r214089 - Thread Safety Analysis: Replace the old and broken SExpr with the new

Reid Kleckner rnk at google.com
Mon Jul 28 10:58:12 PDT 2014


This commit instantiated compareByCase which emitted this warning under
MSVC:
d:\src\llvm\tools\clang\include\clang\analysis\analyses\threadsafetytraverse.h(436)
: warning C4715:
'clang::threadSafety::til::Comparator<clang::threadSafety::til::MatchComparator>::compareByCase'
: not all control paths return a value

I added an unreachable after the switch in r214103 to fix it.


On Mon, Jul 28, 2014 at 8:57 AM, DeLesley Hutchins <delesley at google.com>
wrote:

> Author: delesley
> Date: Mon Jul 28 10:57:27 2014
> New Revision: 214089
>
> URL: http://llvm.org/viewvc/llvm-project?rev=214089&view=rev
> Log:
> Thread Safety Analysis:  Replace the old and broken SExpr with the new
> til::SExpr.  This is a large patch, with many small changes to pretty
> printing
> and expression lowering to make the new SExpr representation equivalent in
> functionality to the old.
>
> Modified:
>     cfe/trunk/include/clang/Analysis/Analyses/ThreadSafety.h
>     cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h
>     cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
>     cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
>     cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h
>     cfe/trunk/lib/Analysis/ThreadSafety.cpp
>     cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp
>     cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp
>     cfe/trunk/lib/Sema/AnalysisBasedWarnings.cpp
>     cfe/trunk/test/SemaCXX/warn-thread-safety-analysis.cpp
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafety.h
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafety.h?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafety.h (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafety.h Mon Jul 28
> 10:57:27 2014
> @@ -24,7 +24,7 @@
>  #include "llvm/ADT/StringRef.h"
>
>  namespace clang {
> -namespace thread_safety {
> +namespace threadSafety {
>
>  /// This enum distinguishes between different kinds of operations that may
>  /// need to be protected by locks. We use this enum in error handling.
> @@ -190,5 +190,5 @@ void runThreadSafetyAnalysis(AnalysisDec
>  /// of access.
>  LockKind getLockKindFromAccessKind(AccessKind AK);
>
> -}} // end namespace clang::thread_safety
> +}} // end namespace clang::threadSafety
>  #endif
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h
> (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h Mon Jul
> 28 10:57:27 2014
> @@ -219,18 +219,16 @@ public:
>    /// should be evaluated; multiple calling contexts can be chained
> together
>    /// by the lock_returned attribute.
>    struct CallingContext {
> +    CallingContext  *Prev;      // The previous context; or 0 if none.
>      const NamedDecl *AttrDecl;  // The decl to which the attr is attached.
>      const Expr *SelfArg;        // Implicit object argument -- e.g. 'this'
>      unsigned NumArgs;           // Number of funArgs
>      const Expr *const *FunArgs; // Function arguments
> -    CallingContext *Prev;       // The previous context; or 0 if none.
>      bool SelfArrow;             // is Self referred to with -> or .?
>
> -    CallingContext(const NamedDecl *D = nullptr, const Expr *S = nullptr,
> -                   unsigned N = 0, const Expr *const *A = nullptr,
> -                   CallingContext *P = nullptr)
> -        : AttrDecl(D), SelfArg(S), NumArgs(N), FunArgs(A), Prev(P),
> -          SelfArrow(false)
> +    CallingContext(CallingContext *P, const NamedDecl *D = nullptr)
> +        : Prev(P), AttrDecl(D), SelfArg(nullptr),
> +          NumArgs(0), FunArgs(nullptr), SelfArrow(false)
>      {}
>    };
>
> @@ -242,6 +240,13 @@ public:
>      SelfVar->setKind(til::Variable::VK_SFun);
>    }
>
> +  // Translate a clang expression in an attribute to a til::SExpr.
> +  // Constructs the context from D, DeclExp, and SelfDecl.
> +  til::SExpr *translateAttrExpr(const Expr *AttrExp, const NamedDecl *D,
> +                                const Expr *DeclExp, VarDecl
> *SelfDecl=nullptr);
> +
> +  til::SExpr *translateAttrExpr(const Expr *AttrExp, CallingContext *Ctx);
> +
>    // Translate a clang statement or expression to a TIL expression.
>    // Also performs substitution of variables; Ctx provides the context.
>    // Dispatches on the type of S.
> @@ -262,7 +267,8 @@ private:
>                                     CallingContext *Ctx) ;
>    til::SExpr *translateCXXThisExpr(const CXXThisExpr *TE, CallingContext
> *Ctx);
>    til::SExpr *translateMemberExpr(const MemberExpr *ME, CallingContext
> *Ctx);
> -  til::SExpr *translateCallExpr(const CallExpr *CE, CallingContext *Ctx);
> +  til::SExpr *translateCallExpr(const CallExpr *CE, CallingContext *Ctx,
> +                                const Expr *SelfE = nullptr);
>    til::SExpr *translateCXXMemberCallExpr(const CXXMemberCallExpr *ME,
>                                           CallingContext *Ctx);
>    til::SExpr *translateCXXOperatorCallExpr(const CXXOperatorCallExpr *OCE,
> @@ -280,10 +286,8 @@ private:
>    til::SExpr *translateCastExpr(const CastExpr *CE, CallingContext *Ctx);
>    til::SExpr *translateArraySubscriptExpr(const ArraySubscriptExpr *E,
>                                            CallingContext *Ctx);
> -  til::SExpr *translateConditionalOperator(const ConditionalOperator *C,
> -                                           CallingContext *Ctx);
> -  til::SExpr *translateBinaryConditionalOperator(
> -      const BinaryConditionalOperator *C, CallingContext *Ctx);
> +  til::SExpr *translateAbstractConditionalOperator(
> +      const AbstractConditionalOperator *C, CallingContext *Ctx);
>
>    til::SExpr *translateDeclStmt(const DeclStmt *S, CallingContext *Ctx);
>
> @@ -362,16 +366,19 @@ private:
>    void mergePhiNodesBackEdge(const CFGBlock *Blk);
>
>  private:
> +  // Set to true when parsing capability expressions, which get translated
> +  // inaccurately in order to hack around smart pointers etc.
> +  static const bool CapabilityExprMode = true;
> +
>    til::MemRegionRef Arena;
>    til::Variable *SelfVar;       // Variable to use for 'this'.  May be
> null.
> -  til::SCFG *Scfg;
>
> +  til::SCFG *Scfg;
>    StatementMap SMap;                       // Map from Stmt to TIL
> Variables
>    LVarIndexMap LVarIdxMap;                 // Indices of clang local vars.
>    std::vector<til::BasicBlock *> BlockMap; // Map from clang to til BBs.
>    std::vector<BlockInfo> BBInfo;           // Extra information per BB.
>                                             // Indexed by clang BlockID.
> -  std::unique_ptr<SExprBuilder::CallingContext> CallCtx; // Root calling
> context
>
>    LVarDefinitionMap CurrentLVarMap;
>    std::vector<til::Variable*> CurrentArguments;
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h Mon Jul 28
> 10:57:27 2014
> @@ -100,6 +100,7 @@ enum TIL_CastOpcode : unsigned char {
>    CAST_truncNum,    // truncate precision of numeric type
>    CAST_toFloat,     // convert to floating point type
>    CAST_toInt,       // convert to integer type
> +  CAST_objToPtr     // convert smart pointer to pointer  (C++ only)
>  };
>
>  const TIL_Opcode       COP_Min  = COP_Future;
> @@ -405,7 +406,8 @@ public:
>      return Vs.reduceVariableRef(this);
>    }
>
> -  template <class C> typename C::CType compare(Variable* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Variable* E, C& Cmp) const {
>      return Cmp.compareVariableRefs(this, E);
>    }
>
> @@ -455,7 +457,7 @@ public:
>    virtual SExpr *create() { return nullptr; }
>
>    // Return the result of this future if it exists, otherwise return null.
> -  SExpr *maybeGetResult() {
> +  SExpr *maybeGetResult() const {
>      return Result;
>    }
>
> @@ -478,7 +480,8 @@ public:
>      return Vs.traverse(Result, Ctx);
>    }
>
> -  template <class C> typename C::CType compare(Future* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Future* E, C& Cmp) const {
>      if (!Result || !E->Result)
>        return Cmp.comparePointers(this, E);
>      return Cmp.compare(Result, E->Result);
> @@ -572,8 +575,9 @@ public:
>      return Vs.reduceUndefined(*this);
>    }
>
> -  template <class C> typename C::CType compare(Undefined* E, C& Cmp) {
> -    return Cmp.comparePointers(Cstmt, E->Cstmt);
> +  template <class C>
> +  typename C::CType compare(const Undefined* E, C& Cmp) const {
> +    return Cmp.trueResult();
>    }
>
>  private:
> @@ -593,7 +597,8 @@ public:
>      return Vs.reduceWildcard(*this);
>    }
>
> -  template <class C> typename C::CType compare(Wildcard* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Wildcard* E, C& Cmp) const {
>      return Cmp.trueResult();
>    }
>  };
> @@ -626,9 +631,10 @@ public:
>
>    template <class V> typename V::R_SExpr traverse(V &Vs, typename
> V::R_Ctx Ctx);
>
> -  template <class C> typename C::CType compare(Literal* E, C& Cmp) {
> -    // TODO -- use value, not pointer equality
> -    return Cmp.comparePointers(Cexpr, E->Cexpr);
> +  template <class C>
> +  typename C::CType compare(const Literal* E, C& Cmp) const {
> +    // TODO: defer actual comparison to LiteralT
> +    return Cmp.trueResult();
>    }
>
>  private:
> @@ -727,7 +733,8 @@ public:
>      return Vs.reduceLiteralPtr(*this);
>    }
>
> -  template <class C> typename C::CType compare(LiteralPtr* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const LiteralPtr* E, C& Cmp) const {
>      return Cmp.comparePointers(Cvdecl, E->Cvdecl);
>    }
>
> @@ -769,7 +776,8 @@ public:
>      return Vs.reduceFunction(*this, Nvd, E1);
>    }
>
> -  template <class C> typename C::CType compare(Function* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Function* E, C& Cmp) const {
>      typename C::CType Ct =
>        Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
>      if (Cmp.notTrue(Ct))
> @@ -824,7 +832,8 @@ public:
>      return Vs.reduceSFunction(*this, Nvd, E1);
>    }
>
> -  template <class C> typename C::CType compare(SFunction* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const SFunction* E, C& Cmp) const {
>      Cmp.enterScope(variableDecl(), E->variableDecl());
>      typename C::CType Ct = Cmp.compare(body(), E->body());
>      Cmp.leaveScope();
> @@ -859,7 +868,8 @@ public:
>      return Vs.reduceCode(*this, Nt, Nb);
>    }
>
> -  template <class C> typename C::CType compare(Code* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Code* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -894,7 +904,8 @@ public:
>      return Vs.reduceField(*this, Nr, Nb);
>    }
>
> -  template <class C> typename C::CType compare(Field* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Field* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(range(), E->range());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -930,7 +941,8 @@ public:
>      return Vs.reduceApply(*this, Nf, Na);
>    }
>
> -  template <class C> typename C::CType compare(Apply* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Apply* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(fun(), E->fun());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -958,7 +970,7 @@ public:
>    SExpr *arg() { return Arg.get() ? Arg.get() : Sfun.get(); }
>    const SExpr *arg() const { return Arg.get() ? Arg.get() : Sfun.get(); }
>
> -  bool isDelegation() const { return Arg == nullptr; }
> +  bool isDelegation() const { return Arg != nullptr; }
