[libc-commits] [libc] ee89927 - [libc] Implement double precision FMA for targets without FMA instructions.

Tue Ly via libc-commits libc-commits at lists.llvm.org
Fri Jun 10 17:57:41 PDT 2022


Author: Tue Ly
Date: 2022-06-10T20:57:27-04:00
New Revision: ee8992770754d186c9217d35cccd339efc55a36b

URL: https://github.com/llvm/llvm-project/commit/ee8992770754d186c9217d35cccd339efc55a36b
DIFF: https://github.com/llvm/llvm-project/commit/ee8992770754d186c9217d35cccd339efc55a36b.diff

LOG: [libc] Implement double precision FMA for targets without FMA instructions.

Implement double precision FMA (Fused Multiply-Add) for targets without
FMA instructions using __uint128_t to store the intermediate results.

Reviewed By: michaelrj, sivachandra

Differential Revision: https://reviews.llvm.org/D124495

Added: 
    

Modified: 
    libc/src/__support/FPUtil/FMA.h
    libc/src/__support/FPUtil/generic/FMA.h
    libc/src/math/CMakeLists.txt
    libc/test/src/math/CMakeLists.txt
    libc/test/src/math/FmaTest.h
    libc/test/src/math/fma_test.cpp
    libc/test/src/math/fmaf_test.cpp

Removed: 
    


################################################################################
diff  --git a/libc/src/__support/FPUtil/FMA.h b/libc/src/__support/FPUtil/FMA.h
index 6823dd0f897b5..a3c1729dbe774 100644
--- a/libc/src/__support/FPUtil/FMA.h
+++ b/libc/src/__support/FPUtil/FMA.h
@@ -27,11 +27,7 @@
 namespace __llvm_libc {
 namespace fputil {
 
-// We have a generic implementation available only for single precision fma as
-// we restrict it to float values for now.
-template <typename T>
-static inline cpp::EnableIfType<cpp::IsSame<T, float>::Value, T> fma(T x, T y,
-                                                                     T z) {
+template <typename T> static inline T fma(T x, T y, T z) {
   return generic::fma(x, y, z);
 }
 

diff  --git a/libc/src/__support/FPUtil/generic/FMA.h b/libc/src/__support/FPUtil/generic/FMA.h
index 78b640c2c1a13..3dad2adf10df9 100644
--- a/libc/src/__support/FPUtil/generic/FMA.h
+++ b/libc/src/__support/FPUtil/generic/FMA.h
@@ -9,16 +9,24 @@
 #ifndef LLVM_LIBC_SRC_SUPPORT_FPUTIL_GENERIC_FMA_H
 #define LLVM_LIBC_SRC_SUPPORT_FPUTIL_GENERIC_FMA_H
 
+#include "src/__support/CPP/Bit.h"
 #include "src/__support/CPP/TypeTraits.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
 #include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/FloatProperties.h"
+#include "src/__support/FPUtil/builtin_wrappers.h"
+#include "src/__support/common.h"
 
 namespace __llvm_libc {
 namespace fputil {
 namespace generic {
 
-template <typename T>
-static inline cpp::EnableIfType<cpp::IsSame<T, float>::Value, T> fma(T x, T y,
-                                                                     T z) {
+template <typename T> static inline T fma(T x, T y, T z);
+
+// TODO(lntue): Implement fmaf that is correctly rounded to all rounding modes.
+// The implementation below only is only correct for the default rounding mode,
+// round-to-nearest tie-to-even.
+template <> inline float fma<float>(float x, float y, float z) {
   // Product is exact.
   double prod = static_cast<double>(x) * static_cast<double>(y);
   double z_d = static_cast<double>(z);
@@ -66,6 +74,215 @@ static inline cpp::EnableIfType<cpp::IsSame<T, float>::Value, T> fma(T x, T y,
   return static_cast<float>(static_cast<double>(bit_sum));
 }
 
