[flang-commits] [flang] [Flang] LoongArch64 support for BIND(C) derived types. (PR #117108)
via flang-commits
flang-commits at lists.llvm.org
Wed Nov 20 19:46:22 PST 2024
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-flang-codegen
Author: Zhaoxin Yang (ylzsx)
<details>
<summary>Changes</summary>
This patch supports both the passing and returning of BIND(C) type parameters.
Reference ABI:
https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc#subroutine-calling-sequence
---
Patch is 40.24 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/117108.diff
4 Files Affected:
- (modified) flang/lib/Optimizer/CodeGen/Target.cpp (+308)
- (added) flang/test/Fir/struct-passing-loongarch64-byreg.fir (+232)
- (added) flang/test/Fir/struct-passing-return-loongarch64-bystack.fir (+80)
- (added) flang/test/Fir/struct-return-loongarch64-byreg.fir (+200)
``````````diff
diff --git a/flang/lib/Optimizer/CodeGen/Target.cpp b/flang/lib/Optimizer/CodeGen/Target.cpp
index 9ec055b1aecabb..90ce51552c687f 100644
--- a/flang/lib/Optimizer/CodeGen/Target.cpp
+++ b/flang/lib/Optimizer/CodeGen/Target.cpp
@@ -1081,6 +1081,9 @@ struct TargetLoongArch64 : public GenericTarget<TargetLoongArch64> {
using GenericTarget::GenericTarget;
static constexpr int defaultWidth = 64;
+ static constexpr int GRLen = defaultWidth; /* eight bytes */
+ static constexpr int GRLenInChar = GRLen / 8;
+ static constexpr int FRLen = defaultWidth; /* eight bytes */
CodeGenSpecifics::Marshalling
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
@@ -1151,6 +1154,311 @@ struct TargetLoongArch64 : public GenericTarget<TargetLoongArch64> {
return GenericTarget::integerArgumentType(loc, argTy);
}
+
+ /// Flatten non-basic types, resulting in an array of types containing only
+ /// `IntegerType` and `FloatType`.
+ std::vector<mlir::Type> flattenTypeList(mlir::Location loc,
+ const mlir::Type type) const {
+ std::vector<mlir::Type> flatTypes;
+
+ llvm::TypeSwitch<mlir::Type>(type)
+ .template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
+ if (intTy.getWidth() != 0)
+ flatTypes.push_back(intTy);
+ })
+ .template Case<mlir::FloatType>([&](mlir::FloatType floatTy) {
+ if (floatTy.getWidth() != 0)
+ flatTypes.push_back(floatTy);
+ })
+ .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
+ const auto *sem = &floatToSemantics(kindMap, cmplx.getElementType());
+ if (sem == &llvm::APFloat::IEEEsingle() ||
+ sem == &llvm::APFloat::IEEEdouble() ||
+ sem == &llvm::APFloat::IEEEquad())
+ std::fill_n(std::back_inserter(flatTypes), 2,
+ cmplx.getElementType());
+ else
+ TODO(loc, "unsupported complx type(not IEEEsingle, IEEEdouble, "
+ "IEEEquad) as a structure component for BIND(C), "
+ "VALUE derived type argument and type return");
+ })
+ .template Case<fir::LogicalType>([&](fir::LogicalType logicalTy) {
+ const auto width = kindMap.getLogicalBitsize(logicalTy.getFKind());
+ if (width != 0)
+ flatTypes.push_back(
+ mlir::IntegerType::get(type.getContext(), width));
+ })
+ .template Case<fir::CharacterType>([&](fir::CharacterType charTy) {
+ flatTypes.push_back(mlir::IntegerType::get(type.getContext(), 8));
+ })
+ .template Case<fir::SequenceType>([&](fir::SequenceType seqTy) {
+ if (!seqTy.hasDynamicExtents()) {
+ std::size_t numOfEle = seqTy.getConstantArraySize();
+ auto eleTy = seqTy.getEleTy();
+ if (!mlir::isa<mlir::IntegerType, mlir::FloatType>(eleTy)) {
