[flang-commits] [flang] [Flang] Minloc elemental intrinsic lowering (PR #74828)

David Green via flang-commits flang-commits at lists.llvm.org
Tue Dec 12 11:07:46 PST 2023


https://github.com/davemgreen updated https://github.com/llvm/llvm-project/pull/74828

>From dafa6a56cfbf23423a23ef9a4659fc37bf8bf178 Mon Sep 17 00:00:00 2001
From: David Green <david.green at arm.com>
Date: Fri, 8 Dec 2023 11:19:02 +0000
Subject: [PATCH 1/2] [Flang] Minloc elemental intrinsic lowering

Currently the lowering of a minloc intrinsic with a mask will look something like
  %e = hlfir.elemental %shape ({
    ...
  })
  %m = hlfir.minloc %array mask %e
  hlfir.assign %m to %result
  hlfir.destroy %m
The elemental will be expanded into a temporary+loop, the minloc into a
FortranAMinloc call (which hopefully gets simplified to a specialized call that
can be inlined at the call site), and the assign might get expanded to a
FortranAAssign. The assign we could inline too, but it would be better to
generate the entire construct as single loop if we can - one that performs the
minloc calculation with the mask elemental computed inline and assigns directly
to the output array.

This patch attempt to do that, adding a hlfir version of the expansion code
from SimpliftIntrinsics that turns an assign+minloc+elemental into a single
combined loop nest. It attempts to reuse the methods in genMinlocReductionLoop
for constructing the loop with a modified loop body. The declaration for the
function is curently in Optimizer/Support/Utils.h, but there might be a better
place for it.

It is currently added as port of the OptimizedBufferizationPass. I originally
had it as part of the SimplifyHLFIRIntrinsics pass, but there were already some
methods doing similar things in OptimizedBufferization. It just needs to happen
before the elementals are expanded. I think I would like to do a similar thing
for maxloc and any/all/count too if this looks OK. I will rebase over #74436
once that goes in.
---
 flang/include/flang/Optimizer/Support/Utils.h |  16 +
 .../Transforms/OptimizedBufferization.cpp     | 370 +++++++++++++-----
 .../Transforms/SimplifyIntrinsics.cpp         | 188 +++++----
 flang/test/HLFIR/minloc-elemental.fir         | 327 ++++++++++++++++
 flang/test/Transforms/simplifyintrinsics.fir  |   5 +-
 5 files changed, 720 insertions(+), 186 deletions(-)
 create mode 100644 flang/test/HLFIR/minloc-elemental.fir

diff --git a/flang/include/flang/Optimizer/Support/Utils.h b/flang/include/flang/Optimizer/Support/Utils.h
index 34c8e79173bcd4..93caa8b23d320c 100644
--- a/flang/include/flang/Optimizer/Support/Utils.h
+++ b/flang/include/flang/Optimizer/Support/Utils.h
@@ -133,6 +133,22 @@ inline void intrinsicTypeTODO(fir::FirOpBuilder &builder, mlir::Type type,
            fir::numericMlirTypeToFortran(builder, type, loc, intrinsicName) +
            " in " + intrinsicName);
 }
+
+using MinlocBodyOpGeneratorTy = llvm::function_ref<mlir::Value(
+    fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
+    mlir::Value, mlir::Value, const llvm::SmallVectorImpl<mlir::Value> &)>;
+using InitValGeneratorTy = llvm::function_ref<mlir::Value(
+    fir::FirOpBuilder &, mlir::Location, const mlir::Type &)>;
+
+// Produces a loop nest for a Minloc intrinsic.
+void genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::Value array,
+                            InitValGeneratorTy initVal,
+                            MinlocBodyOpGeneratorTy genBody, unsigned rank,
+                            mlir::Type elementType, mlir::Location loc,
+                            mlir::Type maskElemType, mlir::Value resultArr,
+                            bool maskMayBeLogicalScalar);
+
+
 } // namespace fir
 
 #endif // FORTRAN_OPTIMIZER_SUPPORT_UTILS_H
diff --git a/flang/lib/Optimizer/HLFIR/Transforms/OptimizedBufferization.cpp b/flang/lib/Optimizer/HLFIR/Transforms/OptimizedBufferization.cpp
index 7abfa20493c736..218ddd2a6a7b7e 100644
--- a/flang/lib/Optimizer/HLFIR/Transforms/OptimizedBufferization.cpp
+++ b/flang/lib/Optimizer/HLFIR/Transforms/OptimizedBufferization.cpp
@@ -20,6 +20,7 @@
 #include "flang/Optimizer/HLFIR/HLFIRDialect.h"
 #include "flang/Optimizer/HLFIR/HLFIROps.h"
 #include "flang/Optimizer/HLFIR/Passes.h"
+#include "flang/Optimizer/Support/Utils.h"
 #include "mlir/Dialect/Func/IR/FuncOps.h"
 #include "mlir/IR/Dominance.h"
 #include "mlir/IR/PatternMatch.h"
@@ -98,7 +99,8 @@ class ElementalAssignBufferization
 /// the same block. If any operations with unknown effects are found,
 /// std::nullopt is returned
 static std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
-getEffectsBetween(mlir::Operation *start, mlir::Operation *end) {
+getEffectsBetween(mlir::Operation *start, mlir::Operation *end,
+                  mlir::Operation *ignoring) {
   mlir::SmallVector<mlir::MemoryEffects::EffectInstance> ret;
   if (start == end)
     return ret;
@@ -108,6 +110,10 @@ getEffectsBetween(mlir::Operation *start, mlir::Operation *end) {
 
   mlir::Operation *nextOp = start;
   while (nextOp && nextOp != end) {
+    if (nextOp == ignoring) {
+      nextOp = nextOp->getNextNode();
+      continue;
+    }
     std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
         effects = mlir::getEffectsRecursively(nextOp);
     if (!effects)
@@ -293,80 +299,10 @@ static bool areIdenticalOrDisjointSlices(mlir::Value ref1, mlir::Value ref2) {
   return false;
 }
 
-std::optional<ElementalAssignBufferization::MatchInfo>
-ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
-  mlir::Operation::user_range users = elemental->getUsers();
-  // the only uses of the elemental should be the assignment and the destroy
-  if (std::distance(users.begin(), users.end()) != 2) {
-    LLVM_DEBUG(llvm::dbgs() << "Too many uses of the elemental\n");
-    return std::nullopt;
-  }
-
-  // If the ElementalOp must produce a temporary (e.g. for
-  // finalization purposes), then we cannot inline it.
-  if (hlfir::elementalOpMustProduceTemp(elemental)) {
-    LLVM_DEBUG(llvm::dbgs() << "ElementalOp must produce a temp\n");
-    return std::nullopt;
-  }
-
-  MatchInfo match;
-  for (mlir::Operation *user : users)
-    mlir::TypeSwitch<mlir::Operation *, void>(user)
-        .Case([&](hlfir::AssignOp op) { match.assign = op; })
-        .Case([&](hlfir::DestroyOp op) { match.destroy = op; });
-
-  if (!match.assign || !match.destroy) {
-    LLVM_DEBUG(llvm::dbgs() << "Couldn't find assign or destroy\n");
-    return std::nullopt;
-  }
-
-  // the array is what the elemental is assigned into
-  // TODO: this could be extended to also allow hlfir.expr by first bufferizing
-  // the incoming expression
-  match.array = match.assign.getLhs();
-  mlir::Type arrayType = mlir::dyn_cast<fir::SequenceType>(
-      fir::unwrapPassByRefType(match.array.getType()));
-  if (!arrayType)
-    return std::nullopt;
-
-  // require that the array elements are trivial
-  // TODO: this is just to make the pass easier to think about. Not an inherent
-  // limitation
-  mlir::Type eleTy = hlfir::getFortranElementType(arrayType);
-  if (!fir::isa_trivial(eleTy))
-    return std::nullopt;
-
-  // the array must have the same shape as the elemental. CSE should have
-  // deduplicated the fir.shape operations where they are provably the same
-  // so we just have to check for the same ssa value
-  // TODO: add more ways of getting the shape of the array
-  mlir::Value arrayShape;
-  if (match.array.getDefiningOp())
-    arrayShape =
-        mlir::TypeSwitch<mlir::Operation *, mlir::Value>(
-            match.array.getDefiningOp())
-            .Case([](hlfir::DesignateOp designate) {
-              return designate.getShape();
-            })
-            .Case([](hlfir::DeclareOp declare) { return declare.getShape(); })
-            .Default([](mlir::Operation *) { return mlir::Value{}; });
-  if (!arrayShape) {
-    LLVM_DEBUG(llvm::dbgs() << "Can't get shape of " << match.array << " at "
-                            << elemental->getLoc() << "\n");
-    return std::nullopt;
-  }
-  if (arrayShape != elemental.getShape()) {
-    // f2018 10.2.1.2 (3) requires the lhs and rhs of an assignment to be
-    // conformable unless the lhs is an allocatable array. In HLFIR we can
-    // see this from the presence or absence of the realloc attribute on
-    // hlfir.assign. If it is not a realloc assignment, we can trust that
-    // the shapes do conform
-    if (match.assign.getRealloc())
-      return std::nullopt;
-  }
-
-  // the transformation wants to apply the elemental in a do-loop at the
-  // hlfir.assign, check there are no effects which make this unsafe
+static bool checkForElementalEffectsBetween(hlfir::ElementalOp elemental,
+                                            hlfir::AssignOp assign,
+                                            mlir::Value array,
+                                            mlir::Operation *ignoring) {
 
   // keep track of any values written to in the elemental, as these can't be
   // read from between the elemental and the assignment
@@ -375,20 +311,21 @@ ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
   mlir::SmallVector<mlir::Value, 1> notToBeAccessedBeforeAssign;
   // any accesses to the array between the array and the assignment means it
   // would be unsafe to move the elemental to the assignment
-  notToBeAccessedBeforeAssign.push_back(match.array);
+  notToBeAccessedBeforeAssign.push_back(array);
 
   // 1) side effects in the elemental body - it isn't sufficient to just look
   // for ordered elementals because we also cannot support out of order reads
   std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
-      effects = getEffectsBetween(&elemental.getBody()->front(),
-                                  elemental.getBody()->getTerminator());
+      effects =
+          getEffectsBetween(&elemental.getBody()->front(),
+                            elemental.getBody()->getTerminator(), nullptr);
   if (!effects) {
     LLVM_DEBUG(llvm::dbgs()
                << "operation with unknown effects inside elemental\n");
-    return std::nullopt;
+    return false;
   }
   for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
-    mlir::AliasResult res = containsReadOrWriteEffectOn(effect, match.array);
+    mlir::AliasResult res = containsReadOrWriteEffectOn(effect, array);
     if (res.isNo()) {
       if (mlir::isa<mlir::MemoryEffects::Write, mlir::MemoryEffects::Read>(
               effect.getEffect()))
@@ -402,7 +339,7 @@ ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
     // don't allow any aliasing writes in the elemental
     if (mlir::isa<mlir::MemoryEffects::Write>(effect.getEffect())) {
       LLVM_DEBUG(llvm::dbgs() << "write inside the elemental body\n");
-      return std::nullopt;
+      return false;
     }
 
     // allow if and only if the reads are from the elemental indices, in order
@@ -417,17 +354,17 @@ ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
     if (!res.isPartial()) {
       if (auto designate =
               effect.getValue().getDefiningOp<hlfir::DesignateOp>()) {
-        if (!areIdenticalOrDisjointSlices(match.array, designate.getMemref())) {
+        if (!areIdenticalOrDisjointSlices(array, designate.getMemref())) {
           LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate
                                   << " at " << elemental.getLoc() << "\n");
-          return std::nullopt;
+          return false;
         }
         auto indices = designate.getIndices();
         auto elementalIndices = elemental.getIndices();
         if (indices.size() != elementalIndices.size()) {
           LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate
                                   << " at " << elemental.getLoc() << "\n");
-          return std::nullopt;
+          return false;
         }
         if (std::equal(indices.begin(), indices.end(), elementalIndices.begin(),
                        elementalIndices.end()))
@@ -436,16 +373,16 @@ ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
     }
     LLVM_DEBUG(llvm::dbgs() << "disallowed side-effect: " << effect.getValue()
                             << " for " << elemental.getLoc() << "\n");
-    return std::nullopt;
+    return false;
   }
 