+namespace internal {
+
+// Extract the sticky bits and shift the `mantissa` to the right by
+// `shift_length`.
+static inline bool shift_mantissa(int shift_length, __uint128_t &mant) {
+  if (shift_length >= 128) {
+    mant = 0;
+    return true; // prod_mant is non-zero.
+  }
+  __uint128_t mask = (__uint128_t(1) << shift_length) - 1;
+  bool sticky_bits = (mant & mask) != 0;
+  mant >>= shift_length;
+  return sticky_bits;
+}
+
+} // namespace internal
+
+template <> inline double fma<double>(double x, double y, double z) {
+  using FPBits = fputil::FPBits<double>;
+  using FloatProp = fputil::FloatProperties<double>;
+
+  if (unlikely(x == 0 || y == 0 || z == 0)) {
+    return x * y + z;
+  }
+
+  int x_exp = 0;
+  int y_exp = 0;
+  int z_exp = 0;
+
+  // Normalize denormal inputs.
+  if (unlikely(FPBits(x).get_unbiased_exponent() == 0)) {
+    x_exp -= 52;
+    x *= 0x1.0p+52;
+  }
+  if (unlikely(FPBits(y).get_unbiased_exponent() == 0)) {
+    y_exp -= 52;
+    y *= 0x1.0p+52;
+  }
+  if (unlikely(FPBits(z).get_unbiased_exponent() == 0)) {
+    z_exp -= 52;
+    z *= 0x1.0p+52;
+  }
+
+  FPBits x_bits(x), y_bits(y), z_bits(z);
+  bool x_sign = x_bits.get_sign();
+  bool y_sign = y_bits.get_sign();
+  bool z_sign = z_bits.get_sign();
+  bool prod_sign = x_sign != y_sign;
+  x_exp += x_bits.get_unbiased_exponent();
+  y_exp += y_bits.get_unbiased_exponent();
+  z_exp += z_bits.get_unbiased_exponent();
+
+  if (unlikely(x_exp == FPBits::MAX_EXPONENT || y_exp == FPBits::MAX_EXPONENT ||
+               z_exp == FPBits::MAX_EXPONENT))
+    return x * y + z;
+
+  // Extract mantissa and append hidden leading bits.
+  __uint128_t x_mant = x_bits.get_mantissa() | FPBits::MIN_NORMAL;
+  __uint128_t y_mant = y_bits.get_mantissa() | FPBits::MIN_NORMAL;
+  __uint128_t z_mant = z_bits.get_mantissa() | FPBits::MIN_NORMAL;
+
+  // If the exponent of the product x*y > the exponent of z, then no extra
+  // precision beside the entire product x*y is needed.  On the other hand, when
+  // the exponent of z >= the exponent of the product x*y, the worst-case that
+  // we need extra precision is when there is cancellation and the most
+  // significant bit of the product is aligned exactly with the second most
+  // significant bit of z:
+  //      z :    10aa...a
+  // - prod :     1bb...bb....b
+  // In that case, in order to store the exact result, we need at least
+  //   (Length of prod) - (MantissaLength of z) = 2*(52 + 1) - 52 = 54.
+  // Overall, before aligning the mantissas and exponents, we can simply left-
+  // shift the mantissa of z by at least 54, and left-shift the product of x*y
+  // by (that amount - 52).  After that, it is enough to align the least
+  // significant bit, given that we keep track of the round and sticky bits
+  // after the least significant bit.
+  // We pick shifting z_mant by 64 bits so that technically we can simply use
+  // the original mantissa as high part when constructing 128-bit z_mant. So the
+  // mantissa of prod will be left-shifted by 64 - 54 = 10 initially.
+
+  __uint128_t prod_mant = x_mant * y_mant << 10;
+  int prod_lsb_exp =
+      x_exp + y_exp -
+      (FPBits::EXPONENT_BIAS + 2 * MantissaWidth<double>::VALUE + 10);
+
+  z_mant <<= 64;
+  int z_lsb_exp = z_exp - (MantissaWidth<double>::VALUE + 64);
+  bool round_bit = false;
+  bool sticky_bits = false;
+  bool z_shifted = false;
+
+  // Align exponents.
+  if (prod_lsb_exp < z_lsb_exp) {
+    sticky_bits = internal::shift_mantissa(z_lsb_exp - prod_lsb_exp, prod_mant);
+    prod_lsb_exp = z_lsb_exp;
+  } else if (z_lsb_exp < prod_lsb_exp) {
+    z_shifted = true;
+    sticky_bits = internal::shift_mantissa(prod_lsb_exp - z_lsb_exp, z_mant);
+  }
+
+  // Perform the addition:
+  //   (-1)^prod_sign * prod_mant + (-1)^z_sign * z_mant.
