[cfe-users] Memory accesses to struct variables in LLVM IR
Simona Simona via cfe-users
cfe-users at lists.llvm.org
Thu Feb 11 08:44:05 PST 2016
Thanks, David, this is useful.
So sometimes the front-end generates llvm.memcpy instead of store
instructions.
Is there a rule in generating llvm.memcpy instructions instead of stores? I
would have the same question for other instrinsics, such as memset and
memmove.
Thanks,
Simona
On Thu, Feb 11, 2016 at 5:24 PM, David Blaikie <dblaikie at gmail.com> wrote:
>
>
> On Thu, Feb 11, 2016 at 7:25 AM, Simona Simona via cfe-users <
> cfe-users at lists.llvm.org> wrote:
>
>> Hi,
>>
>> I'm using clang 3.4 to generate the bitcode of a C source file.
>> The source file is the following:
>>
>> typedef struct __attribute__ ((__packed__)) { float x, y; } myType;
>> myType make_float2(float x, float y) { myType f = { x, y }; return f; }
>>
>> int main(int argc, char* argv[])
>> {
>> myType myVar[5];
>>
>> for(int i=0;i<5;i++)
>> myVar[i] = make_float2(i,i);
>>
>> return(myVar[1].x);
>> }
>>
>> The bitcode is generated using the following command:
>> clang -c -emit-llvm -O0 -fno-vectorize -fno-slp-vectorize
>> -fno-lax-vector-conversions main.c -o main.bc
>>
>> target triple = "x86_64-unknown-linux-gnu"
>>
>> %struct.myType = type <{ float, float }>
>>
>> ; Function Attrs: nounwind uwtable
>> define <2 x float> @_Z11make_float2ff(float %x, float %y) #0 {
>> entry:
>> %retval = alloca %struct.myType, align 1
>> %x1 = getelementptr inbounds %struct.myType* %retval, i32 0, i32 0
>> store float %x, float* %x1, align 1
>> %y2 = getelementptr inbounds %struct.myType* %retval, i32 0, i32 1
>> store float %y, float* %y2, align 1
>> %0 = bitcast %struct.myType* %retval to <2 x float>*
>> %1 = load <2 x float>* %0, align 1
>> ret <2 x float> %1
>> }
>>
>> ; Function Attrs: nounwind uwtable
>> define i32 @main(i32 %argc, i8** %argv) #0 {
>> entry:
>> %myVar = alloca [100 x %struct.myType], align 16
>>
>
> Looks like your IR corresponds to an array of length 100, not 5 as in your
> source, but that's not too important
>
>
>> * %ref.tmp = alloca %struct.myType, align 1*
>> br label %for.cond
>>
>> for.cond: ; preds = %for.inc,
>> %entry
>> %i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
>> %cmp = icmp slt i32 %i.0, 5
>> br i1 %cmp, label %for.body, label %for.end
>>
>> for.body: ; preds = %for.cond
>> %idxprom = sext i32 %i.0 to i64
>> %arrayidx = getelementptr inbounds [100 x %struct.myType]* %myVar, i32
>> 0, i64 %idxprom
>> %conv = sitofp i32 %i.0 to float
>> %conv1 = sitofp i32 %i.0 to float
>> * %call = call <2 x float> @_Z11make_float2ff(float %conv, float
>> %conv1)*
>> * %0 = bitcast %struct.myType* %ref.tmp to <2 x float>**
>> * store <2 x float> %call, <2 x float>* %0, align 1*
>> %1 = bitcast %struct.myType* %arrayidx to i8*
>> %2 = bitcast %struct.myType* %ref.tmp to i8*
>> call void @llvm.memcpy.p0i8.p0i8.i64(i8* %1, i8* %2, i64 8, i32 1, i1
>> false)
>>
>
> Here is the store ^ into your array (%1 is the destination, a bitcast of
> %arrayidx, which is the pointer into your array at index %idxprom, which is
> %i.0, etc) using the memcpy intrinsic, rather than a store instruction.
>
>
>> br label %for.inc
>>
>> for.inc: ; preds = %for.body
>> %inc = add nsw i32 %i.0, 1
>> br label %for.cond
>>
>> for.end: ; preds = %for.cond
>> %arrayidx2 = getelementptr inbounds [100 x %struct.myType]* %myVar, i32
>> 0, i64 1
>> %x = getelementptr inbounds %struct.myType* %arrayidx2, i32 0, i32 0
>> %3 = load float* %x, align 1
>> %conv3 = fptosi float %3 to i32
>> ret i32 %conv3
>> }
>>
>> Looking at the C source code there should be 5 store instructions
>> corresponding to the 5 assignments of myVar[0], myVar[1], myVar[2],
>> myVar[3] and myVar[4].
>> When I look at the bitcode however, I see 5 instances of *store <2 x
>> float> %call, <2 x float>* %0, align 1 *which correspond to 5 stores at
>> the same address
>> of %0 (which is actually %ref.tmp defined as *%ref.tmp = alloca
>> %struct.myType, align 1*).
>>
>> I would appreciate it if anyone could let me know how the 5 memory
>> accesses at the 5 *different* memory addresses are implemented in the
>> bitcode.
>>
>> Thanks,
>> Simona
>>
>>
>> _______________________________________________
>> cfe-users mailing list
>> cfe-users at lists.llvm.org
>> http://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-users
>>
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/cfe-users/attachments/20160211/bb18ff91/attachment.html>
More information about the cfe-users
mailing list