+ auto subTypeList = flattenTypeList(loc, eleTy);
+ if (subTypeList.size() != 0)
+ for (std::size_t i = 0; i < numOfEle; ++i)
+ llvm::copy(subTypeList, std::back_inserter(flatTypes));
+ } else {
+ std::fill_n(std::back_inserter(flatTypes), numOfEle, eleTy);
+ }
+ } else
+ TODO(loc, "unsupported dynamic extent sequence type as a structure "
+ "component for BIND(C), "
+ "VALUE derived type argument and type return");
+ })
+ .template Case<fir::RecordType>([&](fir::RecordType recTy) {
+ for (auto component : recTy.getTypeList()) {
+ mlir::Type eleTy = component.second;
+ auto subTypeList = flattenTypeList(loc, eleTy);
+ if (subTypeList.size() != 0)
+ llvm::copy(subTypeList, std::back_inserter(flatTypes));
+ }
+ })
+ .template Case<fir::VectorType>([&](fir::VectorType vecTy) {
+ std::size_t numOfEle = vecTy.getLen();
+ auto eleTy = vecTy.getEleTy();
+ if (!(mlir::isa<mlir::IntegerType, mlir::FloatType>(eleTy))) {
+ auto subTypeList = flattenTypeList(loc, eleTy);
+ if (subTypeList.size() != 0)
+ for (std::size_t i = 0; i < numOfEle; ++i)
+ llvm::copy(subTypeList, std::back_inserter(flatTypes));
+ } else {
+ std::fill_n(std::back_inserter(flatTypes), numOfEle, eleTy);
+ }
+ })
+ .Default([&](mlir::Type ty) {
+ if (fir::conformsWithPassByRef(ty))
+ flatTypes.push_back(
+ mlir::IntegerType::get(type.getContext(), GRLen));
+ else
+ TODO(loc, "unsupported component type for BIND(C), VALUE derived "
+ "type argument and type return");
+ });
+
+ return flatTypes;
+ }
+
+ /// Determine if a struct is eligible to be passed in FARs (and GARs) (i.e.,
+ /// when flattened it contains a single fp value, fp+fp, or int+fp of
+ /// appropriate size).
+ bool detectFARsEligibleStruct(mlir::Location loc, fir::RecordType recTy,
+ mlir::Type &Field1Ty,
+ mlir::Type &Field2Ty) const {
+
+ Field1Ty = Field2Ty = nullptr;
+ auto flatTypes = flattenTypeList(loc, recTy);
+ size_t flatSize = flatTypes.size();
+
+ // Cannot be eligible if the number of flattened types is equal to 0 or
+ // greater than 2.
+ if (flatSize == 0 || flatSize > 2)
+ return false;
+
+ bool isFirstAvaliableFloat = false;
+
+ assert((mlir::isa<mlir::IntegerType, mlir::FloatType>(flatTypes[0])) &&
+ "Type must be int or float after flattening");
+ if (auto floatTy = mlir::dyn_cast<mlir::FloatType>(flatTypes[0])) {
+ auto Size = floatTy.getWidth();
+ // Can't be eligible if larger than the FP registers. Half precision isn't
+ // currently supported on LoongArch and the ABI hasn't been confirmed, so
+ // default to the integer ABI in that case.
+ if (Size > FRLen || Size < 32)
+ return false;
+ isFirstAvaliableFloat = true;
+ Field1Ty = floatTy;
+ } else if (auto intTy = mlir::dyn_cast<mlir::IntegerType>(flatTypes[0])) {
+ if (intTy.getWidth() > GRLen)
+ return false;
+ Field1Ty = intTy;
+ }
+
+ // flatTypes has two elements
+ if (flatSize == 2) {
+ assert((mlir::isa<mlir::IntegerType, mlir::FloatType>(flatTypes[1])) &&
+ "Type must be integer or float after flattening");
+ if (auto floatTy = mlir::dyn_cast<mlir::FloatType>(flatTypes[1])) {
+ auto Size = floatTy.getWidth();
+ if (Size > FRLen || Size < 32)
+ return false;
+ Field2Ty = floatTy;
+ return true;
+ } else if (auto intTy = mlir::dyn_cast<mlir::IntegerType>(flatTypes[1])) {
+ // Can't be eligible if an integer type was already found (int+int pairs
+ // are not eligible).