+  // The final result will be stored in prod_sign and prod_mant.
+  if (prod_sign == z_sign) {
+    // Effectively an addition.
+    prod_mant += z_mant;
+  } else {
+    // Subtraction cases.
+    if (prod_mant >= z_mant) {
+      if (z_shifted && sticky_bits) {
+        // Add 1 more to the subtrahend so that the sticky bits remain
+        // positive. This would simplify the rounding logic.
+        ++z_mant;
+      }
+      prod_mant -= z_mant;
+    } else {
+      if (!z_shifted && sticky_bits) {
+        // Add 1 more to the subtrahend so that the sticky bits remain
+        // positive. This would simplify the rounding logic.
+        ++prod_mant;
+      }
+      prod_mant = z_mant - prod_mant;
+      prod_sign = z_sign;
+    }
+  }
+
+  uint64_t result = 0;
+  int r_exp = 0; // Unbiased exponent of the result
+
+  // Normalize the result.
+  if (prod_mant != 0) {
+    uint64_t prod_hi = static_cast<uint64_t>(prod_mant >> 64);
+    int lead_zeros =
+        prod_hi ? clz(prod_hi) : 64 + clz(static_cast<uint64_t>(prod_mant));
+    // Move the leading 1 to the most significant bit.
+    prod_mant <<= lead_zeros;
+    // The lower 64 bits are always sticky bits after moving the leading 1 to
+    // the most significant bit.
+    sticky_bits |= (static_cast<uint64_t>(prod_mant) != 0);
+    result = static_cast<uint64_t>(prod_mant >> 64);
+    // Change prod_lsb_exp the be the exponent of the least significant bit of
+    // the result.
+    prod_lsb_exp += 64 - lead_zeros;
+    r_exp = prod_lsb_exp + 63;
+
+    if (r_exp > 0) {
+      // The result is normal.  We will shift the mantissa to the right by
+      // 63 - 52 = 11 bits (from the locations of the most significant bit).
+      // Then the rounding bit will correspond the the 11th bit, and the lowest
+      // 10 bits are merged into sticky bits.
+      round_bit = (result & 0x0400ULL) != 0;
+      sticky_bits |= (result & 0x03ffULL) != 0;
+      result >>= 11;
+    } else {
+      if (r_exp < -52) {
+        // The result is smaller than 1/2 of the smallest denormal number.
+        sticky_bits = true; // since the result is non-zero.
+        result = 0;
+      } else {
+        // The result is denormal.
+        uint64_t mask = 1ULL << (11 - r_exp);
+        round_bit = (result & mask) != 0;
+        sticky_bits |= (result & (mask - 1)) != 0;
+        if (r_exp > -52)
+          result >>= 12 - r_exp;
+        else
+          result = 0;
+      }
+
+      r_exp = 0;
+    }
+  } else {
+    // Return +0.0 when there is exact cancellation, i.e., x*y == -z exactly.
+    prod_sign = false;
+  }
+
+  // Finalize the result.
+  int round_mode = fputil::get_round();
+  if (unlikely(r_exp >= FPBits::MAX_EXPONENT)) {
+    if ((round_mode == FE_TOWARDZERO) ||
+        (round_mode == FE_UPWARD && prod_sign) ||
+        (round_mode == FE_DOWNWARD && !prod_sign)) {
+      result = FPBits::MAX_NORMAL;
+      return prod_sign ? -bit_cast<double>(result) : bit_cast<double>(result);
+    }
+    return prod_sign ? static_cast<double>(FPBits::neg_inf())
+                     : static_cast<double>(FPBits::inf());
+  }
+
+  // Remove hidden bit and append the exponent field and sign bit.
+  result = (result & FloatProp::MANTISSA_MASK) |
+           (static_cast<uint64_t>(r_exp) << FloatProp::MANTISSA_WIDTH);
+  if (prod_sign) {
+    result |= FloatProp::SIGN_MASK;
+  }
+
+  // Rounding.
+  if (round_mode == FE_TONEAREST) {
+    if (round_bit && (sticky_bits || ((result & 1) != 0)))
+      ++result;
+  } else if ((round_mode == FE_UPWARD && !prod_sign) ||
+             (round_mode == FE_DOWNWARD && prod_sign)) {
+    if (round_bit || sticky_bits)
+      ++result;
+  }
+
+  return bit_cast<double>(result);
+}
+
 } // namespace generic
 } // namespace fputil
 } // namespace __llvm_libc

