[flang-commits] [flang] afc43a7 - Revert "[flang] Inline hlfir.dot_product. (#123143)"

Philip Reames via flang-commits flang-commits at lists.llvm.org
Thu Jan 16 17:39:00 PST 2025


Author: Philip Reames
Date: 2025-01-16T17:38:40-08:00
New Revision: afc43a7b626ae07f56e6534320e0b46d26070750

URL: https://github.com/llvm/llvm-project/commit/afc43a7b626ae07f56e6534320e0b46d26070750
DIFF: https://github.com/llvm/llvm-project/commit/afc43a7b626ae07f56e6534320e0b46d26070750.diff

LOG: Revert "[flang] Inline hlfir.dot_product. (#123143)"

This reverts commit 9a6433f0ff1b8e294ac785ea3b992304574e0d8f.  ninja check-flang on x86 host fails to compile.

Added: 
    

Modified: 
    flang/include/flang/Optimizer/Builder/HLFIRTools.h
    flang/lib/Optimizer/Builder/HLFIRTools.cpp
    flang/lib/Optimizer/HLFIR/Transforms/SimplifyHLFIRIntrinsics.cpp

Removed: 
    flang/test/HLFIR/simplify-hlfir-intrinsics-dotproduct.fir


################################################################################
diff  --git a/flang/include/flang/Optimizer/Builder/HLFIRTools.h b/flang/include/flang/Optimizer/Builder/HLFIRTools.h
index dc439fb323f88a..6e85b8f4ddf86e 100644
--- a/flang/include/flang/Optimizer/Builder/HLFIRTools.h
+++ b/flang/include/flang/Optimizer/Builder/HLFIRTools.h
@@ -513,12 +513,6 @@ genTypeAndKindConvert(mlir::Location loc, fir::FirOpBuilder &builder,
 Entity loadElementAt(mlir::Location loc, fir::FirOpBuilder &builder,
                      Entity entity, mlir::ValueRange oneBasedIndices);
 
-/// Return a vector of extents for the given entity.
-/// The function creates new operations, but tries to clean-up
-/// after itself.
-llvm::SmallVector<mlir::Value>
-genExtentsVector(mlir::Location loc, fir::FirOpBuilder &builder, Entity entity);
-
 } // namespace hlfir
 
 #endif // FORTRAN_OPTIMIZER_BUILDER_HLFIRTOOLS_H

diff  --git a/flang/lib/Optimizer/Builder/HLFIRTools.cpp b/flang/lib/Optimizer/Builder/HLFIRTools.cpp
index 66b2298a986b11..5e5d0bbd681326 100644
--- a/flang/lib/Optimizer/Builder/HLFIRTools.cpp
+++ b/flang/lib/Optimizer/Builder/HLFIRTools.cpp
@@ -1421,15 +1421,3 @@ hlfir::Entity hlfir::loadElementAt(mlir::Location loc,
   return loadTrivialScalar(loc, builder,
                            getElementAt(loc, builder, entity, oneBasedIndices));
 }
-
-llvm::SmallVector<mlir::Value>
-hlfir::genExtentsVector(mlir::Location loc, fir::FirOpBuilder &builder,
-                        hlfir::Entity entity) {
-  entity = hlfir::derefPointersAndAllocatables(loc, builder, entity);
-  mlir::Value shape = hlfir::genShape(loc, builder, entity);
-  llvm::SmallVector<mlir::Value, Fortran::common::maxRank> extents =
-      hlfir::getExplicitExtentsFromShape(shape, builder);
-  if (shape.getUses().empty())
-    shape.getDefiningOp()->erase();
-  return extents;
-}

diff  --git a/flang/lib/Optimizer/HLFIR/Transforms/SimplifyHLFIRIntrinsics.cpp b/flang/lib/Optimizer/HLFIR/Transforms/SimplifyHLFIRIntrinsics.cpp
index fe7ae0eeed3cc3..0fe3620b7f1ae3 100644
--- a/flang/lib/Optimizer/HLFIR/Transforms/SimplifyHLFIRIntrinsics.cpp
+++ b/flang/lib/Optimizer/HLFIR/Transforms/SimplifyHLFIRIntrinsics.cpp
@@ -37,79 +37,6 @@ static llvm::cl::opt<bool> forceMatmulAsElemental(
 
