[cfe-dev] libc++ is not using always_inline anymore!

Mehdi AMINI via cfe-dev cfe-dev at lists.llvm.org
Sun Nov 11 17:48:39 PST 2018


Le dim. 11 nov. 2018 à 17:05, Louis Dionne <ldionne at apple.com> a écrit :

>
>
> On Nov 11, 2018, at 14:13, Mehdi AMINI <joker.eph at gmail.com> wrote:
>
>
>
> Le dim. 11 nov. 2018 à 10:25, Louis Dionne <ldionne at apple.com> a écrit :
>
>>
>>
>> On Nov 11, 2018, at 00:08, Louis Dionne via cfe-dev <
>> cfe-dev at lists.llvm.org> wrote:
>>
>>
>> On Nov 10, 2018, at 23:14, Mehdi AMINI <joker.eph at gmail.com> wrote:
>>
>>
>>
>> Le mar. 30 oct. 2018 à 15:57, Louis Dionne via cfe-dev <
>> cfe-dev at lists.llvm.org> a écrit :
>>
>>>
>>> On Oct 30, 2018, at 18:00, David Blaikie <dblaikie at gmail.com> wrote:
>>>
>>> Awesome!
>>>
>>> What are the new semantics? That this ABI stability guarantee is
>>> provided by hiding the functions in each user so they can't be deduplicated
>>> with anotehr user's copy? (what about other copies that are from the same
>>> build? I guess even those won't get coalesced/collapsed together? Would
>>> that be useful to support?)
>>>
>>>
>>> There are currently two modes (in LLVM trunk, and that is the plan for
>>> LLVM 8 too):
>>>
>>> 1. (the default) All TUs linked together inside the same final linked
>>> image need to have use the same libc++ version. Inline functions are
>>> ODR-merged across TUs like they normally are. In this mode, we don't use
>>> any funny attribute to control linkage (neither always_inline nor
>>> internal_linkage).
>>>
>>> 2. (can be opted-in) TUs can be linked together even if they use
>>> different headers of libc++. This is achieved by using internal_linkage on
>>> implementation detail functions of libc++. Those functions are local to a
>>> TU and they are NOT ODR-merge across TUs. This results in more code
>>> duplication than option (1).
>>>
>>>
>>> I assume this doesn't change the defaults, but does it make it any
>>> easier for users who don't need the ABI stability guarantee? (or was it
>>> already easy/no change here?)
>>>
>>>
>>> It actually does change the default. However, it depends of what ABI
>>> guarantee you're talking about.
>>>
>>> 1. The ABI stability of the shared objects is always (and has always
>>> been, and will most likely always) be guaranteed. The only way to change
>>> that is to explicitly use the _LIBCPP_ABI_UNSTABLE macro, which says "use
>>> all the ABI breaking features". This obviously only works if you're also
>>> linking against a library that was built to provide that ABI. This ability
>>> to use the unstable ABI has been provided for a long time, it wasn't the
>>> default, and it still isn't the default -- my change is completely
>>> orthogonal to that.
>>>
>>> 2. The "ABI stability" of static archives is a different matter. The
>>> question here is whether you can link programs against static archives
>>> built with different versions of libc++. The answer used to be YES by
>>> default, not it is NO by default. If you want to retain that ability, you
>>> need to use the `_LIBCPP_HIDE_FROM_ABI_PER_TU` macro. And also please give
>>> us a heads up so we know someone is using it.
>>>
>>
>> In general I'm worried of "undefined behavior" that isn't caught by a
>> tool, ideally at build time otherwise at runtime. I would really encourage
>> to not introduce any default behavior where you can't provide an easy
>> detection mechanism to the user.
>>
>>
>> Can you please expand on what you mean here? Are you referring to the
>> potential for ODR violations if someone links TUs built against different
>> versions of the libc++ headers? If so, that situation exists for every
>> single C++ library out in the wild.
>>
>> When you provide a system library / core components, you can (should)
> hold higher standard than other convenience library that the user opt in in
> my opinion.
> Also the "the others aren't better" seems to me like a fairly lame excuse.
>
>
> That’s not what I mean. What I mean is that anyone requiring this
> guarantee has to be very serious about it and either
> - audit all third-party libraries they use in their code for such
> ODR-violation inducing changes whenever they update said libraries, or
> - not have any dependencies (beyond the standard library)
>

Great, aren't we talking about the standard library indeed? Considering
your last parenthesis, I don't understand why your mentions of situation
with random user libraries isn't anything else than a digression here.
I'm not talking about a developer using a library found on Github, but
someone just relying on standard implementation of C++ (i.e. a clang
toolchain).
This is exclusively about the guarantee we chose to provide with the
toolchain.



> In both cases, anyone requiring this guarantee has to actively know about
> that requirement and take steps to make sure nobody breaks them (even
> unintentionally). My claim is that it is reasonable (and actually
> desirable) for such users to be explicit about the fact that they use that
> guarantee.
>

I really can't understand your angle of approach here. You seem to come
from a world where users requires/expect something from their libraries,
and are very conscious about it.
I'm coming from a compiler supplier / tool vendor point of view and the
guarantee/usability we should provide to our users.
Adding gotchas that aren't well documented and/or appear in fine print seem
to me to be a subpar user experience, not something I'd be happy to see
from any tools.


