r217556 - Thread Safety Analysis: major update to thread safety TIL.
Justin Bogner
mail at justinbogner.com
Thu Sep 11 13:03:30 PDT 2014
DeLesley Hutchins <delesley at google.com> writes:
> Author: delesley
> Date: Wed Sep 10 17:12:52 2014
> New Revision: 217556
>
> URL: http://llvm.org/viewvc/llvm-project?rev=217556&view=rev
> Log:
> Thread Safety Analysis: major update to thread safety TIL.
This was causing some bots to hang due to the implementation of
operator<<(std::ostream&, StringRef) deciding to self recurse. I've
attempted to fix that in r217621.
I also noticed that you commented out a version of this same operator<<
in ThreadSafetyTraverse.h that didn't have the recursion problem. Please
don't commit commented out code - just remove it.
Finally, is there a good reason this is using ostream rather than llvm's
raw_ostream?
> Numerous changes, including:
> * Changed the way variables and instructions are handled in basic blocks to
> be more efficient.
> * Eliminated SExprRef.
> * Simplified futures.
> * Fixed documentation.
> * Compute dominator and post dominator trees.
>
> Modified:
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h
> cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp
> cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h?rev=217556&r1=217555&r2=217556&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h Wed Sep 10 17:12:52 2014
> @@ -477,9 +477,9 @@ private:
> // Indexed by clang BlockID.
>
> LVarDefinitionMap CurrentLVarMap;
> - std::vector<til::Variable*> CurrentArguments;
> - std::vector<til::Variable*> CurrentInstructions;
> - std::vector<til::Variable*> IncompleteArgs;
> + std::vector<til::Phi*> CurrentArguments;
> + std::vector<til::SExpr*> CurrentInstructions;
> + std::vector<til::Phi*> IncompleteArgs;
> til::BasicBlock *CurrentBB;
> BlockInfo *CurrentBlockInfo;
> };
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h?rev=217556&r1=217555&r2=217556&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h Wed Sep 10 17:12:52 2014
> @@ -41,13 +41,13 @@ private:
> };
>
> class Terminal : public LExpr {
> - til::SExprRef Expr;
> + til::SExpr *Expr;
>
> public:
> Terminal(til::SExpr *Expr) : LExpr(LExpr::Terminal), Expr(Expr) {}
>
> - const til::SExpr *expr() const { return Expr.get(); }
> - til::SExpr *expr() { return Expr.get(); }
> + const til::SExpr *expr() const { return Expr; }
> + til::SExpr *expr() { return Expr; }
>
> static bool classof(const LExpr *E) { return E->kind() == LExpr::Terminal; }
> };
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def?rev=217556&r1=217555&r2=217556&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def Wed Sep 10 17:12:52 2014
> @@ -44,8 +44,11 @@ TIL_OPCODE_DEF(Cast)
> TIL_OPCODE_DEF(SCFG)
> TIL_OPCODE_DEF(BasicBlock)
> TIL_OPCODE_DEF(Phi)
> +
> +// Terminator instructions
> TIL_OPCODE_DEF(Goto)
> TIL_OPCODE_DEF(Branch)
> +TIL_OPCODE_DEF(Return)
>
> // pseudo-terms
> TIL_OPCODE_DEF(Identifier)
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h?rev=217556&r1=217555&r2=217556&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h Wed Sep 10 17:12:52 2014
> @@ -63,24 +63,27 @@ namespace threadSafety {
> namespace til {
>
>
> +/// Enum for the different distinct classes of SExpr
> enum TIL_Opcode {
> #define TIL_OPCODE_DEF(X) COP_##X,
> #include "ThreadSafetyOps.def"
> #undef TIL_OPCODE_DEF
> };
>
> +/// Opcode for unary arithmetic operations.
> enum TIL_UnaryOpcode : unsigned char {
> UOP_Minus, // -
> UOP_BitNot, // ~
> UOP_LogicNot // !
> };
>
> +/// Opcode for binary arithmetic operations.
> enum TIL_BinaryOpcode : unsigned char {
> + BOP_Add, // +
> + BOP_Sub, // -
> BOP_Mul, // *
> BOP_Div, // /
> BOP_Rem, // %
> - BOP_Add, // +
> - BOP_Sub, // -
> BOP_Shl, // <<
> BOP_Shr, // >>
> BOP_BitAnd, // &
> @@ -90,10 +93,11 @@ enum TIL_BinaryOpcode : unsigned char {
> BOP_Neq, // !=
> BOP_Lt, // <
> BOP_Leq, // <=
> - BOP_LogicAnd, // &&
> - BOP_LogicOr // ||
> + BOP_LogicAnd, // && (no short-circuit)
> + BOP_LogicOr // || (no short-circuit)
> };
>
> +/// Opcode for cast operations.
> enum TIL_CastOpcode : unsigned char {
> CAST_none = 0,
> CAST_extendNum, // extend precision of numeric type
> @@ -107,21 +111,24 @@ const TIL_Opcode COP_Min = COP_Fu
> const TIL_Opcode COP_Max = COP_Branch;
> const TIL_UnaryOpcode UOP_Min = UOP_Minus;
> const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;
> -const TIL_BinaryOpcode BOP_Min = BOP_Mul;
> +const TIL_BinaryOpcode BOP_Min = BOP_Add;
> const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;
> const TIL_CastOpcode CAST_Min = CAST_none;
> const TIL_CastOpcode CAST_Max = CAST_toInt;
>
> +/// Return the name of a unary opcode.
> StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
> +
> +/// Return the name of a binary opcode.
> StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
>
>
> -// ValueTypes are data types that can actually be held in registers.
> -// All variables and expressions must have a vBNF_Nonealue type.
> -// Pointer types are further subdivided into the various heap-allocated
> -// types, such as functions, records, etc.
> -// Structured types that are passed by value (e.g. complex numbers)
> -// require special handling; they use BT_ValueRef, and size ST_0.
> +/// ValueTypes are data types that can actually be held in registers.
> +/// All variables and expressions must have a value type.
> +/// Pointer types are further subdivided into the various heap-allocated
> +/// types, such as functions, records, etc.
> +/// Structured types that are passed by value (e.g. complex numbers)
> +/// require special handling; they use BT_ValueRef, and size ST_0.
> struct ValueType {
> enum BaseType : unsigned char {
> BT_Void = 0,
> @@ -247,8 +254,10 @@ inline ValueType ValueType::getValueType
> }
>
>
> +class BasicBlock;
> +
>
> -// Base class for AST nodes in the typed intermediate language.
> +/// Base class for AST nodes in the typed intermediate language.
> class SExpr {
> public:
> TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }
> @@ -267,71 +276,47 @@ public:
> // template <class C> typename C::CType compare(CType* E, C& Cmp) {
> // compare all subexpressions, following the comparator interface
> // }
> -
> void *operator new(size_t S, MemRegionRef &R) {
> return ::operator new(S, R);
> }
>
> - // SExpr objects cannot be deleted.
> + /// SExpr objects cannot be deleted.
> // This declaration is public to workaround a gcc bug that breaks building
> // with REQUIRES_EH=1.
> void operator delete(void *) LLVM_DELETED_FUNCTION;
>
> + /// Returns the instruction ID for this expression.
> + /// All basic block instructions have a unique ID (i.e. virtual register).
> + unsigned id() const { return SExprID; }
> +
> + /// Returns the block, if this is an instruction in a basic block,
> + /// otherwise returns null.
> + BasicBlock* block() const { return Block; }
> +
> + /// Set the basic block and instruction ID for this expression.
> + void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }
> +
> protected:
> - SExpr(TIL_Opcode Op) : Opcode(Op), Reserved(0), Flags(0) {}
> - SExpr(const SExpr &E) : Opcode(E.Opcode), Reserved(0), Flags(E.Flags) {}
> + SExpr(TIL_Opcode Op)
> + : Opcode(Op), Reserved(0), Flags(0), SExprID(0), Block(nullptr) {}
> + SExpr(const SExpr &E)
> + : Opcode(E.Opcode), Reserved(0), Flags(E.Flags), SExprID(0),
> + Block(nullptr) {}
>
> const unsigned char Opcode;
> unsigned char Reserved;
> unsigned short Flags;
> + unsigned SExprID;
> + BasicBlock* Block;
>
> private:
> SExpr() LLVM_DELETED_FUNCTION;
>
> - // SExpr objects must be created in an arena.
> + /// SExpr objects must be created in an arena.
> void *operator new(size_t) LLVM_DELETED_FUNCTION;
> };
>
>
> -// Class for owning references to SExprs.
> -// Includes attach/detach logic for counting variable references and lazy
> -// rewriting strategies.
> -class SExprRef {
> -public:
> - SExprRef() : Ptr(nullptr) { }
> - SExprRef(std::nullptr_t P) : Ptr(nullptr) { }
> - SExprRef(SExprRef &&R) : Ptr(R.Ptr) { R.Ptr = nullptr; }
> -
> - // Defined after Variable and Future, below.
> - inline SExprRef(SExpr *P);
> - inline ~SExprRef();
> -
> - SExpr *get() { return Ptr; }
> - const SExpr *get() const { return Ptr; }
> -
> - SExpr *operator->() { return get(); }
> - const SExpr *operator->() const { return get(); }
> -
> - SExpr &operator*() { return *Ptr; }
> - const SExpr &operator*() const { return *Ptr; }
> -
> - bool operator==(const SExprRef &R) const { return Ptr == R.Ptr; }
> - bool operator!=(const SExprRef &R) const { return !operator==(R); }
> - bool operator==(const SExpr *P) const { return Ptr == P; }
> - bool operator!=(const SExpr *P) const { return !operator==(P); }
> - bool operator==(std::nullptr_t) const { return Ptr == nullptr; }
> - bool operator!=(std::nullptr_t) const { return Ptr != nullptr; }
> -
> - inline void reset(SExpr *E);
> -
> -private:
> - inline void attach();
> - inline void detach();
> -
> - SExpr *Ptr;
> -};
> -
> -
> // Contains various helper functions for SExprs.
> namespace ThreadSafetyTIL {
> inline bool isTrivial(const SExpr *E) {
> @@ -343,62 +328,64 @@ namespace ThreadSafetyTIL {
> // Nodes which declare variables
> class Function;
> class SFunction;
> -class BasicBlock;
> class Let;
>
>
> -// A named variable, e.g. "x".
> -//
> -// There are two distinct places in which a Variable can appear in the AST.
> -// A variable declaration introduces a new variable, and can occur in 3 places:
> -// Let-expressions: (Let (x = t) u)
> -// Functions: (Function (x : t) u)
> -// Self-applicable functions (SFunction (x) t)
> -//
> -// If a variable occurs in any other location, it is a reference to an existing
> -// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
> -// allocate a separate AST node for variable references; a reference is just a
> -// pointer to the original declaration.
> +/// A named variable, e.g. "x".
> +///
> +/// There are two distinct places in which a Variable can appear in the AST.
> +/// A variable declaration introduces a new variable, and can occur in 3 places:
> +/// Let-expressions: (Let (x = t) u)
> +/// Functions: (Function (x : t) u)
> +/// Self-applicable functions (SFunction (x) t)
> +///
> +/// If a variable occurs in any other location, it is a reference to an existing
> +/// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
> +/// allocate a separate AST node for variable references; a reference is just a
> +/// pointer to the original declaration.
