);
+ result = block1->split(Block::prev_possible_block_start(
+ reinterpret_cast<uintptr_t>(block1->next())) -
+ reinterpret_cast<uintptr_t>(block1->usable_space()) +
+ sizeof(size_t));
ASSERT_TRUE(result.has_value());
- Block *block2 = *result;
-
- EXPECT_EQ(block2->inner_size(), minimal_size);
+ EXPECT_LE((*result)->outer_size(), sizeof(Block) + alignof(max_align_t));
}
TEST(LlvmLibcBlockTest, CanMarkBlockUsed) {
- constexpr size_t kN = 1024;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
@@ -252,38 +223,30 @@ TEST(LlvmLibcBlockTest, CanMarkBlockUsed) {
}
TEST(LlvmLibcBlockTest, CannotSplitUsedBlock) {
- constexpr size_t kN = 1024;
- constexpr size_t kSplitN = 512;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
block->mark_used();
- result = block->split(kSplitN);
+ result = block->split(512);
ASSERT_FALSE(result.has_value());
}
TEST(LlvmLibcBlockTest, CanMergeWithNextBlock) {
// Do the three way merge from "CanSplitMidBlock", and let's
// merge block 3 and 2
- constexpr size_t kN = 1024;
- // Give the split positions large alignments.
- constexpr size_t prev_field_size = sizeof(size_t);
- constexpr size_t kSplit1 = 512 + prev_field_size;
- constexpr size_t kSplit2 = 256 + prev_field_size;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block1 = *result;
- size_t orig_size = block1->outer_size();
+ size_t total_size = block1->outer_size();
- result = block1->split(kSplit1);
+ result = block1->split(512);
ASSERT_TRUE(result.has_value());
- result = block1->split(kSplit2);
+ result = block1->split(256);
+ size_t block1_size = block1->outer_size();
ASSERT_TRUE(result.has_value());
Block *block3 = *result;
@@ -291,21 +254,18 @@ TEST(LlvmLibcBlockTest, CanMergeWithNextBlock) {
EXPECT_EQ(block1->next(), block3);
EXPECT_EQ(block3->prev_free(), block1);
- EXPECT_EQ(block1->inner_size(), kSplit2);
- EXPECT_EQ(block3->outer_size(), orig_size - block1->outer_size());
+ EXPECT_EQ(block1->outer_size(), block1_size);
+ EXPECT_EQ(block3->outer_size(), total_size - block1->outer_size());
}
TEST(LlvmLibcBlockTest, CannotMergeWithFirstOrLastBlock) {
- constexpr size_t kN = 1024;
- constexpr size_t kSplitN = 512;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block1 = *result;
// Do a split, just to check that the checks on next/prev are different...
- result = block1->split(kSplitN);
+ result = block1->split(512);
ASSERT_TRUE(result.has_value());
Block *block2 = *result;
@@ -313,16 +273,13 @@ TEST(LlvmLibcBlockTest, CannotMergeWithFirstOrLastBlock) {
}
TEST(LlvmLibcBlockTest, CannotMergeUsedBlock) {
- constexpr size_t kN = 1024;
- constexpr size_t kSplitN = 512;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes;
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
// Do a split, just to check that the checks on next/prev are different...
- result = block->split(kSplitN);
+ result = block->split(512);
ASSERT_TRUE(result.has_value());
block->mark_used();
@@ -330,9 +287,7 @@ TEST(LlvmLibcBlockTest, CannotMergeUsedBlock) {
}
TEST(LlvmLibcBlockTest, CanGetBlockFromUsableSpace) {
- constexpr size_t kN = 1024;
-
- array<byte, kN> bytes{};
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block1 = *result;
@@ -343,9 +298,7 @@ TEST(LlvmLibcBlockTest, CanGetBlockFromUsableSpace) {
}
TEST(LlvmLibcBlockTest, CanGetConstBlockFromUsableSpace) {
- constexpr size_t kN = 1024;
-
- array<byte, kN> bytes{};
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
const Block *block1 = *result;
@@ -355,93 +308,79 @@ TEST(LlvmLibcBlockTest, CanGetConstBlockFromUsableSpace) {
EXPECT_EQ(block1, block2);
}
-TEST(LlvmLibcBlockTest, CanAllocate) {
- constexpr size_t kN = 1024 + Block::BLOCK_OVERHEAD;
-
+TEST(LlvmLibcBlockTest, Allocate) {
// Ensure we can allocate everything up to the block size within this block.