>
>    template <class V>
>    typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
> @@ -968,7 +980,8 @@ public:
>      return Vs.reduceSApply(*this, Nf, Na);
>    }
>
> -  template <class C> typename C::CType compare(SApply* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const SApply* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
>      if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
>        return Ct;
> @@ -989,7 +1002,7 @@ public:
>    Project(SExpr *R, StringRef SName)
>        : SExpr(COP_Project), Rec(R), SlotName(SName), Cvdecl(nullptr)
>    { }
> -  Project(SExpr *R, clang::ValueDecl *Cvd)
> +  Project(SExpr *R, const clang::ValueDecl *Cvd)
>        : SExpr(COP_Project), Rec(R), SlotName(Cvd->getName()), Cvdecl(Cvd)
>    { }
>    Project(const Project &P, SExpr *R)
> @@ -999,7 +1012,13 @@ public:
>    SExpr *record() { return Rec.get(); }
>    const SExpr *record() const { return Rec.get(); }
>
> -  const clang::ValueDecl *clangValueDecl() const { return Cvdecl; }
> +  const clang::ValueDecl *clangDecl() const { return Cvdecl; }
> +
> +  bool isArrow() const { return (Flags & 0x01) != 0; }
> +  void setArrow(bool b) {
> +    if (b) Flags |= 0x01;
> +    else Flags &= 0xFFFE;
> +  }
>
>    StringRef slotName() const {
>      if (Cvdecl)
> @@ -1014,7 +1033,8 @@ public:
>      return Vs.reduceProject(*this, Nr);
>    }
>
> -  template <class C> typename C::CType compare(Project* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Project* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(record(), E->record());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -1024,7 +1044,7 @@ public:
>  private:
>    SExprRef Rec;
>    StringRef SlotName;
> -  clang::ValueDecl *Cvdecl;
> +  const clang::ValueDecl *Cvdecl;
>  };
>
>
> @@ -1048,7 +1068,8 @@ public:
>      return Vs.reduceCall(*this, Nt);
>    }
>
> -  template <class C> typename C::CType compare(Call* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Call* E, C& Cmp) const {
>      return Cmp.compare(target(), E->target());
>    }
>
> @@ -1082,7 +1103,8 @@ public:
>      return Vs.reduceAlloc(*this, Nd);
>    }
>
> -  template <class C> typename C::CType compare(Alloc* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Alloc* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -1111,7 +1133,8 @@ public:
>      return Vs.reduceLoad(*this, Np);
>    }
>
> -  template <class C> typename C::CType compare(Load* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Load* E, C& Cmp) const {
>      return Cmp.compare(pointer(), E->pointer());
>    }
>
> @@ -1142,7 +1165,8 @@ public:
>      return Vs.reduceStore(*this, Np, Nv);
>    }
>
> -  template <class C> typename C::CType compare(Store* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Store* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(destination(), E->destination());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -1178,7 +1202,8 @@ public:
>      return Vs.reduceArrayIndex(*this, Na, Ni);
>    }
>
> -  template <class C> typename C::CType compare(ArrayIndex* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const ArrayIndex* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(array(), E->array());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -1215,7 +1240,8 @@ public:
>      return Vs.reduceArrayAdd(*this, Na, Ni);
>    }
>
> -  template <class C> typename C::CType compare(ArrayAdd* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const ArrayAdd* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(array(), E->array());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -1251,7 +1277,8 @@ public:
>      return Vs.reduceUnaryOp(*this, Ne);
>    }
>
> -  template <class C> typename C::CType compare(UnaryOp* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const UnaryOp* E, C& Cmp) const {
>      typename C::CType Ct =
>        Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
>      if (Cmp.notTrue(Ct))
> @@ -1295,7 +1322,8 @@ public:
>      return Vs.reduceBinaryOp(*this, Ne0, Ne1);
>    }
>
> -  template <class C> typename C::CType compare(BinaryOp* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const BinaryOp* E, C& Cmp) const {
>      typename C::CType Ct =
>        Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
>      if (Cmp.notTrue(Ct))
> @@ -1333,7 +1361,8 @@ public:
>      return Vs.reduceCast(*this, Ne);
>    }
>
> -  template <class C> typename C::CType compare(Cast* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Cast* E, C& Cmp) const {
>      typename C::CType Ct =
>        Cmp.compareIntegers(castOpcode(), E->castOpcode());
>      if (Cmp.notTrue(Ct))
> @@ -1386,7 +1415,8 @@ public:
>      return Vs.reducePhi(*this, Nvs);
>    }
>
> -  template <class C> typename C::CType compare(Phi *E, C &Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Phi *E, C &Cmp) const {
>      // TODO: implement CFG comparisons
>      return Cmp.comparePointers(this, E);
>    }
> @@ -1503,7 +1533,8 @@ public:
>      return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
>    }
>
> -  template <class C> typename C::CType compare(BasicBlock *E, C &Cmp) {
> +  template <class C>
> +  typename C::CType compare(const BasicBlock *E, C &Cmp) const {
>      // TODO: implement CFG comparisons
>      return Cmp.comparePointers(this, E);
>    }
> @@ -1590,7 +1621,8 @@ public:
>      return Vs.reduceSCFG(*this, Bbs);
>    }
>
> -  template <class C> typename C::CType compare(SCFG *E, C &Cmp) {
> +  template <class C>
> +  typename C::CType compare(const SCFG *E, C &Cmp) const {
>      // TODO -- implement CFG comparisons
>      return Cmp.comparePointers(this, E);
>    }
> @@ -1623,7 +1655,8 @@ public:
>      return Vs.reduceGoto(*this, Ntb);
>    }
>
> -  template <class C> typename C::CType compare(Goto *E, C &Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Goto *E, C &Cmp) const {
>      // TODO -- implement CFG comparisons
>      return Cmp.comparePointers(this, E);
>    }
> @@ -1668,7 +1701,8 @@ public:
>      return Vs.reduceBranch(*this, Nc, Ntb, Nte);
>    }
>
> -  template <class C> typename C::CType compare(Branch *E, C &Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Branch *E, C &Cmp) const {
>      // TODO -- implement CFG comparisons
>      return Cmp.comparePointers(this, E);
>    }
> @@ -1698,7 +1732,8 @@ public:
>      return Vs.reduceIdentifier(*this);
>    }
>
> -  template <class C> typename C::CType compare(Identifier* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Identifier* E, C& Cmp) const {
>      return Cmp.compareStrings(name(), E->name());
>    }
>
> @@ -1737,7 +1772,8 @@ public:
>      return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
>    }
>
> -  template <class C> typename C::CType compare(IfThenElse* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const IfThenElse* E, C& Cmp) const {
>      typename C::CType Ct = Cmp.compare(condition(), E->condition());
>      if (Cmp.notTrue(Ct))
>        return Ct;
> @@ -1784,7 +1820,8 @@ public:
>      return Vs.reduceLet(*this, Nvd, E1);
>    }
>
> -  template <class C> typename C::CType compare(Let* E, C& Cmp) {
> +  template <class C>
> +  typename C::CType compare(const Let* E, C& Cmp) const {
>      typename C::CType Ct =
>        Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
>      if (Cmp.notTrue(Ct))
> @@ -1802,7 +1839,8 @@ private:
>
>
>
> -SExpr *getCanonicalVal(SExpr *E);
> +const SExpr *getCanonicalVal(const SExpr *E);
> +SExpr* simplifyToCanonicalVal(SExpr *E);
>  void simplifyIncompleteArg(Variable *V, til::Phi *Ph);
>
>
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
> (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h Mon
> Jul 28 10:57:27 2014
> @@ -19,6 +19,8 @@
>
>  #include "ThreadSafetyTIL.h"
>
> +#include <ostream>
> +
>  namespace clang {
>  namespace threadSafety {
>  namespace til {
> @@ -423,7 +425,7 @@ protected:
>    Self *self() { return reinterpret_cast<Self *>(this); }
>
>  public:
> -  bool compareByCase(SExpr *E1, SExpr* E2) {
> +  bool compareByCase(const SExpr *E1, const SExpr* E2) {
>      switch (E1->opcode()) {
>  #define TIL_OPCODE_DEF(X)
>     \
>      case COP_##X:
>     \
> @@ -449,38 +451,86 @@ public:
>    bool compareStrings (StringRef s, StringRef r)     { return s == r; }
>    bool comparePointers(const void* P, const void* Q) { return P == Q; }
>
> -  bool compare(SExpr *E1, SExpr* E2) {
> +  bool compare(const SExpr *E1, const SExpr* E2) {
>      if (E1->opcode() != E2->opcode())
>        return false;
>      return compareByCase(E1, E2);
>    }
>
>    // TODO -- handle alpha-renaming of variables
> -  void enterScope(Variable* V1, Variable* V2) { }
> +  void enterScope(const Variable* V1, const Variable* V2) { }
>    void leaveScope() { }
>
> -  bool compareVariableRefs(Variable* V1, Variable* V2) {
> +  bool compareVariableRefs(const Variable* V1, const Variable* V2) {
>      return V1 == V2;
>    }
>
> -  static bool compareExprs(SExpr *E1, SExpr* E2) {
> +  static bool compareExprs(const SExpr *E1, const SExpr* E2) {
>      EqualsComparator Eq;
>      return Eq.compare(E1, E2);
>    }
>  };
>
>
> +
> +class MatchComparator : public Comparator<MatchComparator> {
> +public:
> +  // Result type for the comparison, e.g. bool for simple equality,
> +  // or int for lexigraphic comparison (-1, 0, 1).  Must have one value
> which
> +  // denotes "true".
> +  typedef bool CType;
> +
> +  CType trueResult() { return true; }
> +  bool notTrue(CType ct) { return !ct; }
> +
> +  bool compareIntegers(unsigned i, unsigned j)       { return i == j; }
> +  bool compareStrings (StringRef s, StringRef r)     { return s == r; }
> +  bool comparePointers(const void* P, const void* Q) { return P == Q; }
> +
> +  bool compare(const SExpr *E1, const SExpr* E2) {
> +    // Wildcards match anything.
> +    if (E1->opcode() == COP_Wildcard || E2->opcode() == COP_Wildcard)
> +      return true;
> +    // otherwise normal equality.
> +    if (E1->opcode() != E2->opcode())
> +      return false;
> +    return compareByCase(E1, E2);
> +  }
> +
> +  // TODO -- handle alpha-renaming of variables
> +  void enterScope(const Variable* V1, const Variable* V2) { }
> +  void leaveScope() { }
> +
> +  bool compareVariableRefs(const Variable* V1, const Variable* V2) {
> +    return V1 == V2;
> +  }
> +
> +  static bool compareExprs(const SExpr *E1, const SExpr* E2) {
> +    MatchComparator Matcher;
> +    return Matcher.compare(E1, E2);
> +  }
> +};
> +
> +
> +
> +inline std::ostream& operator<<(std::ostream& SS, llvm::StringRef R) {
> +  return SS.write(R.data(), R.size());
> +}
> +
>  // Pretty printer for TIL expressions
>  template <typename Self, typename StreamType>
>  class PrettyPrinter {
>  private:
>    bool Verbose;  // Print out additional information
>    bool Cleanup;  // Omit redundant decls.
> +  bool CStyle;   // Print exprs in C-like syntax.
>
>  public:
> -  PrettyPrinter(bool V = false, bool C = true) : Verbose(V), Cleanup(C) {
> }
> +  PrettyPrinter(bool V = false, bool C = true, bool CS = true)
> +     : Verbose(V), Cleanup(C), CStyle(CS)
> +  {}
>
> -  static void print(SExpr *E, StreamType &SS) {
> +  static void print(const SExpr *E, StreamType &SS) {
>      Self printer;
>      printer.printSExpr(E, SS, Prec_MAX);
>    }
> @@ -502,7 +552,7 @@ protected:
>    static const unsigned Prec_MAX = 6;
>
>    // Return the precedence of a given node, for use in pretty printing.