   // 2) look for conflicting effects between the elemental and the assignment
-  effects = getEffectsBetween(elemental->getNextNode(), match.assign);
+  effects = getEffectsBetween(elemental->getNextNode(), assign, ignoring);
   if (!effects) {
     LLVM_DEBUG(
         llvm::dbgs()
         << "operation with unknown effects between elemental and assign\n");
-    return std::nullopt;
+    return false;
   }
   for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
     // not safe to access anything written in the elemental as this write
@@ -456,11 +393,92 @@ ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
         LLVM_DEBUG(llvm::dbgs()
                    << "diasllowed side-effect: " << effect.getValue() << " for "
                    << elemental.getLoc() << "\n");
-        return std::nullopt;
+        return false;
       }
     }
   }
 
+  return true;
+}
+
+std::optional<ElementalAssignBufferization::MatchInfo>
+ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
+  mlir::Operation::user_range users = elemental->getUsers();
+  // the only uses of the elemental should be the assignment and the destroy
+  if (std::distance(users.begin(), users.end()) != 2) {
+    LLVM_DEBUG(llvm::dbgs() << "Too many uses of the elemental\n");
+    return std::nullopt;
+  }
+
+  // If the ElementalOp must produce a temporary (e.g. for
+  // finalization purposes), then we cannot inline it.
+  if (hlfir::elementalOpMustProduceTemp(elemental)) {
+    LLVM_DEBUG(llvm::dbgs() << "ElementalOp must produce a temp\n");
+    return std::nullopt;
+  }
+
+  MatchInfo match;
+  for (mlir::Operation *user : users)
+    mlir::TypeSwitch<mlir::Operation *, void>(user)
+        .Case([&](hlfir::AssignOp op) { match.assign = op; })
+        .Case([&](hlfir::DestroyOp op) { match.destroy = op; });
+
+  if (!match.assign || !match.destroy) {
+    LLVM_DEBUG(llvm::dbgs() << "Couldn't find assign or destroy\n");
+    return std::nullopt;
+  }
+
+  // the array is what the elemental is assigned into
+  // TODO: this could be extended to also allow hlfir.expr by first bufferizing
+  // the incoming expression
+  match.array = match.assign.getLhs();
+  mlir::Type arrayType = mlir::dyn_cast<fir::SequenceType>(
+      fir::unwrapPassByRefType(match.array.getType()));
+  if (!arrayType)
+    return std::nullopt;
+
+  // require that the array elements are trivial
+  // TODO: this is just to make the pass easier to think about. Not an inherent
+  // limitation
+  mlir::Type eleTy = hlfir::getFortranElementType(arrayType);
+  if (!fir::isa_trivial(eleTy))
+    return std::nullopt;
+
+  // the array must have the same shape as the elemental. CSE should have
+  // deduplicated the fir.shape operations where they are provably the same
+  // so we just have to check for the same ssa value
+  // TODO: add more ways of getting the shape of the array
+  mlir::Value arrayShape;
+  if (match.array.getDefiningOp())
+    arrayShape =
+        mlir::TypeSwitch<mlir::Operation *, mlir::Value>(
+            match.array.getDefiningOp())
+            .Case([](hlfir::DesignateOp designate) {
+              return designate.getShape();
+            })
+            .Case([](hlfir::DeclareOp declare) { return declare.getShape(); })
+            .Default([](mlir::Operation *) { return mlir::Value{}; });
+  if (!arrayShape) {
+    LLVM_DEBUG(llvm::dbgs() << "Can't get shape of " << match.array << " at "
+                            << elemental->getLoc() << "\n");
+    return std::nullopt;
+  }
+  if (arrayShape != elemental.getShape()) {
+    // f2018 10.2.1.2 (3) requires the lhs and rhs of an assignment to be
+    // conformable unless the lhs is an allocatable array. In HLFIR we can
+    // see this from the presence or absence of the realloc attribute on
+    // hlfir.assign. If it is not a realloc assignment, we can trust that
+    // the shapes do conform
+    if (match.assign.getRealloc())
+      return std::nullopt;
+  }
+
+  // the transformation wants to apply the elemental in a do-loop at the
+  // hlfir.assign, check there are no effects which make this unsafe
+  if (!checkForElementalEffectsBetween(elemental, match.assign, match.array,
+                                       nullptr))
+    return std::nullopt;
+
   return match;
 }
 
@@ -659,6 +677,181 @@ mlir::LogicalResult VariableAssignBufferization::matchAndRewrite(
   return mlir::success();
 }
 
+// Look for assign(minloc(mask=elemental)) and generate the minloc loop with
+// inlined elemental and no extra temporaries.
+//  %e = hlfir.elemental %shape ({ ... })
+//  %m = hlfir.minloc %array mask %e
+//  hlfir.assign %m to %result
+//  hlfir.destroy %m
+class AssignMinMaxlocElementalConversion
+    : public mlir::OpRewritePattern<hlfir::AssignOp> {
+public:
+  using mlir::OpRewritePattern<hlfir::AssignOp>::OpRewritePattern;
+
+  mlir::LogicalResult
+  matchAndRewrite(hlfir::AssignOp assign,
+                  mlir::PatternRewriter &rewriter) const override {
+    auto minloc = assign.getOperand(0).getDefiningOp<hlfir::MinlocOp>();
+    if (!minloc || !minloc.getMask() || minloc.getDim() || minloc.getBack())
+      return rewriter.notifyMatchFailure(assign,
+                                         "Did not find minloc with kind");
+
+    auto elemental = minloc.getMask().getDefiningOp<hlfir::ElementalOp>();
+    if (!elemental || hlfir::elementalOpMustProduceTemp(elemental))
+      return rewriter.notifyMatchFailure(assign, "Did not find elemental");
+
+    mlir::Operation::user_range users = minloc->getUsers();
+    if (std::distance(users.begin(), users.end()) != 2)
+      return rewriter.notifyMatchFailure(assign, "Did not find minloc users");
+    auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(
+        (*users.begin()) == minloc ? *++users.begin() : *users.begin());
+    if (!destroy)
+      return rewriter.notifyMatchFailure(assign, "Did not find destroy");
+
+    if (!checkForElementalEffectsBetween(elemental, assign, minloc.getArray(),
+                                         minloc))
+      return rewriter.notifyMatchFailure(assign, "Had unhandled effects");
+
+    mlir::Value resultArr = assign.getOperand(1);
+    mlir::Value array = minloc.getArray();
+
+    unsigned rank = mlir::cast<hlfir::ExprType>(minloc.getType()).getShape()[0];
+    mlir::Type arrayType = array.getType();
+    if (!arrayType.isa<fir::BoxType>())
+      return rewriter.notifyMatchFailure(
+          assign, "Currently requires a boxed type input");
+    mlir::Type elementType = hlfir::getFortranElementType(arrayType);
+  if (!fir::isa_trivial(elementType))
+    return rewriter.notifyMatchFailure(
+        assign, "Character arrays are currently not handled");
+
+    auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
+                   mlir::Type elementType) {
+      if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
+        const llvm::fltSemantics &sem = ty.getFloatSemantics();
+        return builder.createRealConstant(
+            loc, elementType,
+            llvm::APFloat::getLargest(sem, /*Negative=*/false));
+      }
+      unsigned bits = elementType.getIntOrFloatBitWidth();
+      int64_t maxInt = llvm::APInt::getSignedMaxValue(bits).getSExtValue();
+      return builder.createIntegerConstant(loc, elementType, maxInt);
+    };
+
+    auto genBodyOp =
+        [&rank, &resultArr, &elemental](
+            fir::FirOpBuilder builder, mlir::Location loc,
+            mlir::Type elementType, mlir::Value array, mlir::Value flagRef,
+            mlir::Value reduction,
+            const llvm::SmallVectorImpl<mlir::Value> &indices)
+        -> mlir::Value {
+      // We are in the innermost loop: generate the elemental inline
+      mlir::Value oneIdx =
+          builder.createIntegerConstant(loc, builder.getIndexType(), 1);
+      llvm::SmallVector<mlir::Value> oneBasedIndices;
+      llvm::transform(
+          indices, std::back_inserter(oneBasedIndices), [&](mlir::Value V) {
+            return builder.create<mlir::arith::AddIOp>(loc, V, oneIdx);
+          });
+      hlfir::YieldElementOp yield =
+          hlfir::inlineElementalOp(loc, builder, elemental, oneBasedIndices);
+      mlir::Value maskElem = yield.getElementValue();
+      yield->erase();
+
+      mlir::Type ifCompatType = builder.getI1Type();
+      mlir::Value ifCompatElem =
+          builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem);
+
+      llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType};
+      fir::IfOp maskIfOp =
+          builder.create<fir::IfOp>(loc, elementType, ifCompatElem,
+                                    /*withElseRegion=*/true);
+      builder.setInsertionPointToStart(&maskIfOp.getThenRegion().front());
+
+      // Set flag that mask was true at some point
+      mlir::Value flagSet = builder.createIntegerConstant(
+          loc, mlir::cast<fir::ReferenceType>(flagRef.getType()).getEleTy(), 1);
+      builder.create<fir::StoreOp>(loc, flagSet, flagRef);
+      mlir::Type eleRefTy = builder.getRefType(elementType);
+      mlir::Value addr =
+          builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
+      mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
+
+      // Compare with the max reduction value
+      mlir::Value cmp;
+      if (elementType.isa<mlir::FloatType>()) {
+        cmp = builder.create<mlir::arith::CmpFOp>(
+            loc, mlir::arith::CmpFPredicate::OLT, elem, reduction);
+      } else if (elementType.isa<mlir::IntegerType>()) {
+        cmp = builder.create<mlir::arith::CmpIOp>(
+            loc, mlir::arith::CmpIPredicate::slt, elem, reduction);
+      } else {
+        llvm_unreachable("unsupported type");
+      }
+
+      // Set the new coordinate to the result
+      fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cmp,
+                                                 /*withElseRegion*/ true);
+
+      builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
+      mlir::Type resultElemTy =
+          hlfir::getFortranElementType(resultArr.getType());
+      mlir::Type returnRefTy = builder.getRefType(resultElemTy);
+      mlir::IndexType idxTy = builder.getIndexType();
+
+      mlir::Value one = builder.createIntegerConstant(loc, resultElemTy, 1);
+
+      for (unsigned int i = 0; i < rank; ++i) {
+        mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
+        mlir::Value resultElemAddr = builder.create<fir::CoordinateOp>(
+            loc, returnRefTy, resultArr, index);
+        mlir::Value convert =
+            builder.create<fir::ConvertOp>(loc, resultElemTy, indices[i]);
+        mlir::Value fortranIndex =
+            builder.create<mlir::arith::AddIOp>(loc, convert, one);
+        builder.create<fir::StoreOp>(loc, fortranIndex, resultElemAddr);
+      }
+      builder.create<fir::ResultOp>(loc, elem);
+      builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
+      builder.create<fir::ResultOp>(loc, reduction);
+      builder.setInsertionPointAfter(ifOp);
+
+      // Close the mask if
+      builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
+      builder.setInsertionPointToStart(&maskIfOp.getElseRegion().front());
+      builder.create<fir::ResultOp>(loc, reduction);
+      builder.setInsertionPointAfter(maskIfOp);
+
+      return maskIfOp.getResult(0);
+    };
+
+    mlir::Location loc = assign.getLoc();
+    fir::FirOpBuilder builder{rewriter, assign.getOperation()};
+
+    // Initialize the result
+    mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType());
+    mlir::Type resultRefTy = builder.getRefType(resultElemTy);
+    mlir::Value returnValue =
+        builder.createIntegerConstant(loc, resultElemTy, 0);
+    for (unsigned int i = 0; i < rank; ++i) {
+      mlir::Value index =
+          builder.createIntegerConstant(loc, builder.getIndexType(), i);
+      mlir::Value resultElemAddr =
+          builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index);
+      builder.create<fir::StoreOp>(loc, returnValue, resultElemAddr);
+    }
+
+    fir::genMinlocReductionLoop(builder, array, init, genBodyOp, rank,
+                                elementType, loc, builder.getI1Type(),
+                                resultArr, false);
+
+    rewriter.eraseOp(assign);
+    rewriter.eraseOp(destroy);
+    rewriter.eraseOp(minloc);
+    return mlir::success();
+  }
+};
+
 class OptimizedBufferizationPass
     : public hlfir::impl::OptimizedBufferizationBase<
           OptimizedBufferizationPass> {
@@ -681,6 +874,7 @@ class OptimizedBufferizationPass
     patterns.insert<ElementalAssignBufferization>(context);
     patterns.insert<BroadcastAssignBufferization>(context);
     patterns.insert<VariableAssignBufferization>(context);
+    patterns.insert<AssignMinMaxlocElementalConversion>(context);
 