diff  --git a/libc/src/math/CMakeLists.txt b/libc/src/math/CMakeLists.txt
index e33022c7e1512..60ccfb2159a1f 100644
--- a/libc/src/math/CMakeLists.txt
+++ b/libc/src/math/CMakeLists.txt
@@ -64,8 +64,6 @@ add_entrypoint_object(
     libc.src.__support.FPUtil.fma
   COMPILE_OPTIONS
     -O3
-  FLAGS
-    FMA_OPT__ONLY
 )
 
 add_math_entrypoint_object(ceil)

diff  --git a/libc/test/src/math/CMakeLists.txt b/libc/test/src/math/CMakeLists.txt
index 68a9aed825a9f..ddc02b2fc7786 100644
--- a/libc/test/src/math/CMakeLists.txt
+++ b/libc/test/src/math/CMakeLists.txt
@@ -1151,6 +1151,8 @@ add_fp_unittest(
     libc.src.__support.FPUtil.fputil
 )
 
+# TODO(lntue): The current implementation of fputil::general::fma<float> is only
+# correctly rounded for the default rounding mode round-to-nearest tie-to-even.
 add_fp_unittest(
   fmaf_test
   NEED_MPFR
@@ -1162,6 +1164,8 @@ add_fp_unittest(
     libc.include.math
     libc.src.math.fmaf
     libc.src.__support.FPUtil.fputil
+  FLAGS
+    FMA_OPT__ONLY
 )
 
 add_fp_unittest(

diff  --git a/libc/test/src/math/FmaTest.h b/libc/test/src/math/FmaTest.h
index 2d04989400f48..959c4e837a778 100644
--- a/libc/test/src/math/FmaTest.h
+++ b/libc/test/src/math/FmaTest.h
@@ -61,6 +61,9 @@ class FmaTestTemplate : public __llvm_libc::testing::Test {
     // Test overflow.
     T z = T(FPBits(FPBits::MAX_NORMAL));
     EXPECT_FP_EQ(func(T(1.75), z, -z), T(0.75) * z);
+    // Exact cancellation.
+    EXPECT_FP_EQ(func(T(3.0), T(5.0), -T(15.0)), T(0.0));
+    EXPECT_FP_EQ(func(T(-3.0), T(5.0), T(15.0)), T(0.0));
   }
 
   void test_subnormal_range(Func func) {
@@ -72,9 +75,9 @@ class FmaTestTemplate : public __llvm_libc::testing::Test {
          v += STEP, w -= STEP) {
       T x = T(FPBits(get_random_bit_pattern())), y = T(FPBits(v)),
         z = T(FPBits(w));
-      T result = func(x, y, z);
       mpfr::TernaryInput<T> input{x, y, z};
-      ASSERT_MPFR_MATCH(mpfr::Operation::Fma, input, result, 0.5);
+      ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Fma, input, func(x, y, z),
+                                     0.5);
     }
   }
 