> -  unsigned precedence(SExpr *E) {
> +  unsigned precedence(const SExpr *E) {
>      switch (E->opcode()) {
>        case COP_Future:     return Prec_Atom;
>        case COP_Undefined:  return Prec_Atom;
> @@ -529,7 +579,7 @@ protected:
>
>        case COP_UnaryOp:    return Prec_Unary;
>        case COP_BinaryOp:   return Prec_Binary;
> -      case COP_Cast:       return Prec_Unary;
> +      case COP_Cast:       return Prec_Atom;
>
>        case COP_SCFG:       return Prec_Decl;
>        case COP_BasicBlock: return Prec_MAX;
> @@ -544,7 +594,7 @@ protected:
>      return Prec_MAX;
>    }
>
> -  void printBlockLabel(StreamType & SS, BasicBlock *BB, unsigned index) {
> +  void printBlockLabel(StreamType & SS, const BasicBlock *BB, unsigned
> index) {
>      if (!BB) {
>        SS << "BB_null";
>        return;
> @@ -555,7 +605,7 @@ protected:
>      SS << index;
>    }
>
> -  void printSExpr(SExpr *E, StreamType &SS, unsigned P) {
> +  void printSExpr(const SExpr *E, StreamType &SS, unsigned P) {
>      if (!E) {
>        self()->printNull(SS);
>        return;
> @@ -582,28 +632,28 @@ protected:
>      SS << "#null";
>    }
>
> -  void printFuture(Future *E, StreamType &SS) {
> +  void printFuture(const Future *E, StreamType &SS) {
>      self()->printSExpr(E->maybeGetResult(), SS, Prec_Atom);
>    }
>
> -  void printUndefined(Undefined *E, StreamType &SS) {
> +  void printUndefined(const Undefined *E, StreamType &SS) {
>      SS << "#undefined";
>    }
>
> -  void printWildcard(Wildcard *E, StreamType &SS) {
> -    SS << "_";
> +  void printWildcard(const Wildcard *E, StreamType &SS) {
> +    SS << "*";
>    }
>
>    template<class T>
> -  void printLiteralT(LiteralT<T> *E, StreamType &SS) {
> +  void printLiteralT(const LiteralT<T> *E, StreamType &SS) {
>      SS << E->value();
>    }
>
> -  void printLiteralT(LiteralT<uint8_t> *E, StreamType &SS) {
> +  void printLiteralT(const LiteralT<uint8_t> *E, StreamType &SS) {
>      SS << "'" << E->value() << "'";
>    }
>
> -  void printLiteral(Literal *E, StreamType &SS) {
> +  void printLiteral(const Literal *E, StreamType &SS) {
>      if (E->clangExpr()) {
>        SS << getSourceLiteralString(E->clangExpr());
>        return;
> @@ -685,13 +735,13 @@ protected:
>      SS << "#lit";
>    }
>
> -  void printLiteralPtr(LiteralPtr *E, StreamType &SS) {
> +  void printLiteralPtr(const LiteralPtr *E, StreamType &SS) {
>      SS << E->clangDecl()->getNameAsString();
>    }
>
> -  void printVariable(Variable *V, StreamType &SS, bool IsVarDecl = false)
> {
> +  void printVariable(const Variable *V, StreamType &SS, bool IsVarDecl =
> false) {
>      if (!IsVarDecl && Cleanup) {
> -      SExpr* E = getCanonicalVal(V);
> +      const SExpr* E = getCanonicalVal(V);
>        if (E != V) {
>          printSExpr(E, SS, Prec_Atom);
>          return;
> @@ -699,11 +749,13 @@ protected:
>      }
>      if (V->kind() == Variable::VK_LetBB)
>        SS << V->name() << V->getBlockID() << "_" << V->getID();
> +    else if (CStyle && V->kind() == Variable::VK_SFun)
> +      SS << "this";
>      else
>        SS << V->name() << V->getID();
>    }
>
> -  void printFunction(Function *E, StreamType &SS, unsigned sugared = 0) {
> +  void printFunction(const Function *E, StreamType &SS, unsigned sugared
> = 0) {
>      switch (sugared) {
>        default:
>          SS << "\\(";   // Lambda
> @@ -719,7 +771,7 @@ protected:
>      SS << ": ";
>      self()->printSExpr(E->variableDecl()->definition(), SS, Prec_MAX);
>
> -    SExpr *B = E->body();
> +    const SExpr *B = E->body();
>      if (B && B->opcode() == COP_Function)
>        self()->printFunction(cast<Function>(B), SS, 2);
>      else {
> @@ -728,29 +780,29 @@ protected:
>      }
>    }
>
> -  void printSFunction(SFunction *E, StreamType &SS) {
> +  void printSFunction(const SFunction *E, StreamType &SS) {
>      SS << "@";
>      self()->printVariable(E->variableDecl(), SS, true);
>      SS << " ";
>      self()->printSExpr(E->body(), SS, Prec_Decl);
>    }
>
> -  void printCode(Code *E, StreamType &SS) {
> +  void printCode(const Code *E, StreamType &SS) {
>      SS << ": ";
>      self()->printSExpr(E->returnType(), SS, Prec_Decl-1);
>      SS << " -> ";
>      self()->printSExpr(E->body(), SS, Prec_Decl);
>    }
>
> -  void printField(Field *E, StreamType &SS) {
> +  void printField(const Field *E, StreamType &SS) {
>      SS << ": ";
>      self()->printSExpr(E->range(), SS, Prec_Decl-1);
>      SS << " = ";
>      self()->printSExpr(E->body(), SS, Prec_Decl);
>    }
>
> -  void printApply(Apply *E, StreamType &SS, bool sugared = false) {
> -    SExpr *F = E->fun();
> +  void printApply(const Apply *E, StreamType &SS, bool sugared = false) {
> +    const SExpr *F = E->fun();
>      if (F->opcode() == COP_Apply) {
>        printApply(cast<Apply>(F), SS, true);
>        SS << ", ";
> @@ -763,7 +815,7 @@ protected:
>        SS << ")$";
>    }
>
> -  void printSApply(SApply *E, StreamType &SS) {
> +  void printSApply(const SApply *E, StreamType &SS) {
>      self()->printSExpr(E->sfun(), SS, Prec_Postfix);
>      if (E->isDelegation()) {
>        SS << "@(";
> @@ -772,14 +824,36 @@ protected:
>      }
>    }
>
> -  void printProject(Project *E, StreamType &SS) {
> +  void printProject(const Project *E, StreamType &SS) {
> +    if (CStyle) {
> +      // Omit the  this->
> +      if (const SApply *SAP = dyn_cast<SApply>(E->record())) {
> +        if (const Variable *V = dyn_cast<Variable>(SAP->sfun())) {
> +          if (!SAP->isDelegation() && V->kind() == Variable::VK_SFun) {
> +            SS << E->slotName();
> +            return;
> +          }
> +        }
> +      }
> +      if (isa<Wildcard>(E->record())) {
> +        // handle existentials
> +        SS << "&";
> +        SS << E->clangDecl()->getQualifiedNameAsString();
> +        return;
> +      }
> +    }
>      self()->printSExpr(E->record(), SS, Prec_Postfix);
> -    SS << ".";
> +    if (CStyle && E->isArrow()) {
> +      SS << "->";
> +    }
> +    else {
> +      SS << ".";
> +    }
>      SS << E->slotName();
>    }
>
> -  void printCall(Call *E, StreamType &SS) {
> -    SExpr *T = E->target();
> +  void printCall(const Call *E, StreamType &SS) {
> +    const SExpr *T = E->target();
>      if (T->opcode() == COP_Apply) {
>        self()->printApply(cast<Apply>(T), SS, true);
>        SS << ")";
> @@ -790,52 +864,60 @@ protected:
>      }
>    }
>
> -  void printAlloc(Alloc *E, StreamType &SS) {
> +  void printAlloc(const Alloc *E, StreamType &SS) {
>      SS << "new ";
>      self()->printSExpr(E->dataType(), SS, Prec_Other-1);
>    }
>
> -  void printLoad(Load *E, StreamType &SS) {
> +  void printLoad(const Load *E, StreamType &SS) {
>      self()->printSExpr(E->pointer(), SS, Prec_Postfix);
> -    SS << "^";
> +    if (!CStyle)
> +      SS << "^";
>    }
>
> -  void printStore(Store *E, StreamType &SS) {
> +  void printStore(const Store *E, StreamType &SS) {
>      self()->printSExpr(E->destination(), SS, Prec_Other-1);
>      SS << " := ";
>      self()->printSExpr(E->source(), SS, Prec_Other-1);
>    }
>
> -  void printArrayIndex(ArrayIndex *E, StreamType &SS) {
> +  void printArrayIndex(const ArrayIndex *E, StreamType &SS) {
>      self()->printSExpr(E->array(), SS, Prec_Postfix);
>      SS << "[";
>      self()->printSExpr(E->index(), SS, Prec_MAX);
>      SS << "]";
>    }
>
> -  void printArrayAdd(ArrayAdd *E, StreamType &SS) {
> +  void printArrayAdd(const ArrayAdd *E, StreamType &SS) {
>      self()->printSExpr(E->array(), SS, Prec_Postfix);
>      SS << " + ";
>      self()->printSExpr(E->index(), SS, Prec_Atom);
>    }
>
> -  void printUnaryOp(UnaryOp *E, StreamType &SS) {
> +  void printUnaryOp(const UnaryOp *E, StreamType &SS) {
>      SS << getUnaryOpcodeString(E->unaryOpcode());
>      self()->printSExpr(E->expr(), SS, Prec_Unary);
>    }
>
> -  void printBinaryOp(BinaryOp *E, StreamType &SS) {
> +  void printBinaryOp(const BinaryOp *E, StreamType &SS) {
>      self()->printSExpr(E->expr0(), SS, Prec_Binary-1);
>      SS << " " << getBinaryOpcodeString(E->binaryOpcode()) << " ";
>      self()->printSExpr(E->expr1(), SS, Prec_Binary-1);
>    }
>
> -  void printCast(Cast *E, StreamType &SS) {
> -    SS << "%";
> +  void printCast(const Cast *E, StreamType &SS) {
> +    if (!CStyle) {
> +      SS << "cast[";
> +      SS << E->castOpcode();
> +      SS << "](";
> +      self()->printSExpr(E->expr(), SS, Prec_Unary);
> +      SS << ")";
> +      return;
> +    }
>      self()->printSExpr(E->expr(), SS, Prec_Unary);
>    }
>
> -  void printSCFG(SCFG *E, StreamType &SS) {
> +  void printSCFG(const SCFG *E, StreamType &SS) {
>      SS << "CFG {\n";
>      for (auto BBI : *E) {
>        printBasicBlock(BBI, SS);
> @@ -844,7 +926,7 @@ protected:
>      newline(SS);
>    }
>
> -  void printBasicBlock(BasicBlock *E, StreamType &SS) {
> +  void printBasicBlock(const BasicBlock *E, StreamType &SS) {
>      SS << "BB_" << E->blockID() << ":";
>      if (E->parent())
>        SS << " BB_" << E->parent()->blockID();
> @@ -867,7 +949,7 @@ protected:
>        SS << ";";
>        newline(SS);
>      }
> -    SExpr *T = E->terminator();
> +    const SExpr *T = E->terminator();
>      if (T) {
>        self()->printSExpr(T, SS, Prec_MAX);
>        SS << ";";
> @@ -876,7 +958,7 @@ protected:
>      newline(SS);
>    }
>
> -  void printPhi(Phi *E, StreamType &SS) {
> +  void printPhi(const Phi *E, StreamType &SS) {
>      SS << "phi(";
>      if (E->status() == Phi::PH_SingleVal)
>        self()->printSExpr(E->values()[0], SS, Prec_MAX);
> @@ -891,12 +973,12 @@ protected:
>      SS << ")";
>    }
>
> -  void printGoto(Goto *E, StreamType &SS) {
> +  void printGoto(const Goto *E, StreamType &SS) {
>      SS << "goto ";
>      printBlockLabel(SS, E->targetBlock(), E->index());
>    }
>
> -  void printBranch(Branch *E, StreamType &SS) {
> +  void printBranch(const Branch *E, StreamType &SS) {
>      SS << "branch (";
>      self()->printSExpr(E->condition(), SS, Prec_MAX);
>      SS << ") ";
> @@ -905,11 +987,19 @@ protected:
>      printBlockLabel(SS, E->elseBlock(), E->elseIndex());
>    }
>
> -  void printIdentifier(Identifier *E, StreamType &SS) {
> +  void printIdentifier(const Identifier *E, StreamType &SS) {
>      SS << E->name();
>    }
>
> -  void printIfThenElse(IfThenElse *E, StreamType &SS) {
> +  void printIfThenElse(const IfThenElse *E, StreamType &SS) {
> +    if (CStyle) {
> +      printSExpr(E->condition(), SS, Prec_Unary);
> +      SS << " ? ";
> +      printSExpr(E->thenExpr(), SS, Prec_Unary);
> +      SS << " : ";
> +      printSExpr(E->elseExpr(), SS, Prec_Unary);
> +      return;
> +    }
>      SS << "if (";
>      printSExpr(E->condition(), SS, Prec_MAX);
>      SS << ") then ";
> @@ -918,7 +1008,7 @@ protected:
>      printSExpr(E->elseExpr(), SS, Prec_Other);
>    }
>
> -  void printLet(Let *E, StreamType &SS) {
> +  void printLet(const Let *E, StreamType &SS) {
>      SS << "let ";
>      printVariable(E->variableDecl(), SS, true);
>      SS << " = ";
> @@ -929,6 +1019,10 @@ protected:
>  };
>
>
> +class StdPrinter : public PrettyPrinter<StdPrinter, std::ostream> { };
> +
> +
> +
>  } // end namespace til
>  } // end namespace threadSafety
>  } // end namespace clang
>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h (original)
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h Mon Jul
> 28 10:57:27 2014
> @@ -144,7 +144,9 @@ public:
>    }
>
>    iterator begin() { return Data; }
> +  const_iterator begin() const { return Data; }
>    iterator end() { return Data + Size; }
> +  const_iterator end() const { return Data + Size; }
>
>    const_iterator cbegin() const { return Data; }
>    const_iterator cend() const { return Data + Size; }
>
> Modified: cfe/trunk/lib/Analysis/ThreadSafety.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafety.cpp?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/lib/Analysis/ThreadSafety.cpp (original)
> +++ cfe/trunk/lib/Analysis/ThreadSafety.cpp Mon Jul 28 10:57:27 2014
> @@ -40,682 +40,107 @@
>  #include "llvm/ADT/StringRef.h"
>  #include "llvm/Support/raw_ostream.h"
>  #include <algorithm>
> +#include <ostream>
> +#include <sstream>
>  #include <utility>
>  #include <vector>
>
> -using namespace clang;
> -using namespace thread_safety;
> +
> +namespace clang {
> +namespace threadSafety {
>
>  // Key method definition
>  ThreadSafetyHandler::~ThreadSafetyHandler() {}
>
> -namespace {
> -
> -/// SExpr implements a simple expression language that is used to store,
> -/// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a
> SExpr
> -/// does not capture surface syntax, and it does not distinguish between
> -/// C++ concepts, like pointers and references, that have no real semantic
> -/// differences.  This simplicity allows SExprs to be meaningfully
> compared,
> -/// e.g.