> class Variable : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
>
> - // Let-variable, function parameter, or self-variable
> enum VariableKind {
> - VK_Let,
> - VK_LetBB,
> - VK_Fun,
> - VK_SFun
> + VK_Let, ///< Let-variable
> + VK_Fun, ///< Function parameter
> + VK_SFun ///< SFunction (self) parameter
> };
>
> - // These are defined after SExprRef contructor, below
> - inline Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr);
> - inline Variable(StringRef s, SExpr *D = nullptr);
> - inline Variable(const Variable &Vd, SExpr *D);
> + Variable(StringRef s, SExpr *D = nullptr)
> + : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr) {
> + Flags = VK_Let;
> + }
> + Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr)
> + : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
> + Definition(D), Cvdecl(Cvd) {
> + Flags = VK_Let;
> + }
> + Variable(const Variable &Vd, SExpr *D) // rewrite constructor
> + : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {
> + Flags = Vd.kind();
> + }
>
> + /// Return the kind of variable (let, function param, or self)
> VariableKind kind() const { return static_cast<VariableKind>(Flags); }
>
> + /// Return the name of the variable, if any.
> StringRef name() const { return Name; }
> +
> + /// Return the clang declaration for this variable, if any.
> const clang::ValueDecl *clangDecl() const { return Cvdecl; }
>
> - // Returns the definition (for let vars) or type (for parameter & self vars)
> - SExpr *definition() { return Definition.get(); }
> - const SExpr *definition() const { return Definition.get(); }
> -
> - void attachVar() const { ++NumUses; }
> - void detachVar() const { assert(NumUses > 0); --NumUses; }
> -
> - unsigned getID() const { return Id; }
> - unsigned getBlockID() const { return BlockID; }
> -
> - void setName(StringRef S) { Name = S; }
> - void setID(unsigned Bid, unsigned I) {
> - BlockID = static_cast<unsigned short>(Bid);
> - Id = static_cast<unsigned short>(I);
> - }
> - void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
> - void setDefinition(SExpr *E);
> + /// Return the definition of the variable.
> + /// For let-vars, this is the setting expression.
> + /// For function and self parameters, it is the type of the variable.
> + SExpr *definition() { return Definition; }
> + const SExpr *definition() const { return Definition; }
> +
> + void setName(StringRef S) { Name = S; }
> void setKind(VariableKind K) { Flags = K; }
> + void setDefinition(SExpr *E) { Definition = E; }
> + void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -418,17 +405,13 @@ private:
> friend class Let;
>
> StringRef Name; // The name of the variable.
> - SExprRef Definition; // The TIL type or definition
> + SExpr* Definition; // The TIL type or definition
> const clang::ValueDecl *Cvdecl; // The clang declaration for this variable.
> -
> - unsigned short BlockID;
> - unsigned short Id;
> - mutable unsigned NumUses;
> };
>
>
> -// Placeholder for an expression that has not yet been created.
> -// Used to implement lazy copy and rewriting strategies.
> +/// Placeholder for an expression that has not yet been created.
> +/// Used to implement lazy copy and rewriting strategies.
> class Future : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
> @@ -439,22 +422,14 @@ public:
> FS_done
> };
>
> - Future() :
> - SExpr(COP_Future), Status(FS_pending), Result(nullptr), Location(nullptr)
> - {}
> + Future() : SExpr(COP_Future), Status(FS_pending), Result(nullptr) {}
> +
> private:
> virtual ~Future() LLVM_DELETED_FUNCTION;
> -public:
> -
> - // Registers the location in the AST where this future is stored.
> - // Forcing the future will automatically update the AST.
> - static inline void registerLocation(SExprRef *Member) {
> - if (Future *F = dyn_cast_or_null<Future>(Member->get()))
> - F->Location = Member;
> - }
>
> +public:
> // A lazy rewriting strategy should subclass Future and override this method.
> - virtual SExpr *create() { return nullptr; }
> + virtual SExpr *compute() { return nullptr; }
>
> // Return the result of this future if it exists, otherwise return null.
> SExpr *maybeGetResult() const {
> @@ -465,8 +440,7 @@ public:
> SExpr *result() {
> switch (Status) {
> case FS_pending:
> - force();
> - return Result;
> + return force();
> case FS_evaluating:
> return nullptr; // infinite loop; illegal recursion.
> case FS_done:
> @@ -488,81 +462,14 @@ public:
> }
>
> private:
> - // Force the future.
> - inline void force();
> + SExpr* force();
>
> FutureStatus Status;
> SExpr *Result;
> - SExprRef *Location;
> };
>
>
> -inline void SExprRef::attach() {
> - if (!Ptr)
> - return;
> -
> - TIL_Opcode Op = Ptr->opcode();
> - if (Op == COP_Variable) {
> - cast<Variable>(Ptr)->attachVar();
> - } else if (Op == COP_Future) {
> - cast<Future>(Ptr)->registerLocation(this);
> - }
> -}
> -
> -inline void SExprRef::detach() {
> - if (Ptr && Ptr->opcode() == COP_Variable) {
> - cast<Variable>(Ptr)->detachVar();
> - }
> -}
> -
> -inline SExprRef::SExprRef(SExpr *P) : Ptr(P) {
> - attach();
> -}
> -
> -inline SExprRef::~SExprRef() {
> - detach();
> -}
> -
> -inline void SExprRef::reset(SExpr *P) {
> - detach();
> - Ptr = P;
> - attach();
> -}
> -
> -
> -inline Variable::Variable(StringRef s, SExpr *D)
> - : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr),
> - BlockID(0), Id(0), NumUses(0) {
> - Flags = VK_Let;
> -}
> -
> -inline Variable::Variable(SExpr *D, const clang::ValueDecl *Cvd)
> - : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
> - Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) {
> - Flags = VK_Let;
> -}
> -
> -inline Variable::Variable(const Variable &Vd, SExpr *D) // rewrite constructor
> - : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl),
> - BlockID(0), Id(0), NumUses(0) {
> - Flags = Vd.kind();
> -}
> -
> -inline void Variable::setDefinition(SExpr *E) {
> - Definition.reset(E);
> -}
> -
> -void Future::force() {
> - Status = FS_evaluating;
> - SExpr *R = create();
> - Result = R;
> - if (Location)
> - Location->reset(R);
> - Status = FS_done;
> -}
> -
> -
> -// Placeholder for C++ expressions that cannot be represented in the TIL.
> +/// Placeholder for expressions that cannot be represented in the TIL.
> class Undefined : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
> @@ -585,7 +492,7 @@ private:
> };
>
>
> -// Placeholder for a wildcard that matches any other expression.
> +/// Placeholder for a wildcard that matches any other expression.
> class Wildcard : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
> @@ -716,8 +623,8 @@ typename V::R_SExpr Literal::traverse(V
> }
>
>
> -// Literal pointer to an object allocated in memory.
> -// At compile time, pointer literals are represented by symbolic names.
> +/// A Literal pointer to an object allocated in memory.
> +/// At compile time, pointer literals are represented by symbolic names.
> class LiteralPtr : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
> @@ -743,9 +650,9 @@ private:
> };
>
>
> -// A function -- a.k.a. lambda abstraction.
> -// Functions with multiple arguments are created by currying,
> -// e.g. (function (x: Int) (function (y: Int) (add x y)))
> +/// A function -- a.k.a. lambda abstraction.
> +/// Functions with multiple arguments are created by currying,
> +/// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))
> class Function : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
> @@ -762,8 +669,8 @@ public:
> Variable *variableDecl() { return VarDecl; }
> const Variable *variableDecl() const { return VarDecl; }
>
> - SExpr *body() { return Body.get(); }
> - const SExpr *body() const { return Body.get(); }
> + SExpr *body() { return Body; }
> + const SExpr *body() const { return Body; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -790,13 +697,13 @@ public:
>
> private:
> Variable *VarDecl;
> - SExprRef Body;
> + SExpr* Body;
> };
>
>
> -// A self-applicable function.
> -// A self-applicable function can be applied to itself. It's useful for
> -// implementing objects and late binding
> +/// A self-applicable function.
> +/// A self-applicable function can be applied to itself. It's useful for
> +/// implementing objects and late binding.
> class SFunction : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
> @@ -805,20 +712,20 @@ public:
> : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
> assert(Vd->Definition == nullptr);
> Vd->setKind(Variable::VK_SFun);
> - Vd->Definition.reset(this);
> + Vd->Definition = this;
> }
> SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
> : SExpr(F), VarDecl(Vd), Body(B) {
> assert(Vd->Definition == nullptr);
> Vd->setKind(Variable::VK_SFun);
> - Vd->Definition.reset(this);
> + Vd->Definition = this;
> }
>
> Variable *variableDecl() { return VarDecl; }
> const Variable *variableDecl() const { return VarDecl; }
>
> - SExpr *body() { return Body.get(); }
> - const SExpr *body() const { return Body.get(); }
> + SExpr *body() { return Body; }
> + const SExpr *body() const { return Body; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -842,11 +749,11 @@ public:
>
> private:
> Variable *VarDecl;
> - SExprRef Body;
> + SExpr* Body;
> };
>
>
> -// A block of code -- e.g. the body of a function.
> +/// A block of code -- e.g. the body of a function.
> class Code : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
> @@ -855,11 +762,11 @@ public:
> Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
> : SExpr(C), ReturnType(T), Body(B) {}
>
> - SExpr *returnType() { return ReturnType.get(); }
> - const SExpr *returnType() const { return ReturnType.get(); }
> + SExpr *returnType() { return ReturnType; }
> + const SExpr *returnType() const { return ReturnType; }
>
> - SExpr *body() { return Body.get(); }
> - const SExpr *body() const { return Body.get(); }
> + SExpr *body() { return Body; }
> + const SExpr *body() const { return Body; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -877,12 +784,12 @@ public:
> }
>
> private:
> - SExprRef ReturnType;
> - SExprRef Body;
> + SExpr* ReturnType;
> + SExpr* Body;
> };
>
>
> -// A typed, writable location in memory
> +/// A typed, writable location in memory
> class Field : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
> @@ -891,11 +798,11 @@ public:
> Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
> : SExpr(C), Range(R), Body(B) {}
>
> - SExpr *range() { return Range.get(); }
> - const SExpr *range() const { return Range.get(); }
> + SExpr *range() { return Range; }
> + const SExpr *range() const { return Range; }
>
> - SExpr *body() { return Body.get(); }
> - const SExpr *body() const { return Body.get(); }
> + SExpr *body() { return Body; }
> + const SExpr *body() const { return Body; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -913,12 +820,16 @@ public:
> }
>
> private:
> - SExprRef Range;
> - SExprRef Body;
> + SExpr* Range;
> + SExpr* Body;
> };
>
>
> -// Apply an argument to a function
> +/// Apply an argument to a function.
> +/// Note that this does not actually call the function. Functions are curried,
> +/// so this returns a closure in which the first parameter has been applied.
> +/// Once all parameters have been applied, Call can be used to invoke the
> +/// function.
> class Apply : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
> @@ -928,11 +839,11 @@ public:
> : SExpr(A), Fun(F), Arg(Ar)
> {}
>
> - SExpr *fun() { return Fun.get(); }
> - const SExpr *fun() const { return Fun.get(); }
> + SExpr *fun() { return Fun; }
> + const SExpr *fun() const { return Fun; }
>
> - SExpr *arg() { return Arg.get(); }
> - const SExpr *arg() const { return Arg.get(); }
> + SExpr *arg() { return Arg; }
> + const SExpr *arg() const { return Arg; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -950,12 +861,12 @@ public:
> }
>
> private:
> - SExprRef Fun;
> - SExprRef Arg;
> + SExpr* Fun;
> + SExpr* Arg;
> };
>
>
> -// Apply a self-argument to a self-applicable function
> +/// Apply a self-argument to a self-applicable function.