@@ -86,9 +89,9 @@ class FmaTestTemplate : public __llvm_libc::testing::Test {
          v += STEP, w -= STEP) {
       T x = T(FPBits(v)), y = T(FPBits(w)),
         z = T(FPBits(get_random_bit_pattern()));
-      T result = func(x, y, z);
       mpfr::TernaryInput<T> input{x, y, z};
-      ASSERT_MPFR_MATCH(mpfr::Operation::Fma, input, result, 0.5);
+      ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Fma, input, func(x, y, z),
+                                     0.5);
     }
   }
 };

diff  --git a/libc/test/src/math/fma_test.cpp b/libc/test/src/math/fma_test.cpp
index a9388cca72f79..be6b138342d5c 100644
--- a/libc/test/src/math/fma_test.cpp
+++ b/libc/test/src/math/fma_test.cpp
@@ -10,7 +10,271 @@
 
 #include "src/math/fma.h"
 
-using LlvmLibcFmaTest = FmaTestTemplate<double>;
+struct Inputs {
+  double a, b, c;
+};
+
+struct LlvmLibcFmaTest : public FmaTestTemplate<double> {
+  void test_more_values() {
+    constexpr int N = 236;
+    constexpr Inputs INPUTS[N] = {
+        {0x1p+0, 0x2p+0, 0x3p+0},
+        {0x1.4p+0, 0xcp-4, 0x1p-4},
+        {0x0p+0, 0x0p+0, 0x0p+0},
+        {0x1p+0, 0x0p+0, 0x0p+0},
+        {0x0p+0, 0x1p+0, 0x0p+0},
+        {0x1p+0, 0x1p+0, 0x1p+0},
+        {0x0p+0, 0x0p+0, 0x1p+0},
+        {0x0p+0, 0x0p+0, 0x2p+0},
+        {0x0p+0, 0x0p+0, 0xf.fffffp+124},
+        {0x0p+0, 0x0p+0, 0xf.ffffffffffff8p+1020},
+        {0x0p+0, 0x1p+0, 0x1p+0},
+        {0x1p+0, 0x0p+0, 0x1p+0},
+        {0x0p+0, 0x1p+0, 0x2p+0},
+        {0x1p+0, 0x0p+0, 0x2p+0},
+        {0x0p+0, 0x1p+0, 0xf.fffffp+124},
+        {0x0p+0, 0x1p+0, 0xf.ffffffffffff8p+1020},
+        {0x1p+0, 0x0p+0, 0xf.fffffp+124},
+        {0x1p+0, 0x0p+0, 0xf.ffffffffffff8p+1020},
+        {0x4p-128, 0x4p-128, 0x0p+0},
+        {0x4p-128, 0x4p-1024, 0x0p+0},
+        {0x4p-128, 0x8p-972, 0x0p+0},
+        {0x4p-1024, 0x4p-128, 0x0p+0},
+        {0x4p-1024, 0x4p-1024, 0x0p+0},
+        {0x4p-1024, 0x8p-972, 0x0p+0},
+        {0x8p-972, 0x4p-128, 0x0p+0},
+        {0x8p-972, 0x4p-1024, 0x0p+0},
+        {0x8p-972, 0x8p-972, 0x0p+0},
+        {0x4p-128, 0x4p-128, 0x0p+0},
+        {0x4p-128, 0x4p-1024, 0x0p+0},
+        {0x4p-128, 0x8p-972, 0x0p+0},
+        {0x4p-1024, 0x4p-128, 0x0p+0},
+        {0x4p-1024, 0x4p-1024, 0x0p+0},
+        {0x4p-1024, 0x8p-972, 0x0p+0},
+        {0x8p-972, 0x4p-128, 0x0p+0},
+        {0x8p-972, 0x4p-1024, 0x0p+0},
+        {0x8p-972, 0x8p-972, 0x0p+0},
+        {0x4p-128, 0x4p-128, 0x0p+0},
+        {0x4p-128, 0x4p-1024, 0x0p+0},
+        {0x4p-128, 0x8p-972, 0x0p+0},
+        {0x4p-1024, 0x4p-128, 0x0p+0},
+        {0x4p-1024, 0x4p-1024, 0x0p+0},
+        {0x4p-1024, 0x8p-972, 0x0p+0},
+        {0x8p-972, 0x4p-128, 0x0p+0},
+        {0x8p-972, 0x4p-1024, 0x0p+0},
+        {0x8p-972, 0x8p-972, 0x0p+0},
+        {0x4p-128, 0x4p-128, 0x0p+0},
+        {0x4p-128, 0x4p-1024, 0x0p+0},
+        {0x4p-128, 0x8p-972, 0x0p+0},
+        {0x4p-1024, 0x4p-128, 0x0p+0},
+        {0x4p-1024, 0x4p-1024, 0x0p+0},
+        {0x4p-1024, 0x8p-972, 0x0p+0},
+        {0x8p-972, 0x4p-128, 0x0p+0},
+        {0x8p-972, 0x4p-1024, 0x0p+0},
+        {0x8p-972, 0x8p-972, 0x0p+0},
