[libc-commits] [libc] [libc][math][c23] Implemented sinpif function correctly rounded for all rounding modes. (PR #97149)
via libc-commits
libc-commits at lists.llvm.org
Sun Jun 30 14:48:13 PDT 2024
================
@@ -0,0 +1,105 @@
+//===-- Single-precision sinpif function ----------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "src/math/sinpif.h"
+#include "sincosf_utils.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/ManipulationFunctions.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/common.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+namespace LIBC_NAMESPACE {
+
+LLVM_LIBC_FUNCTION(float, sinpif, (float x)) {
+ using FPBits = typename fputil::FPBits<float>;
+ FPBits xbits(x);
+
+ uint32_t x_u = xbits.uintval();
+ uint32_t x_abs = x_u & 0x7fff'ffffU;
+ double xd = static_cast<double>(x);
+
+ // Range reduction:
+ // For |x| > pi/32, we perform range reduction as follows:
+ // Find k and y such that:
+ // x = (k + y) * 1/32
+ // k is an integer
+ // |y| < 0.5
+ // For small range (|x| < 2^45 when FMA instructions are available, 2^22
+ // otherwise), this is done by performing:
+ // k = round(x * 32)
+ // y = x * 32 - k
+ //
+ // Once k and y are computed, we then deduce the answer by the sine of sum
+ // formula:
+ // sin(x * pi) = sin((k + y)*pi/32)
+ // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
+ // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..31 are precomputed
+ // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
+ // computed using degree-7 and degree-6 minimax polynomials generated by
+ // Sollya respectively.
+
+ // |x| <= 1/16
+ if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U)) {
+
+ if (LIBC_UNLIKELY(x_abs < 0x33CD'01D7U)) {
+ if (LIBC_UNLIKELY(x_abs == 0U)) {
+ // For signed zeros.
+ return x;
+ }
+
+ // For very small values we can approximate sinpi(x) with x * pi
+ // An exhaustive test shows that this is accurate for |x| < 9.546391 ×
+ // 10-8
+ double xdpi = xd * 0x1.921fb54442d18p1;
+ return static_cast<float>(xdpi);
+ }
+
+ // |x| < 1/16.
+ double xsq = xd * xd;
+
+ // Degree-9 polynomial approximation:
+ // sinpi(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9
+ // = x (1 + a_3 x^2 + ... + a_9 x^8)
+ // = x * P(x^2)
+ // generated by Sollya with the following commands:
+ // > display = hexadecimal;
+ // > Q = fpminimax(sin(pi * x)/x, [|0, 2, 4, 6, 8|], [|D...|], [0, 1/16]);
+ double result = fputil::polyeval(
+ xsq, 0x1.921fb54442d18p1, -0x1.4abbce625bbf2p2, 0x1.466bc675e116ap1,
+ -0x1.32d2c0b62d41cp-1, 0x1.501ec4497cb7dp-4);
+ return static_cast<float>(xd * result);
+ }
+
+ if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
+ if (x_abs == 0x7f80'0000U) {
+ fputil::set_errno_if_required(EDOM);
+ fputil::raise_except_if_required(FE_INVALID);
+ }
+ return x + FPBits::quiet_nan().get_val();
+ }
+
+ // Combine the results with the sine of sum formula:
+ // sin(x * pi) = sin((k + y)*pi/32)
+ // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
+ // = sin_y * cos_k + (1 + cosm1_y) * sin_k
+ // = sin_y * cos_k + (cosm1_y * sin_k + sin_k)
+ double sin_k, cos_k, sin_y, cosm1_y;
+
+ sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y);
+
+ if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0))
+ return fputil::copysign(0.0f, x);
----------------
lntue wrote:
Another option if you don't want to bring in `src/__support/FPUtils/ManipulationFunctions.h` dependency is to use:
```
return FPBits::zero(xbits.sign());
```
https://github.com/llvm/llvm-project/pull/97149
More information about the libc-commits
mailing list