> class SApply : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
> @@ -964,18 +875,18 @@ public:
> SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
> : SExpr(A), Sfun(Sf), Arg(Ar) {}
>
> - SExpr *sfun() { return Sfun.get(); }
> - const SExpr *sfun() const { return Sfun.get(); }
> + SExpr *sfun() { return Sfun; }
> + const SExpr *sfun() const { return Sfun; }
>
> - SExpr *arg() { return Arg.get() ? Arg.get() : Sfun.get(); }
> - const SExpr *arg() const { return Arg.get() ? Arg.get() : Sfun.get(); }
> + SExpr *arg() { return Arg ? Arg : Sfun; }
> + const SExpr *arg() const { return Arg ? Arg : Sfun; }
>
> bool isDelegation() const { return Arg != nullptr; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
> - typename V::R_SExpr Na = Arg.get() ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
> + typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
> : nullptr;
> return Vs.reduceSApply(*this, Nf, Na);
> }
> @@ -989,12 +900,12 @@ public:
> }
>
> private:
> - SExprRef Sfun;
> - SExprRef Arg;
> + SExpr* Sfun;
> + SExpr* Arg;
> };
>
>
> -// Project a named slot from a C++ struct or class.
> +/// Project a named slot from a C++ struct or class.
> class Project : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
> @@ -1009,8 +920,8 @@ public:
> : SExpr(P), Rec(R), SlotName(P.SlotName), Cvdecl(P.Cvdecl)
> { }
>
> - SExpr *record() { return Rec.get(); }
> - const SExpr *record() const { return Rec.get(); }
> + SExpr *record() { return Rec; }
> + const SExpr *record() const { return Rec; }
>
> const clang::ValueDecl *clangDecl() const { return Cvdecl; }
>
> @@ -1042,13 +953,13 @@ public:
> }
>
> private:
> - SExprRef Rec;
> + SExpr* Rec;
> StringRef SlotName;
> const clang::ValueDecl *Cvdecl;
> };
>
>
> -// Call a function (after all arguments have been applied).
> +/// Call a function (after all arguments have been applied).
> class Call : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
> @@ -1057,8 +968,8 @@ public:
> : SExpr(COP_Call), Target(T), Cexpr(Ce) {}
> Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
>
> - SExpr *target() { return Target.get(); }
> - const SExpr *target() const { return Target.get(); }
> + SExpr *target() { return Target; }
> + const SExpr *target() const { return Target; }
>
> const clang::CallExpr *clangCallExpr() const { return Cexpr; }
>
> @@ -1074,12 +985,12 @@ public:
> }
>
> private:
> - SExprRef Target;
> + SExpr* Target;
> const clang::CallExpr *Cexpr;
> };
>
>
> -// Allocate memory for a new value on the heap or stack.
> +/// Allocate memory for a new value on the heap or stack.
> class Alloc : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
> @@ -1094,8 +1005,8 @@ public:
>
> AllocKind kind() const { return static_cast<AllocKind>(Flags); }
>
> - SExpr *dataType() { return Dtype.get(); }
> - const SExpr *dataType() const { return Dtype.get(); }
> + SExpr *dataType() { return Dtype; }
> + const SExpr *dataType() const { return Dtype; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1112,11 +1023,11 @@ public:
> }
>
> private:
> - SExprRef Dtype;
> + SExpr* Dtype;
> };
>
>
> -// Load a value from memory.
> +/// Load a value from memory.
> class Load : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
> @@ -1124,8 +1035,8 @@ public:
> Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
> Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
>
> - SExpr *pointer() { return Ptr.get(); }
> - const SExpr *pointer() const { return Ptr.get(); }
> + SExpr *pointer() { return Ptr; }
> + const SExpr *pointer() const { return Ptr; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1139,12 +1050,12 @@ public:
> }
>
> private:
> - SExprRef Ptr;
> + SExpr* Ptr;
> };
>
>
> -// Store a value to memory.
> -// Source is a pointer, destination is the value to store.
> +/// Store a value to memory.
> +/// The destination is a pointer to a field, the source is the value to store.
> class Store : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
> @@ -1152,11 +1063,11 @@ public:
> Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
> Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
>
> - SExpr *destination() { return Dest.get(); } // Address to store to
> - const SExpr *destination() const { return Dest.get(); }
> + SExpr *destination() { return Dest; } // Address to store to
> + const SExpr *destination() const { return Dest; }
>
> - SExpr *source() { return Source.get(); } // Value to store
> - const SExpr *source() const { return Source.get(); }
> + SExpr *source() { return Source; } // Value to store
> + const SExpr *source() const { return Source; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1174,13 +1085,13 @@ public:
> }
>
> private:
> - SExprRef Dest;
> - SExprRef Source;
> + SExpr* Dest;
> + SExpr* Source;
> };
>
>
> -// If p is a reference to an array, then first(p) is a reference to the first
> -// element. The usual array notation p[i] becomes first(p + i).
> +/// If p is a reference to an array, then p[i] is a reference to the i'th
> +/// element of the array.
> class ArrayIndex : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
> @@ -1189,11 +1100,11 @@ public:
> ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
> : SExpr(E), Array(A), Index(N) {}
>
> - SExpr *array() { return Array.get(); }
> - const SExpr *array() const { return Array.get(); }
> + SExpr *array() { return Array; }
> + const SExpr *array() const { return Array; }
>
> - SExpr *index() { return Index.get(); }
> - const SExpr *index() const { return Index.get(); }
> + SExpr *index() { return Index; }
> + const SExpr *index() const { return Index; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1211,14 +1122,14 @@ public:
> }
>
> private:
> - SExprRef Array;
> - SExprRef Index;
> + SExpr* Array;
> + SExpr* Index;
> };
>
>
> -// Pointer arithmetic, restricted to arrays only.
> -// If p is a reference to an array, then p + n, where n is an integer, is
> -// a reference to a subarray.
> +/// Pointer arithmetic, restricted to arrays only.
> +/// If p is a reference to an array, then p + n, where n is an integer, is
> +/// a reference to a subarray.
> class ArrayAdd : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
> @@ -1227,11 +1138,11 @@ public:
> ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
> : SExpr(E), Array(A), Index(N) {}
>
> - SExpr *array() { return Array.get(); }
> - const SExpr *array() const { return Array.get(); }
> + SExpr *array() { return Array; }
> + const SExpr *array() const { return Array; }
>
> - SExpr *index() { return Index.get(); }
> - const SExpr *index() const { return Index.get(); }
> + SExpr *index() { return Index; }
> + const SExpr *index() const { return Index; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1249,12 +1160,13 @@ public:
> }
>
> private:
> - SExprRef Array;
> - SExprRef Index;
> + SExpr* Array;
> + SExpr* Index;
> };
>
>
> -// Simple unary operation -- e.g. !, ~, etc.
> +/// Simple arithmetic unary operations, e.g. negate and not.
> +/// These operations have no side-effects.
> class UnaryOp : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
> @@ -1268,8 +1180,8 @@ public:
> return static_cast<TIL_UnaryOpcode>(Flags);
> }
>
> - SExpr *expr() { return Expr0.get(); }
> - const SExpr *expr() const { return Expr0.get(); }
> + SExpr *expr() { return Expr0; }
> + const SExpr *expr() const { return Expr0; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1287,11 +1199,12 @@ public:
> }
>
> private:
> - SExprRef Expr0;
> + SExpr* Expr0;
> };
>
>
> -// Simple binary operation -- e.g. +, -, etc.
> +/// Simple arithmetic binary operations, e.g. +, -, etc.
> +/// These operations have no side effects.
> class BinaryOp : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
> @@ -1309,11 +1222,11 @@ public:
> return static_cast<TIL_BinaryOpcode>(Flags);
> }
>
> - SExpr *expr0() { return Expr0.get(); }
> - const SExpr *expr0() const { return Expr0.get(); }
> + SExpr *expr0() { return Expr0; }
> + const SExpr *expr0() const { return Expr0; }
>
> - SExpr *expr1() { return Expr1.get(); }
> - const SExpr *expr1() const { return Expr1.get(); }
> + SExpr *expr1() { return Expr1; }
> + const SExpr *expr1() const { return Expr1; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1335,12 +1248,14 @@ public:
> }
>
> private:
> - SExprRef Expr0;
> - SExprRef Expr1;
> + SExpr* Expr0;
> + SExpr* Expr1;
> };
>
>
> -// Cast expression
> +/// Cast expressions.
> +/// Cast expressions are essentially unary operations, but we treat them
> +/// as a distinct AST node because they only change the type of the result.
> class Cast : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
> @@ -1352,8 +1267,8 @@ public:
> return static_cast<TIL_CastOpcode>(Flags);
> }
>
> - SExpr *expr() { return Expr0.get(); }
> - const SExpr *expr() const { return Expr0.get(); }
> + SExpr *expr() { return Expr0; }
> + const SExpr *expr() const { return Expr0; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1371,16 +1286,18 @@ public:
> }
>
> private:
> - SExprRef Expr0;
> + SExpr* Expr0;
> };
>
>
> class SCFG;
>
>
> +/// Phi Node, for code in SSA form.
> +/// Each Phi node has an array of possible values that it can take,
> +/// depending on where control flow comes from.
> class Phi : public SExpr {
> public:
> - // TODO: change to SExprRef
> typedef SimpleArray<SExpr *> ValArray;
>
> // In minimal SSA form, all Phi nodes are MultiVal.
> @@ -1394,9 +1311,12 @@ public:
>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
>
> - Phi() : SExpr(COP_Phi) {}
> - Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
> - Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
> + Phi()
> + : SExpr(COP_Phi), Cvdecl(nullptr) {}
> + Phi(MemRegionRef A, unsigned Nvals)
> + : SExpr(COP_Phi), Values(A, Nvals), Cvdecl(nullptr) {}
> + Phi(const Phi &P, ValArray &&Vs)
> + : SExpr(P), Values(std::move(Vs)), Cvdecl(nullptr) {}
>
> const ValArray &values() const { return Values; }
> ValArray &values() { return Values; }
> @@ -1404,6 +1324,12 @@ public:
> Status status() const { return static_cast<Status>(Flags); }
> void setStatus(Status s) { Flags = s; }
>
> + /// Return the clang declaration of the variable for this Phi node, if any.
> + const clang::ValueDecl *clangDecl() const { return Cvdecl; }
> +
> + /// Set the clang variable associated with this Phi node.
> + void setClangDecl(const clang::ValueDecl *Cvd) { Cvdecl = Cvd; }
> +
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> typename V::template Container<typename V::R_SExpr>
> @@ -1423,65 +1349,260 @@ public:
>
> private:
> ValArray Values;
> + const clang::ValueDecl* Cvdecl;
> +};
> +
> +
> +/// Base class for basic block terminators: Branch, Goto, and Return.
> +class Terminator : public SExpr {
> +public:
> + static bool classof(const SExpr *E) {
> + return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;
> + }
> +
> +protected:
> + Terminator(TIL_Opcode Op) : SExpr(Op) {}
> + Terminator(const SExpr &E) : SExpr(E) {}
> +
> +public:
> + /// Return the list of basic blocks that this terminator can branch to.
> + ArrayRef<BasicBlock*> successors();
> +
> + ArrayRef<BasicBlock*> successors() const {
> + return const_cast<const Terminator*>(this)->successors();
> + }
> +};
> +
> +
> +/// Jump to another basic block.
> +/// A goto instruction is essentially a tail-recursive call into another
> +/// block. In addition to the block pointer, it specifies an index into the
> +/// phi nodes of that block. The index can be used to retrieve the "arguments"
> +/// of the call.
> +class Goto : public Terminator {
> +public:
> + static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
> +
> + Goto(BasicBlock *B, unsigned I)
> + : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
> + Goto(const Goto &G, BasicBlock *B, unsigned I)
> + : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
> +
> + const BasicBlock *targetBlock() const { return TargetBlock; }
> + BasicBlock *targetBlock() { return TargetBlock; }
> +
> + /// Returns the index into the
> + unsigned index() const { return Index; }
> +
> + /// Return the list of basic blocks that this terminator can branch to.