 namespace {
 
-// Helper class to generate operations related to computing
-// product of values.
-class ProductFactory {
-public:
-  ProductFactory(mlir::Location loc, fir::FirOpBuilder &builder)
-      : loc(loc), builder(builder) {}
-
-  // Generate an update of the inner product value:
-  //   acc += v1 * v2, OR
-  //   acc += CONJ(v1) * v2, OR
-  //   acc ||= v1 && v2
-  //
-  // CONJ parameter specifies whether the first complex product argument
-  // needs to be conjugated.
-  template <bool CONJ = false>
-  mlir::Value genAccumulateProduct(mlir::Value acc, mlir::Value v1,
-                                   mlir::Value v2) {
-    mlir::Type resultType = acc.getType();
-    acc = castToProductType(acc, resultType);
-    v1 = castToProductType(v1, resultType);
-    v2 = castToProductType(v2, resultType);
-    mlir::Value result;
-    if (mlir::isa<mlir::FloatType>(resultType)) {
-      result = builder.create<mlir::arith::AddFOp>(
-          loc, acc, builder.create<mlir::arith::MulFOp>(loc, v1, v2));
-    } else if (mlir::isa<mlir::ComplexType>(resultType)) {
-      if constexpr (CONJ)
-        result = fir::IntrinsicLibrary{builder, loc}.genConjg(resultType, v1);
-      else
-        result = v1;
-
-      result = builder.create<fir::AddcOp>(
-          loc, acc, builder.create<fir::MulcOp>(loc, result, v2));
-    } else if (mlir::isa<mlir::IntegerType>(resultType)) {
-      result = builder.create<mlir::arith::AddIOp>(
-          loc, acc, builder.create<mlir::arith::MulIOp>(loc, v1, v2));
-    } else if (mlir::isa<fir::LogicalType>(resultType)) {
-      result = builder.create<mlir::arith::OrIOp>(
-          loc, acc, builder.create<mlir::arith::AndIOp>(loc, v1, v2));
-    } else {
-      llvm_unreachable("unsupported type");
-    }
-
-    return builder.createConvert(loc, resultType, result);
-  }
-
-private:
-  mlir::Location loc;
-  fir::FirOpBuilder &builder;
-
-  mlir::Value castToProductType(mlir::Value value, mlir::Type type) {
-    if (mlir::isa<fir::LogicalType>(type))
-      return builder.createConvert(loc, builder.getIntegerType(1), value);
-
-    // TODO: the multiplications/additions by/of zero resulting from
-    // complex * real are optimized by LLVM under -fno-signed-zeros
-    // -fno-honor-nans.
-    // We can make them disappear by default if we:
-    //   * either expand the complex multiplication into real
-    //     operations, OR
-    //   * set nnan nsz fast-math flags to the complex operations.
-    if (fir::isa_complex(type) && !fir::isa_complex(value.getType())) {
-      mlir::Value zeroCmplx = fir::factory::createZeroValue(builder, loc, type);
-      fir::factory::Complex helper(builder, loc);
-      mlir::Type partType = helper.getComplexPartType(type);
-      return helper.insertComplexPart(zeroCmplx,
-                                      castToProductType(value, partType),
-                                      /*isImagPart=*/false);
-    }
-    return builder.createConvert(loc, type, value);
-  }
-};
-
 class TransposeAsElementalConversion
     : public mlir::OpRewritePattern<hlfir::TransposeOp> {
 public:
@@ -163,8 +90,11 @@ class TransposeAsElementalConversion
   static mlir::Value genResultShape(mlir::Location loc,
                                     fir::FirOpBuilder &builder,
                                     hlfir::Entity array) {
-    llvm::SmallVector<mlir::Value, 2> inExtents =
-        hlfir::genExtentsVector(loc, builder, array);
+    mlir::Value inShape = hlfir::genShape(loc, builder, array);
+    llvm::SmallVector<mlir::Value> inExtents =
+        hlfir::getExplicitExtentsFromShape(inShape, builder);
+    if (inShape.getUses().empty())
+      inShape.getDefiningOp()->erase();
 
     // transpose indices
     assert(inExtents.size() == 2 && "checked in TransposeOp::validate");
@@ -207,7 +137,7 @@ class SumAsElementalConversion : public mlir::OpRewritePattern<hlfir::SumOp> {
     mlir::Value resultShape, dimExtent;
     llvm::SmallVector<mlir::Value> arrayExtents;
     if (isTotalReduction)
-      arrayExtents = hlfir::genExtentsVector(loc, builder, array);
+      arrayExtents = genArrayExtents(loc, builder, array);
     else
       std::tie(resultShape, dimExtent) =
           genResultShapeForPartialReduction(loc, builder, array, dimVal);
@@ -233,8 +163,7 @@ class SumAsElementalConversion : public mlir::OpRewritePattern<hlfir::SumOp> {
       // If DIM is not present, do total reduction.
 
       // Initial value for the reduction.
-      mlir::Value reductionInitValue =
-          fir::factory::createZeroValue(builder, loc, elementType);
+      mlir::Value reductionInitValue = genInitValue(loc, builder, elementType);
 