- for (size_t i = 0; i < kN - 2 * Block::BLOCK_OVERHEAD; ++i) {
- alignas(Block::ALIGNMENT) array<byte, kN> bytes{};
+ for (size_t i = 0; i < 1024; ++i) {
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
- constexpr size_t ALIGN = 1; // Effectively ignores alignment.
- EXPECT_TRUE(block->can_allocate(ALIGN, i));
+ if (i > block->inner_size())
+ continue;
- // For each can_allocate, we should be able to do a successful call to
- // allocate.
- auto info = Block::allocate(block, ALIGN, i);
+ auto info = Block::allocate(block, alignof(max_align_t), i);
EXPECT_NE(info.block, static_cast<Block *>(nullptr));
}
- alignas(Block::ALIGNMENT) array<byte, kN> bytes{};
- auto result = Block::init(bytes);
- ASSERT_TRUE(result.has_value());
- Block *block = *result;
+ // Ensure we can allocate a byte at every guaranteeable alignment.
+ for (size_t i = 1; i < 1024 / alignof(max_align_t); ++i) {
+ array<byte, 1024> bytes;
+ auto result = Block::init(bytes);
+ ASSERT_TRUE(result.has_value());
+ Block *block = *result;
+
+ size_t alignment = i * alignof(max_align_t);
+ if (Block::min_size_for_allocation(alignment, 1) > block->inner_size())
+ continue;
- // Given a block of size N (assuming it's also a power of two), we should be
- // able to allocate a block within it that's aligned to N/2. This is
- // because regardless of where the buffer is located, we can always find a
- // starting location within it that meets this alignment.
- EXPECT_TRUE(block->can_allocate(block->outer_size() / 2, 1));
- auto info = Block::allocate(block, block->outer_size() / 2, 1);
- EXPECT_NE(info.block, static_cast<Block *>(nullptr));
+ auto info = Block::allocate(block, alignment, 1);
+ EXPECT_NE(info.block, static_cast<Block *>(nullptr));
+ }
}
TEST(LlvmLibcBlockTest, AllocateAlreadyAligned) {
- constexpr size_t kN = 1024;
-
- alignas(Block::ALIGNMENT) array<byte, kN> bytes{};
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
+ uintptr_t orig_end = reinterpret_cast<uintptr_t>(block) + block->outer_size();
- // This should result in no new blocks.
- constexpr size_t kAlignment = Block::ALIGNMENT;
- constexpr size_t prev_field_size = sizeof(size_t);
- constexpr size_t kExpectedSize = Block::ALIGNMENT + prev_field_size;
- EXPECT_TRUE(block->can_allocate(kAlignment, kExpectedSize));
+ // Request a size one byte more than the prev_ field.
+ constexpr size_t SIZE = sizeof(size_t) + 1;
auto [aligned_block, prev, next] =
- Block::allocate(block, Block::ALIGNMENT, kExpectedSize);
+ Block::allocate(block, alignof(max_align_t), SIZE);
// Since this is already aligned, there should be no previous block.
EXPECT_EQ(prev, static_cast<Block *>(nullptr));
- // Ensure we the block is aligned and the size we expect.
+ // Ensure we the block is aligned and large enough.
EXPECT_NE(aligned_block, static_cast<Block *>(nullptr));
- EXPECT_TRUE(aligned_block->is_usable_space_aligned(Block::ALIGNMENT));
- EXPECT_EQ(aligned_block->inner_size(), kExpectedSize);
+ EXPECT_TRUE(aligned_block->is_usable_space_aligned(alignof(max_align_t)));
+ EXPECT_GE(aligned_block->inner_size(), SIZE);
// Check the next block.
EXPECT_NE(next, static_cast<Block *>(nullptr));
EXPECT_EQ(aligned_block->next(), next);
- EXPECT_EQ(reinterpret_cast<byte *>(next) + next->outer_size(),
- bytes.data() + bytes.size() - Block::BLOCK_OVERHEAD);
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(next) + next->outer_size(), orig_end);
}
TEST(LlvmLibcBlockTest, AllocateNeedsAlignment) {
- constexpr size_t kN = 1024;
-
- alignas(kN) array<byte, kN> bytes{};
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
-
- // Ensure first the usable_data is only aligned to the block alignment.