> + ArrayRef<BasicBlock*> successors() {
> + return ArrayRef<BasicBlock*>(&TargetBlock, 1);
> + }
> +
> + template <class V>
> + typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> + BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
> + return Vs.reduceGoto(*this, Ntb);
> + }
> +
> + template <class C>
> + typename C::CType compare(const Goto *E, C &Cmp) const {
> + // TODO: implement CFG comparisons
> + return Cmp.comparePointers(this, E);
> + }
> +
> +private:
> + BasicBlock *TargetBlock;
> + unsigned Index;
> +};
> +
> +
> +/// A conditional branch to two other blocks.
> +/// Note that unlike Goto, Branch does not have an index. The target blocks
> +/// must be child-blocks, and cannot have Phi nodes.
> +class Branch : public Terminator {
> +public:
> + static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
> +
> + Branch(SExpr *C, BasicBlock *T, BasicBlock *E)
> + : Terminator(COP_Branch), Condition(C) {
> + Branches[0] = T;
> + Branches[1] = E;
> + }
> + Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)
> + : Terminator(Br), Condition(C) {
> + Branches[0] = T;
> + Branches[1] = E;
> + }
> +
> + const SExpr *condition() const { return Condition; }
> + SExpr *condition() { return Condition; }
> +
> + const BasicBlock *thenBlock() const { return Branches[0]; }
> + BasicBlock *thenBlock() { return Branches[0]; }
> +
> + const BasicBlock *elseBlock() const { return Branches[1]; }
> + BasicBlock *elseBlock() { return Branches[1]; }
> +
> + /// Return the list of basic blocks that this terminator can branch to.
> + ArrayRef<BasicBlock*> successors() {
> + return ArrayRef<BasicBlock*>(Branches, 2);
> + }
> +
> + template <class V>
> + typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> + auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
> + BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);
> + BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);
> + return Vs.reduceBranch(*this, Nc, Ntb, Nte);
> + }
> +
> + template <class C>
> + typename C::CType compare(const Branch *E, C &Cmp) const {
> + // TODO: implement CFG comparisons
> + return Cmp.comparePointers(this, E);
> + }
> +
> +private:
> + SExpr* Condition;
> + BasicBlock *Branches[2];
> +};
> +
> +
> +/// Return from the enclosing function, passing the return value to the caller.
> +/// Only the exit block should end with a return statement.
> +class Return : public Terminator {
> +public:
> + static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }
> +
> + Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}
> + Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}
> +
> + /// Return an empty list.
> + ArrayRef<BasicBlock*> successors() {
> + return ArrayRef<BasicBlock*>();
> + }
> +
> + SExpr *returnValue() { return Retval; }
> + const SExpr *returnValue() const { return Retval; }
> +
> + template <class V>
> + typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> + auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));
> + return Vs.reduceReturn(*this, Ne);
> + }
> +
> + template <class C>
> + typename C::CType compare(const Return *E, C &Cmp) const {
> + return Cmp.compare(Retval, E->Retval);
> + }
> +
> +private:
> + SExpr* Retval;
> };
>
>
> -// A basic block is part of an SCFG, and can be treated as a function in
> -// continuation passing style. It consists of a sequence of phi nodes, which
> -// are "arguments" to the function, followed by a sequence of instructions.
> -// Both arguments and instructions define new variables. It ends with a
> -// branch or goto to another basic block in the same SCFG.
> +inline ArrayRef<BasicBlock*> Terminator::successors() {
> + switch (opcode()) {
> + case COP_Goto: return cast<Goto>(this)->successors();
> + case COP_Branch: return cast<Branch>(this)->successors();
> + case COP_Return: return cast<Return>(this)->successors();
> + default:
> + return ArrayRef<BasicBlock*>();
> + }
> +}
> +
> +
> +/// A basic block is part of an SCFG. It can be treated as a function in
> +/// continuation passing style. A block consists of a sequence of phi nodes,
> +/// which are "arguments" to the function, followed by a sequence of
> +/// instructions. It ends with a Terminator, which is a Branch or Goto to
> +/// another basic block in the same SCFG.
> class BasicBlock : public SExpr {
> public:
> - typedef SimpleArray<Variable*> VarArray;
> + typedef SimpleArray<SExpr*> InstrArray;
> typedef SimpleArray<BasicBlock*> BlockArray;
>
> + // TopologyNodes are used to overlay tree structures on top of the CFG,
> + // such as dominator and postdominator trees. Each block is assigned an
> + // ID in the tree according to a depth-first search. Tree traversals are
> + // always up, towards the parents.
> + struct TopologyNode {
> + TopologyNode() : NodeID(0), SizeOfSubTree(0), Parent(nullptr) {}
> +
> + bool isParentOf(const TopologyNode& OtherNode) {
> + return OtherNode.NodeID > NodeID &&
> + OtherNode.NodeID < NodeID + SizeOfSubTree;
> + }
> +
> + bool isParentOfOrEqual(const TopologyNode& OtherNode) {
> + return OtherNode.NodeID >= NodeID &&
> + OtherNode.NodeID < NodeID + SizeOfSubTree;
> + }
> +
> + int NodeID;
> + int SizeOfSubTree; // Includes this node, so must be > 1.
> + BasicBlock *Parent; // Pointer to parent.
> + };
> +
> static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
>
> - explicit BasicBlock(MemRegionRef A, BasicBlock* P = nullptr)
> + explicit BasicBlock(MemRegionRef A)
> : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),
> - Parent(P), Terminator(nullptr)
> - { }
> - BasicBlock(BasicBlock &B, VarArray &&As, VarArray &&Is, SExpr *T)
> - : SExpr(COP_BasicBlock), Arena(B.Arena), CFGPtr(nullptr), BlockID(0),
> - Parent(nullptr), Args(std::move(As)), Instrs(std::move(Is)),
> - Terminator(T)
> - { }
> -
> - unsigned blockID() const { return BlockID; }
> - unsigned numPredecessors() const { return Predecessors.size(); }
> + Visited(0), TermInstr(nullptr) {}
> + BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,
> + Terminator *T)
> + : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),Visited(0),
> + Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}
> +
> + /// Returns the block ID. Every block has a unique ID in the CFG.
> + int blockID() const { return BlockID; }
> +
> + /// Returns the number of predecessors.
> + size_t numPredecessors() const { return Predecessors.size(); }
> + size_t numSuccessors() const { return successors().size(); }
>
> const SCFG* cfg() const { return CFGPtr; }
> SCFG* cfg() { return CFGPtr; }
>
> - const BasicBlock *parent() const { return Parent; }
> - BasicBlock *parent() { return Parent; }
> + const BasicBlock *parent() const { return DominatorNode.Parent; }
> + BasicBlock *parent() { return DominatorNode.Parent; }
>
> - const VarArray &arguments() const { return Args; }
> - VarArray &arguments() { return Args; }
> + const InstrArray &arguments() const { return Args; }
> + InstrArray &arguments() { return Args; }
>
> - const VarArray &instructions() const { return Instrs; }
> - VarArray &instructions() { return Instrs; }
> + InstrArray &instructions() { return Instrs; }
> + const InstrArray &instructions() const { return Instrs; }
>
> - const BlockArray &predecessors() const { return Predecessors; }
> + /// Returns a list of predecessors.
> + /// The order of predecessors in the list is important; each phi node has
> + /// exactly one argument for each precessor, in the same order.
> BlockArray &predecessors() { return Predecessors; }
> + const BlockArray &predecessors() const { return Predecessors; }
> +
> + ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }
> + ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }
>
> - const SExpr *terminator() const { return Terminator.get(); }
> - SExpr *terminator() { return Terminator.get(); }
> + const Terminator *terminator() const { return TermInstr; }
> + Terminator *terminator() { return TermInstr; }
>
> - void setBlockID(unsigned i) { BlockID = i; }
> - void setParent(BasicBlock *P) { Parent = P; }
> - void setTerminator(SExpr *E) { Terminator.reset(E); }
> -
> - // Add a new argument. V must define a phi-node.
> - void addArgument(Variable *V) {
> - V->setKind(Variable::VK_LetBB);
> + void setTerminator(Terminator *E) { TermInstr = E; }
> +
> + bool Dominates(const BasicBlock &Other) {
> + return DominatorNode.isParentOfOrEqual(Other.DominatorNode);
> + }
> +
> + bool PostDominates(const BasicBlock &Other) {
> + return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);
> + }
> +
> + /// Add a new argument.
> + void addArgument(Phi *V) {
> Args.reserveCheck(1, Arena);
> Args.push_back(V);
> }
> - // Add a new instruction.
> - void addInstruction(Variable *V) {
> - V->setKind(Variable::VK_LetBB);
> + /// Add a new instruction.
> + void addInstruction(SExpr *V) {
> Instrs.reserveCheck(1, Arena);
> Instrs.push_back(V);
> }
> @@ -1498,34 +1619,29 @@ public:
> // Reserve space for NumPreds predecessors, including space in phi nodes.
> void reservePredecessors(unsigned NumPreds);
>
> - // Return the index of BB, or Predecessors.size if BB is not a predecessor.
> + /// Return the index of BB, or Predecessors.size if BB is not a predecessor.
> unsigned findPredecessorIndex(const BasicBlock *BB) const {
> auto I = std::find(Predecessors.cbegin(), Predecessors.cend(), BB);
> return std::distance(Predecessors.cbegin(), I);
> }
>
> - // Set id numbers for variables.
> - void renumberVars();
> -
> template <class V>
> typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
> - typename V::template Container<Variable*> Nas(Vs, Args.size());
> - typename V::template Container<Variable*> Nis(Vs, Instrs.size());
> + typename V::template Container<SExpr*> Nas(Vs, Args.size());
> + typename V::template Container<SExpr*> Nis(Vs, Instrs.size());
>
> // Entering the basic block should do any scope initialization.
> Vs.enterBasicBlock(*this);
>
> - for (auto *A : Args) {
> - auto Ne = Vs.traverse(A->Definition, Vs.subExprCtx(Ctx));
> - Variable *Nvd = Vs.enterScope(*A, Ne);
> - Nas.push_back(Nvd);
> + for (auto *E : Args) {
> + auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
> + Nas.push_back(Ne);
> }
> - for (auto *I : Instrs) {
> - auto Ne = Vs.traverse(I->Definition, Vs.subExprCtx(Ctx));
> - Variable *Nvd = Vs.enterScope(*I, Ne);
> - Nis.push_back(Nvd);
> + for (auto *E : Instrs) {
> + auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
> + Nis.push_back(Ne);
> }
> - auto Nt = Vs.traverse(Terminator, Ctx);
> + auto Nt = Vs.traverse(TermInstr, Ctx);
>
> // Exiting the basic block should handle any scope cleanup.
> Vs.exitBasicBlock(*this);
> @@ -1542,22 +1658,32 @@ public:
> private:
> friend class SCFG;
>
> - MemRegionRef Arena;
> -
> - SCFG *CFGPtr; // The CFG that contains this block.
> - unsigned BlockID; // unique id for this BB in the containing CFG
> - BasicBlock *Parent; // The parent block is the enclosing lexical scope.
> - // The parent dominates this block.
> - BlockArray Predecessors; // Predecessor blocks in the CFG.
> - VarArray Args; // Phi nodes. One argument per predecessor.
> - VarArray Instrs; // Instructions.
> - SExprRef Terminator; // Branch or Goto
> + int renumberInstrs(int id); // assign unique ids to all instructions
> + int topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID);
> + int topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID);
> + void computeDominator();
> + void computePostDominator();
> +
> +private:
> + MemRegionRef Arena; // The arena used to allocate this block.
> + SCFG *CFGPtr; // The CFG that contains this block.
> + int BlockID : 31; // unique id for this BB in the containing CFG.
> + // IDs are in topological order.
> + int Visited : 1; // Bit to determine if a block has been visited
> + // during a traversal.
> + BlockArray Predecessors; // Predecessor blocks in the CFG.
> + InstrArray Args; // Phi nodes. One argument per predecessor.