     if (mlir::failed(mlir::applyPatternsAndFoldGreedily(
             func, std::move(patterns), config))) {
diff --git a/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp b/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp
index 3eddb9e61ae3b3..c88b71baf202e8 100644
--- a/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp
+++ b/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp
@@ -32,6 +32,7 @@
 #include "flang/Optimizer/Dialect/Support/FIRContext.h"
 #include "flang/Optimizer/HLFIR/HLFIRDialect.h"
 #include "flang/Optimizer/Transforms/Passes.h"
+#include "flang/Optimizer/Support/Utils.h"
 #include "flang/Runtime/entry-names.h"
 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
 #include "mlir/IR/Matchers.h"
@@ -243,8 +244,6 @@ static std::optional<mlir::Type> getArgElementType(mlir::Value val) {
 using BodyOpGeneratorTy = llvm::function_ref<mlir::Value(
     fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
     mlir::Value)>;
-using InitValGeneratorTy = llvm::function_ref<mlir::Value(
-    fir::FirOpBuilder &, mlir::Location, const mlir::Type &)>;
 using ContinueLoopGenTy = llvm::function_ref<llvm::SmallVector<mlir::Value>(
     fir::FirOpBuilder &, mlir::Location, mlir::Value)>;
 
@@ -266,7 +265,7 @@ using ContinueLoopGenTy = llvm::function_ref<llvm::SmallVector<mlir::Value>(
 template <typename OP, typename T, int resultIndex>
 static void
 genReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
-                 InitValGeneratorTy initVal, ContinueLoopGenTy loopCond,
+                 fir::InitValGeneratorTy initVal, ContinueLoopGenTy loopCond,
                  T unorderedOrInitialLoopCond, BodyOpGeneratorTy genBody,
                  unsigned rank, mlir::Type elementType, mlir::Location loc) {
 
@@ -353,29 +352,23 @@ genReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
   // Return the reduction value from the function.
   builder.create<mlir::func::ReturnOp>(loc, results[resultIndex]);
 }
-using MinlocBodyOpGeneratorTy = llvm::function_ref<mlir::Value(
-    fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
-    mlir::Value, llvm::SmallVector<mlir::Value, Fortran::common::maxRank> &)>;
-
-static void
-genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
-                       InitValGeneratorTy initVal,
-                       MinlocBodyOpGeneratorTy genBody, unsigned rank,
-                       mlir::Type elementType, mlir::Location loc, bool hasMask,
-                       mlir::Type maskElemType, mlir::Value resultArr) {
 
+void fir::genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::Value array,
+                                 fir::InitValGeneratorTy initVal,
+                                 fir::MinlocBodyOpGeneratorTy genBody,
+                                 unsigned rank, mlir::Type elementType,
+                                 mlir::Location loc, mlir::Type maskElemType,
+                                 mlir::Value resultArr,
+                                 bool maskMayBeLogicalScalar) {
   mlir::IndexType idxTy = builder.getIndexType();
 
-  mlir::Block::BlockArgListType args = funcOp.front().getArguments();
-  mlir::Value arg = args[1];
-
   mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
 
   fir::SequenceType::Shape flatShape(rank,
                                      fir::SequenceType::getUnknownExtent());
   mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
   mlir::Type boxArrTy = fir::BoxType::get(arrTy);
-  mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
+  array = builder.create<fir::ConvertOp>(loc, boxArrTy, array);
 
   mlir::Type resultElemType = hlfir::getFortranElementType(resultArr.getType());
   mlir::Value flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
@@ -383,13 +376,6 @@ genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
   mlir::Value flagRef = builder.createTemporary(loc, resultElemType);
   builder.create<fir::StoreOp>(loc, zero, flagRef);
 
-  mlir::Value mask;
-  if (hasMask) {
-    mlir::Type maskTy = fir::SequenceType::get(flatShape, maskElemType);
-    mlir::Type boxMaskTy = fir::BoxType::get(maskTy);
-    mask = builder.create<fir::ConvertOp>(loc, boxMaskTy, args[2]);
-  }
-
   mlir::Value init = initVal(builder, loc, elementType);
   llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
 
@@ -432,44 +418,8 @@ genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
   // Reverse the indices such that they are ordered as:
   //   <dim-0-idx, dim-1-idx, ...>
   std::reverse(indices.begin(), indices.end());
-  // We are in the innermost loop: generate the reduction body.
-  if (hasMask) {
-    mlir::Type logicalRef = builder.getRefType(maskElemType);
-    mlir::Value maskAddr =
-        builder.create<fir::CoordinateOp>(loc, logicalRef, mask, indices);
-    mlir::Value maskElem = builder.create<fir::LoadOp>(loc, maskAddr);
-
-    // fir::IfOp requires argument to be I1 - won't accept logical or any other
-    // Integer.
-    mlir::Type ifCompatType = builder.getI1Type();
-    mlir::Value ifCompatElem =
-        builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem);
-
-    llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType};
-    fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, ifCompatElem,
-                                               /*withElseRegion=*/true);
-    builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
-  }
-
-  // Set flag that mask was true at some point
-  builder.create<fir::StoreOp>(loc, flagSet, flagRef);
-  mlir::Type eleRefTy = builder.getRefType(elementType);
-  mlir::Value addr =
-      builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
-  mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
-
   mlir::Value reductionVal =
-      genBody(builder, loc, elementType, elem, init, indices);
-
-  if (hasMask) {
-    fir::IfOp ifOp =
-        mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp());
-    builder.create<fir::ResultOp>(loc, reductionVal);
-    builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
-    builder.create<fir::ResultOp>(loc, init);
-    reductionVal = ifOp.getResult(0);
-    builder.setInsertionPointAfter(ifOp);
-  }
+      genBody(builder, loc, elementType, array, flagRef, init, indices);
 
   // Unwind the loop nest and insert ResultOp on each level
   // to return the updated value of the reduction to the enclosing
@@ -484,13 +434,15 @@ genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
     builder.setInsertionPointAfter(loop.getOperation());
   }
   // End of loop nest. The insertion point is after the outermost loop.
-  if (fir::IfOp ifOp =
-          mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp())) {
-    builder.create<fir::ResultOp>(loc, reductionVal);
-    builder.setInsertionPointAfter(ifOp);
-    // Redefine flagSet to escape scope of ifOp
-    flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
-    reductionVal = ifOp.getResult(0);
+  if (maskMayBeLogicalScalar) {
+    if (fir::IfOp ifOp =
+            mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp())) {
+      builder.create<fir::ResultOp>(loc, reductionVal);
+      builder.setInsertionPointAfter(ifOp);
+      // Redefine flagSet to escape scope of ifOp
+      flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
+      reductionVal = ifOp.getResult(0);
+    }
   }
 
   // Check for case where array was full of max values.
@@ -523,27 +475,12 @@ genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
   // Load output array with 1s instead of 0s
   for (unsigned int i = 0; i < rank; ++i) {
     mlir::Type resultRefTy = builder.getRefType(resultElemType);
-    // mlir::Value one = builder.createIntegerConstant(loc, resultElemType, 1);
     mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
     mlir::Value resultElemAddr =
         builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index);
     builder.create<fir::StoreOp>(loc, flagSet, resultElemAddr);
   }
   builder.setInsertionPointAfter(ifMaskTrueOp);
-  // Store newly created output array to the reference passed in
-  fir::SequenceType::Shape resultShape(1, rank);
-  mlir::Type outputArrTy = fir::SequenceType::get(resultShape, resultElemType);
-  mlir::Type outputHeapTy = fir::HeapType::get(outputArrTy);
-  mlir::Type outputBoxTy = fir::BoxType::get(outputHeapTy);
-  mlir::Type outputRefTy = builder.getRefType(outputBoxTy);
-
-  mlir::Value outputArrNone = args[0];
-  mlir::Value outputArr =
-      builder.create<fir::ConvertOp>(loc, outputRefTy, outputArrNone);
-
-  // Store nearly created array to output array
-  builder.create<fir::StoreOp>(loc, resultArr, outputArr);
-  builder.create<mlir::func::ReturnOp>(loc);
 }
 
 static llvm::SmallVector<mlir::Value> nopLoopCond(fir::FirOpBuilder &builder,
@@ -789,6 +726,14 @@ static void genRuntimeMinlocBody(fir::FirOpBuilder &builder,
 
   mlir::Type resultRefTy = builder.getRefType(resultElemTy);
 
+  if (maskRank > 0) {
+    fir::SequenceType::Shape flatShape(rank,
+                                       fir::SequenceType::getUnknownExtent());
+    mlir::Type maskTy = fir::SequenceType::get(flatShape, maskElemType);
+    mlir::Type boxMaskTy = fir::BoxType::get(maskTy);
+    mask = builder.create<fir::ConvertOp>(loc, boxMaskTy, mask);
+  }
+
   for (unsigned int i = 0; i < rank; ++i) {
     mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
     mlir::Value resultElemAddr =
@@ -797,18 +742,46 @@ static void genRuntimeMinlocBody(fir::FirOpBuilder &builder,
   }
 
   auto genBodyOp =
-      [&rank, &resultArr](
+      [&rank, &resultArr, &mask, &maskElemType, &maskRank](
           fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType,
-          mlir::Value elem1, mlir::Value elem2,
-          llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices)
+          mlir::Value array, mlir::Value flagRef, mlir::Value reduction,
+          const llvm::SmallVectorImpl<mlir::Value> &indices)
       -> mlir::Value {
+    // We are in the innermost loop: generate the reduction body.
+    if (maskRank > 0) {
+      mlir::Type logicalRef = builder.getRefType(maskElemType);
+      mlir::Value maskAddr =
+          builder.create<fir::CoordinateOp>(loc, logicalRef, mask, indices);
+      mlir::Value maskElem = builder.create<fir::LoadOp>(loc, maskAddr);
+
+      // fir::IfOp requires argument to be I1 - won't accept logical or any
+      // other Integer.
+      mlir::Type ifCompatType = builder.getI1Type();
+      mlir::Value ifCompatElem =
+          builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem);
+
+      llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType};
+      fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, ifCompatElem,
+                                                 /*withElseRegion=*/true);
+      builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
+    }
+
+    // Set flag that mask was true at some point
+    mlir::Value flagSet = builder.createIntegerConstant(
+        loc, mlir::cast<fir::ReferenceType>(flagRef.getType()).getEleTy(), 1);
+    builder.create<fir::StoreOp>(loc, flagSet, flagRef);
+    mlir::Type eleRefTy = builder.getRefType(elementType);
+    mlir::Value addr =
+        builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
+    mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
+
     mlir::Value cmp;
     if (elementType.isa<mlir::FloatType>()) {
       cmp = builder.create<mlir::arith::CmpFOp>(
-          loc, mlir::arith::CmpFPredicate::OLT, elem1, elem2);
+          loc, mlir::arith::CmpFPredicate::OLT, elem, reduction);
     } else if (elementType.isa<mlir::IntegerType>()) {
       cmp = builder.create<mlir::arith::CmpIOp>(
-          loc, mlir::arith::CmpIPredicate::slt, elem1, elem2);
+          loc, mlir::arith::CmpIPredicate::slt, elem, reduction);
     } else {
       llvm_unreachable("unsupported type");
     }
@@ -833,11 +806,24 @@ static void genRuntimeMinlocBody(fir::FirOpBuilder &builder,
           builder.create<mlir::arith::AddIOp>(loc, convert, one);
       builder.create<fir::StoreOp>(loc, fortranIndex, resultElemAddr);
     }
-    builder.create<fir::ResultOp>(loc, elem1);
+    builder.create<fir::ResultOp>(loc, elem);
     builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
-    builder.create<fir::ResultOp>(loc, elem2);
+    builder.create<fir::ResultOp>(loc, reduction);
     builder.setInsertionPointAfter(ifOp);
-    return ifOp.getResult(0);
+    mlir::Value reductionVal = ifOp.getResult(0);
+
+    // Close the mask if needed
+    if (maskRank > 0) {
+      fir::IfOp ifOp =
+          mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp());
+      builder.create<fir::ResultOp>(loc, reductionVal);
+      builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
+      builder.create<fir::ResultOp>(loc, reduction);
+      reductionVal = ifOp.getResult(0);
+      builder.setInsertionPointAfter(ifOp);
+    }
+
+    return reductionVal;
   };
 