> -///        (x)          =  x
> -///        (*this).foo  =  this->foo
> -///        *&a          =  a
> -///
> -/// Thread-safety analysis works by comparing lock expressions.  Within
> the
> -/// body of a function, an expression such as "x->foo->bar.mu" will
> resolve to
> -/// a particular mutex object at run-time.  Subsequent occurrences of the
> same
> -/// expression (where "same" means syntactic equality) will refer to the
> same
> -/// run-time object if three conditions hold:
> -/// (1) Local variables in the expression, such as "x" have not changed.
> -/// (2) Values on the heap that affect the expression have not changed.
> -/// (3) The expression involves only pure function calls.
> -///
> -/// The current implementation assumes, but does not verify, that
> multiple uses
> -/// of the same lock expression satisfies these criteria.
> -class SExpr {
> -private:
> -  enum ExprOp {
> -    EOP_Nop,       ///< No-op
> -    EOP_Wildcard,  ///< Matches anything.
> -    EOP_Universal, ///< Universal lock.
> -    EOP_This,      ///< This keyword.
> -    EOP_NVar,      ///< Named variable.
> -    EOP_LVar,      ///< Local variable.
> -    EOP_Dot,       ///< Field access
> -    EOP_Call,      ///< Function call
> -    EOP_MCall,     ///< Method call
> -    EOP_Index,     ///< Array index
> -    EOP_Unary,     ///< Unary operation
> -    EOP_Binary,    ///< Binary operation
> -    EOP_Unknown    ///< Catchall for everything else
> -  };
> -
> -
> -  class SExprNode {
> -   private:
> -    unsigned char  Op;     ///< Opcode of the root node
> -    unsigned char  Flags;  ///< Additional opcode-specific data
> -    unsigned short Sz;     ///< Number of child nodes
> -    const void*    Data;   ///< Additional opcode-specific data
> -
> -   public:
> -    SExprNode(ExprOp O, unsigned F, const void* D)
> -      : Op(static_cast<unsigned char>(O)),
> -        Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
> -    { }
> -
> -    unsigned size() const        { return Sz; }
> -    void     setSize(unsigned S) { Sz = S;    }
> -
> -    ExprOp   kind() const { return static_cast<ExprOp>(Op); }
> -
> -    const NamedDecl* getNamedDecl() const {
> -      assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
> -      return reinterpret_cast<const NamedDecl*>(Data);
> -    }
> -
> -    const NamedDecl* getFunctionDecl() const {
> -      assert(Op == EOP_Call || Op == EOP_MCall);
> -      return reinterpret_cast<const NamedDecl*>(Data);
> -    }
> -
> -    bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
> -    void setArrow(bool A) { Flags = A ? 1 : 0; }
> -
> -    unsigned arity() const {
> -      switch (Op) {
> -        case EOP_Nop:       return 0;
> -        case EOP_Wildcard:  return 0;
> -        case EOP_Universal: return 0;
> -        case EOP_NVar:      return 0;
> -        case EOP_LVar:      return 0;
> -        case EOP_This:      return 0;
> -        case EOP_Dot:       return 1;
> -        case EOP_Call:      return Flags+1;  // First arg is function.
> -        case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
> -        case EOP_Index:     return 2;
> -        case EOP_Unary:     return 1;
> -        case EOP_Binary:    return 2;
> -        case EOP_Unknown:   return Flags;
> -      }
> -      return 0;
> -    }
> -
> -    bool operator==(const SExprNode& Other) const {
> -      // Ignore flags and size -- they don't matter.
> -      return (Op == Other.Op &&
> -              Data == Other.Data);
> -    }
> -
> -    bool operator!=(const SExprNode& Other) const {
> -      return !(*this == Other);
> -    }
> -
> -    bool matches(const SExprNode& Other) const {
> -      return (*this == Other) ||
> -             (Op == EOP_Wildcard) ||
> -             (Other.Op == EOP_Wildcard);
> -    }
> -  };
> -
> -
> -  /// \brief Encapsulates the lexical context of a function call.  The
> lexical
> -  /// context includes the arguments to the call, including the implicit
> object
> -  /// argument.  When an attribute containing a mutex expression is
> attached to
> -  /// a method, the expression may refer to formal parameters of the
> method.
> -  /// Actual arguments must be substituted for formal parameters to derive
> -  /// the appropriate mutex expression in the lexical context where the
> function
> -  /// is called.  PrevCtx holds the context in which the arguments
> themselves
> -  /// should be evaluated; multiple calling contexts can be chained
> together
> -  /// by the lock_returned attribute.
> -  struct CallingContext {
> -    const NamedDecl*   AttrDecl;   // The decl to which the attribute is
> attached.
> -    const Expr*        SelfArg;    // Implicit object argument -- e.g.
> 'this'
> -    bool               SelfArrow;  // is Self referred to with -> or .?
> -    unsigned           NumArgs;    // Number of funArgs
> -    const Expr* const* FunArgs;    // Function arguments
> -    CallingContext*    PrevCtx;    // The previous context; or 0 if none.
> -
> -    CallingContext(const NamedDecl *D)
> -        : AttrDecl(D), SelfArg(nullptr), SelfArrow(false), NumArgs(0),
> -          FunArgs(nullptr), PrevCtx(nullptr) {}
> -  };
> -
> -  typedef SmallVector<SExprNode, 4> NodeVector;
> -
> -private:
> -  // A SExpr is a list of SExprNodes in prefix order.  The Size field
> allows
> -  // the list to be traversed as a tree.
> -  NodeVector NodeVec;
> -
> -private:
> -  unsigned make(ExprOp O, unsigned F = 0, const void *D = nullptr) {
> -    NodeVec.push_back(SExprNode(O, F, D));
> -    return NodeVec.size() - 1;
> -  }
> -
> -  unsigned makeNop() {
> -    return make(EOP_Nop);
> -  }
> -
> -  unsigned makeWildcard() {
> -    return make(EOP_Wildcard);
> -  }
> -
> -  unsigned makeUniversal() {
> -    return make(EOP_Universal);
> -  }
> +class TILPrinter :
> +  public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
>
> -  unsigned makeNamedVar(const NamedDecl *D) {
> -    return make(EOP_NVar, 0, D);
> -  }
> -
> -  unsigned makeLocalVar(const NamedDecl *D) {
> -    return make(EOP_LVar, 0, D);
> -  }
> -
> -  unsigned makeThis() {
> -    return make(EOP_This);
> -  }
>
> -  unsigned makeDot(const NamedDecl *D, bool Arrow) {
> -    return make(EOP_Dot, Arrow ? 1 : 0, D);
> -  }
> -
> -  unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
> -    return make(EOP_Call, NumArgs, D);
> -  }
> -
> -  // Grab the very first declaration of virtual method D
> -  const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
> -    while (true) {
> -      D = D->getCanonicalDecl();
> -      CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
> -                                     E = D->end_overridden_methods();
> -      if (I == E)
> -        return D;  // Method does not override anything
> -      D = *I;      // FIXME: this does not work with multiple inheritance.
> -    }
> -    return nullptr;
> -  }
> -
> -  unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
> -    return make(EOP_MCall, NumArgs, getFirstVirtualDecl(D));
> -  }
> +/// Issue a warning about an invalid lock expression
> +static void warnInvalidLock(ThreadSafetyHandler &Handler,
> +                            const Expr *MutexExp, const NamedDecl *D,
> +                            const Expr *DeclExp, StringRef Kind) {
> +  SourceLocation Loc;
> +  if (DeclExp)
> +    Loc = DeclExp->getExprLoc();
>
> -  unsigned makeIndex() {
> -    return make(EOP_Index);
> -  }
> -
> -  unsigned makeUnary() {
> -    return make(EOP_Unary);
> -  }
> -
> -  unsigned makeBinary() {
> -    return make(EOP_Binary);
> -  }
> -
> -  unsigned makeUnknown(unsigned Arity) {
> -    return make(EOP_Unknown, Arity);
> -  }
> -
> -  inline bool isCalleeArrow(const Expr *E) {
> -    const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
> -    return ME ? ME->isArrow() : false;
> -  }
> -
> -  /// Build an SExpr from the given C++ expression.
> -  /// Recursive function that terminates on DeclRefExpr.
> -  /// Note: this function merely creates a SExpr; it does not check to
> -  /// ensure that the original expression is a valid mutex expression.
> -  ///
> -  /// NDeref returns the number of Derefence and AddressOf operations
> -  /// preceding the Expr; this is used to decide whether to pretty-print
> -  /// SExprs with . or ->.
> -  unsigned buildSExpr(const Expr *Exp, CallingContext *CallCtx,
> -                      int *NDeref = nullptr) {
> -    if (!Exp)
> -      return 0;
> -
> -    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
> -      const NamedDecl *ND =
> cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
> -      const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
> -      if (PV) {
> -        const FunctionDecl *FD =
> -          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
> -        unsigned i = PV->getFunctionScopeIndex();
> -
> -        if (CallCtx && CallCtx->FunArgs &&
> -            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
> -          // Substitute call arguments for references to function
> parameters
> -          assert(i < CallCtx->NumArgs);
> -          return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx,
> NDeref);
> -        }
> -        // Map the param back to the param of the original function
> declaration.
> -        makeNamedVar(FD->getParamDecl(i));
> -        return 1;
> -      }
> -      // Not a function parameter -- just store the reference.
> -      makeNamedVar(ND);
> -      return 1;
> -    } else if (isa<CXXThisExpr>(Exp)) {
> -      // Substitute parent for 'this'
> -      if (CallCtx && CallCtx->SelfArg) {
> -        if (!CallCtx->SelfArrow && NDeref)
> -          // 'this' is a pointer, but self is not, so need to take
> address.
> -          --(*NDeref);
> -        return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
> -      }
> -      else {
> -        makeThis();
> -        return 1;
> -      }
> -    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
> -      const NamedDecl *ND = ME->getMemberDecl();
> -      int ImplicitDeref = ME->isArrow() ? 1 : 0;
> -      unsigned Root = makeDot(ND, false);
> -      unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
> -      NodeVec[Root].setArrow(ImplicitDeref > 0);
> -      NodeVec[Root].setSize(Sz + 1);
> -      return Sz + 1;
> -    } else if (const CXXMemberCallExpr *CMCE =
> dyn_cast<CXXMemberCallExpr>(Exp)) {
> -      // When calling a function with a lock_returned attribute, replace
> -      // the function call with the expression in lock_returned.
> -      const CXXMethodDecl *MD =
> CMCE->getMethodDecl()->getMostRecentDecl();
> -      if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
> -        CallingContext LRCallCtx(CMCE->getMethodDecl());
> -        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
> -        LRCallCtx.SelfArrow = isCalleeArrow(CMCE->getCallee());
> -        LRCallCtx.NumArgs = CMCE->getNumArgs();
> -        LRCallCtx.FunArgs = CMCE->getArgs();
> -        LRCallCtx.PrevCtx = CallCtx;
> -        return buildSExpr(At->getArg(), &LRCallCtx);
> -      }
> -      // Hack to treat smart pointers and iterators as pointers;
> -      // ignore any method named get().
> -      if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
> -          CMCE->getNumArgs() == 0) {
> -        if (NDeref && isCalleeArrow(CMCE->getCallee()))
> -          ++(*NDeref);
> -        return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx,
> NDeref);
> -      }
> -      unsigned NumCallArgs = CMCE->getNumArgs();
> -      unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
> -      unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(),
> CallCtx);
> -      const Expr* const* CallArgs = CMCE->getArgs();
> -      for (unsigned i = 0; i < NumCallArgs; ++i) {
> -        Sz += buildSExpr(CallArgs[i], CallCtx);
> -      }
> -      NodeVec[Root].setSize(Sz + 1);
> -      return Sz + 1;
> -    } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
> -      const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
> -      if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
> -        CallingContext LRCallCtx(CE->getDirectCallee());
> -        LRCallCtx.NumArgs = CE->getNumArgs();
> -        LRCallCtx.FunArgs = CE->getArgs();
> -        LRCallCtx.PrevCtx = CallCtx;
> -        return buildSExpr(At->getArg(), &LRCallCtx);
> -      }
> -      // Treat smart pointers and iterators as pointers;
> -      // ignore the * and -> operators.
> -      if (const CXXOperatorCallExpr *OE =
> dyn_cast<CXXOperatorCallExpr>(CE)) {
> -        OverloadedOperatorKind k = OE->getOperator();
> -        if (k == OO_Star) {
> -          if (NDeref) ++(*NDeref);
> -          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
> -        }
> -        else if (k == OO_Arrow) {
> -          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
> -        }
> -      }
> -      unsigned NumCallArgs = CE->getNumArgs();
> -      unsigned Root = makeCall(NumCallArgs, nullptr);
> -      unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
> -      const Expr* const* CallArgs = CE->getArgs();
> -      for (unsigned i = 0; i < NumCallArgs; ++i) {
> -        Sz += buildSExpr(CallArgs[i], CallCtx);
> -      }
> -      NodeVec[Root].setSize(Sz+1);
> -      return Sz+1;
> -    } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp))
> {
> -      unsigned Root = makeBinary();
> -      unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
> -      Sz += buildSExpr(BOE->getRHS(), CallCtx);
> -      NodeVec[Root].setSize(Sz);
> -      return Sz;
> -    } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
> -      // Ignore & and * operators -- they're no-ops.