+ if (!isFirstAvaliableFloat)
+ return false;
+ if (intTy.getWidth() > GRLen)
+ return false;
+ Field2Ty = intTy;
+ return true;
+ }
+ }
+
+ // return isFirstAvaliableFloat if flatTypes only has one element
+ return isFirstAvaliableFloat;
+ }
+
+ bool checkTypehasEnoughReg(mlir::Location loc, int &GARsLeft, int &FARsLeft,
+ const mlir::Type type) const {
+ if (type == nullptr)
+ return true;
+
+ llvm::TypeSwitch<mlir::Type>(type)
+ .template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
+ const auto width = intTy.getWidth();
+ assert(width <= 128 &&
+ "integer type with width more than 128 bits is unexpected");
+ if (width == 0)
+ return;
+ if (width <= GRLen)
+ --GARsLeft;
+ else if (width <= 2 * GRLen)
+ GARsLeft = GARsLeft - 2;
+ })
+ .template Case<mlir::FloatType>([&](mlir::FloatType floatTy) {
+ const auto width = floatTy.getWidth();
+ assert(width <= 128 &&
+ "float type with width more than 128 bits is unexpected");
+ if (width == 0)
+ return;
+ if (width == 32 || width == 64)
+ --FARsLeft;
+ else if (width <= GRLen)
+ --GARsLeft;
+ else if (width <= 2 * GRLen)
+ GARsLeft = GARsLeft - 2;
+ })
+ .Default([&](mlir::Type ty) {
+ if (fir::conformsWithPassByRef(ty))
+ --GARsLeft; // Pointers.
+ else
+ TODO(loc, "unsupported component type for BIND(C), VALUE derived "
+ "type argument and type return");
+ });
+
+ return GARsLeft >= 0 && FARsLeft >= 0;
+ }
+
+ bool hasEnoughRegisters(mlir::Location loc, int GARsLeft, int FARsLeft,
+ const Marshalling &previousArguments,
+ const mlir::Type &Field1Ty,
+ const mlir::Type &Field2Ty) const {
+
+ for (auto typeAndAttr : previousArguments) {
+ const auto &attr = std::get<Attributes>(typeAndAttr);
+ if (attr.isByVal()) {
+ // Previous argument passed on the stack, and its address is passed in
+ // GAR.
+ --GARsLeft;
+ continue;
+ }
+
+ // Previous aggregate arguments were marshalled into simpler arguments.
+ const auto &type = std::get<mlir::Type>(typeAndAttr);
+ auto flatTypes = flattenTypeList(loc, type);
+
+ for (auto &flatTy : flatTypes) {
+ if (!checkTypehasEnoughReg(loc, GARsLeft, FARsLeft, flatTy))
+ return false;
+ }
+ }
+
+ if (!checkTypehasEnoughReg(loc, GARsLeft, FARsLeft, Field1Ty))
+ return false;
+ if (!checkTypehasEnoughReg(loc, GARsLeft, FARsLeft, Field2Ty))
+ return false;
+ return true;
+ }
+
+ /// LoongArch64 subroutine calling sequence ABI in:
+ /// https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc#subroutine-calling-sequence
+ CodeGenSpecifics::Marshalling
+ classifyStruct(mlir::Location loc, fir::RecordType recTy, int GARsLeft,
+ int FARsLeft, bool isResult,
+ const Marshalling &previousArguments) const {
+ CodeGenSpecifics::Marshalling marshal;
+
+ auto [recSize, recAlign] = fir::getTypeSizeAndAlignmentOrCrash(
+ loc, recTy, getDataLayout(), kindMap);
+ auto context = recTy.getContext();
+
+ if (recSize == 0) {
+ TODO(loc, "unsupported empty struct type for BIND(C), "
+ "VALUE derived type argument and type return");
+ }
+
+ if (recSize > 2 * GRLenInChar) {
+ marshal.emplace_back(
+ fir::ReferenceType::get(recTy),
+ AT{recAlign, /*byval=*/!isResult, /*sret=*/isResult});
+ return marshal;
+ }
+
+ // Pass by FARs(and GARs)
+ mlir::Type Field1Ty = nullptr, Field2Ty = nullptr;
+ if (detectFARsEligibleStruct(loc, recTy, Field1Ty, Field2Ty)) {
+ if (hasEnoughRegisters(loc, GARsLeft, FARsLeft, previousArguments,
+ Field1Ty, Field2Ty)) {
+ if (!isResult) {
+ if (Field1Ty)
+ marshal.emplace_back(Field1Ty, AT{});
+ if (Field2Ty)
+ marshal.emplace_back(Field2Ty, AT{});
+ } else {
+ // Field1Ty is always preferred over Field2Ty for assignment, so there
+ // will never be a case where Field1Ty == nullptr and Field2Ty !=
+ // nullptr.