   // if mask is a logical scalar, we can check its value before the main loop
@@ -872,12 +858,22 @@ static void genRuntimeMinlocBody(fir::FirOpBuilder &builder,
     builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
   }
 
-  // bit of a hack - maskRank is set to -1 for absent mask arg, so don't
-  // generate high level mask or element by element mask.
-  bool hasMask = maskRank > 0;
+  genMinlocReductionLoop(builder, funcOp.front().getArgument(1), init,
+                         genBodyOp, rank, elementType, loc, maskElemType,
+                         resultArr, maskRank == 0);
 
-  genMinlocReductionLoop(builder, funcOp, init, genBodyOp, rank, elementType,
-                         loc, hasMask, maskElemType, resultArr);
+  // Store newly created output array to the reference passed in
+  fir::SequenceType::Shape resultShape(1, rank);
+  mlir::Type outputArrTy = fir::SequenceType::get(resultShape, resultElemTy);
+  mlir::Type outputHeapTy = fir::HeapType::get(outputArrTy);
+  mlir::Type outputBoxTy = fir::BoxType::get(outputHeapTy);
+  mlir::Type outputRefTy = builder.getRefType(outputBoxTy);
+  mlir::Value outputArr = builder.create<fir::ConvertOp>(
+      loc, outputRefTy, funcOp.front().getArgument(0));
+
+  // Store nearly created array to output array
+  builder.create<fir::StoreOp>(loc, resultArr, outputArr);
+  builder.create<mlir::func::ReturnOp>(loc);
 }
 