> + InstrArray Instrs; // Instructions.
> + Terminator* TermInstr; // Terminating instruction
> +
> + TopologyNode DominatorNode; // The dominator tree
> + TopologyNode PostDominatorNode; // The post-dominator tree
> };
>
>
> -// An SCFG is a control-flow graph. It consists of a set of basic blocks, each
> -// of which terminates in a branch to another basic block. There is one
> -// entry point, and one exit point.
> +/// An SCFG is a control-flow graph. It consists of a set of basic blocks,
> +/// each of which terminates in a branch to another basic block. There is one
> +/// entry point, and one exit point.
> class SCFG : public SExpr {
> public:
> typedef SimpleArray<BasicBlock *> BlockArray;
> @@ -1568,20 +1694,29 @@ public:
>
> SCFG(MemRegionRef A, unsigned Nblocks)
> : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks),
> - Entry(nullptr), Exit(nullptr) {
> - Entry = new (A) BasicBlock(A, nullptr);
> - Exit = new (A) BasicBlock(A, Entry);
> - auto *V = new (A) Variable(new (A) Phi());
> + Entry(nullptr), Exit(nullptr), NumInstructions(0), Normal(false) {
> + Entry = new (A) BasicBlock(A);
> + Exit = new (A) BasicBlock(A);
> + auto *V = new (A) Phi();
> Exit->addArgument(V);
> + Exit->setTerminator(new (A) Return(V));
> add(Entry);
> add(Exit);
> }
> SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
> : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)),
> - Entry(nullptr), Exit(nullptr) {
> + Entry(nullptr), Exit(nullptr), NumInstructions(0), Normal(false) {
> // TODO: set entry and exit!
> }
>
> + /// Return true if this CFG is valid.
> + bool valid() const { return Entry && Exit && Blocks.size() > 0; }
> +
> + /// Return true if this CFG has been normalized.
> + /// After normalization, blocks are in topological order, and block and
> + /// instruction IDs have been assigned.
> + bool normal() const { return Normal; }
> +
> iterator begin() { return Blocks.begin(); }
> iterator end() { return Blocks.end(); }
>
> @@ -1596,9 +1731,17 @@ public:
> const BasicBlock *exit() const { return Exit; }
> BasicBlock *exit() { return Exit; }
>
> + /// Return the number of blocks in the CFG.
> + /// Block::blockID() will return a number less than numBlocks();
> + size_t numBlocks() const { return Blocks.size(); }
> +
> + /// Return the total number of instructions in the CFG.
> + /// This is useful for building instruction side-tables;
> + /// A call to SExpr::id() will return a number less than numInstructions().
> + unsigned numInstructions() { return NumInstructions; }
> +
> inline void add(BasicBlock *BB) {
> - assert(BB->CFGPtr == nullptr || BB->CFGPtr == this);
> - BB->setBlockID(Blocks.size());
> + assert(BB->CFGPtr == nullptr);
> BB->CFGPtr = this;
> Blocks.reserveCheck(1, Arena);
> Blocks.push_back(BB);
> @@ -1607,13 +1750,13 @@ public:
> void setEntry(BasicBlock *BB) { Entry = BB; }
> void setExit(BasicBlock *BB) { Exit = BB; }
>
> - // Set varable ids in all blocks.
> - void renumberVars();
> + void computeNormalForm();
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> Vs.enterCFG(*this);
> typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
> +
> for (auto *B : Blocks) {
> Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
> }
> @@ -1623,101 +1766,26 @@ public:
>
> template <class C>
> typename C::CType compare(const SCFG *E, C &Cmp) const {
> - // TODO -- implement CFG comparisons
> + // TODO: implement CFG comparisons
> return Cmp.comparePointers(this, E);
> }
>
> private:
> + void renumberInstrs(); // assign unique ids to all instructions
> +
> +private:
> MemRegionRef Arena;
> BlockArray Blocks;
> BasicBlock *Entry;
> BasicBlock *Exit;
> + unsigned NumInstructions;
> + bool Normal;
> };
>
>
> -class Goto : public SExpr {
> -public:
> - static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
> -
> - Goto(BasicBlock *B, unsigned I)
> - : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
> - Goto(const Goto &G, BasicBlock *B, unsigned I)
> - : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
> -
> - const BasicBlock *targetBlock() const { return TargetBlock; }
> - BasicBlock *targetBlock() { return TargetBlock; }
> -
> - unsigned index() const { return Index; }
> -
> - template <class V>
> - typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> - BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
> - return Vs.reduceGoto(*this, Ntb);
> - }
> -
> - template <class C>
> - typename C::CType compare(const Goto *E, C &Cmp) const {
> - // TODO -- implement CFG comparisons
> - return Cmp.comparePointers(this, E);
> - }
> -
> -private:
> - BasicBlock *TargetBlock;
> - unsigned Index; // Index into Phi nodes of target block.
> -};
> -
> -
> -class Branch : public SExpr {
> -public:
> - static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
> -
> - Branch(SExpr *C, BasicBlock *T, BasicBlock *E, unsigned TI, unsigned EI)
> - : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
> - ThenIndex(TI), ElseIndex(EI)
> - {}
> - Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E,
> - unsigned TI, unsigned EI)
> - : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
> - ThenIndex(TI), ElseIndex(EI)
> - {}
> -
> - const SExpr *condition() const { return Condition; }
> - SExpr *condition() { return Condition; }
> -
> - const BasicBlock *thenBlock() const { return ThenBlock; }
> - BasicBlock *thenBlock() { return ThenBlock; }
> -
> - const BasicBlock *elseBlock() const { return ElseBlock; }
> - BasicBlock *elseBlock() { return ElseBlock; }
> -
> - unsigned thenIndex() const { return ThenIndex; }
> - unsigned elseIndex() const { return ElseIndex; }
> -
> - template <class V>
> - typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> - auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
> - BasicBlock *Ntb = Vs.reduceBasicBlockRef(ThenBlock);
> - BasicBlock *Nte = Vs.reduceBasicBlockRef(ElseBlock);
> - return Vs.reduceBranch(*this, Nc, Ntb, Nte);
> - }
>
> - template <class C>
> - typename C::CType compare(const Branch *E, C &Cmp) const {
> - // TODO -- implement CFG comparisons
> - return Cmp.comparePointers(this, E);
> - }
> -
> -private:
> - SExpr *Condition;
> - BasicBlock *ThenBlock;
> - BasicBlock *ElseBlock;
> - unsigned ThenIndex;
> - unsigned ElseIndex;
> -};
> -
> -
> -// An identifier, e.g. 'foo' or 'x'.
> -// This is a pseduo-term; it will be lowered to a variable or projection.
> +/// An identifier, e.g. 'foo' or 'x'.
> +/// This is a pseduo-term; it will be lowered to a variable or projection.
> class Identifier : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
> @@ -1742,8 +1810,8 @@ private:
> };
>
>
> -// An if-then-else expression.
> -// This is a pseduo-term; it will be lowered to a branch in a CFG.
> +/// An if-then-else expression.
> +/// This is a pseduo-term; it will be lowered to a branch in a CFG.
> class IfThenElse : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
> @@ -1755,14 +1823,14 @@ public:
> : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E)
> { }
>
> - SExpr *condition() { return Condition.get(); } // Address to store to
> - const SExpr *condition() const { return Condition.get(); }
> + SExpr *condition() { return Condition; } // Address to store to
> + const SExpr *condition() const { return Condition; }
>
> - SExpr *thenExpr() { return ThenExpr.get(); } // Value to store
> - const SExpr *thenExpr() const { return ThenExpr.get(); }
> + SExpr *thenExpr() { return ThenExpr; } // Value to store
> + const SExpr *thenExpr() const { return ThenExpr; }
>
> - SExpr *elseExpr() { return ElseExpr.get(); } // Value to store
> - const SExpr *elseExpr() const { return ElseExpr.get(); }
> + SExpr *elseExpr() { return ElseExpr; } // Value to store
> + const SExpr *elseExpr() const { return ElseExpr; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1784,14 +1852,14 @@ public:
> }
>
> private:
> - SExprRef Condition;
> - SExprRef ThenExpr;
> - SExprRef ElseExpr;
> + SExpr* Condition;
> + SExpr* ThenExpr;
> + SExpr* ElseExpr;
> };
>
>
> -// A let-expression, e.g. let x=t; u.
> -// This is a pseduo-term; it will be lowered to instructions in a CFG.
> +/// A let-expression, e.g. let x=t; u.
> +/// This is a pseduo-term; it will be lowered to instructions in a CFG.
> class Let : public SExpr {
> public:
> static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
> @@ -1806,8 +1874,8 @@ public:
> Variable *variableDecl() { return VarDecl; }
> const Variable *variableDecl() const { return VarDecl; }
>
> - SExpr *body() { return Body.get(); }
> - const SExpr *body() const { return Body.get(); }
> + SExpr *body() { return Body; }
> + const SExpr *body() const { return Body; }
>
> template <class V>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -1834,14 +1902,14 @@ public:
>
> private:
> Variable *VarDecl;
> - SExprRef Body;
> + SExpr* Body;
> };
>
>
>
> const SExpr *getCanonicalVal(const SExpr *E);
> SExpr* simplifyToCanonicalVal(SExpr *E);
> -void simplifyIncompleteArg(Variable *V, til::Phi *Ph);
> +void simplifyIncompleteArg(til::Phi *Ph);
>
>
> } // end namespace til
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h?rev=217556&r1=217555&r2=217556&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h Wed Sep 10 17:12:52 2014
> @@ -58,11 +58,16 @@ public:
> // Traverse an expression -- returning a result of type R_SExpr.
> // Override this method to do something for every expression, regardless
> // of which kind it is.
> - typename R::R_SExpr traverse(SExprRef &E, typename R::R_Ctx Ctx) {
> - return traverse(E.get(), Ctx);
> + // E is a reference, so this can be use for in-place updates.
> + // The type T must be a subclass of SExpr.
> + template <class T>
> + typename R::R_SExpr traverse(T* &E, typename R::R_Ctx Ctx) {
> + return traverseSExpr(E, Ctx);
> }
>
> - typename R::R_SExpr traverse(SExpr *E, typename R::R_Ctx Ctx) {
> + // Override this method to do something for every expression.
> + // Does not allow in-place updates.
> + typename R::R_SExpr traverseSExpr(SExpr *E, typename R::R_Ctx Ctx) {
> return traverseByCase(E, Ctx);
> }
>
> @@ -75,6 +80,7 @@ public:
> #include "ThreadSafetyOps.def"
> #undef TIL_OPCODE_DEF
> }
> + return self()->reduceNull();
> }
>
> // Traverse e, by static dispatch on the type "X" of e.
> @@ -92,10 +98,10 @@ public:
> class SimpleReducerBase {
> public:
> enum TraversalKind {
> - TRV_Normal,
> - TRV_Decl,
> - TRV_Lazy,
> - TRV_Type
> + TRV_Normal, // ordinary subexpressions
> + TRV_Decl, // declarations (e.g. function bodies)
> + TRV_Lazy, // expressions that require lazy evaluation
> + TRV_Type // type expressions
> };
>
> // R_Ctx defines a "context" for the traversal, which encodes information
> @@ -147,153 +153,6 @@ protected:
> };
>
>
> -// Implements a traversal that makes a deep copy of an SExpr.
> -// The default behavior of reduce##X(...) is to create a copy of the original.
> -// Subclasses can override reduce##X to implement non-destructive rewriting
> -// passes.
> -template<class Self>
> -class CopyReducer : public Traversal<Self, CopyReducerBase>,
> - public CopyReducerBase {
> -public:
> - CopyReducer(MemRegionRef A) : CopyReducerBase(A) {}
> -
> -public:
> - R_SExpr reduceNull() {
> - return nullptr;
> - }
> - // R_SExpr reduceFuture(...) is never used.