- ASSERT_EQ(block->usable_space(), bytes.data() + Block::BLOCK_OVERHEAD);
- ASSERT_EQ(block->prev_free(), static_cast<Block *>(nullptr));
+ uintptr_t orig_end = reinterpret_cast<uintptr_t>(block) + block->outer_size();
// Now pick an alignment such that the usable space is not already aligned to
// it. We want to explicitly test that the block will split into one before
// it.
- constexpr size_t kAlignment = bit_ceil(Block::BLOCK_OVERHEAD) * 8;
- ASSERT_FALSE(block->is_usable_space_aligned(kAlignment));
-
- constexpr size_t kSize = 10;
- EXPECT_TRUE(block->can_allocate(kAlignment, kSize));
+ size_t alignment = alignof(max_align_t);
+ while (block->is_usable_space_aligned(alignment))
+ alignment += alignof(max_align_t);
- auto [aligned_block, prev, next] = Block::allocate(block, kAlignment, kSize);
+ auto [aligned_block, prev, next] = Block::allocate(block, alignment, 10);
// Check the previous block was created appropriately. Since this block is the
// first block, a new one should be made before this.
@@ -453,25 +392,22 @@ TEST(LlvmLibcBlockTest, AllocateNeedsAlignment) {
// Ensure we the block is aligned and the size we expect.
EXPECT_NE(next, static_cast<Block *>(nullptr));
- EXPECT_TRUE(aligned_block->is_usable_space_aligned(kAlignment));
+ EXPECT_TRUE(aligned_block->is_usable_space_aligned(alignment));
// Check the next block.
EXPECT_NE(next, static_cast<Block *>(nullptr));
EXPECT_EQ(aligned_block->next(), next);
- EXPECT_EQ(reinterpret_cast<byte *>(next) + next->outer_size(),
- bytes.data() + bytes.size() - Block::BLOCK_OVERHEAD);
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(next) + next->outer_size(), orig_end);
}
TEST(LlvmLibcBlockTest, PreviousBlockMergedIfNotFirst) {
- constexpr size_t kN = 1024;
-
- alignas(kN) array<byte, kN> bytes{};
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
// Split the block roughly halfway and work on the second half.
- auto result2 = block->split(kN / 2);
+ auto result2 = block->split(512);
ASSERT_TRUE(result2.has_value());
Block *newblock = *result2;
ASSERT_EQ(newblock->prev_free(), block);
@@ -480,15 +416,12 @@ TEST(LlvmLibcBlockTest, PreviousBlockMergedIfNotFirst) {
// Now pick an alignment such that the usable space is not already aligned to
// it. We want to explicitly test that the block will split into one before
// it.
- constexpr size_t kAlignment = bit_ceil(Block::BLOCK_OVERHEAD) * 8;
- ASSERT_FALSE(newblock->is_usable_space_aligned(kAlignment));
+ size_t alignment = alignof(max_align_t);
+ while (newblock->is_usable_space_aligned(alignment))
+ alignment += alignof(max_align_t);
// Ensure we can allocate in the new block.
- constexpr size_t kSize = Block::ALIGNMENT;
- EXPECT_TRUE(newblock->can_allocate(kAlignment, kSize));
-
- auto [aligned_block, prev, next] =
- Block::allocate(newblock, kAlignment, kSize);
+ auto [aligned_block, prev, next] = Block::allocate(newblock, alignment, 1);
// Now there should be no new previous block. Instead, the padding we did
// create should be merged into the original previous block.
@@ -503,28 +436,26 @@ TEST(LlvmLibcBlockTest, CanRemergeBlockAllocations) {
// should be able to reconstruct the original block from the blocklets.
//
// This is the same setup as with the `AllocateNeedsAlignment` test case.
- constexpr size_t kN = 1024;
-
- alignas(kN) array<byte, kN> bytes{};
+ array<byte, 1024> bytes;
auto result = Block::init(bytes);
ASSERT_TRUE(result.has_value());
Block *block = *result;
+
+ Block *orig_block = block;
+ size_t orig_size = orig_block->outer_size();
+
Block *last = block->next();
- // Ensure first the usable_data is only aligned to the block alignment.