       // The reduction loop may be unordered if FastMathFlags::reassoc
       // transformations are allowed. The integer reduction is always
@@ -335,6 +264,17 @@ class SumAsElementalConversion : public mlir::OpRewritePattern<hlfir::SumOp> {
   }
 
 private:
+  static llvm::SmallVector<mlir::Value>
+  genArrayExtents(mlir::Location loc, fir::FirOpBuilder &builder,
+                  hlfir::Entity array) {
+    mlir::Value inShape = hlfir::genShape(loc, builder, array);
+    llvm::SmallVector<mlir::Value> inExtents =
+        hlfir::getExplicitExtentsFromShape(inShape, builder);
+    if (inShape.getUses().empty())
+      inShape.getDefiningOp()->erase();
+    return inExtents;
+  }
+
   // Return fir.shape specifying the shape of the result
   // of a SUM reduction with DIM=dimVal. The second return value
   // is the extent of the DIM dimension.
@@ -343,7 +283,7 @@ class SumAsElementalConversion : public mlir::OpRewritePattern<hlfir::SumOp> {
                                     fir::FirOpBuilder &builder,
                                     hlfir::Entity array, int64_t dimVal) {
     llvm::SmallVector<mlir::Value> inExtents =
-        hlfir::genExtentsVector(loc, builder, array);
+        genArrayExtents(loc, builder, array);
     assert(dimVal > 0 && dimVal <= static_cast<int64_t>(inExtents.size()) &&
            "DIM must be present and a positive constant not exceeding "
            "the array's rank");
@@ -353,6 +293,26 @@ class SumAsElementalConversion : public mlir::OpRewritePattern<hlfir::SumOp> {
     return {builder.create<fir::ShapeOp>(loc, inExtents), dimExtent};
   }
 
+  // Generate the initial value for a SUM reduction with the given
+  // data type.
+  static mlir::Value genInitValue(mlir::Location loc,
+                                  fir::FirOpBuilder &builder,
+                                  mlir::Type elementType) {
+    if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
+      const llvm::fltSemantics &sem = ty.getFloatSemantics();
+      return builder.createRealConstant(loc, elementType,
+                                        llvm::APFloat::getZero(sem));
+    } else if (auto ty = mlir::dyn_cast<mlir::ComplexType>(elementType)) {
+      mlir::Value initValue = genInitValue(loc, builder, ty.getElementType());
+      return fir::factory::Complex{builder, loc}.createComplex(ty, initValue,
+                                                               initValue);
+    } else if (mlir::isa<mlir::IntegerType>(elementType)) {
+      return builder.createIntegerConstant(loc, elementType, 0);
+    }
+
+    llvm_unreachable("unsupported SUM reduction type");
+  }
+
   // Generate scalar addition of the two values (of the same data type).
   static mlir::Value genScalarAdd(mlir::Location loc,
                                   fir::FirOpBuilder &builder,
@@ -610,10 +570,16 @@ class MatmulConversion : public mlir::OpRewritePattern<Op> {
   static std::tuple<mlir::Value, mlir::Value>
   genResultShape(mlir::Location loc, fir::FirOpBuilder &builder,
                  hlfir::Entity input1, hlfir::Entity input2) {
-    llvm::SmallVector<mlir::Value, 2> input1Extents =
-        hlfir::genExtentsVector(loc, builder, input1);
-    llvm::SmallVector<mlir::Value, 2> input2Extents =
-        hlfir::genExtentsVector(loc, builder, input2);
+    mlir::Value input1Shape = hlfir::genShape(loc, builder, input1);
+    llvm::SmallVector<mlir::Value> input1Extents =
+        hlfir::getExplicitExtentsFromShape(input1Shape, builder);
+    if (input1Shape.getUses().empty())
+      input1Shape.getDefiningOp()->erase();
+    mlir::Value input2Shape = hlfir::genShape(loc, builder, input2);
+    llvm::SmallVector<mlir::Value> input2Extents =
+        hlfir::getExplicitExtentsFromShape(input2Shape, builder);
+    if (input2Shape.getUses().empty())
+      input2Shape.getDefiningOp()->erase();
 
     llvm::SmallVector<mlir::Value, 2> newExtents;
     mlir::Value innerProduct1Extent, innerProduct2Extent;
@@ -661,6 +627,60 @@ class MatmulConversion : public mlir::OpRewritePattern<Op> {
             innerProductExtent[0]};
   }
 