 /// Generate function type for the simplified version of RTNAME(DotProduct)
diff --git a/flang/test/HLFIR/minloc-elemental.fir b/flang/test/HLFIR/minloc-elemental.fir
new file mode 100644
index 00000000000000..2375a1529cf923
--- /dev/null
+++ b/flang/test/HLFIR/minloc-elemental.fir
@@ -0,0 +1,327 @@
+// RUN: fir-opt %s -opt-bufferization | FileCheck %s
+
+func.func @_QPtest(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<i32> {fir.bindc_name = "val"}, %arg2: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "m"}) {
+  %c0 = arith.constant 0 : index
+  %0:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+  %1:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+  %2:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+  %3 = fir.load %2#0 : !fir.ref<i32>
+  %4:3 = fir.box_dims %0#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+  %5 = fir.shape %4#1 : (index) -> !fir.shape<1>
+  %6 = hlfir.elemental %5 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
+  ^bb0(%arg3: index):
+    %8 = hlfir.designate %0#0 (%arg3)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+    %9 = fir.load %8 : !fir.ref<i32>
+    %10 = arith.cmpi sge, %9, %3 : i32
+    %11 = fir.convert %10 : (i1) -> !fir.logical<4>
+    hlfir.yield_element %11 : !fir.logical<4>
+  }
+  %7 = hlfir.minloc %0#0 mask %6 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?xi32>>, !hlfir.expr<?x!fir.logical<4>>) -> !hlfir.expr<1xi32>
+  hlfir.assign %7 to %1#0 : !hlfir.expr<1xi32>, !fir.box<!fir.array<?xi32>>
+  hlfir.destroy %7 : !hlfir.expr<1xi32>
+  hlfir.destroy %6 : !hlfir.expr<?x!fir.logical<4>>
+  return
+}
+// CHECK-LABEL: func.func @_QPtest(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<i32> {fir.bindc_name = "val"}, %arg2: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "m"}) {
+// CHECK-NEXT:    %c1 = arith.constant 1 : index
+// CHECK-NEXT:    %c2147483647_i32 = arith.constant 2147483647 : i32
+// CHECK-NEXT:    %c1_i32 = arith.constant 1 : i32
+// CHECK-NEXT:    %c0_i32 = arith.constant 0 : i32
+// CHECK-NEXT:    %c0 = arith.constant 0 : index
+// CHECK-NEXT:    %0 = fir.alloca i32
+// CHECK-NEXT:    %1:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+// CHECK-NEXT:    %2:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+// CHECK-NEXT:    %3:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+// CHECK-NEXT:    %4 = fir.load %3#0 : !fir.ref<i32>
+// CHECK-NEXT:    %5:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+// CHECK-NEXT:    %6 = fir.shape %5#1 : (index) -> !fir.shape<1>
+// CHECK-NEXT:    %7 = hlfir.elemental %6 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
+// CHECK-NEXT:    ^bb0(%arg3: index):
+// CHECK-NEXT:      %14 = hlfir.designate %1#0 (%arg3)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:      %15 = fir.load %14 : !fir.ref<i32>
+// CHECK-NEXT:      %16 = arith.cmpi sge, %15, %4 : i32
+// CHECK-NEXT:      %17 = fir.convert %16 : (i1) -> !fir.logical<4>
+// CHECK-NEXT:      hlfir.yield_element %17 : !fir.logical<4>
+// CHECK-NEXT:    }
+// CHECK-NEXT:    %8 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:    fir.store %c0_i32 to %8 : !fir.ref<i32>
+// CHECK-NEXT:    fir.store %c0_i32 to %0 : !fir.ref<i32>
+// CHECK-NEXT:    %9:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+// CHECK-NEXT:    %10 = arith.subi %9#1, %c1 : index
+// CHECK-NEXT:    %11 = fir.do_loop %arg3 = %c0 to %10 step %c1 iter_args(%arg4 = %c2147483647_i32) -> (i32) {
+// CHECK-NEXT:      %14 = arith.addi %arg3, %c1 : index
+// CHECK-NEXT:      %15 = hlfir.designate %1#0 (%14)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:      %16 = fir.load %15 : !fir.ref<i32>
+// CHECK-NEXT:      %17 = arith.cmpi sge, %16, %4 : i32
+// CHECK-NEXT:      %18 = fir.if %17 -> (i32) {
+// CHECK-NEXT:        fir.store %c1_i32 to %0 : !fir.ref<i32>
+// CHECK-NEXT:        %19 = fir.coordinate_of %1#0, %arg3 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:        %20 = fir.load %19 : !fir.ref<i32>
+// CHECK-NEXT:        %21 = arith.cmpi slt, %20, %arg4 : i32
+// CHECK-NEXT:        %22 = fir.if %21 -> (i32) {
+// CHECK-NEXT:          %23 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:          %24 = fir.convert %arg3 : (index) -> i32
+// CHECK-NEXT:          %25 = arith.addi %24, %c1_i32 : i32
+// CHECK-NEXT:          fir.store %25 to %23 : !fir.ref<i32>
+// CHECK-NEXT:          fir.result %20 : i32
+// CHECK-NEXT:        } else {
+// CHECK-NEXT:          fir.result %arg4 : i32
+// CHECK-NEXT:        }
+// CHECK-NEXT:        fir.result %22 : i32
+// CHECK-NEXT:      } else {
+// CHECK-NEXT:        fir.result %arg4 : i32
+// CHECK-NEXT:      }
+// CHECK-NEXT:      fir.result %18 : i32
+// CHECK-NEXT:    }
+// CHECK-NEXT:    %12 = fir.load %0 : !fir.ref<i32>
+// CHECK-NEXT:    %13 = arith.cmpi eq, %12, %c1_i32 : i32
+// CHECK-NEXT:    fir.if %13 {
+// CHECK-NEXT:      %14 = arith.cmpi eq, %11, %c2147483647_i32 : i32
+// CHECK-NEXT:      fir.if %14 {
+// CHECK-NEXT:        %15 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:        fir.store %c1_i32 to %15 : !fir.ref<i32>
+// CHECK-NEXT:      }
+// CHECK-NEXT:    }
+// CHECK-NEXT:    hlfir.destroy %7 : !hlfir.expr<?x!fir.logical<4>>
+// CHECK-NEXT:    return
+// CHECK-NEXT:  }
+
+
+func.func @_QPtest_kind2(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<i32> {fir.bindc_name = "val"}, %arg2: !fir.box<!fir.array<?xi16>> {fir.bindc_name = "m"}) {
+  %c0 = arith.constant 0 : index
+  %0:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+  %1:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi16>>) -> (!fir.box<!fir.array<?xi16>>, !fir.box<!fir.array<?xi16>>)
+  %2:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+  %3 = fir.load %2#0 : !fir.ref<i32>
+  %4:3 = fir.box_dims %0#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+  %5 = fir.shape %4#1 : (index) -> !fir.shape<1>
+  %6 = hlfir.elemental %5 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
+  ^bb0(%arg3: index):
+    %8 = hlfir.designate %0#0 (%arg3)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+    %9 = fir.load %8 : !fir.ref<i32>
+    %10 = arith.cmpi sge, %9, %3 : i32
+    %11 = fir.convert %10 : (i1) -> !fir.logical<4>
+    hlfir.yield_element %11 : !fir.logical<4>
+  }
+  %7 = hlfir.minloc %0#0 mask %6 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?xi32>>, !hlfir.expr<?x!fir.logical<4>>) -> !hlfir.expr<1xi16>
+  hlfir.assign %7 to %1#0 : !hlfir.expr<1xi16>, !fir.box<!fir.array<?xi16>>
+  hlfir.destroy %7 : !hlfir.expr<1xi16>
+  hlfir.destroy %6 : !hlfir.expr<?x!fir.logical<4>>
+  return
+}
+// CHECK-LABEL:  func.func @_QPtest_kind2(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<i32> {fir.bindc_name = "val"}, %arg2: !fir.box<!fir.array<?xi16>> {fir.bindc_name = "m"}) {
+// CHECK-NEXT:    %c1 = arith.constant 1 : index
+// CHECK-NEXT:    %c2147483647_i32 = arith.constant 2147483647 : i32
+// CHECK-NEXT:    %c1_i16 = arith.constant 1 : i16
+// CHECK-NEXT:    %c0_i16 = arith.constant 0 : i16
+// CHECK-NEXT:    %c0 = arith.constant 0 : index
+// CHECK-NEXT:    %0 = fir.alloca i16
+// CHECK-NEXT:    %1:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+// CHECK-NEXT:    %2:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi16>>) -> (!fir.box<!fir.array<?xi16>>, !fir.box<!fir.array<?xi16>>)
+// CHECK-NEXT:    %3:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+// CHECK-NEXT:    %4 = fir.load %3#0 : !fir.ref<i32>
+// CHECK-NEXT:    %5:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+// CHECK-NEXT:    %6 = fir.shape %5#1 : (index) -> !fir.shape<1>
+// CHECK-NEXT:    %7 = hlfir.elemental %6 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
+// CHECK-NEXT:    ^bb0(%arg3: index):
+// CHECK-NEXT:      %14 = hlfir.designate %1#0 (%arg3)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:      %15 = fir.load %14 : !fir.ref<i32>
+// CHECK-NEXT:      %16 = arith.cmpi sge, %15, %4 : i32
+// CHECK-NEXT:      %17 = fir.convert %16 : (i1) -> !fir.logical<4>
+// CHECK-NEXT:      hlfir.yield_element %17 : !fir.logical<4>
+// CHECK-NEXT:    }
+// CHECK-NEXT:    %8 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
+// CHECK-NEXT:    fir.store %c0_i16 to %8 : !fir.ref<i16>
+// CHECK-NEXT:    fir.store %c0_i16 to %0 : !fir.ref<i16>
+// CHECK-NEXT:    %9:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+// CHECK-NEXT:    %10 = arith.subi %9#1, %c1 : index
+// CHECK-NEXT:    %11 = fir.do_loop %arg3 = %c0 to %10 step %c1 iter_args(%arg4 = %c2147483647_i32) -> (i32) {
+// CHECK-NEXT:      %14 = arith.addi %arg3, %c1 : index
+// CHECK-NEXT:      %15 = hlfir.designate %1#0 (%14)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:      %16 = fir.load %15 : !fir.ref<i32>
+// CHECK-NEXT:      %17 = arith.cmpi sge, %16, %4 : i32
+// CHECK-NEXT:      %18 = fir.if %17 -> (i32) {
+// CHECK-NEXT:        fir.store %c1_i16 to %0 : !fir.ref<i16>
+// CHECK-NEXT:        %19 = fir.coordinate_of %1#0, %arg3 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:        %20 = fir.load %19 : !fir.ref<i32>
+// CHECK-NEXT:        %21 = arith.cmpi slt, %20, %arg4 : i32
+// CHECK-NEXT:        %22 = fir.if %21 -> (i32) {
+// CHECK-NEXT:          %23 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
+// CHECK-NEXT:          %24 = fir.convert %arg3 : (index) -> i16
+// CHECK-NEXT:          %25 = arith.addi %24, %c1_i16 : i16
+// CHECK-NEXT:          fir.store %25 to %23 : !fir.ref<i16>
+// CHECK-NEXT:          fir.result %20 : i32
+// CHECK-NEXT:        } else {
+// CHECK-NEXT:          fir.result %arg4 : i32
+// CHECK-NEXT:        }
+// CHECK-NEXT:        fir.result %22 : i32
+// CHECK-NEXT:      } else {
+// CHECK-NEXT:        fir.result %arg4 : i32
+// CHECK-NEXT:      }
+// CHECK-NEXT:      fir.result %18 : i32
+// CHECK-NEXT:    }
+// CHECK-NEXT:    %12 = fir.load %0 : !fir.ref<i16>
+// CHECK-NEXT:    %13 = arith.cmpi eq, %12, %c1_i16 : i16
+// CHECK-NEXT:    fir.if %13 {
+// CHECK-NEXT:      %14 = arith.cmpi eq, %11, %c2147483647_i32 : i32
+// CHECK-NEXT:      fir.if %14 {
+// CHECK-NEXT:        %15 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
+// CHECK-NEXT:        fir.store %c1_i16 to %15 : !fir.ref<i16>
+// CHECK-NEXT:      }
+// CHECK-NEXT:    }
+// CHECK-NEXT:    hlfir.destroy %7 : !hlfir.expr<?x!fir.logical<4>>
+// CHECK-NEXT:    return
+
+
+func.func @_QPtest_kind2_convert(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<i32> {fir.bindc_name = "val"}, %arg2: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "m"}) {
+  %c1 = arith.constant 1 : index
+  %c0 = arith.constant 0 : index
+  %0:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+  %1:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+  %2:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+  %3 = fir.load %2#0 : !fir.ref<i32>
+  %4:3 = fir.box_dims %0#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+  %5 = fir.shape %4#1 : (index) -> !fir.shape<1>
+  %6 = hlfir.elemental %5 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
+  ^bb0(%arg3: index):
+    %10 = hlfir.designate %0#0 (%arg3)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+    %11 = fir.load %10 : !fir.ref<i32>
+    %12 = arith.cmpi sge, %11, %3 : i32
+    %13 = fir.convert %12 : (i1) -> !fir.logical<4>
+    hlfir.yield_element %13 : !fir.logical<4>
+  }
+  %7 = hlfir.minloc %0#0 mask %6 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?xi32>>, !hlfir.expr<?x!fir.logical<4>>) -> !hlfir.expr<1xi16>
+  %8 = fir.shape %c1 : (index) -> !fir.shape<1>
+  %9 = hlfir.elemental %8 unordered : (!fir.shape<1>) -> !hlfir.expr<?xi32> {
+  ^bb0(%arg3: index):
+    %10 = hlfir.apply %7, %arg3 : (!hlfir.expr<1xi16>, index) -> i16
+    %11 = fir.convert %10 : (i16) -> i32
+    hlfir.yield_element %11 : i32
+  }
+  hlfir.assign %9 to %1#0 : !hlfir.expr<?xi32>, !fir.box<!fir.array<?xi32>>
+  hlfir.destroy %9 : !hlfir.expr<?xi32>
+  hlfir.destroy %7 : !hlfir.expr<1xi16>
+  hlfir.destroy %6 : !hlfir.expr<?x!fir.logical<4>>
+  return
+}
+// Doesn't transform due to the convert after the minloc
+// CHECK-LABEL: _QPtest_kind2_convert
+// CHECK: hlfir.minloc
+
+
+func.func @_QPtest_float(%arg0: !fir.box<!fir.array<?xf32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<f32> {fir.bindc_name = "val"}, %arg2: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "m"}) {
+  %c0 = arith.constant 0 : index
+  %0:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xf32>>) -> (!fir.box<!fir.array<?xf32>>, !fir.box<!fir.array<?xf32>>)
+  %1:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+  %2:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<f32>) -> (!fir.ref<f32>, !fir.ref<f32>)
+  %3 = fir.load %2#0 : !fir.ref<f32>
+  %4:3 = fir.box_dims %0#0, %c0 : (!fir.box<!fir.array<?xf32>>, index) -> (index, index, index)
+  %5 = fir.shape %4#1 : (index) -> !fir.shape<1>
+  %6 = hlfir.elemental %5 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
+  ^bb0(%arg3: index):
+    %8 = hlfir.designate %0#0 (%arg3)  : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
+    %9 = fir.load %8 : !fir.ref<f32>
+    %10 = arith.cmpf oge, %9, %3 : f32
+    %11 = fir.convert %10 : (i1) -> !fir.logical<4>
+    hlfir.yield_element %11 : !fir.logical<4>
+  }
+  %7 = hlfir.minloc %0#0 mask %6 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?xf32>>, !hlfir.expr<?x!fir.logical<4>>) -> !hlfir.expr<1xi32>
+  hlfir.assign %7 to %1#0 : !hlfir.expr<1xi32>, !fir.box<!fir.array<?xi32>>
+  hlfir.destroy %7 : !hlfir.expr<1xi32>
+  hlfir.destroy %6 : !hlfir.expr<?x!fir.logical<4>>
+  return
+}
+// CHECK-LABEL: _QPtest_float
+// CHECK:        %11 = fir.do_loop %arg3 = %c0 to %10 step %c1 iter_args(%arg4 = %cst) -> (f32) {
+// CHECK-NEXT:     %14 = arith.addi %arg3, %c1 : index
+// CHECK-NEXT:     %15 = hlfir.designate %1#0 (%14)  : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
+// CHECK-NEXT:     %16 = fir.load %15 : !fir.ref<f32>
+// CHECK-NEXT:     %17 = arith.cmpf oge, %16, %4 : f32
+// CHECK-NEXT:     %18 = fir.if %17 -> (f32) {
+// CHECK-NEXT:       fir.store %c1_i32 to %0 : !fir.ref<i32>
+// CHECK-NEXT:       %19 = fir.coordinate_of %1#0, %arg3 : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
+// CHECK-NEXT:       %20 = fir.load %19 : !fir.ref<f32>
+// CHECK-NEXT:       %21 = arith.cmpf olt, %20, %arg4 : f32
+// CHECK-NEXT:       %22 = fir.if %21 -> (f32) {
+// CHECK-NEXT:         %23 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:         %24 = fir.convert %arg3 : (index) -> i32
+// CHECK-NEXT:         %25 = arith.addi %24, %c1_i32 : i32
+// CHECK-NEXT:         fir.store %25 to %23 : !fir.ref<i32>
+// CHECK-NEXT:         fir.result %20 : f32
+// CHECK-NEXT:       } else {
+// CHECK-NEXT:         fir.result %arg4 : f32
+// CHECK-NEXT:       }
+// CHECK-NEXT:       fir.result %22 : f32
+// CHECK-NEXT:     } else {
+// CHECK-NEXT:       fir.result %arg4 : f32
+// CHECK-NEXT:     }
+// CHECK-NEXT:     fir.result %18 : f32
+// CHECK-NEXT:   }
+
+
+func.func @_QPtest_assignshape(%arg0: !fir.ref<!fir.array<3x3xf32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<f32> {fir.bindc_name = "val"}, %arg2: !fir.ref<!fir.array<3xi32>> {fir.bindc_name = "m"}) {
+  %c2 = arith.constant 2 : index
+  %c1 = arith.constant 1 : index
+  %c3 = arith.constant 3 : index
+  %0 = fir.shape %c3, %c3 : (index, index) -> !fir.shape<2>
+  %1:2 = hlfir.declare %arg0(%0) {uniq_name = "_QFtestEarray"} : (!fir.ref<!fir.array<3x3xf32>>, !fir.shape<2>) -> (!fir.ref<!fir.array<3x3xf32>>, !fir.ref<!fir.array<3x3xf32>>)
+  %2 = fir.shape %c3 : (index) -> !fir.shape<1>
+  %3:2 = hlfir.declare %arg2(%2) {uniq_name = "_QFtestEm"} : (!fir.ref<!fir.array<3xi32>>, !fir.shape<1>) -> (!fir.ref<!fir.array<3xi32>>, !fir.ref<!fir.array<3xi32>>)
+  %4:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<f32>) -> (!fir.ref<f32>, !fir.ref<f32>)
+  %5 = fir.load %4#0 : !fir.ref<f32>
+  %6 = hlfir.elemental %0 unordered : (!fir.shape<2>) -> !hlfir.expr<3x3x!fir.logical<4>> {
+  ^bb0(%arg3: index, %arg4: index):
+    %10 = hlfir.designate %1#0 (%arg3, %arg4)  : (!fir.ref<!fir.array<3x3xf32>>, index, index) -> !fir.ref<f32>
+    %11 = fir.load %10 : !fir.ref<f32>
+    %12 = arith.cmpf oge, %11, %5 : f32
+    %13 = fir.convert %12 : (i1) -> !fir.logical<4>
+    hlfir.yield_element %13 : !fir.logical<4>
+  }
+  %7 = hlfir.minloc %1#0 mask %6 {fastmath = #arith.fastmath<contract>} : (!fir.ref<!fir.array<3x3xf32>>, !hlfir.expr<3x3x!fir.logical<4>>) -> !hlfir.expr<2xi32>
+  %8 = fir.shape %c2 : (index) -> !fir.shape<1>
+  %9 = hlfir.designate %3#0 (%c1:%c2:%c1)  shape %8 : (!fir.ref<!fir.array<3xi32>>, index, index, index, !fir.shape<1>) -> !fir.ref<!fir.array<2xi32>>
+  hlfir.assign %7 to %9 : !hlfir.expr<2xi32>, !fir.ref<!fir.array<2xi32>>
+  hlfir.destroy %7 : !hlfir.expr<2xi32>
+  hlfir.destroy %6 : !hlfir.expr<3x3x!fir.logical<4>>
+  return
+}
+// Not supported as the input is not a box
+// CHECK-LABEL: _QPtest_assignshape
+// CHECK: hlfir.minloc
+
+
+func.func @_QFPtest_character(%arg0: !fir.box<!fir.array<?x!fir.char<1>>> {fir.bindc_name = "b"}, %arg1: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "c"}, %arg2: !fir.ref<i32> {fir.bindc_name = "val"}) -> i32 {
+  %c0 = arith.constant 0 : index
+  %c1 = arith.constant 1 : index
+  %0:2 = hlfir.declare %arg0 typeparams %c1 {uniq_name = "_QFFtestEb"} : (!fir.box<!fir.array<?x!fir.char<1>>>, index) -> (!fir.box<!fir.array<?x!fir.char<1>>>, !fir.box<!fir.array<?x!fir.char<1>>>)
+  %1:2 = hlfir.declare %arg1 {uniq_name = "_QFFtestEc"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+  %2 = fir.alloca !fir.array<1xi32> {bindc_name = "m", uniq_name = "_QFFtestEm"}
+  %3 = fir.shape %c1 : (index) -> !fir.shape<1>
+  %4:2 = hlfir.declare %2(%3) {uniq_name = "_QFFtestEm"} : (!fir.ref<!fir.array<1xi32>>, !fir.shape<1>) -> (!fir.ref<!fir.array<1xi32>>, !fir.ref<!fir.array<1xi32>>)
+  %5 = fir.alloca i32 {bindc_name = "test", uniq_name = "_QFFtestEtest"}
+  %6:2 = hlfir.declare %5 {uniq_name = "_QFFtestEtest"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+  %7:2 = hlfir.declare %arg2 {uniq_name = "_QFFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+  %8 = fir.load %7#0 : !fir.ref<i32>
+  %9:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+  %10 = fir.shape %9#1 : (index) -> !fir.shape<1>
+  %11 = hlfir.elemental %10 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
+  ^bb0(%arg3: index):
+    %16 = hlfir.designate %1#0 (%arg3)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+    %17 = fir.load %16 : !fir.ref<i32>
+    %18 = arith.cmpi eq, %17, %8 : i32
+    %19 = fir.convert %18 : (i1) -> !fir.logical<4>
+    hlfir.yield_element %19 : !fir.logical<4>
+  }
+  %12 = hlfir.minloc %0#0 mask %11 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?x!fir.char<1>>>, !hlfir.expr<?x!fir.logical<4>>) -> !hlfir.expr<1xi32>
+  hlfir.assign %12 to %4#0 : !hlfir.expr<1xi32>, !fir.ref<!fir.array<1xi32>>
+  hlfir.destroy %12 : !hlfir.expr<1xi32>
+  hlfir.destroy %11 : !hlfir.expr<?x!fir.logical<4>>
+  %13 = hlfir.designate %4#0 (%c1)  : (!fir.ref<!fir.array<1xi32>>, index) -> !fir.ref<i32>
+  %14 = fir.load %13 : !fir.ref<i32>
+  hlfir.assign %14 to %6#0 : i32, !fir.ref<i32>
+  %15 = fir.load %6#1 : !fir.ref<i32>
+  return %15 : i32
+}
+// Characters are not supported at the moment
+// CHECK-LABEL: _QFPtest_character
+// CHECK: hlfir.minloc
diff --git a/flang/test/Transforms/simplifyintrinsics.fir b/flang/test/Transforms/simplifyintrinsics.fir
index 39483a9cc18fe8..da54dcbedc0432 100644
--- a/flang/test/Transforms/simplifyintrinsics.fir
+++ b/flang/test/Transforms/simplifyintrinsics.fir
@@ -1760,6 +1760,7 @@ func.func @_QPtestminloc_works1d(%arg0: !fir.ref<!fir.array<10xi32>> {fir.bindc_
 // CHECK:           %[[OUTARR:.*]] = fir.allocmem !fir.array<1xi32>
 // CHECK:           %[[OUTARR_SHAPE:.*]] = fir.shape %[[OUTARR_SIZE]] : (index) -> !fir.shape<1>
 // CHECK:           %[[BOX_OUTARR:.*]] = fir.embox %[[OUTARR]](%[[OUTARR_SHAPE]]) : (!fir.heap<!fir.array<1xi32>>, !fir.shape<1>) -> !fir.box<!fir.heap<!fir.array<1xi32>>>
+// CHECK:           %[[BOX_MASK:.*]] = fir.convert %[[BOX_MASK_NONE]] : (!fir.box<none>) -> !fir.box<!fir.array<?x!fir.logical<4>>>
 // CHECK:           %[[OUTARR_IDX0:.*]] = arith.constant 0 : index
 // CHECK:           %[[OUTARR_ITEM0:.*]] = fir.coordinate_of %[[BOX_OUTARR]], %[[OUTARR_IDX0]] : (!fir.box<!fir.heap<!fir.array<1xi32>>>, index) -> !fir.ref<i32>
 // CHECK:           fir.store %[[INIT_OUT_IDX]] to %[[OUTARR_ITEM0]] : !fir.ref<i32>
@@ -1768,7 +1769,6 @@ func.func @_QPtestminloc_works1d(%arg0: !fir.ref<!fir.array<10xi32>> {fir.bindc_
 // CHECK:           %[[FLAG_SET:.*]] = arith.constant 1 : i32
 // CHECK:           %[[FLAG_EMPTY:.*]] = arith.constant 0 : i32
 // CHECK:           fir.store %[[FLAG_EMPTY]] to %[[FLAG_ALLOC]] : !fir.ref<i32>
-// CHECK:           %[[BOX_MASK:.*]] = fir.convert %[[BOX_MASK_NONE]] : (!fir.box<none>) -> !fir.box<!fir.array<?x!fir.logical<4>>>
 // CHECK:           %[[MAX:.*]] = arith.constant 2147483647 : i32
 // CHECK:           %[[CINDEX_1:.*]] = arith.constant 1 : index
 // CHECK:           %[[DIM_INDEX0:.*]] = arith.constant 0 : index
@@ -1779,7 +1779,8 @@ func.func @_QPtestminloc_works1d(%arg0: !fir.ref<!fir.array<10xi32>> {fir.bindc_
 // CHECK:             %[[MASK_ITEMVAL:.*]] = fir.load %[[MASK_ITEM]] : !fir.ref<!fir.logical<4>>
 // CHECK:             %[[MASK_IF_ITEM:.*]] = fir.convert %[[MASK_ITEMVAL]] : (!fir.logical<4>) -> i1
 // CHECK:             %[[IF_MASK:.*]] = fir.if %[[MASK_IF_ITEM]] -> (i32) {
-// CHECK:               fir.store %[[FLAG_SET]] to %[[FLAG_ALLOC]] : !fir.ref<i32>
+// CHECK:               %[[FLAG_SET2:.*]] = arith.constant 1 : i32
+// CHECK:               fir.store %[[FLAG_SET2]] to %[[FLAG_ALLOC]] : !fir.ref<i32>
 // CHECK:               %[[INARR_ITEM:.*]] = fir.coordinate_of %[[BOX_INARR]], %[[ITER]] : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
 // CHECK:               %[[INARR_ITEMVAL:.*]] = fir.load %[[INARR_ITEM]] : !fir.ref<i32>
 // CHECK:               %[[NEW_MIN:.*]] = arith.cmpi slt, %[[INARR_ITEMVAL]], %[[MIN]] : i32