> -
> - R_SExpr reduceUndefined(Undefined &Orig) {
> - return new (Arena) Undefined(Orig);
> - }
> - R_SExpr reduceWildcard(Wildcard &Orig) {
> - return new (Arena) Wildcard(Orig);
> - }
> -
> - R_SExpr reduceLiteral(Literal &Orig) {
> - return new (Arena) Literal(Orig);
> - }
> - template<class T>
> - R_SExpr reduceLiteralT(LiteralT<T> &Orig) {
> - return new (Arena) LiteralT<T>(Orig);
> - }
> - R_SExpr reduceLiteralPtr(LiteralPtr &Orig) {
> - return new (Arena) LiteralPtr(Orig);
> - }
> -
> - R_SExpr reduceFunction(Function &Orig, Variable *Nvd, R_SExpr E0) {
> - return new (Arena) Function(Orig, Nvd, E0);
> - }
> - R_SExpr reduceSFunction(SFunction &Orig, Variable *Nvd, R_SExpr E0) {
> - return new (Arena) SFunction(Orig, Nvd, E0);
> - }
> - R_SExpr reduceCode(Code &Orig, R_SExpr E0, R_SExpr E1) {
> - return new (Arena) Code(Orig, E0, E1);
> - }
> - R_SExpr reduceField(Field &Orig, R_SExpr E0, R_SExpr E1) {
> - return new (Arena) Field(Orig, E0, E1);
> - }
> -
> - R_SExpr reduceApply(Apply &Orig, R_SExpr E0, R_SExpr E1) {
> - return new (Arena) Apply(Orig, E0, E1);
> - }
> - R_SExpr reduceSApply(SApply &Orig, R_SExpr E0, R_SExpr E1) {
> - return new (Arena) SApply(Orig, E0, E1);
> - }
> - R_SExpr reduceProject(Project &Orig, R_SExpr E0) {
> - return new (Arena) Project(Orig, E0);
> - }
> - R_SExpr reduceCall(Call &Orig, R_SExpr E0) {
> - return new (Arena) Call(Orig, E0);
> - }
> -
> - R_SExpr reduceAlloc(Alloc &Orig, R_SExpr E0) {
> - return new (Arena) Alloc(Orig, E0);
> - }
> - R_SExpr reduceLoad(Load &Orig, R_SExpr E0) {
> - return new (Arena) Load(Orig, E0);
> - }
> - R_SExpr reduceStore(Store &Orig, R_SExpr E0, R_SExpr E1) {
> - return new (Arena) Store(Orig, E0, E1);
> - }
> - R_SExpr reduceArrayIndex(ArrayIndex &Orig, R_SExpr E0, R_SExpr E1) {
> - return new (Arena) ArrayIndex(Orig, E0, E1);
> - }
> - R_SExpr reduceArrayAdd(ArrayAdd &Orig, R_SExpr E0, R_SExpr E1) {
> - return new (Arena) ArrayAdd(Orig, E0, E1);
> - }
> - R_SExpr reduceUnaryOp(UnaryOp &Orig, R_SExpr E0) {
> - return new (Arena) UnaryOp(Orig, E0);
> - }
> - R_SExpr reduceBinaryOp(BinaryOp &Orig, R_SExpr E0, R_SExpr E1) {
> - return new (Arena) BinaryOp(Orig, E0, E1);
> - }
> - R_SExpr reduceCast(Cast &Orig, R_SExpr E0) {
> - return new (Arena) Cast(Orig, E0);
> - }
> -
> - R_SExpr reduceSCFG(SCFG &Orig, Container<BasicBlock *> &Bbs) {
> - return nullptr; // FIXME: implement CFG rewriting
> - }
> - R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<Variable *> &As,
> - Container<Variable *> &Is, R_SExpr T) {
> - return nullptr; // FIXME: implement CFG rewriting
> - }
> - R_SExpr reducePhi(Phi &Orig, Container<R_SExpr> &As) {
> - return new (Arena) Phi(Orig, std::move(As.Elems));
> - }
> - R_SExpr reduceGoto(Goto &Orig, BasicBlock *B) {
> - return new (Arena) Goto(Orig, B, 0); // FIXME: set index
> - }
> - R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) {
> - return new (Arena) Branch(O, C, B0, B1, 0, 0); // FIXME: set indices
> - }
> -
> - R_SExpr reduceIdentifier(Identifier &Orig) {
> - return new (Arena) Identifier(Orig);
> - }
> - R_SExpr reduceIfThenElse(IfThenElse &Orig, R_SExpr C, R_SExpr T, R_SExpr E) {
> - return new (Arena) IfThenElse(Orig, C, T, E);
> - }
> - R_SExpr reduceLet(Let &Orig, Variable *Nvd, R_SExpr B) {
> - return new (Arena) Let(Orig, Nvd, B);
> - }
> -
> - // Create a new variable from orig, and push it onto the lexical scope.
> - Variable *enterScope(Variable &Orig, R_SExpr E0) {
> - return new (Arena) Variable(Orig, E0);
> - }
> - // Exit the lexical scope of orig.
> - void exitScope(const Variable &Orig) {}
> -
> - void enterCFG(SCFG &Cfg) {}
> - void exitCFG(SCFG &Cfg) {}
> - void enterBasicBlock(BasicBlock &BB) {}
> - void exitBasicBlock(BasicBlock &BB) {}
> -
> - // Map Variable references to their rewritten definitions.
> - Variable *reduceVariableRef(Variable *Ovd) { return Ovd; }
> -
> - // Map BasicBlock references to their rewritten definitions.
> - BasicBlock *reduceBasicBlockRef(BasicBlock *Obb) { return Obb; }
> -};
> -
> -
> -class SExprCopier : public CopyReducer<SExprCopier> {
> -public:
> - typedef SExpr *R_SExpr;
> -
> - SExprCopier(MemRegionRef A) : CopyReducer(A) { }
> -
> - // Create a copy of e in region a.
> - static SExpr *copy(SExpr *E, MemRegionRef A) {
> - SExprCopier Copier(A);
> - return Copier.traverse(E, TRV_Normal);
> - }
> -};
> -
> -
> -
> // Base class for visit traversals.
> class VisitReducerBase : public SimpleReducerBase {
> public:
> @@ -368,8 +227,8 @@ public:
> R_SExpr reduceSCFG(SCFG &Orig, Container<BasicBlock *> Bbs) {
> return Bbs.Success;
> }
> - R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<Variable *> &As,
> - Container<Variable *> &Is, R_SExpr T) {
> + R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<R_SExpr> &As,
> + Container<R_SExpr> &Is, R_SExpr T) {
> return (As.Success && Is.Success && T);
> }
> R_SExpr reducePhi(Phi &Orig, Container<R_SExpr> &As) {
> @@ -381,6 +240,9 @@ public:
> R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) {
> return C;
> }
> + R_SExpr reduceReturn(Return &O, R_SExpr E) {
> + return E;
> + }
>
> R_SExpr reduceIdentifier(Identifier &Orig) {
> return true;
> @@ -433,7 +295,7 @@ public:
> #include "ThreadSafetyOps.def"
> #undef TIL_OPCODE_DEF
> }
> - llvm_unreachable("invalid enum");
> + return false;
> }
> };
>
> @@ -514,9 +376,9 @@ public:
>
>
>
> -inline std::ostream& operator<<(std::ostream& SS, llvm::StringRef R) {
> - return SS.write(R.data(), R.size());
> -}
> +// inline std::ostream& operator<<(std::ostream& SS, StringRef R) {
> +// return SS.write(R.data(), R.size());
> +// }
The commented code I mentioned.
>
> // Pretty printer for TIL expressions
> template <typename Self, typename StreamType>
> @@ -587,6 +449,7 @@ protected:
> case COP_Phi: return Prec_Atom;
> case COP_Goto: return Prec_Atom;
> case COP_Branch: return Prec_Atom;
> + case COP_Return: return Prec_Other;
>
> case COP_Identifier: return Prec_Atom;
> case COP_IfThenElse: return Prec_Other;
> @@ -595,22 +458,29 @@ protected:
> return Prec_MAX;
> }
>
> - void printBlockLabel(StreamType & SS, const BasicBlock *BB, unsigned index) {
> + void printBlockLabel(StreamType & SS, const BasicBlock *BB, int index) {
> if (!BB) {
> SS << "BB_null";
> return;
> }
> SS << "BB_";
> SS << BB->blockID();
> - SS << ":";
> - SS << index;
> + if (index >= 0) {
> + SS << ":";
> + SS << index;
> + }
> }
>
> - void printSExpr(const SExpr *E, StreamType &SS, unsigned P) {
> +
> + void printSExpr(const SExpr *E, StreamType &SS, unsigned P, bool Sub=true) {
> if (!E) {
> self()->printNull(SS);
> return;
> }
> + if (Sub && E->block() && E->opcode() != COP_Variable) {
> + SS << "_x" << E->id();
> + return;
> + }
> if (self()->precedence(E) > P) {
> // Wrap expr in () if necessary.