+  static mlir::Value castToProductType(mlir::Location loc,
+                                       fir::FirOpBuilder &builder,
+                                       mlir::Value value, mlir::Type type) {
+    if (mlir::isa<fir::LogicalType>(type))
+      return builder.createConvert(loc, builder.getIntegerType(1), value);
+
+    // TODO: the multiplications/additions by/of zero resulting from
+    // complex * real are optimized by LLVM under -fno-signed-zeros
+    // -fno-honor-nans.
+    // We can make them disappear by default if we:
+    //   * either expand the complex multiplication into real
+    //     operations, OR
+    //   * set nnan nsz fast-math flags to the complex operations.
+    if (fir::isa_complex(type) && !fir::isa_complex(value.getType())) {
+      mlir::Value zeroCmplx = fir::factory::createZeroValue(builder, loc, type);
+      fir::factory::Complex helper(builder, loc);
+      mlir::Type partType = helper.getComplexPartType(type);
+      return helper.insertComplexPart(
+          zeroCmplx, castToProductType(loc, builder, value, partType),
+          /*isImagPart=*/false);
+    }
+    return builder.createConvert(loc, type, value);
+  }
+
+  // Generate an update of the inner product value:
+  //   acc += v1 * v2, OR
+  //   acc ||= v1 && v2
+  static mlir::Value genAccumulateProduct(mlir::Location loc,
+                                          fir::FirOpBuilder &builder,
+                                          mlir::Type resultType,
+                                          mlir::Value acc, mlir::Value v1,
+                                          mlir::Value v2) {
+    acc = castToProductType(loc, builder, acc, resultType);
+    v1 = castToProductType(loc, builder, v1, resultType);
+    v2 = castToProductType(loc, builder, v2, resultType);
+    mlir::Value result;
+    if (mlir::isa<mlir::FloatType>(resultType))
+      result = builder.create<mlir::arith::AddFOp>(
+          loc, acc, builder.create<mlir::arith::MulFOp>(loc, v1, v2));
+    else if (mlir::isa<mlir::ComplexType>(resultType))
+      result = builder.create<fir::AddcOp>(
+          loc, acc, builder.create<fir::MulcOp>(loc, v1, v2));
+    else if (mlir::isa<mlir::IntegerType>(resultType))
+      result = builder.create<mlir::arith::AddIOp>(
+          loc, acc, builder.create<mlir::arith::MulIOp>(loc, v1, v2));
+    else if (mlir::isa<fir::LogicalType>(resultType))
+      result = builder.create<mlir::arith::OrIOp>(
+          loc, acc, builder.create<mlir::arith::AndIOp>(loc, v1, v2));
+    else
+      llvm_unreachable("unsupported type");
+
+    return builder.createConvert(loc, resultType, result);
+  }
+
   static mlir::LogicalResult
   genContiguousMatmul(mlir::Location loc, fir::FirOpBuilder &builder,
                       hlfir::Entity result, mlir::Value resultShape,
@@ -728,9 +748,9 @@ class MatmulConversion : public mlir::OpRewritePattern<Op> {
             hlfir::loadElementAt(loc, builder, lhs, {I, K});
         hlfir::Entity rhsElementValue =
             hlfir::loadElementAt(loc, builder, rhs, {K, J});
-        mlir::Value productValue =
-            ProductFactory{loc, builder}.genAccumulateProduct(
-                resultElementValue, lhsElementValue, rhsElementValue);
+        mlir::Value productValue = genAccumulateProduct(
+            loc, builder, resultElementType, resultElementValue,
+            lhsElementValue, rhsElementValue);
         builder.create<hlfir::AssignOp>(loc, productValue, resultElement);
         return {};
       };
@@ -765,9 +785,9 @@ class MatmulConversion : public mlir::OpRewritePattern<Op> {
             hlfir::loadElementAt(loc, builder, lhs, {J, K});
         hlfir::Entity rhsElementValue =
             hlfir::loadElementAt(loc, builder, rhs, {K});
-        mlir::Value productValue =
-            ProductFactory{loc, builder}.genAccumulateProduct(
-                resultElementValue, lhsElementValue, rhsElementValue);
+        mlir::Value productValue = genAccumulateProduct(
+            loc, builder, resultElementType, resultElementValue,
+            lhsElementValue, rhsElementValue);
         builder.create<hlfir::AssignOp>(loc, productValue, resultElement);
         return {};
       };
@@ -797,9 +817,9 @@ class MatmulConversion : public mlir::OpRewritePattern<Op> {
             hlfir::loadElementAt(loc, builder, lhs, {K});
         hlfir::Entity rhsElementValue =
             hlfir::loadElementAt(loc, builder, rhs, {K, J});
-        mlir::Value productValue =
-            ProductFactory{loc, builder}.genAccumulateProduct(
-                resultElementValue, lhsElementValue, rhsElementValue);
+        mlir::Value productValue = genAccumulateProduct(
+            loc, builder, resultElementType, resultElementValue,
+            lhsElementValue, rhsElementValue);
         builder.create<hlfir::AssignOp>(loc, productValue, resultElement);
         return {};
       };
@@ -865,9 +885,9 @@ class MatmulConversion : public mlir::OpRewritePattern<Op> {
             hlfir::loadElementAt(loc, builder, lhs, lhsIndices);
         hlfir::Entity rhsElementValue =
             hlfir::loadElementAt(loc, builder, rhs, rhsIndices);
-        mlir::Value productValue =
-            ProductFactory{loc, builder}.genAccumulateProduct(
-                reductionArgs[0], lhsElementValue, rhsElementValue);
+        mlir::Value productValue = genAccumulateProduct(
+            loc, builder, resultElementType, reductionArgs[0], lhsElementValue,
+            rhsElementValue);
         return {productValue};
       };
       llvm::SmallVector<mlir::Value, 1> innerProductValue =
@@ -884,73 +904,6 @@ class MatmulConversion : public mlir::OpRewritePattern<Op> {
   }
 };
 