+ if (Field1Ty && !Field2Ty)
+ marshal.emplace_back(Field1Ty, AT{});
+ else if (Field1Ty && Field2Ty)
+ marshal.emplace_back(
+ mlir::TupleType::get(context,
+ mlir::TypeRange{Field1Ty, Field2Ty}),
+ AT{/*alignment=*/0, /*byval=*/true});
+ }
+ return marshal;
+ }
+ }
+
+ if (recSize <= GRLenInChar) {
+ marshal.emplace_back(mlir::IntegerType::get(context, GRLen), AT{});
+ return marshal;
+ }
+
+ if (recAlign == 2 * GRLenInChar) {
+ marshal.emplace_back(mlir::IntegerType::get(context, 2 * GRLen), AT{});
+ return marshal;
+ }
+
+ // recSize > GRLenInChar && recSize <= 2 * GRLenInChar
+ marshal.emplace_back(
+ fir::SequenceType::get({2}, mlir::IntegerType::get(context, GRLen)),
+ AT{});
+ return marshal;
+ }
+
+ /// Marshal a derived type passed by value like a C struct.
+ CodeGenSpecifics::Marshalling
+ structArgumentType(mlir::Location loc, fir::RecordType recTy,
+ const Marshalling &previousArguments) const override {
+ int GARsLeft = 8;
+ int FARsLeft = FRLen ? 8 : 0;
+
+ return classifyStruct(loc, recTy, GARsLeft, FARsLeft, /*isResult=*/false,
+ previousArguments);
+ }
+
+ CodeGenSpecifics::Marshalling
+ structReturnType(mlir::Location loc, fir::RecordType recTy) const override {
+ // The rules for return and argument types are the same.
+ int GARsLeft = 2;
+ int FARsLeft = FRLen ? 2 : 0;
+ return classifyStruct(loc, recTy, GARsLeft, FARsLeft, /*isResult=*/true,
+ {});
+ }
};
} // namespace
diff --git a/flang/test/Fir/struct-passing-loongarch64-byreg.fir b/flang/test/Fir/struct-passing-loongarch64-byreg.fir
new file mode 100644
index 00000000000000..576ea6459e17a0
--- /dev/null
+++ b/flang/test/Fir/struct-passing-loongarch64-byreg.fir
@@ -0,0 +1,232 @@
+/// Test LoongArch64 ABI rewrite of struct passed by value (BIND(C), VALUE derived types).
+/// This test test cases where the struct can be passed in registers.
+/// Test cases can be roughly divided into two categories:
+/// - struct with a single intrinsic component;
+/// - sturct with more than one field;
+/// Since the argument marshalling logic is largely the same within each category,
+/// only the first example in each category checks the entire invocation process,
+/// while the other examples only check the signatures.
+
+// REQUIRES: loongarch-registered-target
+// RUN: fir-opt --split-input-file --target-rewrite="target=loongarch64-unknown-linux-gnu" %s | FileCheck %s
+
+
+/// *********************** Struct with a single intrinsic component *********************** ///
+
+!ty_i16 = !fir.type<ti16{i:i16}>
+!ty_i32 = !fir.type<ti32{i:i32}>
+!ty_i64 = !fir.type<ti64{i:i64}>
+!ty_i128 = !fir.type<ti128{i:i128}>
+!ty_f16 = !fir.type<tf16{i:f16}>
+!ty_f32 = !fir.type<tf32{i:f32}>
+!ty_f64 = !fir.type<tf64{i:f64}>
+!ty_f128 = !fir.type<tf128{i:f128}>
+!ty_bf16 = !fir.type<tbf16{i:bf16}>
+!ty_char1 = !fir.type<tchar1{i:!fir.char<1>}>
+!ty_char2 = !fir.type<tchar2{i:!fir.char<2>}>
+!ty_log1 = !fir.type<tlog1{i:!fir.logical<1>}>