>From 381097d6c3fa243c4b376dba294706d1a2a69a57 Mon Sep 17 00:00:00 2001
From: David Green <david.green at arm.com>
Date: Tue, 12 Dec 2023 19:07:22 +0000
Subject: [PATCH 2/2] Use Designate and remove dead elementals

---
 flang/include/flang/Optimizer/Support/Utils.h |   1 -
 .../Transforms/OptimizedBufferization.cpp     |  39 ++--
 .../Transforms/SimplifyIntrinsics.cpp         |   5 +-
 flang/test/HLFIR/minloc-elemental.fir         | 206 ++++++++----------
 4 files changed, 120 insertions(+), 131 deletions(-)

diff --git a/flang/include/flang/Optimizer/Support/Utils.h b/flang/include/flang/Optimizer/Support/Utils.h
index 93caa8b23d320c..e567a81b724ed5 100644
--- a/flang/include/flang/Optimizer/Support/Utils.h
+++ b/flang/include/flang/Optimizer/Support/Utils.h
@@ -148,7 +148,6 @@ void genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::Value array,
                             mlir::Type maskElemType, mlir::Value resultArr,
                             bool maskMayBeLogicalScalar);
 
-
 } // namespace fir
 
 #endif // FORTRAN_OPTIMIZER_SUPPORT_UTILS_H
diff --git a/flang/lib/Optimizer/HLFIR/Transforms/OptimizedBufferization.cpp b/flang/lib/Optimizer/HLFIR/Transforms/OptimizedBufferization.cpp
index 218ddd2a6a7b7e..6ea1d0eca243e6 100644
--- a/flang/lib/Optimizer/HLFIR/Transforms/OptimizedBufferization.cpp
+++ b/flang/lib/Optimizer/HLFIR/Transforms/OptimizedBufferization.cpp
@@ -704,7 +704,7 @@ class AssignMinMaxlocElementalConversion
     if (std::distance(users.begin(), users.end()) != 2)
       return rewriter.notifyMatchFailure(assign, "Did not find minloc users");
     auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(
-        (*users.begin()) == minloc ? *++users.begin() : *users.begin());
+        *users.begin() == minloc ? *++users.begin() : *users.begin());
     if (!destroy)
       return rewriter.notifyMatchFailure(assign, "Did not find destroy");
 
@@ -721,9 +721,9 @@ class AssignMinMaxlocElementalConversion
       return rewriter.notifyMatchFailure(
           assign, "Currently requires a boxed type input");
     mlir::Type elementType = hlfir::getFortranElementType(arrayType);
-  if (!fir::isa_trivial(elementType))
-    return rewriter.notifyMatchFailure(
-        assign, "Character arrays are currently not handled");
+    if (!fir::isa_trivial(elementType))
+      return rewriter.notifyMatchFailure(
+          assign, "Character arrays are currently not handled");
 
     auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
                    mlir::Type elementType) {
@@ -743,8 +743,7 @@ class AssignMinMaxlocElementalConversion
             fir::FirOpBuilder builder, mlir::Location loc,
             mlir::Type elementType, mlir::Value array, mlir::Value flagRef,
             mlir::Value reduction,
-            const llvm::SmallVectorImpl<mlir::Value> &indices)
-        -> mlir::Value {
+            const llvm::SmallVectorImpl<mlir::Value> &indices) -> mlir::Value {
       // We are in the innermost loop: generate the elemental inline
       mlir::Value oneIdx =
           builder.createIntegerConstant(loc, builder.getIndexType(), 1);
@@ -773,8 +772,8 @@ class AssignMinMaxlocElementalConversion
           loc, mlir::cast<fir::ReferenceType>(flagRef.getType()).getEleTy(), 1);
       builder.create<fir::StoreOp>(loc, flagSet, flagRef);
       mlir::Type eleRefTy = builder.getRefType(elementType);
-      mlir::Value addr =
-          builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
+      mlir::Value addr = builder.create<hlfir::DesignateOp>(
+          loc, eleRefTy, array, oneBasedIndices);
       mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
 
       // Compare with the max reduction value
@@ -802,8 +801,8 @@ class AssignMinMaxlocElementalConversion
       mlir::Value one = builder.createIntegerConstant(loc, resultElemTy, 1);
 
       for (unsigned int i = 0; i < rank; ++i) {
-        mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
-        mlir::Value resultElemAddr = builder.create<fir::CoordinateOp>(
+        mlir::Value index = builder.createIntegerConstant(loc, idxTy, i + 1);
+        mlir::Value resultElemAddr = builder.create<hlfir::DesignateOp>(
             loc, returnRefTy, resultArr, index);
         mlir::Value convert =
             builder.create<fir::ConvertOp>(loc, resultElemTy, indices[i]);
@@ -835,9 +834,9 @@ class AssignMinMaxlocElementalConversion
         builder.createIntegerConstant(loc, resultElemTy, 0);
     for (unsigned int i = 0; i < rank; ++i) {
       mlir::Value index =
-          builder.createIntegerConstant(loc, builder.getIndexType(), i);
-      mlir::Value resultElemAddr =
-          builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index);
+          builder.createIntegerConstant(loc, builder.getIndexType(), i + 1);
+      mlir::Value resultElemAddr = builder.create<hlfir::DesignateOp>(
+          loc, resultRefTy, resultArr, index);
       builder.create<fir::StoreOp>(loc, returnValue, resultElemAddr);
     }
 
@@ -845,9 +844,23 @@ class AssignMinMaxlocElementalConversion
                                 elementType, loc, builder.getI1Type(),
                                 resultArr, false);
 