-class DotProductConversion
-    : public mlir::OpRewritePattern<hlfir::DotProductOp> {
-public:
-  using mlir::OpRewritePattern<hlfir::DotProductOp>::OpRewritePattern;
-
-  llvm::LogicalResult
-  matchAndRewrite(hlfir::DotProductOp product,
-                  mlir::PatternRewriter &rewriter) const override {
-    hlfir::Entity op = hlfir::Entity{product};
-    if (!op.isScalar())
-      return rewriter.notifyMatchFailure(product, "produces non-scalar result");
-
-    mlir::Location loc = product.getLoc();
-    fir::FirOpBuilder builder{rewriter, product.getOperation()};
-    hlfir::Entity lhs = hlfir::Entity{product.getLhs()};
-    hlfir::Entity rhs = hlfir::Entity{product.getRhs()};
-    mlir::Type resultElementType = product.getType();
-    bool isUnordered = mlir::isa<mlir::IntegerType>(resultElementType) ||
-                       mlir::isa<fir::LogicalType>(resultElementType) ||
-                       static_cast<bool>(builder.getFastMathFlags() &
-                                         mlir::arith::FastMathFlags::reassoc);
-
-    mlir::Value extent = genProductExtent(loc, builder, lhs, rhs);
-
-    auto genBody = [&](mlir::Location loc, fir::FirOpBuilder &builder,
-                       mlir::ValueRange oneBasedIndices,
-                       mlir::ValueRange reductionArgs)
-        -> llvm::SmallVector<mlir::Value, 1> {
-      hlfir::Entity lhsElementValue =
-          hlfir::loadElementAt(loc, builder, lhs, oneBasedIndices);
-      hlfir::Entity rhsElementValue =
-          hlfir::loadElementAt(loc, builder, rhs, oneBasedIndices);
-      mlir::Value productValue =
-          ProductFactory{loc, builder}.genAccumulateProduct</*CONJ=*/true>(
-              reductionArgs[0], lhsElementValue, rhsElementValue);
-      return {productValue};
-    };
-
-    mlir::Value initValue =
-        fir::factory::createZeroValue(builder, loc, resultElementType);
-
-    llvm::SmallVector<mlir::Value, 1> result = hlfir::genLoopNestWithReductions(
-        loc, builder, {extent},
-        /*reductionInits=*/{initValue}, genBody, isUnordered);
-
-    rewriter.replaceOp(product, result[0]);
-    return mlir::success();
-  }
-
-private:
-  static mlir::Value genProductExtent(mlir::Location loc,
-                                      fir::FirOpBuilder &builder,
-                                      hlfir::Entity input1,
-                                      hlfir::Entity input2) {
-    llvm::SmallVector<mlir::Value, 1> input1Extents =
-        hlfir::genExtentsVector(loc, builder, input1);
-    llvm::SmallVector<mlir::Value, 1> input2Extents =
-        hlfir::genExtentsVector(loc, builder, input2);
-
-    assert(input1Extents.size() == 1 && input2Extents.size() == 1 &&
-           "hlfir.dot_product arguments must be vectors");
-    llvm::SmallVector<mlir::Value, 1> extent =
-        fir::factory::deduceOptimalExtents(input1Extents, input2Extents);
-    return extent[0];
-  }
-};
-
 class SimplifyHLFIRIntrinsics
     : public hlfir::impl::SimplifyHLFIRIntrinsicsBase<SimplifyHLFIRIntrinsics> {
 public:
@@ -986,8 +939,6 @@ class SimplifyHLFIRIntrinsics
     if (forceMatmulAsElemental || this->allowNewSideEffects)
       patterns.insert<MatmulConversion<hlfir::MatmulOp>>(context);
 
-    patterns.insert<DotProductConversion>(context);
-
     if (mlir::failed(mlir::applyPatternsGreedily(
             getOperation(), std::move(patterns), config))) {
       mlir::emitError(getOperation()->getLoc(),