> -      // However, we try to figure out whether the expression is a
> pointer,
> -      // so we can use . and -> appropriately in error messages.
> -      if (UOE->getOpcode() == UO_Deref) {
> -        if (NDeref) ++(*NDeref);
> -        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
> -      }
> -      if (UOE->getOpcode() == UO_AddrOf) {
> -        if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
> -          if (DRE->getDecl()->isCXXInstanceMember()) {
> -            // This is a pointer-to-member expression, e.g. &MyClass::mu_.
> -            // We interpret this syntax specially, as a wildcard.
> -            unsigned Root = makeDot(DRE->getDecl(), false);
> -            makeWildcard();
> -            NodeVec[Root].setSize(2);
> -            return 2;
> -          }
> -        }
> -        if (NDeref) --(*NDeref);
> -        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
> -      }
> -      unsigned Root = makeUnary();
> -      unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
> -      NodeVec[Root].setSize(Sz);
> -      return Sz;
> -    } else if (const ArraySubscriptExpr *ASE =
> -               dyn_cast<ArraySubscriptExpr>(Exp)) {
> -      unsigned Root = makeIndex();
> -      unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
> -      Sz += buildSExpr(ASE->getIdx(), CallCtx);
> -      NodeVec[Root].setSize(Sz);
> -      return Sz;
> -    } else if (const AbstractConditionalOperator *CE =
> -               dyn_cast<AbstractConditionalOperator>(Exp)) {
> -      unsigned Root = makeUnknown(3);
> -      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
> -      Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
> -      Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
> -      NodeVec[Root].setSize(Sz);
> -      return Sz;
> -    } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
> -      unsigned Root = makeUnknown(3);
> -      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
> -      Sz += buildSExpr(CE->getLHS(), CallCtx);
> -      Sz += buildSExpr(CE->getRHS(), CallCtx);
> -      NodeVec[Root].setSize(Sz);
> -      return Sz;
> -    } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
> -      return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
> -    } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
> -      return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
> -    } else if (const ExprWithCleanups *EWC =
> dyn_cast<ExprWithCleanups>(Exp)) {
> -      return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
> -    } else if (const CXXBindTemporaryExpr *E =
> dyn_cast<CXXBindTemporaryExpr>(Exp)) {
> -      return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
> -    } else if (isa<CharacterLiteral>(Exp) ||
> -               isa<CXXNullPtrLiteralExpr>(Exp) ||
> -               isa<GNUNullExpr>(Exp) ||
> -               isa<CXXBoolLiteralExpr>(Exp) ||
> -               isa<FloatingLiteral>(Exp) ||
> -               isa<ImaginaryLiteral>(Exp) ||
> -               isa<IntegerLiteral>(Exp) ||
> -               isa<StringLiteral>(Exp) ||
> -               isa<ObjCStringLiteral>(Exp)) {
> -      makeNop();
> -      return 1;  // FIXME: Ignore literals for now
> -    } else {
> -      makeNop();
> -      return 1;  // Ignore.  FIXME: mark as invalid expression?
> -    }
> -  }
> -
> -  /// \brief Construct a SExpr from an expression.
> -  /// \param MutexExp The original mutex expression within an attribute
> -  /// \param DeclExp An expression involving the Decl on which the
> attribute
> -  ///        occurs.
> -  /// \param D  The declaration to which the lock/unlock attribute is
> attached.
> -  void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp,
> -                          const NamedDecl *D, VarDecl *SelfDecl =
> nullptr) {
> -    CallingContext CallCtx(D);
> -
> -    if (MutexExp) {
> -      if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
> -        if (SLit->getString() == StringRef("*"))
> -          // The "*" expr is a universal lock, which essentially turns off
> -          // checks until it is removed from the lockset.
> -          makeUniversal();
> -        else
> -          // Ignore other string literals for now.
> -          makeNop();
> -        return;
> -      }
> -    }
> -
> -    // If we are processing a raw attribute expression, with no
> substitutions.
> -    if (!DeclExp) {
> -      buildSExpr(MutexExp, nullptr);
> -      return;
> -    }
> -
> -    // Examine DeclExp to find SelfArg and FunArgs, which are used to
> substitute
> -    // for formal parameters when we call buildMutexID later.
> -    if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
> -      CallCtx.SelfArg   = ME->getBase();
> -      CallCtx.SelfArrow = ME->isArrow();
> -    } else if (const CXXMemberCallExpr *CE =
> -               dyn_cast<CXXMemberCallExpr>(DeclExp)) {
> -      CallCtx.SelfArg   = CE->getImplicitObjectArgument();
> -      CallCtx.SelfArrow = isCalleeArrow(CE->getCallee());
> -      CallCtx.NumArgs   = CE->getNumArgs();
> -      CallCtx.FunArgs   = CE->getArgs();
> -    } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
> -      CallCtx.NumArgs = CE->getNumArgs();
> -      CallCtx.FunArgs = CE->getArgs();
> -    } else if (const CXXConstructExpr *CE =
> -               dyn_cast<CXXConstructExpr>(DeclExp)) {
> -      CallCtx.SelfArg = nullptr;  // Will be set below
> -      CallCtx.NumArgs = CE->getNumArgs();
> -      CallCtx.FunArgs = CE->getArgs();
> -    } else if (D && isa<CXXDestructorDecl>(D)) {
> -      // There's no such thing as a "destructor call" in the AST.
> -      CallCtx.SelfArg = DeclExp;
> -    }
> -
> -    // Hack to handle constructors, where self cannot be recovered from
> -    // the expression.
> -    if (SelfDecl && !CallCtx.SelfArg) {
> -      DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
> -                          SelfDecl->getLocation());
> -      CallCtx.SelfArg = &SelfDRE;
> -
> -      // If the attribute has no arguments, then assume the argument is
> "this".
> -      if (!MutexExp)
> -        buildSExpr(CallCtx.SelfArg, nullptr);
> -      else  // For most attributes.
> -        buildSExpr(MutexExp, &CallCtx);
> -      return;
> -    }
> +  // FIXME: add a note about the attribute location in MutexExp or D
> +  if (Loc.isValid())
> +    Handler.handleInvalidLockExp(Kind, Loc);
> +}
>
> -    // If the attribute has no arguments, then assume the argument is
> "this".
> -    if (!MutexExp)
> -      buildSExpr(CallCtx.SelfArg, nullptr);
> -    else  // For most attributes.
> -      buildSExpr(MutexExp, &CallCtx);
> -  }
>
> -  /// \brief Get index of next sibling of node i.
> -  unsigned getNextSibling(unsigned i) const {
> -    return i + NodeVec[i].size();
> -  }
> +// Various helper functions on til::SExpr
> +namespace sx {
>
> -public:
> -  explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
> -
> -  /// \param MutexExp The original mutex expression within an attribute
> -  /// \param DeclExp An expression involving the Decl on which the
> attribute
> -  ///        occurs.
> -  /// \param D  The declaration to which the lock/unlock attribute is
> attached.
> -  /// Caller must check isValid() after construction.
> -  SExpr(const Expr *MutexExp, const Expr *DeclExp, const NamedDecl *D,
> -        VarDecl *SelfDecl = nullptr) {
> -    buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
> -  }
> +bool isUniversal(const til::SExpr *E) {
> +  return isa<til::Wildcard>(E);
> +}
>
> -  /// Return true if this is a valid decl sequence.
> -  /// Caller must call this by hand after construction to handle errors.
> -  bool isValid() const {
> -    return !NodeVec.empty();
> -  }
> +bool equals(const til::SExpr *E1, const til::SExpr *E2) {
> +  return til::EqualsComparator::compareExprs(E1, E2);
> +}
>
> -  bool shouldIgnore() const {
> -    // Nop is a mutex that we have decided to deliberately ignore.
> -    assert(NodeVec.size() > 0 && "Invalid Mutex");
> -    return NodeVec[0].kind() == EOP_Nop;
> +const til::SExpr* ignorePtrCasts(const til::SExpr *E) {
> +  if (auto *CE = dyn_cast<til::Cast>(E)) {
> +    if (CE->castOpcode() == til::CAST_objToPtr)
> +      return CE->expr();
>    }
> +  return E;
> +}
>
> -  bool isUniversal() const {
> -    assert(NodeVec.size() > 0 && "Invalid Mutex");
> -    return NodeVec[0].kind() == EOP_Universal;
> -  }
> +bool matches(const til::SExpr *E1, const til::SExpr *E2) {
> +  // We treat a top-level wildcard as the "univsersal" lock.
> +  // It matches everything for the purpose of checking locks, but not
> +  // for unlocking them.
> +  if (isa<til::Wildcard>(E1))
> +    return isa<til::Wildcard>(E2);
> +  if (isa<til::Wildcard>(E2))
> +    return isa<til::Wildcard>(E1);
>
> -  /// Issue a warning about an invalid lock expression
> -  static void warnInvalidLock(ThreadSafetyHandler &Handler,
> -                              const Expr *MutexExp, const Expr *DeclExp,
> -                              const NamedDecl *D, StringRef Kind) {
> -    SourceLocation Loc;
> -    if (DeclExp)
> -      Loc = DeclExp->getExprLoc();
> +  return til::MatchComparator::compareExprs(E1, E2);
> +}
>
> -    // FIXME: add a note about the attribute location in MutexExp or D
> -    if (Loc.isValid())
> -      Handler.handleInvalidLockExp(Kind, Loc);
> -  }
> +bool partiallyMatches(const til::SExpr *E1, const til::SExpr *E2) {
> +  auto *PE1 = dyn_cast_or_null<til::Project>(E1);
> +  if (!PE1)
> +    return false;
> +  auto *PE2 = dyn_cast_or_null<til::Project>(E2);
> +  if (!PE2)
> +    return false;
> +  return PE1->clangDecl() == PE2->clangDecl();
> +}
>
> -  bool operator==(const SExpr &other) const {
> -    return NodeVec == other.NodeVec;
> -  }
> +std::string toString(const til::SExpr *E) {
> +  std::stringstream ss;
> +  til::StdPrinter::print(E, ss);
> +  return ss.str();
> +}
>
> -  bool operator!=(const SExpr &other) const {
> -    return !(*this == other);
> -  }
> +bool shouldIgnore(const til::SExpr *E) {
> +  if (!E)
> +    return true;
> +  // Trap mutex expressions like nullptr, or 0.
> +  // Any literal value is nonsense.
> +  if (isa<til::Literal>(E))
> +    return true;
> +  return false;
> +}
>
> -  bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
> -    if (NodeVec[i].matches(Other.NodeVec[j])) {
> -      unsigned ni = NodeVec[i].arity();
> -      unsigned nj = Other.NodeVec[j].arity();
> -      unsigned n = (ni < nj) ? ni : nj;
> -      bool Result = true;
> -      unsigned ci = i+1;  // first child of i
> -      unsigned cj = j+1;  // first child of j
> -      for (unsigned k = 0; k < n;
> -           ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
> -        Result = Result && matches(Other, ci, cj);
> -      }
> -      return Result;
> -    }
> -    return false;
> -  }
> +}  // end namespace sx
>
> -  // A partial match between a.mu and b.mu returns true a and b have the
> same
> -  // type (and thus mu refers to the same mutex declaration), regardless
> of
> -  // whether a and b are different objects or not.
> -  bool partiallyMatches(const SExpr &Other) const {
> -    if (NodeVec[0].kind() == EOP_Dot)
> -      return NodeVec[0].matches(Other.NodeVec[0]);
> -    return false;
> -  }
>
> -  /// \brief Pretty print a lock expression for use in error messages.