- ASSERT_EQ(block->usable_space(), bytes.data() + Block::BLOCK_OVERHEAD);
ASSERT_EQ(block->prev_free(), static_cast<Block *>(nullptr));
// Now pick an alignment such that the usable space is not already aligned to
// it. We want to explicitly test that the block will split into one before
// it.
- constexpr size_t kAlignment = bit_ceil(Block::BLOCK_OVERHEAD) * 8;
- ASSERT_FALSE(block->is_usable_space_aligned(kAlignment));
-
- constexpr size_t kSize = Block::ALIGNMENT;
- EXPECT_TRUE(block->can_allocate(kAlignment, kSize));
+ size_t alignment = alignof(max_align_t);
+ while (block->is_usable_space_aligned(alignment))
+ alignment += alignof(max_align_t);
- auto [aligned_block, prev, next] = Block::allocate(block, kAlignment, kSize);
+ auto [aligned_block, prev, next] = Block::allocate(block, alignment, 1);
// Check we have the appropriate blocks.
ASSERT_NE(prev, static_cast<Block *>(nullptr));
@@ -540,8 +471,6 @@ TEST(LlvmLibcBlockTest, CanRemergeBlockAllocations) {
EXPECT_EQ(prev->next(), last);
// We should have the original buffer.
- EXPECT_EQ(reinterpret_cast<byte *>(prev), &*bytes.begin());
- EXPECT_EQ(prev->outer_size(), bytes.size() - Block::BLOCK_OVERHEAD);
- EXPECT_EQ(reinterpret_cast<byte *>(prev) + prev->outer_size(),
- &*bytes.end() - Block::BLOCK_OVERHEAD);
+ EXPECT_EQ(prev, orig_block);
+ EXPECT_EQ(prev->outer_size(), orig_size);
}
diff --git a/libc/test/src/__support/freelist_heap_test.cpp b/libc/test/src/__support/freelist_heap_test.cpp
index 991c158825a888..e66333a2171ca6 100644
--- a/libc/test/src/__support/freelist_heap_test.cpp
+++ b/libc/test/src/__support/freelist_heap_test.cpp
@@ -42,7 +42,7 @@ using LIBC_NAMESPACE::cpp::span;
void RunTest(FreeListHeap &allocator, [[maybe_unused]] size_t N); \
}; \
TEST_F(LlvmLibcFreeListHeapTest##TestCase, TestCase) { \
- alignas(Block) byte buf[BufferSize] = {byte(0)}; \
+ byte buf[BufferSize] = {byte(0)}; \
FreeListHeap allocator(buf); \
RunTest(allocator, BufferSize); \
RunTest(*freelist_heap, freelist_heap->region().size()); \
@@ -51,24 +51,20 @@ using LIBC_NAMESPACE::cpp::span;
size_t N)
TEST_FOR_EACH_ALLOCATOR(CanAllocate, 2048) {
- constexpr size_t ALLOC_SIZE = 512;
-
- void *ptr = allocator.allocate(ALLOC_SIZE);
+ void *ptr = allocator.allocate(512);
ASSERT_NE(ptr, static_cast<void *>(nullptr));
}
TEST_FOR_EACH_ALLOCATOR(AllocationsDontOverlap, 2048) {
- constexpr size_t ALLOC_SIZE = 512;
-
- void *ptr1 = allocator.allocate(ALLOC_SIZE);
- void *ptr2 = allocator.allocate(ALLOC_SIZE);
+ void *ptr1 = allocator.allocate(512);
+ void *ptr2 = allocator.allocate(512);
ASSERT_NE(ptr1, static_cast<void *>(nullptr));
ASSERT_NE(ptr2, static_cast<void *>(nullptr));
uintptr_t ptr1_start = reinterpret_cast<uintptr_t>(ptr1);
- uintptr_t ptr1_end = ptr1_start + ALLOC_SIZE;
+ uintptr_t ptr1_end = ptr1_start + 512;
uintptr_t ptr2_start = reinterpret_cast<uintptr_t>(ptr2);
EXPECT_GT(ptr2_start, ptr1_end);
@@ -77,11 +73,9 @@ TEST_FOR_EACH_ALLOCATOR(AllocationsDontOverlap, 2048) {
TEST_FOR_EACH_ALLOCATOR(CanFreeAndRealloc, 2048) {
// There's not really a nice way to test that free works, apart from to try
// and get that value back again.