+        {0x4p-128, 0x4p-128, 0x0p+0},
+        {0x4p-128, 0x4p-1024, 0x0p+0},
+        {0x4p-128, 0x8p-972, 0x0p+0},
+        {0x4p-1024, 0x4p-128, 0x0p+0},
+        {0x4p-1024, 0x4p-1024, 0x0p+0},
+        {0x4p-1024, 0x8p-972, 0x0p+0},
+        {0x8p-972, 0x4p-128, 0x0p+0},
+        {0x8p-972, 0x4p-1024, 0x0p+0},
+        {0x8p-972, 0x8p-972, 0x0p+0},
+        {0x4p-128, 0x4p-128, 0x0p+0},
+        {0x4p-128, 0x4p-1024, 0x0p+0},
+        {0x4p-128, 0x8p-972, 0x0p+0},
+        {0x4p-1024, 0x4p-128, 0x0p+0},
+        {0x4p-1024, 0x4p-1024, 0x0p+0},
+        {0x4p-1024, 0x8p-972, 0x0p+0},
+        {0x8p-972, 0x4p-128, 0x0p+0},
+        {0x8p-972, 0x4p-1024, 0x0p+0},
+        {0x8p-972, 0x8p-972, 0x0p+0},
+        {0x4p-128, 0x4p-128, 0x0p+0},
+        {0x4p-128, 0x4p-1024, 0x0p+0},
+        {0x4p-128, 0x8p-972, 0x0p+0},
+        {0x4p-1024, 0x4p-128, 0x0p+0},
+        {0x4p-1024, 0x4p-1024, 0x0p+0},
+        {0x4p-1024, 0x8p-972, 0x0p+0},
+        {0x8p-972, 0x4p-128, 0x0p+0},
+        {0x8p-972, 0x4p-1024, 0x0p+0},
+        {0x8p-972, 0x8p-972, 0x0p+0},
+        {0x4p-128, 0x4p-128, 0x0p+0},
+        {0x4p-128, 0x4p-1024, 0x0p+0},
+        {0x4p-128, 0x8p-972, 0x0p+0},
+        {0x4p-1024, 0x4p-128, 0x0p+0},
+        {0x4p-1024, 0x4p-1024, 0x0p+0},
+        {0x4p-1024, 0x8p-972, 0x0p+0},
+        {0x8p-972, 0x4p-128, 0x0p+0},
+        {0x8p-972, 0x4p-1024, 0x0p+0},
+        {0x8p-972, 0x8p-972, 0x0p+0},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-128},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x8p-972},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-128},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x8p-972},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-128},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x8p-972},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-128},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x8p-972},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-128},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x8p-972},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-128},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x8p-972},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-128},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x8p-972},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-128},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.fffffp+124, 0x8p-972},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.fffffp+124, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.fffffp+124, 0x8p-972},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-128},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x4p-1024},
+        {0xf.ffffffffffff8p+1020, 0xf.ffffffffffff8p+1020, 0x8p-972},
+        {0x2.fffp+12, 0x1.000002p+0, 0x1.ffffp-24},
+        {0x1.fffp+0, 0x1.00001p+0, 0x1.fffp+0},
+        {0xc.d5e6fp+124, 0x2.6af378p-128, 0x1.f08948p+0},
+        {0x1.9abcdep+100, 0x2.6af378p-128, 0x3.e1129p-28},
+        {0xf.fffffp+124, 0x1.001p+0, 0xf.fffffp+124},
+        {0xf.fffffp+124, 0x1.fffffep+0, 0xf.fffffp+124},
+        {0xf.fffffp+124, 0x2p+0, 0xf.fffffp+124},
+        {0x5p-128, 0x8.00002p-4, 0x1p-128},