> -  std::string toString(unsigned i = 0) const {
> -    assert(isValid());
> -    if (i >= NodeVec.size())
> -      return "";
> -
> -    const SExprNode* N = &NodeVec[i];
> -    switch (N->kind()) {
> -      case EOP_Nop:
> -        return "_";
> -      case EOP_Wildcard:
> -        return "(?)";
> -      case EOP_Universal:
> -        return "*";
> -      case EOP_This:
> -        return "this";
> -      case EOP_NVar:
> -      case EOP_LVar: {
> -        return N->getNamedDecl()->getNameAsString();
> -      }
> -      case EOP_Dot: {
> -        if (NodeVec[i+1].kind() == EOP_Wildcard) {
> -          std::string S = "&";
> -          S += N->getNamedDecl()->getQualifiedNameAsString();
> -          return S;
> -        }
> -        std::string FieldName = N->getNamedDecl()->getNameAsString();
> -        if (NodeVec[i+1].kind() == EOP_This)
> -          return FieldName;
> -
> -        std::string S = toString(i+1);
> -        if (N->isArrow())
> -          return S + "->" + FieldName;
> -        else
> -          return S + "." + FieldName;
> -      }
> -      case EOP_Call: {
> -        std::string S = toString(i+1) + "(";
> -        unsigned NumArgs = N->arity()-1;
> -        unsigned ci = getNextSibling(i+1);
> -        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
> -          S += toString(ci);
> -          if (k+1 < NumArgs) S += ",";
> -        }
> -        S += ")";
> -        return S;
> -      }
> -      case EOP_MCall: {
> -        std::string S = "";
> -        if (NodeVec[i+1].kind() != EOP_This)
> -          S = toString(i+1) + ".";
> -        if (const NamedDecl *D = N->getFunctionDecl())
> -          S += D->getNameAsString() + "(";
> -        else
> -          S += "#(";
> -        unsigned NumArgs = N->arity()-1;
> -        unsigned ci = getNextSibling(i+1);
> -        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
> -          S += toString(ci);
> -          if (k+1 < NumArgs) S += ",";
> -        }
> -        S += ")";
> -        return S;
> -      }
> -      case EOP_Index: {
> -        std::string S1 = toString(i+1);
> -        std::string S2 = toString(i+1 + NodeVec[i+1].size());
> -        return S1 + "[" + S2 + "]";
> -      }
> -      case EOP_Unary: {
> -        std::string S = toString(i+1);
> -        return "#" + S;
> -      }
> -      case EOP_Binary: {
> -        std::string S1 = toString(i+1);
> -        std::string S2 = toString(i+1 + NodeVec[i+1].size());
> -        return "(" + S1 + "#" + S2 + ")";
> -      }
> -      case EOP_Unknown: {
> -        unsigned NumChildren = N->arity();
> -        if (NumChildren == 0)
> -          return "(...)";
> -        std::string S = "(";
> -        unsigned ci = i+1;
> -        for (unsigned j = 0; j < NumChildren; ++j, ci =
> getNextSibling(ci)) {
> -          S += toString(ci);
> -          if (j+1 < NumChildren) S += "#";
> -        }
> -        S += ")";
> -        return S;
> -      }
> -    }
> -    return "";
> -  }
> -};
>
>  /// \brief A short list of SExprs
> -class MutexIDList : public SmallVector<SExpr, 3> {
> +class MutexIDList : public SmallVector<const til::SExpr*, 3> {
>  public:
>    /// \brief Push M onto list, but discard duplicates.
> -  void push_back_nodup(const SExpr& M) {
> -    if (end() == std::find(begin(), end(), M))
> -      push_back(M);
> +  void push_back_nodup(const til::SExpr *E) {
> +    iterator It = std::find_if(begin(), end(), [=](const til::SExpr *E2) {
> +      return sx::equals(E, E2);
> +    });
> +    if (It == end())
> +      push_back(E);
>    }
>  };
>
> @@ -735,15 +160,15 @@ struct LockData {
>    LockKind LKind;
>    bool     Asserted;           // for asserted locks
>    bool     Managed;            // for ScopedLockable objects
> -  SExpr    UnderlyingMutex;    // for ScopedLockable objects
> +  const til::SExpr* UnderlyingMutex;    // for ScopedLockable objects
>
>    LockData(SourceLocation AcquireLoc, LockKind LKind, bool M=false,
>             bool Asrt=false)
>      : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(Asrt), Managed(M),
> -      UnderlyingMutex(Decl::EmptyShell())
> +      UnderlyingMutex(nullptr)
>    {}
>
> -  LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
> +  LockData(SourceLocation AcquireLoc, LockKind LKind, const til::SExpr
> *Mu)
>      : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(false),
> Managed(false),
>        UnderlyingMutex(Mu)
>    {}
> @@ -771,10 +196,10 @@ struct LockData {
>  /// in the program execution.  Currently, this is information regarding a
> lock
>  /// that is held at that point.
>  struct FactEntry {
> -  SExpr    MutID;
> +  const til::SExpr *MutID;
>    LockData LDat;
>
> -  FactEntry(const SExpr& M, const LockData& L)
> +  FactEntry(const til::SExpr* M, const LockData& L)
>      : MutID(M), LDat(L)
>    { }
>  };
> @@ -789,8 +214,8 @@ private:
>    std::vector<FactEntry> Facts;
>
>  public:
> -  FactID newLock(const SExpr& M, const LockData& L) {
> -    Facts.push_back(FactEntry(M,L));
> +  FactID newLock(const til::SExpr *M, const LockData& L) {
> +    Facts.push_back(FactEntry(M, L));
>      return static_cast<unsigned short>(Facts.size() - 1);
>    }
>
> @@ -824,66 +249,67 @@ public:
>
>    bool isEmpty() const { return FactIDs.size() == 0; }
>
> -  FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
> +  FactID addLock(FactManager& FM, const til::SExpr *M, const LockData& L)
> {
>      FactID F = FM.newLock(M, L);
>      FactIDs.push_back(F);
>      return F;
>    }
>
> -  bool removeLock(FactManager& FM, const SExpr& M) {
> +  bool removeLock(FactManager& FM, const til::SExpr *M) {
>      unsigned n = FactIDs.size();
>      if (n == 0)
>        return false;
>
>      for (unsigned i = 0; i < n-1; ++i) {
> -      if (FM[FactIDs[i]].MutID.matches(M)) {
> +      if (sx::matches(FM[FactIDs[i]].MutID, M)) {
>          FactIDs[i] = FactIDs[n-1];
>          FactIDs.pop_back();
>          return true;
>        }
>      }
> -    if (FM[FactIDs[n-1]].MutID.matches(M)) {
> +    if (sx::matches(FM[FactIDs[n-1]].MutID, M)) {
>        FactIDs.pop_back();
>        return true;
>      }
>      return false;
>    }
>
> -  iterator findLockIter(FactManager &FM, const SExpr &M) {
> +  iterator findLockIter(FactManager &FM, const til::SExpr *M) {
>      return std::find_if(begin(), end(), [&](FactID ID) {
> -      return FM[ID].MutID.matches(M);
> +      return sx::matches(FM[ID].MutID, M);
>      });
>    }
>
> -  LockData *findLock(FactManager &FM, const SExpr &M) const {
> +  LockData *findLock(FactManager &FM, const til::SExpr *M) const {
>      auto I = std::find_if(begin(), end(), [&](FactID ID) {
> -      return FM[ID].MutID.matches(M);
> +      return sx::matches(FM[ID].MutID, M);
>      });
>
>      return I != end() ? &FM[*I].LDat : nullptr;
>    }
>
> -  LockData *findLockUniv(FactManager &FM, const SExpr &M) const {
> +  LockData *findLockUniv(FactManager &FM, const til::SExpr *M) const {
>      auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
> -      const SExpr &Expr = FM[ID].MutID;
> -      return Expr.isUniversal() || Expr.matches(M);
> +      const til::SExpr *E = FM[ID].MutID;
> +      return sx::isUniversal(E) || sx::matches(E, M);
>      });
>
>      return I != end() ? &FM[*I].LDat : nullptr;
>    }
>
> -  FactEntry *findPartialMatch(FactManager &FM, const SExpr &M) const {
> +  FactEntry *findPartialMatch(FactManager &FM, const til::SExpr *M) const
> {
>      auto I = std::find_if(begin(), end(), [&](FactID ID) {
> -      return FM[ID].MutID.partiallyMatches(M);
> +      return sx::partiallyMatches(FM[ID].MutID, M);
>      });
>
>      return I != end() ? &FM[*I] : nullptr;
>    }
>  };
>
> +
>  /// A Lockset maps each SExpr (defined above) to information about how it
> has
>  /// been locked.
> -typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
> +typedef llvm::ImmutableMap<til::SExpr*, LockData> Lockset;
>  typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
>
>  class LocalVariableMap;
> @@ -1408,18 +834,24 @@ static void findBlockLocations(CFG *CFGr
>  class ThreadSafetyAnalyzer {
>    friend class BuildLockset;
>
> +  llvm::BumpPtrAllocator Bpa;
> +  threadSafety::til::MemRegionRef Arena;
> +  threadSafety::SExprBuilder SxBuilder;
> +
>    ThreadSafetyHandler       &Handler;
>    LocalVariableMap          LocalVarMap;
>    FactManager               FactMan;
>    std::vector<CFGBlockInfo> BlockInfo;
>
>  public:
> -  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
> +  ThreadSafetyAnalyzer(ThreadSafetyHandler &H)
> +     : Arena(&Bpa), SxBuilder(Arena), Handler(H) {}
>
> -  void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat,
> +  void addLock(FactSet &FSet, const til::SExpr *Mutex, const LockData
> &LDat,
>                 StringRef DiagKind);
> -  void removeLock(FactSet &FSet, const SExpr &Mutex, SourceLocation
> UnlockLoc,
> -                  bool FullyRemove, LockKind Kind, StringRef DiagKind);
> +  void removeLock(FactSet &FSet, const til::SExpr *Mutex,
> +                  SourceLocation UnlockLoc, bool FullyRemove, LockKind
> Kind,
> +                  StringRef DiagKind);
>
>    template <typename AttrType>
>    void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
> @@ -1533,16 +965,16 @@ ClassifyDiagnostic(const AttrTy *A) {
>  /// \brief Add a new lock to the lockset, warning if the lock is already
> there.
>  /// \param Mutex -- the Mutex expression for the lock
>  /// \param LDat  -- the LockData for the lock
> -void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
> +void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const til::SExpr *Mutex,
>                                     const LockData &LDat, StringRef
> DiagKind) {
>    // FIXME: deal with acquired before/after annotations.
>    // FIXME: Don't always warn when we have support for reentrant locks.
> -  if (Mutex.shouldIgnore())
> +  if (sx::shouldIgnore(Mutex))
>      return;
>
>    if (FSet.findLock(FactMan, Mutex)) {
>      if (!LDat.Asserted)
> -      Handler.handleDoubleLock(DiagKind, Mutex.toString(),
> LDat.AcquireLoc);
> +      Handler.handleDoubleLock(DiagKind, sx::toString(Mutex),
> LDat.AcquireLoc);
>    } else {
>      FSet.addLock(FactMan, Mutex, LDat);
>    }
> @@ -1552,28 +984,28 @@ void ThreadSafetyAnalyzer::addLock(FactS
>  /// \brief Remove a lock from the lockset, warning if the lock is not
> there.
>  /// \param Mutex The lock expression corresponding to the lock to be
> removed
>  /// \param UnlockLoc The source location of the unlock (only used in
> error msg)
> -void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const SExpr &Mutex,
> +void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const til::SExpr
> *Mutex,
>                                        SourceLocation UnlockLoc,
>                                        bool FullyRemove, LockKind
> ReceivedKind,
>                                        StringRef DiagKind) {
> -  if (Mutex.shouldIgnore())
> +  if (sx::shouldIgnore(Mutex))
>      return;
>
>    const LockData *LDat = FSet.findLock(FactMan, Mutex);
>    if (!LDat) {
> -    Handler.handleUnmatchedUnlock(DiagKind, Mutex.toString(), UnlockLoc);
> +    Handler.handleUnmatchedUnlock(DiagKind, sx::toString(Mutex),
> UnlockLoc);
>      return;
>    }
>
>    // Generic lock removal doesn't care about lock kind mismatches, but
>    // otherwise diagnose when the lock kinds are mismatched.
>    if (ReceivedKind != LK_Generic && LDat->LKind != ReceivedKind) {
> -    Handler.handleIncorrectUnlockKind(DiagKind, Mutex.toString(),
> LDat->LKind,
> -                                      ReceivedKind, UnlockLoc);
> +    Handler.handleIncorrectUnlockKind(DiagKind, sx::toString(Mutex),
> +                                      LDat->LKind, ReceivedKind,
> UnlockLoc);
>      return;
>    }
>
> -  if (LDat->UnderlyingMutex.isValid()) {
> +  if (LDat->UnderlyingMutex) {
>      // This is scoped lockable object, which manages the real mutex.
>      if (FullyRemove) {
>        // We're destroying the managing object.
> @@ -1585,7 +1017,7 @@ void ThreadSafetyAnalyzer::removeLock(Fa
>        // managing object.  Warn on dual release.
>        if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
>          Handler.handleUnmatchedUnlock(
> -            DiagKind, LDat->UnderlyingMutex.toString(), UnlockLoc);
> +            DiagKind, sx::toString(LDat->UnderlyingMutex), UnlockLoc);
>        }
>        FSet.removeLock(FactMan, LDat->UnderlyingMutex);
>        return;
> @@ -1603,20 +1035,25 @@ void ThreadSafetyAnalyzer::getMutexIDs(M
>                                         VarDecl *SelfDecl) {
>    if (Attr->args_size() == 0) {
>      // The mutex held is the "this" object.