> SS << "(";
> @@ -740,20 +610,11 @@ protected:
> SS << E->clangDecl()->getNameAsString();
> }
>
> - void printVariable(const Variable *V, StreamType &SS, bool IsVarDecl = false) {
> - if (!IsVarDecl && Cleanup) {
> - const SExpr* E = getCanonicalVal(V);
> - if (E != V) {
> - printSExpr(E, SS, Prec_Atom);
> - return;
> - }
> - }
> - if (V->kind() == Variable::VK_LetBB)
> - SS << V->name() << V->getBlockID() << "_" << V->getID();
> - else if (CStyle && V->kind() == Variable::VK_SFun)
> + void printVariable(const Variable *V, StreamType &SS, bool IsVarDecl=false) {
> + if (CStyle && V->kind() == Variable::VK_SFun)
> SS << "this";
> else
> - SS << V->name() << V->getID();
> + SS << V->name() << V->id();
> }
>
> void printFunction(const Function *E, StreamType &SS, unsigned sugared = 0) {
> @@ -927,32 +788,38 @@ protected:
> newline(SS);
> }
>
> +
> + void printBBInstr(const SExpr *E, StreamType &SS) {
> + bool Sub = false;
> + if (E->opcode() == COP_Variable) {
> + auto *V = cast<Variable>(E);
> + SS << "let " << V->name() << V->id() << " = ";
> + E = V->definition();
> + Sub = true;
> + }
> + else if (E->opcode() != COP_Store) {
> + SS << "let _x" << E->id() << " = ";
> + }
> + self()->printSExpr(E, SS, Prec_MAX, Sub);
> + SS << ";";
> + newline(SS);
> + }
> +
> void printBasicBlock(const BasicBlock *E, StreamType &SS) {
> SS << "BB_" << E->blockID() << ":";
> if (E->parent())
> SS << " BB_" << E->parent()->blockID();
> newline(SS);
> - for (auto *A : E->arguments()) {
> - SS << "let ";
> - self()->printVariable(A, SS, true);
> - SS << " = ";
> - self()->printSExpr(A->definition(), SS, Prec_MAX);
> - SS << ";";
> - newline(SS);
> - }
> - for (auto *I : E->instructions()) {
> - if (I->definition()->opcode() != COP_Store) {
> - SS << "let ";
> - self()->printVariable(I, SS, true);
> - SS << " = ";
> - }
> - self()->printSExpr(I->definition(), SS, Prec_MAX);
> - SS << ";";
> - newline(SS);
> - }
> +
> + for (auto *A : E->arguments())
> + printBBInstr(A, SS);
> +
> + for (auto *I : E->instructions())
> + printBBInstr(I, SS);
> +
> const SExpr *T = E->terminator();
> if (T) {
> - self()->printSExpr(T, SS, Prec_MAX);
> + self()->printSExpr(T, SS, Prec_MAX, false);
> SS << ";";
> newline(SS);
> }
> @@ -983,9 +850,14 @@ protected:
> SS << "branch (";
> self()->printSExpr(E->condition(), SS, Prec_MAX);
> SS << ") ";
> - printBlockLabel(SS, E->thenBlock(), E->thenIndex());
> + printBlockLabel(SS, E->thenBlock(), -1);
> SS << " ";
> - printBlockLabel(SS, E->elseBlock(), E->elseIndex());
> + printBlockLabel(SS, E->elseBlock(), -1);
> + }
> +
> + void printReturn(const Return *E, StreamType &SS) {
> + SS << "return ";
> + self()->printSExpr(E->returnValue(), SS, Prec_Other);
> }
>
> void printIdentifier(const Identifier *E, StreamType &SS) {
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h?rev=217556&r1=217555&r2=217556&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h Wed Sep 10 17:12:52 2014
> @@ -142,20 +142,35 @@ public:
> assert(i < Size && "Array index out of bounds.");
> return Data[i];
> }
> + T &back() {
> + assert(Size && "No elements in the array.");
> + return Data[Size - 1];
> + }
> + const T &back() const {
> + assert(Size && "No elements in the array.");
> + return Data[Size - 1];
> + }
>
> iterator begin() { return Data; }
> + iterator end() { return Data + Size; }
> +
> const_iterator begin() const { return Data; }
> - iterator end() { return Data + Size; }
> - const_iterator end() const { return Data + Size; }
> + const_iterator end() const { return Data + Size; }
>
> const_iterator cbegin() const { return Data; }
> - const_iterator cend() const { return Data + Size; }
> + const_iterator cend() const { return Data + Size; }
>
> void push_back(const T &Elem) {
> assert(Size < Capacity);
> Data[Size++] = Elem;
> }
>
> + // drop last n elements from array
> + void drop(unsigned n = 0) {
> + assert(Size > n);
> + Size -= n;
> + }
> +
> void setValues(unsigned Sz, const T& C) {
> assert(Sz <= Capacity);
> Size = Sz;
> @@ -173,6 +188,37 @@ public:
> return J - Osz;
> }
>
> + // An adaptor to reverse a simple array
> + class ReverseAdaptor {
> + public:
> + ReverseAdaptor(SimpleArray &Array) : Array(Array) {}
> + // A reverse iterator used by the reverse adaptor
> + class Iterator {
> + public:
> + Iterator(T *Data) : Data(Data) {}
> + T &operator*() { return *Data; }
> + const T &operator*() const { return *Data; }
> + Iterator &operator++() {
> + --Data;
> + return *this;
> + }
> + bool operator!=(Iterator Other) { return Data != Other.Data; }
> +
> + private:
> + T *Data;
> + };
> + Iterator begin() { return Array.end() - 1; }
> + Iterator end() { return Array.begin() - 1; }
> + const Iterator begin() const { return Array.end() - 1; }
> + const Iterator end() const { return Array.begin() - 1; }
> +
> + private:
> + SimpleArray &Array;
> + };
> +
> + const ReverseAdaptor reverse() const { return ReverseAdaptor(*this); }
> + ReverseAdaptor reverse() { return ReverseAdaptor(*this); }
> +
> private:
> // std::max is annoying here, because it requires a reference,
> // thus forcing InitialCapacity to be initialized outside the .h file.
> @@ -187,6 +233,7 @@ private:
> size_t Capacity;
> };
>
> +
> } // end namespace til
>
>
> @@ -312,6 +359,12 @@ private:
> };
>
>
> +inline std::ostream& operator<<(std::ostream& ss, const StringRef str) {
> + ss << str.data();
> + return ss;
> +}
> +
> +
> } // end namespace threadSafety
> } // end namespace clang
>
>
> Modified: cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp?rev=217556&r1=217555&r2=217556&view=diff
> ==============================================================================
> --- cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp (original)
> +++ cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp Wed Sep 10 17:12:52 2014
> @@ -63,11 +63,9 @@ std::string getSourceLiteralString(const
> namespace til {
>
> // Return true if E is a variable that points to an incomplete Phi node.
> -static bool isIncompleteVar(const SExpr *E) {
> - if (const auto *V = dyn_cast<Variable>(E)) {
> - if (const auto *Ph = dyn_cast<Phi>(V->definition()))
> - return Ph->status() == Phi::PH_Incomplete;
> - }
> +static bool isIncompletePhi(const SExpr *E) {
> + if (const auto *Ph = dyn_cast<Phi>(E))
> + return Ph->status() == Phi::PH_Incomplete;
> return false;
> }
>
> @@ -320,6 +318,8 @@ til::SExpr *SExprBuilder::translateCXXTh
> const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
> if (auto *V = dyn_cast<til::Variable>(E))
> return V->clangDecl();
> + if (auto *Ph = dyn_cast<til::Phi>(E))
> + return Ph->clangDecl();
> if (auto *P = dyn_cast<til::Project>(E))
> return P->clangDecl();
> if (auto *L = dyn_cast<til::LiteralPtr>(E))
> @@ -641,14 +641,14 @@ SExprBuilder::translateDeclStmt(const De
> // If E is trivial returns E.
> til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
> const ValueDecl *VD) {
> - if (!E || !CurrentBB || til::ThreadSafetyTIL::isTrivial(E))
> + if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
> return E;
> -
> - til::Variable *V = new (Arena) til::Variable(E, VD);
> - CurrentInstructions.push_back(V);
> + if (VD)
> + E = new (Arena) til::Variable(E, VD);
> + CurrentInstructions.push_back(E);
> if (S)
> - insertStmt(S, V);
> - return V;
> + insertStmt(S, E);
> + return E;
> }
>
>
> @@ -705,11 +705,11 @@ void SExprBuilder::makePhiNodeVar(unsign
> unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
> assert(ArgIndex > 0 && ArgIndex < NPreds);
>
> - til::Variable *V = dyn_cast<til::Variable>(CurrentLVarMap[i].second);
> - if (V && V->getBlockID() == CurrentBB->blockID()) {
> + til::SExpr *CurrE = CurrentLVarMap[i].second;
> + if (CurrE->block() == CurrentBB) {
> // We already have a Phi node in the current block,
> // so just add the new variable to the Phi node.
> - til::Phi *Ph = dyn_cast<til::Phi>(V->definition());
> + til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
> assert(Ph && "Expecting Phi node.");
> if (E)
> Ph->values()[ArgIndex] = E;
> @@ -718,27 +718,26 @@ void SExprBuilder::makePhiNodeVar(unsign
>
> // Make a new phi node: phi(..., E)
> // All phi args up to the current index are set to the current value.
> - til::SExpr *CurrE = CurrentLVarMap[i].second;
> til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
> Ph->values().setValues(NPreds, nullptr);
> for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
> Ph->values()[PIdx] = CurrE;
> if (E)
> Ph->values()[ArgIndex] = E;
> + Ph->setClangDecl(CurrentLVarMap[i].first);
> // If E is from a back-edge, or either E or CurrE are incomplete, then
> // mark this node as incomplete; we may need to remove it later.
> - if (!E || isIncompleteVar(E) || isIncompleteVar(CurrE)) {
> + if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
> Ph->setStatus(til::Phi::PH_Incomplete);
> }
>
> // Add Phi node to current block, and update CurrentLVarMap[i]
> - auto *Var = new (Arena) til::Variable(Ph, CurrentLVarMap[i].first);
> - CurrentArguments.push_back(Var);
> + CurrentArguments.push_back(Ph);
> if (Ph->status() == til::Phi::PH_Incomplete)
> - IncompleteArgs.push_back(Var);
> + IncompleteArgs.push_back(Ph);
>
> CurrentLVarMap.makeWritable();
> - CurrentLVarMap.elem(i).second = Var;
> + CurrentLVarMap.elem(i).second = Ph;
> }
>
>
> @@ -812,15 +811,13 @@ void SExprBuilder::mergePhiNodesBackEdge
> unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
> assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
>
> - for (til::Variable *V : BB->arguments()) {
> - til::Phi *Ph = dyn_cast_or_null<til::Phi>(V->definition());
> + for (til::SExpr *PE : BB->arguments()) {
> + til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
> assert(Ph && "Expecting Phi Node.");
> assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
> - assert(V->clangDecl() && "No local variable for Phi node.");
>
> - til::SExpr *E = lookupVarDecl(V->clangDecl());
> + til::SExpr *E = lookupVarDecl(Ph->clangDecl());
> assert(E && "Couldn't find local variable for Phi node.");
> -
> Ph->values()[ArgIndex] = E;
> }
> }
> @@ -899,8 +896,8 @@ void SExprBuilder::enterCFGBlockBody(con
> // Push those arguments onto the basic block.
> CurrentBB->arguments().reserve(
> static_cast<unsigned>(CurrentArguments.size()), Arena);
> - for (auto *V : CurrentArguments)
> - CurrentBB->addArgument(V);
> + for (auto *A : CurrentArguments)
> + CurrentBB->addArgument(A);
> }
>
>
> @@ -934,7 +931,7 @@ void SExprBuilder::exitCFGBlockBody(cons
> til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
> // TODO: set index
> unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
> - til::SExpr *Tm = new (Arena) til::Goto(BB, Idx);
> + auto *Tm = new (Arena) til::Goto(BB, Idx);
> CurrentBB->setTerminator(Tm);
> }
> else if (N == 2) {
> @@ -942,9 +939,8 @@ void SExprBuilder::exitCFGBlockBody(cons
> til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
> ++It;
> til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
> - unsigned Idx1 = BB1 ? BB1->findPredecessorIndex(CurrentBB) : 0;
> - unsigned Idx2 = BB2 ? BB2->findPredecessorIndex(CurrentBB) : 0;
> - til::SExpr *Tm = new (Arena) til::Branch(C, BB1, BB2, Idx1, Idx2);
> + // FIXME: make sure these arent' critical edges.
> + auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
> CurrentBB->setTerminator(Tm);
> }
> }
> @@ -971,10 +967,9 @@ void SExprBuilder::exitCFGBlock(const CF
>
>
> void SExprBuilder::exitCFG(const CFGBlock *Last) {
> - for (auto *V : IncompleteArgs) {
> - til::Phi *Ph = dyn_cast<til::Phi>(V->definition());
> - if (Ph && Ph->status() == til::Phi::PH_Incomplete)
> - simplifyIncompleteArg(V, Ph);
> + for (auto *Ph : IncompleteArgs) {
> + if (Ph->status() == til::Phi::PH_Incomplete)
> + simplifyIncompleteArg(Ph);
> }
>
> CurrentArguments.clear();
>
> Modified: cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp?rev=217556&r1=217555&r2=217556&view=diff
> ==============================================================================
> --- cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp (original)
> +++ cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp Wed Sep 10 17:12:52 2014
> @@ -48,12 +48,20 @@ StringRef getBinaryOpcodeString(TIL_Bina
> }
>
>
> +SExpr* Future::force() {
> + Status = FS_evaluating;
> + Result = compute();
> + Status = FS_done;
> + return Result;
> +}
> +
> +
> unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
> unsigned Idx = Predecessors.size();
> Predecessors.reserveCheck(1, Arena);
> Predecessors.push_back(Pred);
> - for (Variable *V : Args) {
> - if (Phi* Ph = dyn_cast<Phi>(V->definition())) {
> + for (SExpr *E : Args) {
> + if (Phi* Ph = dyn_cast<Phi>(E)) {
> Ph->values().reserveCheck(1, Arena);
> Ph->values().push_back(nullptr);
> }
> @@ -61,105 +69,73 @@ unsigned BasicBlock::addPredecessor(Basi
> return Idx;
> }
>
> +
> void BasicBlock::reservePredecessors(unsigned NumPreds) {
> Predecessors.reserve(NumPreds, Arena);
> - for (Variable *V : Args) {
> - if (Phi* Ph = dyn_cast<Phi>(V->definition())) {
> + for (SExpr *E : Args) {
> + if (Phi* Ph = dyn_cast<Phi>(E)) {
> Ph->values().reserve(NumPreds, Arena);
> }
> }
> }
>
> -void BasicBlock::renumberVars() {
> - unsigned VID = 0;
> - for (Variable *V : Args) {
> - V->setID(BlockID, VID++);
> - }
> - for (Variable *V : Instrs) {
> - V->setID(BlockID, VID++);
> - }
> -}
> -
> -void SCFG::renumberVars() {
> - for (BasicBlock *B : Blocks) {
> - B->renumberVars();
> - }
> -}
> -
> -
>
> // If E is a variable, then trace back through any aliases or redundant
> // Phi nodes to find the canonical definition.
