[flang-commits] [flang] [flang][runtime] Use std::fmod for most MOD/MODULO (PR #78745)
Peter Klausler via flang-commits
flang-commits at lists.llvm.org
Fri Jan 19 09:26:49 PST 2024
================
@@ -145,25 +145,33 @@ inline RT_API_ATTRS T RealMod(
} else if (std::isinf(p)) {
return a;
} else {
- // The standard defines MOD(a,p)=a-AINT(a/p)*p and
- // MODULO(a,p)=a-FLOOR(a/p)*p, but those definitions lose
- // precision badly due to cancellation when ABS(a) is
- // much larger than ABS(p).
- // Insights:
- // - MOD(a,p)=MOD(a-n*p,p) when a>0, p>0, integer n>0, and a>=n*p
- // - when n is a power of two, n*p is exact
- // - as a>=n*p, a-n*p does not round.
- // So repeatedly reduce a by all n*p in decreasing order of n;
- // what's left is the desired remainder. This is basically
- // the same algorithm as arbitrary precision binary long division,
- // discarding the quotient.
T tmp{std::abs(a)};
T pAbs{std::abs(p)};
- for (T adj{SetExponent(pAbs, Exponent<int>(tmp))}; tmp >= pAbs; adj /= 2) {
- if (tmp >= adj) {
- tmp -= adj;
- if (tmp == 0) {
- break;
+ if (tmp < pAbs) {
+ } else if constexpr (std::is_same_v<T, float> ||
+ std::is_same_v<T, double> || std::is_same_v<T, long double>) {
+ tmp = std::fmod(tmp, pAbs);
----------------
klausler wrote:
Getting the result right for both MOD and MODULO when either a or p or both are negative is tricky. Will try.
https://github.com/llvm/llvm-project/pull/78745
More information about the flang-commits
mailing list