+        {0x7.ffffep-128, 0x8.00001p-4, 0x8p-152},
+        {0x8p-152, 0x8p-4, 0x3.fffff8p-128},
+        {0x8p-152, 0x8.8p-4, 0x3.fffff8p-128},
+        {0x8p-152, 0x8p-152, 0x8p+124},
+        {0x8p-152, 0x8p-152, 0x4p-128},
+        {0x8p-152, 0x8p-152, 0x3.fffff8p-128},
+        {0x8p-152, 0x8p-152, 0x8p-152},
+        {0xf.ffp-4, 0xf.ffp-4, 0xf.fep-4},
+        {0x4.000008p-128, 0x4.000008p-28, 0x8p+124},
+        {0x4.000008p-128, 0x4.000008p-28, 0x8p+100},
+        {0x2.fep+12, 0x1.0000000000001p+0, 0x1.ffep-48},
+        {0x1.fffp+0, 0x1.0000000000001p+0, 0x1.fffp+0},
+        {0x1.0000002p+0, 0xf.fffffep-4, 0x1p-300},
+        {0xe.f56df7797f768p+1020, 0x3.7ab6fbbcbfbb4p-1024,
+         0x3.40bf1803497f6p+0},
+        {0x1.deadbeef2feedp+900, 0x3.7ab6fbbcbfbb4p-1024,
+         0x6.817e300692fecp-124},
+        {0xf.ffffffffffff8p+1020, 0x1.001p+0, 0xf.ffffffffffff8p+1020},
+        {0xf.ffffffffffff8p+1020, 0x1.fffffffffffffp+0,
+         0xf.ffffffffffff8p+1020},
+        {0xf.ffffffffffff8p+1020, 0x2p+0, 0xf.ffffffffffff8p+1020},
+        {0x5.a827999fcef3p-540, 0x5.a827999fcef3p-540, 0x0p+0},
+        {0x3.bd5b7dde5fddap-496, 0x3.bd5b7dde5fddap-496, 0xd.fc352bc352bap-992},
+        {0x3.bd5b7dde5fddap-504, 0x3.bd5b7dde5fddap-504,
+         0xd.fc352bc352bap-1008},
+        {0x8p-540, 0x4p-540, 0x4p-1076},
+        {0x1.7fffff8p-968, 0x4p-108, 0x4p-1048},
+        {0x2.8000008p-968, 0x4p-108, 0x4p-1048},
+        {0x2.8p-968, 0x4p-108, 0x4p-1048},
+        {0x2.33956cdae7c2ep-960, 0x3.8e211518bfea2p-108,
+         0x2.02c2b59766d9p-1024},
+        {0x3.a5d5dadd1d3a6p-980, 0x2.9c0cd8c5593bap-64, 0x2.49179ac00d15p-1024},
+        {0x2.2a7aca1773e0cp-908, 0x9.6809186a42038p-128, 0x2.c9e356b3f0fp-1024},
+        {0x3.ffffffffffffep-712, 0x3.ffffffffffffep-276,
+         0x3.fffffc0000ffep-984},
+        {0x5p-1024, 0x8.000000000001p-4, 0x1p-1024},
+        {0x7.ffffffffffffp-1024, 0x8.0000000000008p-4, 0x4p-1076},
+        {0x4p-1076, 0x8p-4, 0x3.ffffffffffffcp-1024},
+        {0x4p-1076, 0x8.8p-4, 0x3.ffffffffffffcp-1024},
+        {0x4p-1076, 0x4p-1076, 0x8p+1020},
+        {0x4p-1076, 0x4p-1076, 0x4p-1024},
+        {0x4p-1076, 0x4p-1076, 0x3.ffffffffffffcp-1024},
+        {0x4p-1076, 0x4p-1076, 0x4p-1076},
+        {0xf.ffffffffffff8p-4, 0xf.ffffffffffff8p-4, 0xf.ffffffffffffp-4},
+        {0x4.0000000000004p-1024, 0x2.0000000000002p-56, 0x8p+1020},
+        {0x4.0000000000004p-1024, 0x2.0000000000002p-56, 0x4p+968},
+        {0x7.fffff8p-128, 0x3.fffffcp+24, 0xf.fffffp+124},
+        {0x7.ffffffffffffcp-1024, 0x7.ffffffffffffcp+52,
+         0xf.ffffffffffff8p+1020},
+    };
+
+    for (int i = 0; i < N; ++i) {
+      for (int signs = 0; signs < 7; ++signs) {
+        double a = (signs & 4) ? -INPUTS[i].a : INPUTS[i].a;
+        double b = (signs & 2) ? -INPUTS[i].b : INPUTS[i].b;
+        double c = (signs & 1) ? -INPUTS[i].c : INPUTS[i].c;
+        mpfr::TernaryInput<double> input{a, b, c};
+        ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Fma, input,
+                                       __llvm_libc::fma(a, b, c), 0.5);
+      }
+    }
+  }
+};
 