> -    SExpr Mu(nullptr, Exp, D, SelfDecl);
> -    if (!Mu.isValid())
> -      SExpr::warnInvalidLock(Handler, nullptr, Exp, D,
> -                             ClassifyDiagnostic(Attr));
> -    else
> +    til::SExpr *Mu = SxBuilder.translateAttrExpr(nullptr, D, Exp,
> SelfDecl);
> +    if (Mu && isa<til::Undefined>(Mu)) {
> +       warnInvalidLock(Handler, nullptr, D, Exp,
> ClassifyDiagnostic(Attr));
> +       return;
> +    }
> +    //else
> +    if (Mu)
>        Mtxs.push_back_nodup(Mu);
>      return;
>    }
>
>    for (const auto *Arg : Attr->args()) {
> -    SExpr Mu(Arg, Exp, D, SelfDecl);
> -    if (!Mu.isValid())
> -      SExpr::warnInvalidLock(Handler, Arg, Exp, D,
> ClassifyDiagnostic(Attr));
> -    else
> +    til::SExpr *Mu = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
> +    if (Mu && isa<til::Undefined>(Mu)) {
> +       warnInvalidLock(Handler, nullptr, D, Exp,
> ClassifyDiagnostic(Attr));
> +       return;
> +    }
> +    //else
> +    if (Mu)
>        Mtxs.push_back_nodup(Mu);
>    }
>  }
> @@ -1845,11 +1282,12 @@ void BuildLockset::warnIfMutexNotHeld(co
>                                        StringRef DiagKind) {
>    LockKind LK = getLockKindFromAccessKind(AK);
>
> -  SExpr Mutex(MutexExp, Exp, D);
> -  if (!Mutex.isValid()) {
> -    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D, DiagKind);
> +  til::SExpr *Mutex = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D,
> Exp);
> +  if (!Mutex) {
> +    // TODO: invalid locks?
> +    // warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
>      return;
> -  } else if (Mutex.shouldIgnore()) {
> +  } else if (sx::shouldIgnore(Mutex)) {
>      return;
>    }
>
> @@ -1861,38 +1299,42 @@ void BuildLockset::warnIfMutexNotHeld(co
>      if (FEntry) {
>        // Warn that there's no precise match.
>        LDat = &FEntry->LDat;
> -      std::string PartMatchStr = FEntry->MutID.toString();
> +      std::string PartMatchStr = sx::toString(FEntry->MutID);
>        StringRef   PartMatchName(PartMatchStr);
> -      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
> Mutex.toString(),
> +      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
> +                                           sx::toString(Mutex),
>                                             LK, Exp->getExprLoc(),
>                                             &PartMatchName);
>      } else {
>        // Warn that there's no match at all.
> -      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
> Mutex.toString(),
> +      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
> +                                           sx::toString(Mutex),
>                                             LK, Exp->getExprLoc());
>      }
>      NoError = false;
>    }
>    // Make sure the mutex we found is the right kind.
>    if (NoError && LDat && !LDat->isAtLeast(LK))
> -    Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
> Mutex.toString(), LK,
> -                                         Exp->getExprLoc());
> +    Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
> +                                         sx::toString(Mutex),
> +                                         LK, Exp->getExprLoc());
>  }
>
>  /// \brief Warn if the LSet contains the given lock.
>  void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
>                                     Expr *MutexExp,
>                                     StringRef DiagKind) {
> -  SExpr Mutex(MutexExp, Exp, D);
> -  if (!Mutex.isValid()) {
> -    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D, DiagKind);
> +  til::SExpr *Mutex = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D,
> Exp);
> +  if (!Mutex) {
> +    // TODO: invalid locks?
> +    // warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
>      return;
>    }
>
>    LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
>    if (LDat)
>      Analyzer->Handler.handleFunExcludesLock(
> -        DiagKind, D->getNameAsString(), Mutex.toString(),
> Exp->getExprLoc());
> +        DiagKind, D->getNameAsString(), sx::toString(Mutex),
> Exp->getExprLoc());
>  }
>
>  /// \brief Checks guarded_by and pt_guarded_by attributes.
> @@ -2085,7 +1527,7 @@ void BuildLockset::handleCall(Expr *Exp,
>    if (isScopedVar) {
>      SourceLocation MLoc = VD->getLocation();
>      DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
> VD->getLocation());
> -    SExpr SMutex(&DRE, nullptr, nullptr);
> +    til::SExpr *SMutex = Analyzer->SxBuilder.translateAttrExpr(&DRE,
> nullptr);
>
>      for (const auto &M : ExclusiveLocksToAdd)
>        Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive, M),
> @@ -2093,6 +1535,12 @@ void BuildLockset::handleCall(Expr *Exp,
>      for (const auto &M : SharedLocksToAdd)
>        Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared, M),
>                          CapDiagKind);
> +
> +    // handle corner case where the underlying mutex is invalid
> +    if (ExclusiveLocksToAdd.size() == 0 && SharedLocksToAdd.size() == 0) {
> +      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive),
> +                        CapDiagKind);
> +    }
>    }
>
>    // Remove locks.
> @@ -2254,14 +1702,14 @@ void ThreadSafetyAnalyzer::intersectAndW
>
>    // Find locks in FSet2 that conflict or are not in FSet1, and warn.
>    for (const auto &Fact : FSet2) {
> -    const SExpr &FSet2Mutex = FactMan[Fact].MutID;
> +    const til::SExpr *FSet2Mutex = FactMan[Fact].MutID;
>      const LockData &LDat2 = FactMan[Fact].LDat;
>      FactSet::iterator I1 = FSet1.findLockIter(FactMan, FSet2Mutex);
>
>      if (I1 != FSet1.end()) {
>        const LockData* LDat1 = &FactMan[*I1].LDat;
>        if (LDat1->LKind != LDat2.LKind) {
> -        Handler.handleExclusiveAndShared("mutex", FSet2Mutex.toString(),
> +        Handler.handleExclusiveAndShared("mutex",
> sx::toString(FSet2Mutex),
>                                           LDat2.AcquireLoc,
> LDat1->AcquireLoc);
>          if (Modify && LDat1->LKind != LK_Exclusive) {
>            // Take the exclusive lock, which is the one in FSet2.
> @@ -2273,40 +1721,42 @@ void ThreadSafetyAnalyzer::intersectAndW
>          *I1 = Fact;
>        }
>      } else {
> -      if (LDat2.UnderlyingMutex.isValid()) {
> +      if (LDat2.UnderlyingMutex) {
>          if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
>            // If this is a scoped lock that manages another mutex, and if
> the
>            // underlying mutex is still held, then warn about the
> underlying
>            // mutex.
>            Handler.handleMutexHeldEndOfScope("mutex",
> -
>  LDat2.UnderlyingMutex.toString(),
> +
>  sx::toString(LDat2.UnderlyingMutex),
>                                              LDat2.AcquireLoc, JoinLoc,
> LEK1);
>          }
>        }
> -      else if (!LDat2.Managed && !FSet2Mutex.isUniversal() &&
> !LDat2.Asserted)
> -        Handler.handleMutexHeldEndOfScope("mutex", FSet2Mutex.toString(),
> +      else if (!LDat2.Managed && !sx::isUniversal(FSet2Mutex) &&
> +               !LDat2.Asserted)
> +        Handler.handleMutexHeldEndOfScope("mutex",
> sx::toString(FSet2Mutex),
>                                            LDat2.AcquireLoc, JoinLoc,
> LEK1);
>      }
>    }
>
>    // Find locks in FSet1 that are not in FSet2, and remove them.
>    for (const auto &Fact : FSet1Orig) {
> -    const SExpr &FSet1Mutex = FactMan[Fact].MutID;
> +    const til::SExpr *FSet1Mutex = FactMan[Fact].MutID;
>      const LockData &LDat1 = FactMan[Fact].LDat;
>
>      if (!FSet2.findLock(FactMan, FSet1Mutex)) {
> -      if (LDat1.UnderlyingMutex.isValid()) {
> +      if (LDat1.UnderlyingMutex) {
>          if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
>            // If this is a scoped lock that manages another mutex, and if
> the
>            // underlying mutex is still held, then warn about the
> underlying
>            // mutex.
>            Handler.handleMutexHeldEndOfScope("mutex",
> -
>  LDat1.UnderlyingMutex.toString(),
> +
>  sx::toString(LDat1.UnderlyingMutex),
>                                              LDat1.AcquireLoc, JoinLoc,
> LEK1);
>          }
>        }
> -      else if (!LDat1.Managed && !FSet1Mutex.isUniversal() &&
> !LDat1.Asserted)
> -        Handler.handleMutexHeldEndOfScope("mutex", FSet1Mutex.toString(),
> +      else if (!LDat1.Managed && !sx::isUniversal(FSet1Mutex) &&
> +               !LDat1.Asserted)
> +        Handler.handleMutexHeldEndOfScope("mutex",
> sx::toString(FSet1Mutex),
>                                            LDat1.AcquireLoc, JoinLoc,
> LEK2);
>        if (Modify)
>          FSet1.removeLock(FactMan, FSet1Mutex);
> @@ -2618,11 +2068,6 @@ void ThreadSafetyAnalyzer::runAnalysis(A
>                     false);
>  }
>
> -} // end anonymous namespace
> -
> -
> -namespace clang {
> -namespace thread_safety {
>
>  /// \brief Check a function's CFG for thread-safety violations.
>  ///
> @@ -2647,4 +2092,4 @@ LockKind getLockKindFromAccessKind(Acces
>    llvm_unreachable("Unknown AccessKind");
>  }
>
> -}} // end namespace clang::thread_safety
> +}} // end namespace clang::threadSafety
>
> Modified: cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp (original)
> +++ cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp Mon Jul 28 10:57:27 2014
> @@ -91,6 +91,102 @@ til::SCFG *SExprBuilder::buildCFG(CFGWal
>  }
>
>
> +
> +inline bool isCalleeArrow(const Expr *E) {
> +  const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
> +  return ME ? ME->isArrow() : false;
> +}
> +
> +
> +/// \brief Translate a clang expression in an attribute to a til::SExpr.
> +/// Constructs the context from D, DeclExp, and SelfDecl.
> +///
> +/// \param AttrExp The expression to translate.
> +/// \param D       The declaration to which the attribute is attached.
> +/// \param DeclExp An expression involving the Decl to which the attribute
> +///                is attached.  E.g. the call to a function.
> +til::SExpr *SExprBuilder::translateAttrExpr(const Expr *AttrExp,
> +                                            const NamedDecl *D,
> +                                            const Expr *DeclExp,
> +                                            VarDecl *SelfDecl) {
> +  // If we are processing a raw attribute expression, with no
> substitutions.
> +  if (!DeclExp)
> +    return translateAttrExpr(AttrExp, nullptr);
> +
> +  CallingContext Ctx(nullptr, D);
> +
> +  // Examine DeclExp to find SelfArg and FunArgs, which are used to
> substitute
> +  // for formal parameters when we call buildMutexID later.
> +  if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
> +    Ctx.SelfArg   = ME->getBase();
> +    Ctx.SelfArrow = ME->isArrow();
> +  } else if (const CXXMemberCallExpr *CE =
> +             dyn_cast<CXXMemberCallExpr>(DeclExp)) {
> +    Ctx.SelfArg   = CE->getImplicitObjectArgument();
> +    Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
> +    Ctx.NumArgs   = CE->getNumArgs();
> +    Ctx.FunArgs   = CE->getArgs();
> +  } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
> +    Ctx.NumArgs = CE->getNumArgs();
> +    Ctx.FunArgs = CE->getArgs();
> +  } else if (const CXXConstructExpr *CE =
> +             dyn_cast<CXXConstructExpr>(DeclExp)) {
> +    Ctx.SelfArg = nullptr;  // Will be set below
> +    Ctx.NumArgs = CE->getNumArgs();
> +    Ctx.FunArgs = CE->getArgs();
> +  } else if (D && isa<CXXDestructorDecl>(D)) {
> +    // There's no such thing as a "destructor call" in the AST.
> +    Ctx.SelfArg = DeclExp;
> +  }
> +
> +  // Hack to handle constructors, where self cannot be recovered from
> +  // the expression.
> +  if (SelfDecl && !Ctx.SelfArg) {
> +    DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
> +                        SelfDecl->getLocation());
> +    Ctx.SelfArg = &SelfDRE;
> +
> +    // If the attribute has no arguments, then assume the argument is
> "this".
> +    if (!AttrExp)
> +      return translateAttrExpr(Ctx.SelfArg, nullptr);
> +    else  // For most attributes.
> +      return translateAttrExpr(AttrExp, &Ctx);
> +  }
> +
> +  // If the attribute has no arguments, then assume the argument is
> "this".
> +  if (!AttrExp)
> +    return translateAttrExpr(Ctx.SelfArg, nullptr);
> +  else  // For most attributes.
> +    return translateAttrExpr(AttrExp, &Ctx);
> +}
> +
> +
> +/// \brief Translate a clang expression in an attribute to a til::SExpr.
> +// This assumes a CallingContext has already been created.
> +til::SExpr *SExprBuilder::translateAttrExpr(const Expr *AttrExp,
> +                                            CallingContext *Ctx) {
> +  if (const StringLiteral* SLit =
> dyn_cast_or_null<StringLiteral>(AttrExp)) {
> +    if (SLit->getString() == StringRef("*"))
> +      // The "*" expr is a universal lock, which essentially turns off
> +      // checks until it is removed from the lockset.