> const SExpr *getCanonicalVal(const SExpr *E) {
> - while (auto *V = dyn_cast<Variable>(E)) {
> - const SExpr *D;
> - do {
> - if (V->kind() != Variable::VK_Let)
> - return V;
> - D = V->definition();
> - auto *V2 = dyn_cast<Variable>(D);
> - if (V2)
> - V = V2;
> - else
> - break;
> - } while (true);
> -
> - if (ThreadSafetyTIL::isTrivial(D))
> - return D;
> -
> - if (const Phi *Ph = dyn_cast<Phi>(D)) {
> + while (true) {
> + if (auto *V = dyn_cast<Variable>(E)) {
> + if (V->kind() == Variable::VK_Let) {
> + E = V->definition();
> + continue;
> + }
> + }
> + if (const Phi *Ph = dyn_cast<Phi>(E)) {
> if (Ph->status() == Phi::PH_SingleVal) {
> E = Ph->values()[0];
> continue;
> }
> }
> - return V;
> + break;
> }
> return E;
> }
>
>
> -
> // If E is a variable, then trace back through any aliases or redundant
> // Phi nodes to find the canonical definition.
> // The non-const version will simplify incomplete Phi nodes.
> SExpr *simplifyToCanonicalVal(SExpr *E) {
> - while (auto *V = dyn_cast<Variable>(E)) {
> - SExpr *D;
> - do {
> + while (true) {
> + if (auto *V = dyn_cast<Variable>(E)) {
> if (V->kind() != Variable::VK_Let)
> return V;
> - D = V->definition();
> - auto *V2 = dyn_cast<Variable>(D);
> - if (V2)
> - V = V2;
> - else
> - break;
> - } while (true);
> -
> - if (ThreadSafetyTIL::isTrivial(D))
> - return D;
> -
> - if (Phi *Ph = dyn_cast<Phi>(D)) {
> + // Eliminate redundant variables, e.g. x = y, or x = 5,
> + // but keep anything more complicated.
> + if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
> + E = V->definition();
> + continue;
> + }
> + return V;
> + }
> + if (auto *Ph = dyn_cast<Phi>(E)) {
> if (Ph->status() == Phi::PH_Incomplete)
> - simplifyIncompleteArg(V, Ph);
> -
> + simplifyIncompleteArg(Ph);
> + // Eliminate redundant Phi nodes.
> if (Ph->status() == Phi::PH_SingleVal) {
> E = Ph->values()[0];
> continue;
> }
> }
> - return V;
> + return E;
> }
> - return E;
> }
>
>
> -
> // Trace the arguments of an incomplete Phi node to see if they have the same
> // canonical definition. If so, mark the Phi node as redundant.
> // getCanonicalVal() will recursively call simplifyIncompletePhi().
> -void simplifyIncompleteArg(Variable *V, til::Phi *Ph) {
> +void simplifyIncompleteArg(til::Phi *Ph) {
> assert(Ph && Ph->status() == Phi::PH_Incomplete);
>
> // eliminate infinite recursion -- assume that this node is not redundant.
> @@ -168,18 +144,200 @@ void simplifyIncompleteArg(Variable *V,
> SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
> for (unsigned i=1, n=Ph->values().size(); i<n; ++i) {
> SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
> - if (Ei == V)
> + if (Ei == Ph)
> continue; // Recursive reference to itself. Don't count.
> if (Ei != E0) {
> return; // Status is already set to MultiVal.
> }
> }
> Ph->setStatus(Phi::PH_SingleVal);
> - // Eliminate Redundant Phi node.
> - V->setDefinition(Ph->values()[0]);
> }
>
>
> +// Renumbers the arguments and instructions to have unique, sequential IDs.
> +int BasicBlock::renumberInstrs(int ID) {
> + for (auto *Arg : Args)
> + Arg->setID(this, ID++);
> + for (auto *Instr : Instrs)
> + Instr->setID(this, ID++);
> + TermInstr->setID(this, ID++);
> + return ID;
> +}
> +
> +// Sorts the CFGs blocks using a reverse post-order depth-first traversal.
> +// Each block will be written into the Blocks array in order, and its BlockID
> +// will be set to the index in the array. Sorting should start from the entry
> +// block, and ID should be the total number of blocks.
> +int BasicBlock::topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {
> + if (Visited) return ID;
> + Visited = 1;
> + for (auto *Block : successors())
> + ID = Block->topologicalSort(Blocks, ID);
> + // set ID and update block array in place.
> + // We may lose pointers to unreachable blocks.
> + assert(ID > 0);
> + BlockID = --ID;
> + Blocks[BlockID] = this;
> + return ID;
> +}
> +
> +// Performs a reverse topological traversal, starting from the exit block and
> +// following back-edges. The dominator is serialized before any predecessors,
> +// which guarantees that all blocks are serialized after their dominator and
> +// before their post-dominator (because it's a reverse topological traversal).
> +// ID should be initially set to 0.
> +//
> +// This sort assumes that (1) dominators have been computed, (2) there are no
> +// critical edges, and (3) the entry block is reachable from the exit block
> +// and no blocks are accessable via traversal of back-edges from the exit that
> +// weren't accessable via forward edges from the entry.
> +int BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {
> + // Visited is assumed to have been set by the topologicalSort. This pass
> + // assumes !Visited means that we've visited this node before.
> + if (!Visited) return ID;
> + Visited = 0;
> + if (DominatorNode.Parent)
> + ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
> + for (auto *Pred : Predecessors)
> + ID = Pred->topologicalFinalSort(Blocks, ID);
> + assert(ID < Blocks.size());
> + BlockID = ID++;
> + Blocks[BlockID] = this;
> + return ID;
> +}
> +
> +// Computes the immediate dominator of the current block. Assumes that all of
> +// its predecessors have already computed their dominators. This is achieved
> +// by visiting the nodes in topological order.
> +void BasicBlock::computeDominator() {
> + BasicBlock *Candidate = nullptr;
> + // Walk backwards from each predecessor to find the common dominator node.
> + for (auto *Pred : Predecessors) {
> + // Skip back-edges
> + if (Pred->BlockID >= BlockID) continue;
> + // If we don't yet have a candidate for dominator yet, take this one.
> + if (Candidate == nullptr) {
> + Candidate = Pred;
> + continue;
> + }
> + // Walk the alternate and current candidate back to find a common ancestor.
> + auto *Alternate = Pred;
> + while (Alternate != Candidate) {
> + if (Candidate->BlockID > Alternate->BlockID)
> + Candidate = Candidate->DominatorNode.Parent;
> + else
> + Alternate = Alternate->DominatorNode.Parent;
> + }
> + }
> + DominatorNode.Parent = Candidate;
> + DominatorNode.SizeOfSubTree = 1;
> +}
> +
> +// Computes the immediate post-dominator of the current block. Assumes that all
> +// of its successors have already computed their post-dominators. This is
> +// achieved visiting the nodes in reverse topological order.
> +void BasicBlock::computePostDominator() {
> + BasicBlock *Candidate = nullptr;
> + // Walk back from each predecessor to find the common post-dominator node.
> + for (auto *Succ : successors()) {
> + // Skip back-edges
> + if (Succ->BlockID <= BlockID) continue;
> + // If we don't yet have a candidate for post-dominator yet, take this one.
> + if (Candidate == nullptr) {
> + Candidate = Succ;
> + continue;
> + }
> + // Walk the alternate and current candidate back to find a common ancestor.
> + auto *Alternate = Succ;
> + while (Alternate != Candidate) {
> + if (Candidate->BlockID < Alternate->BlockID)
> + Candidate = Candidate->PostDominatorNode.Parent;
> + else
> + Alternate = Alternate->PostDominatorNode.Parent;
> + }
> + }
> + PostDominatorNode.Parent = Candidate;
> + PostDominatorNode.SizeOfSubTree = 1;
> +}
> +
> +
> +// Renumber instructions in all blocks
> +void SCFG::renumberInstrs() {
> + int InstrID = 0;
> + for (auto *Block : Blocks)
> + InstrID = Block->renumberInstrs(InstrID);
> +}
> +
> +
> +static inline void computeNodeSize(BasicBlock *B,
> + BasicBlock::TopologyNode BasicBlock::*TN) {
> + BasicBlock::TopologyNode *N = &(B->*TN);
> + if (N->Parent) {
> + BasicBlock::TopologyNode *P = &(N->Parent->*TN);
> + // Initially set ID relative to the (as yet uncomputed) parent ID
> + N->NodeID = P->SizeOfSubTree;
> + P->SizeOfSubTree += N->SizeOfSubTree;
> + }
> +}
> +
> +static inline void computeNodeID(BasicBlock *B,
> + BasicBlock::TopologyNode BasicBlock::*TN) {
> + BasicBlock::TopologyNode *N = &(B->*TN);
> + if (N->Parent) {
> + BasicBlock::TopologyNode *P = &(N->Parent->*TN);
> + N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node.
> + }
> +}
> +
> +
> +// Normalizes a CFG. Normalization has a few major components:
> +// 1) Removing unreachable blocks.
> +// 2) Computing dominators and post-dominators
> +// 3) Topologically sorting the blocks into the "Blocks" array.
> +void SCFG::computeNormalForm() {
> + // Topologically sort the blocks starting from the entry block.
> + int NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
> + if (NumUnreachableBlocks > 0) {
> + // If there were unreachable blocks shift everything down, and delete them.
> + for (size_t I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
> + size_t NI = I - NumUnreachableBlocks;
> + Blocks[NI] = Blocks[I];
> + Blocks[NI]->BlockID = NI;
> + // FIXME: clean up predecessor pointers to unreachable blocks?
> + }
> + Blocks.drop(NumUnreachableBlocks);
> + }
> +
> + // Compute dominators.
> + for (auto *Block : Blocks)
> + Block->computeDominator();
> +
> + // Once dominators have been computed, the final sort may be performed.
> + int NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
> + assert(NumBlocks == Blocks.size());
> + (void) NumBlocks;
> +
> + // Renumber the instructions now that we have a final sort.
> + renumberInstrs();
> +
> + // Compute post-dominators and compute the sizes of each node in the
> + // dominator tree.
> + for (auto *Block : Blocks.reverse()) {
> + Block->computePostDominator();
> + computeNodeSize(Block, &BasicBlock::DominatorNode);
> + }
> + // Compute the sizes of each node in the post-dominator tree and assign IDs in
> + // the dominator tree.
> + for (auto *Block : Blocks) {
> + computeNodeID(Block, &BasicBlock::DominatorNode);
> + computeNodeSize(Block, &BasicBlock::PostDominatorNode);
> + }
> + // Assign IDs in the post-dominator tree.
> + for (auto *Block : Blocks.reverse()) {
> + computeNodeID(Block, &BasicBlock::PostDominatorNode);
> + }
> +}
> +
> } // end namespace til
> } // end namespace threadSafety
> } // end namespace clang
>
>
> _______________________________________________
> cfe-commits mailing list
> cfe-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits
More information about the cfe-commits
mailing list