- constexpr size_t ALLOC_SIZE = 512;
-
- void *ptr1 = allocator.allocate(ALLOC_SIZE);
+ void *ptr1 = allocator.allocate(512);
allocator.free(ptr1);
- void *ptr2 = allocator.allocate(ALLOC_SIZE);
+ void *ptr2 = allocator.allocate(512);
EXPECT_EQ(ptr1, ptr2);
}
@@ -94,39 +88,36 @@ TEST_FOR_EACH_ALLOCATOR(ReturnsNullWhenAllocationTooLarge, 2048) {
// here will likely actually return a nullptr since the same global allocator
// is used for other test cases and we don't explicitly free them.
TEST(LlvmLibcFreeListHeap, ReturnsNullWhenFull) {
- constexpr size_t N = 2048;
- alignas(Block) byte buf[N] = {byte(0)};
+ byte buf[2048];
FreeListHeap allocator(buf);
- // Use aligned_allocate so we don't need to worry about ensuring the `buf`
- // being aligned to max_align_t.
- EXPECT_NE(allocator.aligned_allocate(1, N - 2 * Block::BLOCK_OVERHEAD),
- static_cast<void *>(nullptr));
+ bool went_null = false;
+ for (int i = 0; i < 2048; i++) {
+ if (!allocator.allocate(1)) {
+ went_null = true;
+ break;
+ }
+ }
+ EXPECT_TRUE(went_null);
EXPECT_EQ(allocator.allocate(1), static_cast<void *>(nullptr));
}
TEST_FOR_EACH_ALLOCATOR(ReturnedPointersAreAligned, 2048) {
void *ptr1 = allocator.allocate(1);
- // Should be aligned to native pointer alignment
uintptr_t ptr1_start = reinterpret_cast<uintptr_t>(ptr1);
- size_t alignment = alignof(void *);
-
- EXPECT_EQ(ptr1_start % alignment, static_cast<size_t>(0));
+ EXPECT_EQ(ptr1_start % alignof(max_align_t), static_cast<size_t>(0));
void *ptr2 = allocator.allocate(1);
uintptr_t ptr2_start = reinterpret_cast<uintptr_t>(ptr2);
- EXPECT_EQ(ptr2_start % alignment, static_cast<size_t>(0));
+ EXPECT_EQ(ptr2_start % alignof(max_align_t), static_cast<size_t>(0));
}
TEST_FOR_EACH_ALLOCATOR(CanRealloc, 2048) {
- constexpr size_t ALLOC_SIZE = 512;
- constexpr size_t kNewAllocSize = 768;
-
- void *ptr1 = allocator.allocate(ALLOC_SIZE);
- void *ptr2 = allocator.realloc(ptr1, kNewAllocSize);
+ void *ptr1 = allocator.allocate(512);
+ void *ptr2 = allocator.realloc(ptr1, 768);
ASSERT_NE(ptr1, static_cast<void *>(nullptr));
ASSERT_NE(ptr2, static_cast<void *>(nullptr));
@@ -134,7 +125,6 @@ TEST_FOR_EACH_ALLOCATOR(CanRealloc, 2048) {
TEST_FOR_EACH_ALLOCATOR(ReallocHasSameContent, 2048) {
constexpr size_t ALLOC_SIZE = sizeof(int);
- constexpr size_t kNewAllocSize = sizeof(int) * 2;
// Data inside the allocated block.
byte data1[ALLOC_SIZE];
// Data inside the reallocated block.