+    // Check if the minloc was the only user of the elemental (apart from a
+    // destroy), and remove it if so.
+    mlir::Operation::user_range elemUsers = elemental->getUsers();
+    hlfir::DestroyOp elemDestroy;
+    if (std::distance(elemUsers.begin(), elemUsers.end()) == 2) {
+      elemDestroy = mlir::dyn_cast<hlfir::DestroyOp>(*elemUsers.begin());
+      if (!elemDestroy)
+        elemDestroy = mlir::dyn_cast<hlfir::DestroyOp>(*++elemUsers.begin());
+    }
+
     rewriter.eraseOp(assign);
     rewriter.eraseOp(destroy);
     rewriter.eraseOp(minloc);
+    if (elemDestroy) {
+      rewriter.eraseOp(elemDestroy);
+      rewriter.eraseOp(elemental);
+    }
     return mlir::success();
   }
 };
diff --git a/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp b/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp
index c88b71baf202e8..1d7e092b615f4a 100644
--- a/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp
+++ b/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp
@@ -31,8 +31,8 @@
 #include "flang/Optimizer/Dialect/FIRType.h"
 #include "flang/Optimizer/Dialect/Support/FIRContext.h"
 #include "flang/Optimizer/HLFIR/HLFIRDialect.h"
-#include "flang/Optimizer/Transforms/Passes.h"
 #include "flang/Optimizer/Support/Utils.h"
+#include "flang/Optimizer/Transforms/Passes.h"
 #include "flang/Runtime/entry-names.h"
 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
 #include "mlir/IR/Matchers.h"
@@ -745,8 +745,7 @@ static void genRuntimeMinlocBody(fir::FirOpBuilder &builder,
       [&rank, &resultArr, &mask, &maskElemType, &maskRank](
           fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType,
           mlir::Value array, mlir::Value flagRef, mlir::Value reduction,
-          const llvm::SmallVectorImpl<mlir::Value> &indices)
-      -> mlir::Value {
+          const llvm::SmallVectorImpl<mlir::Value> &indices) -> mlir::Value {
     // We are in the innermost loop: generate the reduction body.
     if (maskRank > 0) {
       mlir::Type logicalRef = builder.getRefType(maskElemType);
diff --git a/flang/test/HLFIR/minloc-elemental.fir b/flang/test/HLFIR/minloc-elemental.fir
index 2375a1529cf923..123a05071ba5d4 100644
--- a/flang/test/HLFIR/minloc-elemental.fir
+++ b/flang/test/HLFIR/minloc-elemental.fir
@@ -23,66 +23,55 @@ func.func @_QPtest(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "array"}
   return
 }
 // CHECK-LABEL: func.func @_QPtest(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<i32> {fir.bindc_name = "val"}, %arg2: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "m"}) {
-// CHECK-NEXT:    %c1 = arith.constant 1 : index
 // CHECK-NEXT:    %c2147483647_i32 = arith.constant 2147483647 : i32
 // CHECK-NEXT:    %c1_i32 = arith.constant 1 : i32
-// CHECK-NEXT:    %c0_i32 = arith.constant 0 : i32
 // CHECK-NEXT:    %c0 = arith.constant 0 : index
-// CHECK-NEXT:    %0 = fir.alloca i32
-// CHECK-NEXT:    %1:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
-// CHECK-NEXT:    %2:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
-// CHECK-NEXT:    %3:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
-// CHECK-NEXT:    %4 = fir.load %3#0 : !fir.ref<i32>
-// CHECK-NEXT:    %5:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
-// CHECK-NEXT:    %6 = fir.shape %5#1 : (index) -> !fir.shape<1>
-// CHECK-NEXT:    %7 = hlfir.elemental %6 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
-// CHECK-NEXT:    ^bb0(%arg3: index):
-// CHECK-NEXT:      %14 = hlfir.designate %1#0 (%arg3)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:      %15 = fir.load %14 : !fir.ref<i32>
-// CHECK-NEXT:      %16 = arith.cmpi sge, %15, %4 : i32
-// CHECK-NEXT:      %17 = fir.convert %16 : (i1) -> !fir.logical<4>
-// CHECK-NEXT:      hlfir.yield_element %17 : !fir.logical<4>
-// CHECK-NEXT:    }
-// CHECK-NEXT:    %8 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:    fir.store %c0_i32 to %8 : !fir.ref<i32>
-// CHECK-NEXT:    fir.store %c0_i32 to %0 : !fir.ref<i32>
-// CHECK-NEXT:    %9:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
-// CHECK-NEXT:    %10 = arith.subi %9#1, %c1 : index
-// CHECK-NEXT:    %11 = fir.do_loop %arg3 = %c0 to %10 step %c1 iter_args(%arg4 = %c2147483647_i32) -> (i32) {
-// CHECK-NEXT:      %14 = arith.addi %arg3, %c1 : index
-// CHECK-NEXT:      %15 = hlfir.designate %1#0 (%14)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:      %16 = fir.load %15 : !fir.ref<i32>
-// CHECK-NEXT:      %17 = arith.cmpi sge, %16, %4 : i32
-// CHECK-NEXT:      %18 = fir.if %17 -> (i32) {
-// CHECK-NEXT:        fir.store %c1_i32 to %0 : !fir.ref<i32>
-// CHECK-NEXT:        %19 = fir.coordinate_of %1#0, %arg3 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:        %20 = fir.load %19 : !fir.ref<i32>
-// CHECK-NEXT:        %21 = arith.cmpi slt, %20, %arg4 : i32
-// CHECK-NEXT:        %22 = fir.if %21 -> (i32) {
-// CHECK-NEXT:          %23 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:          %24 = fir.convert %arg3 : (index) -> i32
-// CHECK-NEXT:          %25 = arith.addi %24, %c1_i32 : i32
-// CHECK-NEXT:          fir.store %25 to %23 : !fir.ref<i32>
-// CHECK-NEXT:          fir.result %20 : i32
+// CHECK-NEXT:    %c1 = arith.constant 1 : index
+// CHECK-NEXT:    %c0_i32 = arith.constant 0 : i32
+// CHECK-NEXT:    %[[V0:.*]] = fir.alloca i32
+// CHECK-NEXT:    %[[V1:.*]]:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+// CHECK-NEXT:    %[[V2:.*]]:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+// CHECK-NEXT:    %[[V3:.*]]:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+// CHECK-NEXT:    %[[V4:.*]] = fir.load %[[V3]]#0 : !fir.ref<i32>
+// CHECK-NEXT:    %[[V8:.*]] = hlfir.designate %[[V2]]#0 (%c1) : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:    fir.store %c0_i32 to %[[V8]] : !fir.ref<i32>
+// CHECK-NEXT:    fir.store %c0_i32 to %[[V0]] : !fir.ref<i32>
+// CHECK-NEXT:    %[[V9:.*]]:3 = fir.box_dims %[[V1]]#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+// CHECK-NEXT:    %[[V10:.*]] = arith.subi %[[V9]]#1, %c1 : index
+// CHECK-NEXT:    %[[V11:.*]] = fir.do_loop %arg3 = %c0 to %[[V10]] step %c1 iter_args(%arg4 = %c2147483647_i32) -> (i32) {
+// CHECK-NEXT:      %[[V14:.*]] = arith.addi %arg3, %c1 : index
+// CHECK-NEXT:      %[[V15:.*]] = hlfir.designate %[[V1]]#0 (%[[V14]])  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:      %[[V16:.*]] = fir.load %[[V15]] : !fir.ref<i32>
+// CHECK-NEXT:      %[[V17:.*]] = arith.cmpi sge, %[[V16]], %[[V4]] : i32
+// CHECK-NEXT:      %[[V18:.*]] = fir.if %[[V17]] -> (i32) {
+// CHECK-NEXT:        fir.store %c1_i32 to %[[V0]] : !fir.ref<i32>
+// CHECK-NEXT:        %[[V19:.*]] = hlfir.designate %[[V1]]#0 (%[[V14]]) : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:        %[[V20:.*]] = fir.load %[[V19]] : !fir.ref<i32>
+// CHECK-NEXT:        %[[V21:.*]] = arith.cmpi slt, %[[V20]], %arg4 : i32
+// CHECK-NEXT:        %[[V22:.*]] = fir.if %[[V21]] -> (i32) {
+// CHECK-NEXT:          %[[V23:.*]] = hlfir.designate %[[V2]]#0 (%c1) : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:          %[[V24:.*]] = fir.convert %arg3 : (index) -> i32
+// CHECK-NEXT:          %[[V25:.*]] = arith.addi %[[V24]], %c1_i32 : i32
+// CHECK-NEXT:          fir.store %[[V25]] to %[[V23]] : !fir.ref<i32>
+// CHECK-NEXT:          fir.result %[[V20]] : i32
 // CHECK-NEXT:        } else {
 // CHECK-NEXT:          fir.result %arg4 : i32
 // CHECK-NEXT:        }
-// CHECK-NEXT:        fir.result %22 : i32
+// CHECK-NEXT:        fir.result %[[V22]] : i32
 // CHECK-NEXT:      } else {
 // CHECK-NEXT:        fir.result %arg4 : i32
 // CHECK-NEXT:      }
-// CHECK-NEXT:      fir.result %18 : i32
+// CHECK-NEXT:      fir.result %[[V18]] : i32
 // CHECK-NEXT:    }
-// CHECK-NEXT:    %12 = fir.load %0 : !fir.ref<i32>
-// CHECK-NEXT:    %13 = arith.cmpi eq, %12, %c1_i32 : i32
-// CHECK-NEXT:    fir.if %13 {
-// CHECK-NEXT:      %14 = arith.cmpi eq, %11, %c2147483647_i32 : i32
-// CHECK-NEXT:      fir.if %14 {
-// CHECK-NEXT:        %15 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:        fir.store %c1_i32 to %15 : !fir.ref<i32>
+// CHECK-NEXT:    %[[V12:.*]] = fir.load %[[V0]] : !fir.ref<i32>
+// CHECK-NEXT:    %[[V13:.*]] = arith.cmpi eq, %[[V12]], %c1_i32 : i32
+// CHECK-NEXT:    fir.if %[[V13]] {
+// CHECK-NEXT:      %[[V14:.*]] = arith.cmpi eq, %[[V11]], %c2147483647_i32 : i32
+// CHECK-NEXT:      fir.if %[[V14]] {
+// CHECK-NEXT:        %[[V15:.*]] = fir.coordinate_of %[[V2]]#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:        fir.store %c1_i32 to %[[V15]] : !fir.ref<i32>
 // CHECK-NEXT:      }
 // CHECK-NEXT:    }
-// CHECK-NEXT:    hlfir.destroy %7 : !hlfir.expr<?x!fir.logical<4>>
 // CHECK-NEXT:    return
 // CHECK-NEXT:  }
 