 TEST_F(LlvmLibcFmaTest, SpecialNumbers) {
   test_special_numbers(&__llvm_libc::fma);
@@ -21,3 +285,5 @@ TEST_F(LlvmLibcFmaTest, SubnormalRange) {
 }
 
 TEST_F(LlvmLibcFmaTest, NormalRange) { test_normal_range(&__llvm_libc::fma); }
+
+TEST_F(LlvmLibcFmaTest, ExtraValues) { test_more_values(); }

diff  --git a/libc/test/src/math/fmaf_test.cpp b/libc/test/src/math/fmaf_test.cpp
index 73d009499deb9..8d1cf254701c9 100644
--- a/libc/test/src/math/fmaf_test.cpp
+++ b/libc/test/src/math/fmaf_test.cpp
@@ -10,14 +10,14 @@
 
 #include "src/math/fmaf.h"
 
-using LlvmLibcFmaTest = FmaTestTemplate<float>;
+using LlvmLibcFmafTest = FmaTestTemplate<float>;
 
-TEST_F(LlvmLibcFmaTest, SpecialNumbers) {
+TEST_F(LlvmLibcFmafTest, SpecialNumbers) {
   test_special_numbers(&__llvm_libc::fmaf);
 }
 
-TEST_F(LlvmLibcFmaTest, SubnormalRange) {
+TEST_F(LlvmLibcFmafTest, SubnormalRange) {
   test_subnormal_range(&__llvm_libc::fmaf);
 }
 
-TEST_F(LlvmLibcFmaTest, NormalRange) { test_normal_range(&__llvm_libc::fmaf); }
+TEST_F(LlvmLibcFmafTest, NormalRange) { test_normal_range(&__llvm_libc::fmaf); }


        


More information about the libc-commits mailing list