[flang-commits] [flang] 691814f - [flang] Fix test regression from SQRT folding
peter klausler via flang-commits
flang-commits at lists.llvm.org
Thu Sep 30 11:35:52 PDT 2021
Author: peter klausler
Date: 2021-09-30T11:35:44-07:00
New Revision: 691814f9cc79ff3b63cb53946a88c4db9c1f048d
URL: https://github.com/llvm/llvm-project/commit/691814f9cc79ff3b63cb53946a88c4db9c1f048d
DIFF: https://github.com/llvm/llvm-project/commit/691814f9cc79ff3b63cb53946a88c4db9c1f048d.diff
LOG: [flang] Fix test regression from SQRT folding
The algorithm used to fold SQRT has some holes that
led to test failures; debug and add more tests.
Differential Revision: https://reviews.llvm.org/D110744
Added:
Modified:
flang/lib/Evaluate/real.cpp
flang/test/Evaluate/folding28.f90
Removed:
################################################################################
diff --git a/flang/lib/Evaluate/real.cpp b/flang/lib/Evaluate/real.cpp
index e01e00b5ce504..6ca0a6d418d3b 100644
--- a/flang/lib/Evaluate/real.cpp
+++ b/flang/lib/Evaluate/real.cpp
@@ -280,15 +280,34 @@ ValueWithRealFlags<Real<W, P>> Real<W, P>::SQRT(Rounding rounding) const {
// SQRT(+Inf) == +Inf
result.value = Infinity(false);
} else {
- // Slow but reliable bit-at-a-time method. Start with a clear significand
- // and half the unbiased exponent, and then try to set significand bits
- // in descending order of magnitude without exceeding the exact result.
int expo{UnbiasedExponent()};
- if (IsSubnormal()) {
- expo -= GetFraction().LEADZ();
+ if (expo < -1 || expo > 1) {
+ // Reduce the range to [0.5 .. 4.0) by dividing by an integral power
+ // of four to avoid trouble with very large and very small values
+ // (esp. truncation of subnormals).
+ // SQRT(2**(2a) * x) = SQRT(2**(2a)) * SQRT(x) = 2**a * SQRT(x)
+ Real scaled;
+ int adjust{expo / 2};
+ scaled.Normalize(false, expo - 2 * adjust + exponentBias, GetFraction());
+ result = scaled.SQRT(rounding);
+ result.value.Normalize(false,
+ result.value.UnbiasedExponent() + adjust + exponentBias,
+ result.value.GetFraction());
+ return result;
}
+ // Compute the square root of the reduced value with the slow but
+ // reliable bit-at-a-time method. Start with a clear significand and
+ // half of the unbiased exponent, and then try to set significand bits
+ // in descending order of magnitude without exceeding the exact result.
expo = expo / 2 + exponentBias;
result.value.Normalize(false, expo, Fraction::MASKL(1));
+ Real initialSq{result.value.Multiply(result.value).value};
+ if (Compare(initialSq) == Relation::Less) {
+ // Initial estimate is too large; this can happen for values just
+ // under 1.0.
+ --expo;
+ result.value.Normalize(false, expo, Fraction::MASKL(1));
+ }
for (int bit{significandBits - 1}; bit >= 0; --bit) {
Word word{result.value.word_};
result.value.word_ = word.IBSET(bit);
@@ -299,10 +318,10 @@ ValueWithRealFlags<Real<W, P>> Real<W, P>::SQRT(Rounding rounding) const {
result.value.word_ = word;
}
}
- // The computed square root, when squared, has a square that's not greater
- // than the original argument. Check this square against the square of the
- // next Real value, and return that one if its square is closer in magnitude
- // to the original argument.
+ // The computed square root has a square that's not greater than the
+ // original argument. Check this square against the square of the next
+ // larger Real and return that one if its square is closer in magnitude to
+ // the original argument.
Real resultSq{result.value.Multiply(result.value).value};
Real
diff {Subtract(resultSq).value.ABS()};
if (
diff .IsZero()) {
diff --git a/flang/test/Evaluate/folding28.f90 b/flang/test/Evaluate/folding28.f90
index dcd9e4865d60a..dc7310be1296f 100644
--- a/flang/test/Evaluate/folding28.f90
+++ b/flang/test/Evaluate/folding28.f90
@@ -27,7 +27,7 @@ module m
logical, parameter :: test_sqr_sqrt_t8 = sqr_sqrt_t8 == t8
! max subnormal
real(8), parameter :: maxs8 = z'000fffffffffffff'
- real(8), parameter :: sqrt_maxs8 = sqrt(maxs8), sqrt_maxs8z = z'2000000000000000'
+ real(8), parameter :: sqrt_maxs8 = sqrt(maxs8), sqrt_maxs8z = z'1fffffffffffffff'
logical, parameter :: test_sqrt_maxs8 = sqrt_maxs8 == sqrt_maxs8z
! min subnormal
real(8), parameter :: mins8 = z'1'
@@ -35,5 +35,13 @@ module m
logical, parameter :: test_sqrt_mins8 = sqrt_mins8 == sqrt_mins8z
real(8), parameter :: sqr_sqrt_mins8 = sqrt_mins8 * sqrt_mins8
logical, parameter :: test_sqr_sqrt_mins8 = sqr_sqrt_mins8 == mins8
+ ! regression tests: cases near 1.
+ real(4), parameter :: sqrt_under1 = sqrt(.96875)
+ logical, parameter :: test_sqrt_under1 = sqrt_under1 == .984250962734222412109375
+ ! oddball case: the value before 1. is also its own sqrt, but not its own square
+ real(4), parameter :: before_1 = z'3f7fffff' ! .999999940395355224609375
+ real(4), parameter :: sqrt_before_1 = sqrt(before_1)
+ logical, parameter :: test_before_1 = sqrt_before_1 == before_1
+ real(4), parameter :: sq_sqrt_before_1 = sqrt_before_1 * sqrt_before_1
+ logical, parameter :: test_sq_before_1 = sq_sqrt_before_1 < before_1
end module
-
More information about the flang-commits
mailing list