@@ -143,7 +133,7 @@ TEST_FOR_EACH_ALLOCATOR(ReallocHasSameContent, 2048) {
int *ptr1 = reinterpret_cast<int *>(allocator.allocate(ALLOC_SIZE));
*ptr1 = 42;
LIBC_NAMESPACE::memcpy(data1, ptr1, ALLOC_SIZE);
- int *ptr2 = reinterpret_cast<int *>(allocator.realloc(ptr1, kNewAllocSize));
+ int *ptr2 = reinterpret_cast<int *>(allocator.realloc(ptr1, ALLOC_SIZE * 2));
LIBC_NAMESPACE::memcpy(data2, ptr2, ALLOC_SIZE);
ASSERT_NE(ptr1, static_cast<int *>(nullptr));
@@ -153,33 +143,24 @@ TEST_FOR_EACH_ALLOCATOR(ReallocHasSameContent, 2048) {
}
TEST_FOR_EACH_ALLOCATOR(ReturnsNullReallocFreedPointer, 2048) {
- constexpr size_t ALLOC_SIZE = 512;
- constexpr size_t kNewAllocSize = 256;
-
- void *ptr1 = allocator.allocate(ALLOC_SIZE);
+ void *ptr1 = allocator.allocate(512);
allocator.free(ptr1);
- void *ptr2 = allocator.realloc(ptr1, kNewAllocSize);
+ void *ptr2 = allocator.realloc(ptr1, 256);
EXPECT_EQ(static_cast<void *>(nullptr), ptr2);
}
TEST_FOR_EACH_ALLOCATOR(ReallocSmallerSize, 2048) {
- constexpr size_t ALLOC_SIZE = 512;
- constexpr size_t kNewAllocSize = 256;
-
- void *ptr1 = allocator.allocate(ALLOC_SIZE);
- void *ptr2 = allocator.realloc(ptr1, kNewAllocSize);
+ void *ptr1 = allocator.allocate(512);
+ void *ptr2 = allocator.realloc(ptr1, 256);
// For smaller sizes, realloc will not shrink the block.
EXPECT_EQ(ptr1, ptr2);
}
TEST_FOR_EACH_ALLOCATOR(ReallocTooLarge, 2048) {
- constexpr size_t ALLOC_SIZE = 512;
- size_t kNewAllocSize = N * 2; // Large enough to fail.
-
- void *ptr1 = allocator.allocate(ALLOC_SIZE);
- void *ptr2 = allocator.realloc(ptr1, kNewAllocSize);
+ void *ptr1 = allocator.allocate(512);
+ void *ptr2 = allocator.realloc(ptr1, N * 2); // Large enough to fail
// realloc() will not invalidate the original pointer if realloc() fails
EXPECT_NE(static_cast<void *>(nullptr), ptr1);
@@ -187,12 +168,10 @@ TEST_FOR_EACH_ALLOCATOR(ReallocTooLarge, 2048) {
}
TEST_FOR_EACH_ALLOCATOR(CanCalloc, 2048) {
- constexpr size_t ALLOC_SIZE = 128;
- constexpr size_t NUM = 4;
- constexpr int size = NUM * ALLOC_SIZE;
+ constexpr int size = 4 * 128;
constexpr byte zero{0};
- byte *ptr1 = reinterpret_cast<byte *>(allocator.calloc(NUM, ALLOC_SIZE));
+ byte *ptr1 = reinterpret_cast<byte *>(allocator.calloc(4, 128));
// calloc'd content is zero.
for (int i = 0; i < size; i++) {
@@ -201,12 +180,10 @@ TEST_FOR_EACH_ALLOCATOR(CanCalloc, 2048) {
}
TEST_FOR_EACH_ALLOCATOR(CanCallocWeirdSize, 2048) {
- constexpr size_t ALLOC_SIZE = 143;
- constexpr size_t NUM = 3;
- constexpr int size = NUM * ALLOC_SIZE;
+ constexpr int size = 3 * 143;
constexpr byte zero{0};
- byte *ptr1 = reinterpret_cast<byte *>(allocator.calloc(NUM, ALLOC_SIZE));
+ byte *ptr1 = reinterpret_cast<byte *>(allocator.calloc(3, 143));
// calloc'd content is zero.
for (int i = 0; i < size; i++) {
@@ -215,8 +192,7 @@ TEST_FOR_EACH_ALLOCATOR(CanCallocWeirdSize, 2048) {
}
TEST_FOR_EACH_ALLOCATOR(CallocTooLarge, 2048) {
- size_t ALLOC_SIZE = N + 1;
- EXPECT_EQ(allocator.calloc(1, ALLOC_SIZE), static_cast<void *>(nullptr));
+ EXPECT_EQ(allocator.calloc(1, N + 1), static_cast<void *>(nullptr));
}
TEST_FOR_EACH_ALLOCATOR(AllocateZero, 2048) {
@@ -241,16 +217,14 @@ TEST_FOR_EACH_ALLOCATOR(AlignedAlloc, 2048) {
// This test is not part of the TEST_FOR_EACH_ALLOCATOR since we want to
// explicitly ensure that the buffer can still return aligned allocations even
-// if the underlying buffer is at most aligned to the Block alignment. This
-// is so we can check that we can still get aligned allocations even if the
-// underlying buffer is not aligned to the alignments we request.