+!ty_log2 = !fir.type<tlog2{i:!fir.logical<2>}>
+!ty_log4 = !fir.type<tlog4{i:!fir.logical<4>}>
+!ty_log8 = !fir.type<tlog8{i:!fir.logical<8>}>
+!ty_log16 = !fir.type<tlog16{i:!fir.logical<16>}>
+!ty_cmplx_f32 = !fir.type<tcmplx_f32{i:complex<f32>}>
+!ty_cmplx_f64 = !fir.type<tcmplx_f64{i:complex<f64>}>
+
+module attributes {fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.data_layout = "e-m:e-p:64:64-i64:64-i128:128-n32:64-S128", llvm.target_triple = "loongarch64-unknown-linux-gnu"} {
+
+// CHECK-LABEL: func.func private @test_func_i16(i64)
+func.func private @test_func_i16(%arg0: !ty_i16)
+// CHECK-LABEL: func.func @test_call_i16(
+// CHECK-SAME: %[[ARG0:.*]]: !fir.ref<!fir.type<ti16{i:i16}>>) {
+func.func @test_call_i16(%arg0: !fir.ref<!ty_i16>) {
+ // CHECK: %[[IN:.*]] = fir.load %[[ARG0]] : !fir.ref<!fir.type<ti16{i:i16}>>
+ // CHECK: %[[STACK:.*]] = llvm.intr.stacksave : !llvm.ptr
+ // CHECK: %[[ARR:.*]] = fir.alloca i64
+ // CHECK: %[[CVT:.*]] = fir.convert %[[ARR]] : (!fir.ref<i64>) -> !fir.ref<!fir.type<ti16{i:i16}>>
+ // CHECK: fir.store %[[IN]] to %[[CVT]] : !fir.ref<!fir.type<ti16{i:i16}>>
+ // CHECK: %[[LD:.*]] = fir.load %[[ARR]] : !fir.ref<i64>
+ %in = fir.load %arg0 : !fir.ref<!ty_i16>
+ // CHECK: fir.call @test_func_i16(%[[LD]]) : (i64) -> ()
+ // CHECK: llvm.intr.stackrestore %[[STACK]] : !llvm.ptr
+ fir.call @test_func_i16(%in) : (!ty_i16) -> ()
+ // CHECK: return
+ return
+}
+
+// CHECK-LABEL: func.func private @test_func_i32(i64)
+func.func private @test_func_i32(%arg0: !ty_i32)
+
+// CHECK-LABEL: func.func private @test_func_i64(i64)
+func.func private @test_func_i64(%arg0: !ty_i64)
+
+// CHECK-LABEL: func.func private @test_func_i128(i128)
+func.func private @test_func_i128(%arg0: !ty_i128)
+
+// CHECK-LABEL: func.func private @test_func_f16(i64)
+func.func private @test_func_f16(%arg0: !ty_f16)
+
+// CHECK-LABEL: func.func private @test_func_f32(f32)
+func.func private @test_func_f32(%arg0: !ty_f32)
+
+// CHECK-LABEL: func.func private @test_func_f64(f64)
+func.func private @test_func_f64(%arg0: !ty_f64)
+
+// CHECK-LABEL: func.func private @test_func_f128(i128)
+func.func private @test_func_f128(%arg0: !ty_f128)
+
+// CHECK-LABEL: func.func private @test_func_bf16(i64)
+func.func private @test_func_bf16(%arg0: !ty_bf16)
+
+// CHECK-LABEL: func.func private @test_func_char1(i64)
+func.func private @test_func_char1(%arg0: !ty_char1)
+
+// CHECK-LABEL: func.func private @test_func_char2(i64)
+func.func private @test_func_char2(%arg0: !ty_char2)
+
+// CHECK-LABEL: func.func private @test_func_log1(i64)
+func.func private @test_func_log1(%arg0: !ty_log1)
+
+// CHECK-LABEL: func.func private @test_func_log2(i64)
+func.func private @test_func_log2(%arg0: !ty_log2)
+
+// CHECK-LABEL: func.func private @test_func_log4(i64)
+func.func private @test_func_log4(%arg0: !ty_log4)
+
+// CHECK-LABEL: func.func private @test_func_log8(i64)