@@ -110,66 +99,55 @@ func.func @_QPtest_kind2(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "a
   return
 }
 // CHECK-LABEL:  func.func @_QPtest_kind2(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "array"}, %arg1: !fir.ref<i32> {fir.bindc_name = "val"}, %arg2: !fir.box<!fir.array<?xi16>> {fir.bindc_name = "m"}) {
-// CHECK-NEXT:    %c1 = arith.constant 1 : index
 // CHECK-NEXT:    %c2147483647_i32 = arith.constant 2147483647 : i32
 // CHECK-NEXT:    %c1_i16 = arith.constant 1 : i16
-// CHECK-NEXT:    %c0_i16 = arith.constant 0 : i16
 // CHECK-NEXT:    %c0 = arith.constant 0 : index
-// CHECK-NEXT:    %0 = fir.alloca i16
-// CHECK-NEXT:    %1:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
-// CHECK-NEXT:    %2:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi16>>) -> (!fir.box<!fir.array<?xi16>>, !fir.box<!fir.array<?xi16>>)
-// CHECK-NEXT:    %3:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
-// CHECK-NEXT:    %4 = fir.load %3#0 : !fir.ref<i32>
-// CHECK-NEXT:    %5:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
-// CHECK-NEXT:    %6 = fir.shape %5#1 : (index) -> !fir.shape<1>
-// CHECK-NEXT:    %7 = hlfir.elemental %6 unordered : (!fir.shape<1>) -> !hlfir.expr<?x!fir.logical<4>> {
-// CHECK-NEXT:    ^bb0(%arg3: index):
-// CHECK-NEXT:      %14 = hlfir.designate %1#0 (%arg3)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:      %15 = fir.load %14 : !fir.ref<i32>
-// CHECK-NEXT:      %16 = arith.cmpi sge, %15, %4 : i32
-// CHECK-NEXT:      %17 = fir.convert %16 : (i1) -> !fir.logical<4>
-// CHECK-NEXT:      hlfir.yield_element %17 : !fir.logical<4>
-// CHECK-NEXT:    }
-// CHECK-NEXT:    %8 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
-// CHECK-NEXT:    fir.store %c0_i16 to %8 : !fir.ref<i16>
-// CHECK-NEXT:    fir.store %c0_i16 to %0 : !fir.ref<i16>
-// CHECK-NEXT:    %9:3 = fir.box_dims %1#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
-// CHECK-NEXT:    %10 = arith.subi %9#1, %c1 : index
-// CHECK-NEXT:    %11 = fir.do_loop %arg3 = %c0 to %10 step %c1 iter_args(%arg4 = %c2147483647_i32) -> (i32) {
-// CHECK-NEXT:      %14 = arith.addi %arg3, %c1 : index
-// CHECK-NEXT:      %15 = hlfir.designate %1#0 (%14)  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:      %16 = fir.load %15 : !fir.ref<i32>
-// CHECK-NEXT:      %17 = arith.cmpi sge, %16, %4 : i32
-// CHECK-NEXT:      %18 = fir.if %17 -> (i32) {
-// CHECK-NEXT:        fir.store %c1_i16 to %0 : !fir.ref<i16>
-// CHECK-NEXT:        %19 = fir.coordinate_of %1#0, %arg3 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:        %20 = fir.load %19 : !fir.ref<i32>
-// CHECK-NEXT:        %21 = arith.cmpi slt, %20, %arg4 : i32
-// CHECK-NEXT:        %22 = fir.if %21 -> (i32) {
-// CHECK-NEXT:          %23 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
-// CHECK-NEXT:          %24 = fir.convert %arg3 : (index) -> i16
-// CHECK-NEXT:          %25 = arith.addi %24, %c1_i16 : i16
-// CHECK-NEXT:          fir.store %25 to %23 : !fir.ref<i16>
-// CHECK-NEXT:          fir.result %20 : i32
+// CHECK-NEXT:    %c1 = arith.constant 1 : index
+// CHECK-NEXT:    %c0_i16 = arith.constant 0 : i16
+// CHECK-NEXT:    %[[V0:.*]] = fir.alloca i16
+// CHECK-NEXT:    %[[V1:.*]]:2 = hlfir.declare %arg0 {uniq_name = "_QFtestEarray"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
+// CHECK-NEXT:    %[[V2:.*]]:2 = hlfir.declare %arg2 {uniq_name = "_QFtestEm"} : (!fir.box<!fir.array<?xi16>>) -> (!fir.box<!fir.array<?xi16>>, !fir.box<!fir.array<?xi16>>)
+// CHECK-NEXT:    %[[V3:.*]]:2 = hlfir.declare %arg1 {uniq_name = "_QFtestEval"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
+// CHECK-NEXT:    %[[V4:.*]] = fir.load %[[V3]]#0 : !fir.ref<i32>
+// CHECK-NEXT:    %[[V8:.*]] = hlfir.designate %[[V2]]#0 (%c1) : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
+// CHECK-NEXT:    fir.store %c0_i16 to %[[V8]] : !fir.ref<i16>
+// CHECK-NEXT:    fir.store %c0_i16 to %[[V0]] : !fir.ref<i16>
+// CHECK-NEXT:    %[[V9:.*]]:3 = fir.box_dims %[[V1]]#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> (index, index, index)
+// CHECK-NEXT:    %[[V10:.*]] = arith.subi %[[V9]]#1, %c1 : index
+// CHECK-NEXT:    %[[V11:.*]] = fir.do_loop %arg3 = %c0 to %[[V10]] step %c1 iter_args(%arg4 = %c2147483647_i32) -> (i32) {
+// CHECK-NEXT:      %[[V14:.*]] = arith.addi %arg3, %c1 : index
+// CHECK-NEXT:      %[[V15:.*]] = hlfir.designate %[[V1]]#0 (%[[V14]])  : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:      %[[V16:.*]] = fir.load %[[V15]] : !fir.ref<i32>
+// CHECK-NEXT:      %[[V17:.*]] = arith.cmpi sge, %[[V16]], %[[V4]] : i32
+// CHECK-NEXT:      %[[V18:.*]] = fir.if %[[V17]] -> (i32) {
+// CHECK-NEXT:        fir.store %c1_i16 to %[[V0]] : !fir.ref<i16>
+// CHECK-NEXT:        %[[V19:.*]] = hlfir.designate %[[V1]]#0 (%[[V14]]) : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:        %[[V20:.*]] = fir.load %[[V19]] : !fir.ref<i32>
+// CHECK-NEXT:        %[[V21:.*]] = arith.cmpi slt, %[[V20]], %arg4 : i32
+// CHECK-NEXT:        %[[V22:.*]] = fir.if %[[V21]] -> (i32) {
+// CHECK-NEXT:          %[[V23:.*]] = hlfir.designate %[[V2]]#0 (%c1) : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
+// CHECK-NEXT:          %[[V24:.*]] = fir.convert %arg3 : (index) -> i16
+// CHECK-NEXT:          %[[V25:.*]] = arith.addi %[[V24]], %c1_i16 : i16
+// CHECK-NEXT:          fir.store %[[V25]] to %[[V23]] : !fir.ref<i16>
+// CHECK-NEXT:          fir.result %[[V20]] : i32
 // CHECK-NEXT:        } else {
 // CHECK-NEXT:          fir.result %arg4 : i32
 // CHECK-NEXT:        }
-// CHECK-NEXT:        fir.result %22 : i32
+// CHECK-NEXT:        fir.result %[[V22]] : i32
 // CHECK-NEXT:      } else {
 // CHECK-NEXT:        fir.result %arg4 : i32
 // CHECK-NEXT:      }
-// CHECK-NEXT:      fir.result %18 : i32
+// CHECK-NEXT:      fir.result %[[V18]] : i32
 // CHECK-NEXT:    }
-// CHECK-NEXT:    %12 = fir.load %0 : !fir.ref<i16>
-// CHECK-NEXT:    %13 = arith.cmpi eq, %12, %c1_i16 : i16
-// CHECK-NEXT:    fir.if %13 {
-// CHECK-NEXT:      %14 = arith.cmpi eq, %11, %c2147483647_i32 : i32
-// CHECK-NEXT:      fir.if %14 {
-// CHECK-NEXT:        %15 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
-// CHECK-NEXT:        fir.store %c1_i16 to %15 : !fir.ref<i16>
+// CHECK-NEXT:    %[[V12:.*]] = fir.load %[[V0]] : !fir.ref<i16>
+// CHECK-NEXT:    %[[V13:.*]] = arith.cmpi eq, %[[V12]], %c1_i16 : i16
+// CHECK-NEXT:    fir.if %[[V13]] {
+// CHECK-NEXT:      %[[V14:.*]] = arith.cmpi eq, %[[V11]], %c2147483647_i32 : i32
+// CHECK-NEXT:      fir.if %[[V14]] {
+// CHECK-NEXT:        %[[V15:.*]] = fir.coordinate_of %[[V2]]#0, %c0 : (!fir.box<!fir.array<?xi16>>, index) -> !fir.ref<i16>
+// CHECK-NEXT:        fir.store %c1_i16 to %[[V15]] : !fir.ref<i16>
 // CHECK-NEXT:      }
 // CHECK-NEXT:    }
-// CHECK-NEXT:    hlfir.destroy %7 : !hlfir.expr<?x!fir.logical<4>>
 // CHECK-NEXT:    return
 
 
@@ -232,30 +210,30 @@ func.func @_QPtest_float(%arg0: !fir.box<!fir.array<?xf32>> {fir.bindc_name = "a
   return
 }
 // CHECK-LABEL: _QPtest_float
-// CHECK:        %11 = fir.do_loop %arg3 = %c0 to %10 step %c1 iter_args(%arg4 = %cst) -> (f32) {
-// CHECK-NEXT:     %14 = arith.addi %arg3, %c1 : index
-// CHECK-NEXT:     %15 = hlfir.designate %1#0 (%14)  : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
-// CHECK-NEXT:     %16 = fir.load %15 : !fir.ref<f32>
-// CHECK-NEXT:     %17 = arith.cmpf oge, %16, %4 : f32
-// CHECK-NEXT:     %18 = fir.if %17 -> (f32) {
-// CHECK-NEXT:       fir.store %c1_i32 to %0 : !fir.ref<i32>
-// CHECK-NEXT:       %19 = fir.coordinate_of %1#0, %arg3 : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
-// CHECK-NEXT:       %20 = fir.load %19 : !fir.ref<f32>
-// CHECK-NEXT:       %21 = arith.cmpf olt, %20, %arg4 : f32
-// CHECK-NEXT:       %22 = fir.if %21 -> (f32) {
-// CHECK-NEXT:         %23 = fir.coordinate_of %2#0, %c0 : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
-// CHECK-NEXT:         %24 = fir.convert %arg3 : (index) -> i32
-// CHECK-NEXT:         %25 = arith.addi %24, %c1_i32 : i32
-// CHECK-NEXT:         fir.store %25 to %23 : !fir.ref<i32>
-// CHECK-NEXT:         fir.result %20 : f32
+// CHECK:        %[[V11:.*]] = fir.do_loop %arg3 = %c0 to %[[V10:.*]] step %c1 iter_args(%arg4 = %cst) -> (f32) {
+// CHECK-NEXT:     %[[V14:.*]] = arith.addi %arg3, %c1 : index
+// CHECK-NEXT:     %[[V15:.*]] = hlfir.designate %[[V1:.*]]#0 (%[[V14]])  : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
+// CHECK-NEXT:     %[[V16:.*]] = fir.load %[[V15]] : !fir.ref<f32>
+// CHECK-NEXT:     %[[V17:.*]] = arith.cmpf oge, %[[V16]], %[[V4:.*]] : f32
+// CHECK-NEXT:     %[[V18:.*]] = fir.if %[[V17]] -> (f32) {
+// CHECK-NEXT:       fir.store %c1_i32 to %[[V0:.*]] : !fir.ref<i32>
+// CHECK-NEXT:       %[[V19:.*]] = hlfir.designate %[[V1]]#0 (%[[V14]]) : (!fir.box<!fir.array<?xf32>>, index) -> !fir.ref<f32>
+// CHECK-NEXT:       %[[V20:.*]] = fir.load %[[V19]] : !fir.ref<f32>
+// CHECK-NEXT:       %[[V21:.*]] = arith.cmpf olt, %[[V20]], %arg4 : f32
+// CHECK-NEXT:       %[[V22:.*]] = fir.if %[[V21]] -> (f32) {
+// CHECK-NEXT:         %[[V23:.*]] = hlfir.designate %[[V2:.*]]#0 (%c1) : (!fir.box<!fir.array<?xi32>>, index) -> !fir.ref<i32>
+// CHECK-NEXT:         %[[V24:.*]] = fir.convert %arg3 : (index) -> i32
+// CHECK-NEXT:         %[[V25:.*]] = arith.addi %[[V24]], %c1_i32 : i32
+// CHECK-NEXT:         fir.store %[[V25]] to %[[V23]] : !fir.ref<i32>
+// CHECK-NEXT:         fir.result %[[V20]] : f32
 // CHECK-NEXT:       } else {
 // CHECK-NEXT:         fir.result %arg4 : f32
 // CHECK-NEXT:       }
-// CHECK-NEXT:       fir.result %22 : f32
+// CHECK-NEXT:       fir.result %[[V22]] : f32
 // CHECK-NEXT:     } else {
 // CHECK-NEXT:       fir.result %arg4 : f32
 // CHECK-NEXT:     }
-// CHECK-NEXT:     fir.result %18 : f32
+// CHECK-NEXT:     fir.result %[[V18]] : f32
 // CHECK-NEXT:   }
 
 



More information about the flang-commits mailing list