>
>
>> More specifically, what I mean here is that anyone relying on this
>> guarantee is walking an incredibly thin line
>>
>
> I don't know what you mean here.
>
> Thin line = they can be broken by anyone who is not careful enough.
>

I know what a thin line is, I don't see how there is a thin line here.


> , and so I think it is reasonable for such users to explicitly opt into
>> the guarantee.
>>
>
> You're missing the point: as a user building my application / libraries
> using Xcode for instance, I am not aware of what guarantee the compiler
> provides in this kind of area. This is incredibly subtle. How do I know
> what I need to know to "opt into the guarantee”?
>
>
> You read the documentation of the library you’re using.
>

We're talking about the standard library here...


> The C++ programming language does not give you any such guarantees by
> default.
>

C++ does not even know what a shared library is AFAIK, and I doubt (but
I'll be happy proven wrong) it mentions anything about toolchains.
But I don't see you point here: "we are allowed to indur pain to the user
and be standard compliant", OK but that does not mean we should.


> If you have non-trivial ABI requirements, you need to be responsible about
> it. This is true with or without my change — I’m not changing anything here.
>

Well, maybe I am misunderstanding the situation then, but you're previous
quote lead me to believe you're changing the situation:

> The question here is whether you can link programs against static
archives built with different versions of libc++. The answer used to be YES
by default, not it is NO by default.".


> People can’t (and usually don’t) expect the following use cases to work:
> - linking TUs built with different compilers
>

Uh? I rely on compatibility between clang and gcc, I don't believe I'm
alone, otherwise using clang on a system not built entirely with clang
would be impossible.


> - linking TUs built with different compiler flags
>

I'm fairly sure a majority of people rely on this.


> - linking TUs built against different sets of headers
>

Not sure what this means: if TU foo.cpp includes foo.hpp and bar.cpp
includes bar.hpp then you have two TU built against different sets of
headers that I don't see why I couldn't linked them together.



> - etc.
>
> This is not much different than undefined behavior in the language (expect
> less documented and more arcane), and we learned with time that dealing
> with undefined behavior for the average user is incredibly difficult.
>
>
> So back to the point: safety and usability should come first when you
> supply libraries and tools to users. This is on the same line as an "API
> should be easy to use and hard to misuse". If you don't have an easy way to
> find/detect the problem that you can widespread as part of your
> environment/tools, then you created an "API that is too easy to misuse".
> (I know this is not really an API discussion here, but that's not much
> different: this is a contract with a client).
>
>
> I think it may be possible to catch invalid uses of libc++. We could for
> example inject a version number in each TU that uses libc++ without the
> per-TU guarantee, and then maybe the linker could check that the version
> number is the same for all TUs. I haven’t thought a lot about that, but I
> think it may be toolable.
>

Now we talk :)
This really the only part of your answers so far that I feel is really
targeting my concern: we should not introduce gotchas without thinking
about usability/safety and how to catch issues.



> I argue that whenever we're introducing such behavior, we're not
> delivering a good user experience.
>
>
> The choice is not that easy.
>

You seem to present it like if there is only a choice between "doing this
change and introducing a gotcha" or "not doing this change".
It may be a situation we can end up into, and then we should just honestly
consider the tradeoffs, but I believe we should end up there in only
*after* spending enough time thinking about how we can "do this change and
making sure we preserve user experience" (cf Chandler's talk I linked for
the concept).


> What we’re contemplating here is on the one hand an obscure guarantee that
> very few people likely need, and on the other hand the potential for very
> significant code size savings. To me, not bloating my user’s application is
> also part of the user experience. I think the minority of people that have
> this flaky use case should be the ones to "pay” by having to turn the
> guarantee on explicitly.
>

(Side note: to be honest, most of the adjectives/terms you're using like
"obscure", "few people", "very significant", "bloat", "flaky", by their
lack of neutrality/objectivity, are likely gonna have the opposite effect
on me than what you seem to expect. This gives me the feeling that you need
to be "on the extreme" to reinforce the sense that your change is "the
right thing to do", and that you can just discard what does not fit without
much consideration)

However "good" this change is, I don't really see how it exonerates from
what I'm asking: we should think hard about tools/framework to catch
mistakes before introducing narrow contracts.

Best,

-- 
Mehdi




>
> I think that Chandler presented good foundations to approach this at
> CppCon 2016 in the talk “Garbage In, Garbage Out: Arguing about Undefined
> Behavior...": https://www.youtube.com/watch?v=yG1OZ69H_-o
>
> Especially, since we're going from a "wider" to a "narrower" contract
> here, this slide is particularly relevant and represent the concern I
> raised: https://youtu.be/yG1OZ69H_-o?t=1279
>
> Best,
>
> --
> Mehdi
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/cfe-dev/attachments/20181111/baf7e599/attachment.html>


More information about the cfe-dev mailing list