+func.func private @test_func_log8(%arg0: !ty_log8)
+
+// CHECK-LABEL: func.func private @test_func_log16(i128)
+func.func private @test_func_log16(%arg0: !ty_log16)
+
+// CHECK-LABEL: func.func private @test_func_cmplx_f32(f32, f32)
+func.func private @test_func_cmplx_f32(%arg0: !ty_cmplx_f32)
+
+// CHECK-LABEL: func.func private @test_func_cmplx_f64(f64, f64)
+func.func private @test_func_cmplx_f64(%arg0: !ty_cmplx_f64)
+}
+
+
+/// *************************** Struct with more than one field **************************** ///
+
+// -----
+
+!ty_i32_f32 = !fir.type<ti32_f32{i:i32,j:f32}>
+!ty_i32_f64 = !fir.type<ti32_f64{i:i32,j:f64}>
+!ty_i64_f32 = !fir.type<ti64_f32{i:i64,j:f32}>
+!ty_i64_f64 = !fir.type<ti64_f64{i:i64,j:f64}>
+!ty_f64_i64 = !fir.type<tf64_i64{i:f64,j:i64}>
+!ty_f16_f16 = !fir.type<tf16_f16{i:f16,j:f16}>
+!ty_f32_f32 = !fir.type<tf32_f32{i:f32,j:f32}>
+!ty_f64_f64 = !fir.type<tf64_f64{i:f64,j:f64}>
+!ty_f32_i32_i32 = !fir.type<tf32_i32_i32{i:f32,j:i32,k:i32}>
+!ty_f32_f32_i32 = !fir.type<tf32_f32_i32{i:f32,j:f32,k:i32}>
+!ty_f32_f32_f32 = !fir.type<tf32_f32_f32{i:f32,j:f32,k:f32}>
+
+!ty_i8_a8 = !fir.type<ti8_a8{i:!fir.array<8xi8>}>
+!ty_i8_a16 = !fir.type<ti8_a16{i:!fir.array<16xi8>}>
+!ty_f32_a2 = !fir.type<tf32_a2{i:!fir.array<2xf32>}>
+!ty_f64_a2 = !fir.type<tf64_a2{i:!fir.array<2xf64>}>
+!ty_nested_i32_f32 = !fir.type<t11{i:!ty_i32_f32}>
+!ty_nested_i8_a8_i32 = !fir.type<t12{i:!ty_i8_a8, j:i32}>
+!ty_char1_a8 = !fir.type<t_char_a8{i:!fir.array<8x!fir.char<1>>}>
+
+module attributes {fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.data_layout = "e-m:e-p:64:64-i64:64-i128:128-n32:64-S128", llvm.target_triple = "loongarch64-unknown-linux-gnu"} {
+
+// CHECK-LABEL: func.func private @test_func_i32_f32(i32, f32)
+func.func private @test_func_i32_f32(%arg0: !ty_i32_f32)
+// CHECK-LABEL: func.func @test_call_i32_f32(
+// CHECK-SAME: %[[ARG0:.*]]: !fir.ref<!fir.type<ti32_f32{i:i32,j:f32}>>) {
+func.func @test_call_i32_f32(%arg0: !fir.ref<!ty_i32_f32>) {
+ // CHECK: %[[IN:.*]] = fir.load %[[ARG0]] : !fir.ref<!fir.type<ti32_f32{i:i32,j:f32}>>
+ // CHECK: %[[STACK:.*]] = llvm.intr.stacksave : !llvm.ptr
+ // CHECK: %[[ARR:.*]] = fir.alloca tuple<i32, f32>
+ // CHECK: %[[CVT:.*]] = fir.convert %[[ARR]] : (!fir.ref<tuple<i32, f32>>) -> !fir.ref<!fir.type<ti32_f32{i:i32,j:f32}>>
+ // CHECK: fir.store %[[IN]] to %[[CVT]] : !fir.ref<!fir.type<ti32_f32{i:i32,j:f32}>>
+ // CHECK: %[[LD:.*]] = fir.load %[[ARR]] : !fir.ref<tuple<i32, f32>>
+ // CHECK: %[[VAL_0:.*]] = fir.extract_value %[[LD]], [0 : i32] : (tuple<i32, f32>) -> i32
+ // CHECK: %[[VAL_1:.*]] = fir.extract_value %[[LD]], [1 : i32] : (tuple<i32, f32>) -> f32
+ %in = fir.load %arg0 : !fir.ref<!ty_i32_f32>
+ // CHECK: fir.call @test_func_i32_f32(%[[VAL_0]], %[[VAL_...
[truncated]
``````````
</details>
https://github.com/llvm/llvm-project/pull/117108
More information about the flang-commits
mailing list