diff  --git a/flang/test/HLFIR/simplify-hlfir-intrinsics-dotproduct.fir b/flang/test/HLFIR/simplify-hlfir-intrinsics-dotproduct.fir
deleted file mode 100644
index f59b1422dbc849..00000000000000
--- a/flang/test/HLFIR/simplify-hlfir-intrinsics-dotproduct.fir
+++ /dev/null
@@ -1,144 +0,0 @@
-// Test hlfir.dot_product simplification to a reduction loop:
-// RUN: fir-opt --simplify-hlfir-intrinsics %s | FileCheck %s
-
-func.func @dot_product_integer(%arg0: !hlfir.expr<?xi16>, %arg1: !hlfir.expr<?xi32>) -> i32 {
-  %res = hlfir.dot_product %arg0 %arg1 : (!hlfir.expr<?xi16>, !hlfir.expr<?xi32>) -> i32
-  return %res : i32
-}
-// CHECK-LABEL:   func.func @dot_product_integer(
-// CHECK-SAME:                                   %[[VAL_0:.*]]: !hlfir.expr<?xi16>,
-// CHECK-SAME:                                   %[[VAL_1:.*]]: !hlfir.expr<?xi32>) -> i32 {
-// CHECK:           %[[VAL_2:.*]] = arith.constant 1 : index
-// CHECK:           %[[VAL_3:.*]] = arith.constant 0 : i32
-// CHECK:           %[[VAL_4:.*]] = hlfir.shape_of %[[VAL_0]] : (!hlfir.expr<?xi16>) -> !fir.shape<1>
-// CHECK:           %[[VAL_5:.*]] = hlfir.get_extent %[[VAL_4]] {dim = 0 : index} : (!fir.shape<1>) -> index
-// CHECK:           %[[VAL_6:.*]] = fir.do_loop %[[VAL_7:.*]] = %[[VAL_2]] to %[[VAL_5]] step %[[VAL_2]] unordered iter_args(%[[VAL_8:.*]] = %[[VAL_3]]) -> (i32) {
-// CHECK:             %[[VAL_9:.*]] = hlfir.apply %[[VAL_0]], %[[VAL_7]] : (!hlfir.expr<?xi16>, index) -> i16
-// CHECK:             %[[VAL_10:.*]] = hlfir.apply %[[VAL_1]], %[[VAL_7]] : (!hlfir.expr<?xi32>, index) -> i32
-// CHECK:             %[[VAL_11:.*]] = fir.convert %[[VAL_9]] : (i16) -> i32
-// CHECK:             %[[VAL_12:.*]] = arith.muli %[[VAL_11]], %[[VAL_10]] : i32
-// CHECK:             %[[VAL_13:.*]] = arith.addi %[[VAL_8]], %[[VAL_12]] : i32
-// CHECK:             fir.result %[[VAL_13]] : i32
-// CHECK:           }
-// CHECK:           return %[[VAL_6]] : i32
-// CHECK:         }
-
-func.func @dot_product_real(%arg0: !hlfir.expr<?xf32>, %arg1: !hlfir.expr<?xf16>) -> f32 {
-  %res = hlfir.dot_product %arg0 %arg1 : (!hlfir.expr<?xf32>, !hlfir.expr<?xf16>) -> f32
-  return %res : f32
-}
-// CHECK-LABEL:   func.func @dot_product_real(
-// CHECK-SAME:                                %[[VAL_0:.*]]: !hlfir.expr<?xf32>,
-// CHECK-SAME:                                %[[VAL_1:.*]]: !hlfir.expr<?xf16>) -> f32 {
-// CHECK:           %[[VAL_2:.*]] = arith.constant 1 : index
-// CHECK:           %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK:           %[[VAL_4:.*]] = hlfir.shape_of %[[VAL_0]] : (!hlfir.expr<?xf32>) -> !fir.shape<1>
-// CHECK:           %[[VAL_5:.*]] = hlfir.get_extent %[[VAL_4]] {dim = 0 : index} : (!fir.shape<1>) -> index
-// CHECK:           %[[VAL_6:.*]] = fir.do_loop %[[VAL_7:.*]] = %[[VAL_2]] to %[[VAL_5]] step %[[VAL_2]] iter_args(%[[VAL_8:.*]] = %[[VAL_3]]) -> (f32) {
-// CHECK:             %[[VAL_9:.*]] = hlfir.apply %[[VAL_0]], %[[VAL_7]] : (!hlfir.expr<?xf32>, index) -> f32
-// CHECK:             %[[VAL_10:.*]] = hlfir.apply %[[VAL_1]], %[[VAL_7]] : (!hlfir.expr<?xf16>, index) -> f16
-// CHECK:             %[[VAL_11:.*]] = fir.convert %[[VAL_10]] : (f16) -> f32
-// CHECK:             %[[VAL_12:.*]] = arith.mulf %[[VAL_9]], %[[VAL_11]] : f32
-// CHECK:             %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_12]] : f32
-// CHECK:             fir.result %[[VAL_13]] : f32
-// CHECK:           }
-// CHECK:           return %[[VAL_6]] : f32
-// CHECK:         }
-
-func.func @dot_product_complex(%arg0: !hlfir.expr<?xcomplex<f32>>, %arg1: !hlfir.expr<?xcomplex<f16>>) -> complex<f32> {
-  %res = hlfir.dot_product %arg0 %arg1 : (!hlfir.expr<?xcomplex<f32>>, !hlfir.expr<?xcomplex<f16>>) -> complex<f32>
-  return %res : complex<f32>
-}
-// CHECK-LABEL:   func.func @dot_product_complex(