-TEST(LlvmLibcFreeListHeap, AlignedAllocOnlyBlockAligned) {
- constexpr size_t BUFFER_SIZE = 4096;
- constexpr size_t BUFFER_ALIGNMENT = alignof(Block) * 2;
- alignas(BUFFER_ALIGNMENT) byte buf[BUFFER_SIZE] = {byte(0)};
-
- // Ensure the underlying buffer is at most aligned to the block type.
- FreeListHeap allocator(span<byte>(buf).subspan(alignof(Block)));
+// if the underlying buffer is unaligned. This is so we can check that we can
+// still get aligned allocations even if the underlying buffer is not aligned to
+// the alignments we request.
+TEST(LlvmLibcFreeListHeap, AlignedAllocUnalignedBuffer) {
+ byte buf[4096] = {byte(0)};
+
+ // Ensure the underlying buffer is poorly aligned.
+ FreeListHeap allocator(span<byte>(buf).subspan(1));
constexpr size_t ALIGNMENTS[] = {1, 2, 4, 8, 16, 32, 64, 128, 256};
constexpr size_t SIZE_SCALES[] = {1, 2, 3, 4, 5};
diff --git a/libc/test/src/__support/freelist_malloc_test.cpp b/libc/test/src/__support/freelist_malloc_test.cpp
index 793e2498304fb9..5f8515b109124b 100644
--- a/libc/test/src/__support/freelist_malloc_test.cpp
+++ b/libc/test/src/__support/freelist_malloc_test.cpp
@@ -19,35 +19,30 @@ using LIBC_NAMESPACE::FreeListHeap;
using LIBC_NAMESPACE::FreeListHeapBuffer;
TEST(LlvmLibcFreeListMalloc, Malloc) {
- constexpr size_t kAllocSize = 256;
- constexpr size_t kCallocNum = 4;
- constexpr size_t kCallocSize = 64;
-
- void *ptr1 = LIBC_NAMESPACE::malloc(kAllocSize);
+ void *ptr1 = LIBC_NAMESPACE::malloc(256);
auto *block = Block::from_usable_space(ptr1);
- EXPECT_GE(block->inner_size(), kAllocSize);
+ EXPECT_GE(block->inner_size(), size_t{256});
LIBC_NAMESPACE::free(ptr1);
ASSERT_NE(block->next(), static_cast<Block *>(nullptr));
ASSERT_EQ(block->next()->next(), static_cast<Block *>(nullptr));
size_t heap_size = block->inner_size();
- void *ptr2 = LIBC_NAMESPACE::calloc(kCallocNum, kCallocSize);
+ void *ptr2 = LIBC_NAMESPACE::calloc(4, 64);
ASSERT_EQ(ptr2, ptr1);
- EXPECT_GE(block->inner_size(), kCallocNum * kCallocSize);
+ EXPECT_GE(block->inner_size(), size_t{4 * 64});
- for (size_t i = 0; i < kCallocNum * kCallocSize; ++i)
+ for (size_t i = 0; i < 4 * 64; ++i)
EXPECT_EQ(reinterpret_cast<uint8_t *>(ptr2)[i], uint8_t(0));
LIBC_NAMESPACE::free(ptr2);
EXPECT_EQ(block->inner_size(), heap_size);
- constexpr size_t ALIGN = kAllocSize;
- void *ptr3 = LIBC_NAMESPACE::aligned_alloc(ALIGN, kAllocSize);
+ void *ptr3 = LIBC_NAMESPACE::aligned_alloc(256, 256);
EXPECT_NE(ptr3, static_cast<void *>(nullptr));
- EXPECT_EQ(reinterpret_cast<uintptr_t>(ptr3) % ALIGN, size_t(0));
+ EXPECT_EQ(reinterpret_cast<uintptr_t>(ptr3) % 256, size_t(0));
auto *aligned_block = reinterpret_cast<Block *>(ptr3);
- EXPECT_GE(aligned_block->inner_size(), kAllocSize);
+ EXPECT_GE(aligned_block->inner_size(), size_t{256});
LIBC_NAMESPACE::free(ptr3);
EXPECT_EQ(block->inner_size(), heap_size);
More information about the libc-commits
mailing list