-// CHECK-SAME:                                   %[[VAL_0:.*]]: !hlfir.expr<?xcomplex<f32>>,
-// CHECK-SAME:                                   %[[VAL_1:.*]]: !hlfir.expr<?xcomplex<f16>>) -> complex<f32> {
-// CHECK:           %[[VAL_2:.*]] = arith.constant 1 : index
-// CHECK:           %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK:           %[[VAL_4:.*]] = hlfir.shape_of %[[VAL_0]] : (!hlfir.expr<?xcomplex<f32>>) -> !fir.shape<1>
-// CHECK:           %[[VAL_5:.*]] = hlfir.get_extent %[[VAL_4]] {dim = 0 : index} : (!fir.shape<1>) -> index
-// CHECK:           %[[VAL_6:.*]] = fir.undefined complex<f32>
-// CHECK:           %[[VAL_7:.*]] = fir.insert_value %[[VAL_6]], %[[VAL_3]], [0 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:           %[[VAL_8:.*]] = fir.insert_value %[[VAL_7]], %[[VAL_3]], [1 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:           %[[VAL_9:.*]] = fir.do_loop %[[VAL_10:.*]] = %[[VAL_2]] to %[[VAL_5]] step %[[VAL_2]] iter_args(%[[VAL_11:.*]] = %[[VAL_8]]) -> (complex<f32>) {
-// CHECK:             %[[VAL_12:.*]] = hlfir.apply %[[VAL_0]], %[[VAL_10]] : (!hlfir.expr<?xcomplex<f32>>, index) -> complex<f32>
-// CHECK:             %[[VAL_13:.*]] = hlfir.apply %[[VAL_1]], %[[VAL_10]] : (!hlfir.expr<?xcomplex<f16>>, index) -> complex<f16>
-// CHECK:             %[[VAL_14:.*]] = fir.convert %[[VAL_13]] : (complex<f16>) -> complex<f32>
-// CHECK:             %[[VAL_15:.*]] = fir.extract_value %[[VAL_12]], [1 : index] : (complex<f32>) -> f32
-// CHECK:             %[[VAL_16:.*]] = arith.negf %[[VAL_15]] : f32
-// CHECK:             %[[VAL_17:.*]] = fir.insert_value %[[VAL_12]], %[[VAL_16]], [1 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:             %[[VAL_18:.*]] = fir.mulc %[[VAL_17]], %[[VAL_14]] : complex<f32>
-// CHECK:             %[[VAL_19:.*]] = fir.addc %[[VAL_11]], %[[VAL_18]] : complex<f32>
-// CHECK:             fir.result %[[VAL_19]] : complex<f32>
-// CHECK:           }
-// CHECK:           return %[[VAL_9]] : complex<f32>
-// CHECK:         }
-
-func.func @dot_product_real_complex(%arg0: !hlfir.expr<?xf32>, %arg1: !hlfir.expr<?xcomplex<f16>>) -> complex<f32> {
-  %res = hlfir.dot_product %arg0 %arg1 : (!hlfir.expr<?xf32>, !hlfir.expr<?xcomplex<f16>>) -> complex<f32>
-  return %res : complex<f32>
-}
-// CHECK-LABEL:   func.func @dot_product_real_complex(
-// CHECK-SAME:                                        %[[VAL_0:.*]]: !hlfir.expr<?xf32>,
-// CHECK-SAME:                                        %[[VAL_1:.*]]: !hlfir.expr<?xcomplex<f16>>) -> complex<f32> {
-// CHECK:           %[[VAL_2:.*]] = arith.constant 1 : index
-// CHECK:           %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK:           %[[VAL_4:.*]] = hlfir.shape_of %[[VAL_0]] : (!hlfir.expr<?xf32>) -> !fir.shape<1>
-// CHECK:           %[[VAL_5:.*]] = hlfir.get_extent %[[VAL_4]] {dim = 0 : index} : (!fir.shape<1>) -> index
-// CHECK:           %[[VAL_6:.*]] = fir.undefined complex<f32>
-// CHECK:           %[[VAL_7:.*]] = fir.insert_value %[[VAL_6]], %[[VAL_3]], [0 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:           %[[VAL_8:.*]] = fir.insert_value %[[VAL_7]], %[[VAL_3]], [1 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:           %[[VAL_9:.*]] = fir.do_loop %[[VAL_10:.*]] = %[[VAL_2]] to %[[VAL_5]] step %[[VAL_2]] iter_args(%[[VAL_11:.*]] = %[[VAL_8]]) -> (complex<f32>) {
-// CHECK:             %[[VAL_12:.*]] = hlfir.apply %[[VAL_0]], %[[VAL_10]] : (!hlfir.expr<?xf32>, index) -> f32
-// CHECK:             %[[VAL_13:.*]] = hlfir.apply %[[VAL_1]], %[[VAL_10]] : (!hlfir.expr<?xcomplex<f16>>, index) -> complex<f16>
-// CHECK:             %[[VAL_14:.*]] = fir.undefined complex<f32>
-// CHECK:             %[[VAL_15:.*]] = fir.insert_value %[[VAL_14]], %[[VAL_3]], [0 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:             %[[VAL_16:.*]] = fir.insert_value %[[VAL_15]], %[[VAL_3]], [1 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:             %[[VAL_17:.*]] = fir.insert_value %[[VAL_16]], %[[VAL_12]], [0 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:             %[[VAL_18:.*]] = fir.convert %[[VAL_13]] : (complex<f16>) -> complex<f32>
-// CHECK:             %[[VAL_19:.*]] = fir.extract_value %[[VAL_17]], [1 : index] : (complex<f32>) -> f32
-// CHECK:             %[[VAL_20:.*]] = arith.negf %[[VAL_19]] : f32
-// CHECK:             %[[VAL_21:.*]] = fir.insert_value %[[VAL_17]], %[[VAL_20]], [1 : index] : (complex<f32>, f32) -> complex<f32>
-// CHECK:             %[[VAL_22:.*]] = fir.mulc %[[VAL_21]], %[[VAL_18]] : complex<f32>
-// CHECK:             %[[VAL_23:.*]] = fir.addc %[[VAL_11]], %[[VAL_22]] : complex<f32>
-// CHECK:             fir.result %[[VAL_23]] : complex<f32>
-// CHECK:           }
-// CHECK:           return %[[VAL_9]] : complex<f32>
-// CHECK:         }
-
-func.func @dot_product_logical(%arg0: !hlfir.expr<?x!fir.logical<1>>, %arg1: !hlfir.expr<?x!fir.logical<4>>) -> !fir.logical<4> {
-  %res = hlfir.dot_product %arg0 %arg1 : (!hlfir.expr<?x!fir.logical<1>>, !hlfir.expr<?x!fir.logical<4>>) -> !fir.logical<4>
-  return %res : !fir.logical<4>
-}
-// CHECK-LABEL:   func.func @dot_product_logical(
-// CHECK-SAME:                                   %[[VAL_0:.*]]: !hlfir.expr<?x!fir.logical<1>>,
-// CHECK-SAME:                                   %[[VAL_1:.*]]: !hlfir.expr<?x!fir.logical<4>>) -> !fir.logical<4> {
-// CHECK:           %[[VAL_2:.*]] = arith.constant 1 : index
-// CHECK:           %[[VAL_3:.*]] = arith.constant false
-// CHECK:           %[[VAL_4:.*]] = hlfir.shape_of %[[VAL_0]] : (!hlfir.expr<?x!fir.logical<1>>) -> !fir.shape<1>
-// CHECK:           %[[VAL_5:.*]] = hlfir.get_extent %[[VAL_4]] {dim = 0 : index} : (!fir.shape<1>) -> index
-// CHECK:           %[[VAL_6:.*]] = fir.convert %[[VAL_3]] : (i1) -> !fir.logical<4>
-// CHECK:           %[[VAL_7:.*]] = fir.do_loop %[[VAL_8:.*]] = %[[VAL_2]] to %[[VAL_5]] step %[[VAL_2]] unordered iter_args(%[[VAL_9:.*]] = %[[VAL_6]]) -> (!fir.logical<4>) {
-// CHECK:             %[[VAL_10:.*]] = hlfir.apply %[[VAL_0]], %[[VAL_8]] : (!hlfir.expr<?x!fir.logical<1>>, index) -> !fir.logical<1>
-// CHECK:             %[[VAL_11:.*]] = hlfir.apply %[[VAL_1]], %[[VAL_8]] : (!hlfir.expr<?x!fir.logical<4>>, index) -> !fir.logical<4>
-// CHECK:             %[[VAL_12:.*]] = fir.convert %[[VAL_9]] : (!fir.logical<4>) -> i1
-// CHECK:             %[[VAL_13:.*]] = fir.convert %[[VAL_10]] : (!fir.logical<1>) -> i1
-// CHECK:             %[[VAL_14:.*]] = fir.convert %[[VAL_11]] : (!fir.logical<4>) -> i1
-// CHECK:             %[[VAL_15:.*]] = arith.andi %[[VAL_13]], %[[VAL_14]] : i1
-// CHECK:             %[[VAL_16:.*]] = arith.ori %[[VAL_12]], %[[VAL_15]] : i1
-// CHECK:             %[[VAL_17:.*]] = fir.convert %[[VAL_16]] : (i1) -> !fir.logical<4>
-// CHECK:             fir.result %[[VAL_17]] : !fir.logical<4>
-// CHECK:           }
-// CHECK:           return %[[VAL_7]] : !fir.logical<4>
-// CHECK:         }
-
-func.func @dot_product_known_dim(%arg0: !hlfir.expr<10xf32>, %arg1: !hlfir.expr<?xi16>) -> f32 {
-  %res1 = hlfir.dot_product %arg0 %arg1 : (!hlfir.expr<10xf32>, !hlfir.expr<?xi16>) -> f32
-  %res2 = hlfir.dot_product %arg1 %arg0 : (!hlfir.expr<?xi16>, !hlfir.expr<10xf32>) -> f32
-  %res = arith.addf %res1, %res2 : f32
-  return %res : f32
-}
-// CHECK-LABEL:   func.func @dot_product_known_dim(
-// CHECK:           %[[VAL_2:.*]] = arith.constant 1 : index
-// CHECK:           %[[VAL_4:.*]] = arith.constant 10 : index
-// CHECK:           fir.do_loop %{{.*}} = %[[VAL_2]] to %[[VAL_4]] step %[[VAL_2]]
-// CHECK:           fir.do_loop %{{.*}} = %[[VAL_2]] to %[[VAL_4]] step %[[VAL_2]]


        


More information about the flang-commits mailing list