> +      return new (Arena) til::Wildcard();
> +    else
> +      // Ignore other string literals for now.
> +      return nullptr;
> +  }
> +
> +  til::SExpr *E = translate(AttrExp, Ctx);
> +
> +  // Hack to deal with smart pointers -- strip off top-level pointer
> casts.
> +  if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
> +    if (CE->castOpcode() == til::CAST_objToPtr)
> +      return CE->expr();
> +  }
> +  return E;
> +}
> +
> +
> +
>  // Translate a clang statement or expression to a TIL expression.
>  // Also performs substitution of variables; Ctx provides the context.
>  // Dispatches on the type of S.
> @@ -125,9 +221,10 @@ til::SExpr *SExprBuilder::translate(cons
>    case Stmt::ArraySubscriptExprClass:
>      return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
>    case Stmt::ConditionalOperatorClass:
> -    return translateConditionalOperator(cast<ConditionalOperator>(S),
> Ctx);
> +    return translateAbstractConditionalOperator(
> +             cast<ConditionalOperator>(S), Ctx);
>    case Stmt::BinaryConditionalOperatorClass:
> -    return translateBinaryConditionalOperator(
> +    return translateAbstractConditionalOperator(
>               cast<BinaryConditionalOperator>(S), Ctx);
>
>    // We treat these as no-ops
> @@ -162,6 +259,7 @@ til::SExpr *SExprBuilder::translate(cons
>  }
>
>
> +
>  til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
>                                                 CallingContext *Ctx) {
>    const ValueDecl *VD =
> cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
> @@ -197,17 +295,72 @@ til::SExpr *SExprBuilder::translateCXXTh
>  }
>
>
> +const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
> +  if (auto *V = dyn_cast<til::Variable>(E))
> +    return V->clangDecl();
> +  if (auto *P = dyn_cast<til::Project>(E))
> +    return P->clangDecl();
> +  if (auto *L = dyn_cast<til::LiteralPtr>(E))
> +    return L->clangDecl();
> +  return 0;
> +}
> +
> +bool hasCppPointerType(const til::SExpr *E) {
> +  auto *VD = getValueDeclFromSExpr(E);
> +  if (VD && VD->getType()->isPointerType())
> +    return true;
> +  if (auto *C = dyn_cast<til::Cast>(E))
> +    return C->castOpcode() == til::CAST_objToPtr;
> +
> +  return false;
> +}
> +
> +
> +// Grab the very first declaration of virtual method D
> +const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
> +  while (true) {
> +    D = D->getCanonicalDecl();
> +    CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
> +                                   E = D->end_overridden_methods();
> +    if (I == E)
> +      return D;  // Method does not override anything
> +    D = *I;      // FIXME: this does not work with multiple inheritance.
> +  }
> +  return nullptr;
> +}
> +
>  til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
>                                                CallingContext *Ctx) {
> -  til::SExpr *E = translate(ME->getBase(), Ctx);
> -  E = new (Arena) til::SApply(E);
> -  return new (Arena) til::Project(E, ME->getMemberDecl());
> +  til::SExpr *BE = translate(ME->getBase(), Ctx);
> +  til::SExpr *E  = new (Arena) til::SApply(BE);
> +
> +  const ValueDecl *D = ME->getMemberDecl();
> +  if (auto *VD = dyn_cast<CXXMethodDecl>(D))
> +    D = getFirstVirtualDecl(VD);
> +
> +  til::Project *P = new (Arena) til::Project(E, D);
> +  if (hasCppPointerType(BE))
> +    P->setArrow(true);
> +  return P;
>  }
>
>
>  til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
> -                                            CallingContext *Ctx) {
> -  // TODO -- Lock returned
> +                                            CallingContext *Ctx,
> +                                            const Expr *SelfE) {
> +  if (CapabilityExprMode) {
> +    // Handle LOCK_RETURNED
> +    const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
> +    if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
> +      CallingContext LRCallCtx(Ctx);
> +      LRCallCtx.AttrDecl = CE->getDirectCallee();
> +      LRCallCtx.SelfArg  = SelfE;
> +      LRCallCtx.NumArgs  = CE->getNumArgs();
> +      LRCallCtx.FunArgs  = CE->getArgs();
> +      return translateAttrExpr(At->getArg(), &LRCallCtx);
> +    }
> +  }
> +
>    til::SExpr *E = translate(CE->getCallee(), Ctx);
>    for (const auto *Arg : CE->arguments()) {
>      til::SExpr *A = translate(Arg, Ctx);
> @@ -219,12 +372,31 @@ til::SExpr *SExprBuilder::translateCallE
>
>  til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
>      const CXXMemberCallExpr *ME, CallingContext *Ctx) {
> -  return translateCallExpr(cast<CallExpr>(ME), Ctx);
> +  if (CapabilityExprMode) {
> +    // Ignore calls to get() on smart pointers.
> +    if (ME->getMethodDecl()->getNameAsString() == "get" &&
> +        ME->getNumArgs() == 0) {
> +      auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
> +      return new (Arena) til::Cast(til::CAST_objToPtr, E);
> +      // return E;
> +    }
> +  }
> +  return translateCallExpr(cast<CallExpr>(ME), Ctx,
> +                           ME->getImplicitObjectArgument());
>  }
>
>
>  til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
>      const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
> +  if (CapabilityExprMode) {
> +    // Ignore operator * and operator -> on smart pointers.
> +    OverloadedOperatorKind k = OCE->getOperator();
> +    if (k == OO_Star || k == OO_Arrow) {
> +      auto *E = translate(OCE->getArg(0), Ctx);
> +      return new (Arena) til::Cast(til::CAST_objToPtr, E);
> +      // return E;
> +    }
> +  }
>    return translateCallExpr(cast<CallExpr>(OCE), Ctx);
>  }
>
> @@ -238,8 +410,23 @@ til::SExpr *SExprBuilder::translateUnary
>    case UO_PreDec:
>      return new (Arena) til::Undefined(UO);
>
> +  case UO_AddrOf: {
> +    if (CapabilityExprMode) {
> +      // interpret &Graph::mu_ as an existential.
> +      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
> +        if (DRE->getDecl()->isCXXInstanceMember()) {
> +          // This is a pointer-to-member expression, e.g. &MyClass::mu_.
> +          // We interpret this syntax specially, as a wildcard.
> +          auto *W = new (Arena) til::Wildcard();
> +          return new (Arena) til::Project(W, DRE->getDecl());
> +        }
> +      }
> +    }
> +    // otherwise, & is a no-op
> +    return translate(UO->getSubExpr(), Ctx);
> +  }
> +
>    // We treat these as no-ops
> -  case UO_AddrOf:
>    case UO_Deref:
>    case UO_Plus:
>      return translate(UO->getSubExpr(), Ctx);
> @@ -360,7 +547,9 @@ til::SExpr *SExprBuilder::translateCastE
>          return E0;
>      }
>      til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
> -    return new (Arena) til::Load(E0);
> +    return E0;
> +    // FIXME!! -- get Load working properly
> +    // return new (Arena) til::Load(E0);
>    }
>    case CK_NoOp:
>    case CK_DerivedToBase:
> @@ -373,6 +562,8 @@ til::SExpr *SExprBuilder::translateCastE
>    default: {
>      // FIXME: handle different kinds of casts.
>      til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
> +    if (CapabilityExprMode)
> +      return E0;
>      return new (Arena) til::Cast(til::CAST_none, E0);
>    }
>    }
> @@ -389,15 +580,12 @@ SExprBuilder::translateArraySubscriptExp
>
>
>  til::SExpr *
> -SExprBuilder::translateConditionalOperator(const ConditionalOperator *C,
> -                                           CallingContext *Ctx) {
> -  return new (Arena) til::Undefined(C);
> -}
> -
> -
> -til::SExpr *SExprBuilder::translateBinaryConditionalOperator(
> -    const BinaryConditionalOperator *C, CallingContext *Ctx) {
> -  return new (Arena) til::Undefined(C);
> +SExprBuilder::translateAbstractConditionalOperator(
> +    const AbstractConditionalOperator *CO, CallingContext *Ctx) {
> +  auto *C = translate(CO->getCond(), Ctx);
> +  auto *T = translate(CO->getTrueExpr(), Ctx);
> +  auto *E = translate(CO->getFalseExpr(), Ctx);
> +  return new (Arena) til::IfThenElse(C, T, E);
>  }
>
>
> @@ -430,9 +618,7 @@ SExprBuilder::translateDeclStmt(const De
>  // If E is trivial returns E.
>  til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
>                                         const ValueDecl *VD) {
> -  if (!E)
> -    return nullptr;
> -  if (til::ThreadSafetyTIL::isTrivial(E))
> +  if (!E || !CurrentBB || til::ThreadSafetyTIL::isTrivial(E))
>      return E;
>
>    til::Variable *V = new (Arena) til::Variable(E, VD);
> @@ -631,7 +817,6 @@ void SExprBuilder::enterCFG(CFG *Cfg, co
>      BB->reserveInstructions(B->size());
>      BlockMap[B->getBlockID()] = BB;
>    }
> -  CallCtx.reset(new SExprBuilder::CallingContext(D));
>
>    CurrentBB = lookupBlock(&Cfg->getEntry());
>    auto Parms = isa<ObjCMethodDecl>(D) ?
> cast<ObjCMethodDecl>(D)->parameters()
> @@ -697,7 +882,7 @@ void SExprBuilder::enterCFGBlockBody(con
>
>
>  void SExprBuilder::handleStatement(const Stmt *S) {
> -  til::SExpr *E = translate(S, CallCtx.get());
> +  til::SExpr *E = translate(S, nullptr);
>    addStatement(E, S);
>  }
>
> @@ -730,7 +915,7 @@ void SExprBuilder::exitCFGBlockBody(cons
>      CurrentBB->setTerminator(Tm);
>    }
>    else if (N == 2) {
> -    til::SExpr *C = translate(B->getTerminatorCondition(true),
> CallCtx.get());
> +    til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
>      til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
>      ++It;
>      til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
> @@ -775,18 +960,15 @@ void SExprBuilder::exitCFG(const CFGBloc
>  }
>
>
> -
> -class TILPrinter : public til::PrettyPrinter<TILPrinter,
> llvm::raw_ostream> {};
> -
> -
> +/*
>  void printSCFG(CFGWalker &Walker) {
>    llvm::BumpPtrAllocator Bpa;
>    til::MemRegionRef Arena(&Bpa);
> -  SExprBuilder builder(Arena);
> -  til::SCFG *Cfg = builder.buildCFG(Walker);
> -  TILPrinter::print(Cfg, llvm::errs());
> +  SExprBuilder SxBuilder(Arena);
> +  til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
> +  TILPrinter::print(Scfg, llvm::errs());
>  }
> -
> +*/
>
>
>  } // end namespace threadSafety
>
> Modified: cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp (original)
> +++ cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp Mon Jul 28 10:57:27 2014
> @@ -88,10 +88,42 @@ void SCFG::renumberVars() {
>
>
>
> +// If E is a variable, then trace back through any aliases or redundant
> +// Phi nodes to find the canonical definition.
> +const SExpr *getCanonicalVal(const SExpr *E) {
> +  while (auto *V = dyn_cast<Variable>(E)) {
> +    const SExpr *D;
> +    do {
> +      if (V->kind() != Variable::VK_Let)
> +        return V;
> +      D = V->definition();
> +      auto *V2 = dyn_cast<Variable>(D);
> +      if (V2)
> +        V = V2;
> +      else
> +        break;
> +    } while (true);
> +
> +    if (ThreadSafetyTIL::isTrivial(D))
> +      return D;
> +
> +    if (const Phi *Ph = dyn_cast<Phi>(D)) {
> +      if (Ph->status() == Phi::PH_SingleVal) {
> +        E = Ph->values()[0];
> +        continue;
> +      }
> +    }
> +    return V;
> +  }
> +  return E;
> +}
> +
> +
>
>  // If E is a variable, then trace back through any aliases or redundant
>  // Phi nodes to find the canonical definition.
> -SExpr *getCanonicalVal(SExpr *E) {
> +// The non-const version will simplify incomplete Phi nodes.
> +SExpr *simplifyToCanonicalVal(SExpr *E) {
>    while (auto *V = dyn_cast<Variable>(E)) {
>      SExpr *D;
>      do {
> @@ -123,6 +155,7 @@ SExpr *getCanonicalVal(SExpr *E) {
>  }
>
>
> +
>  // Trace the arguments of an incomplete Phi node to see if they have the
> same
>  // canonical definition.  If so, mark the Phi node as redundant.
>  // getCanonicalVal() will recursively call simplifyIncompletePhi().
> @@ -132,9 +165,9 @@ void simplifyIncompleteArg(Variable *V,
>    // eliminate infinite recursion -- assume that this node is not
> redundant.
>    Ph->setStatus(Phi::PH_MultiVal);
>
> -  SExpr *E0 = getCanonicalVal(Ph->values()[0]);
> +  SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
>    for (unsigned i=1, n=Ph->values().size(); i<n; ++i) {
> -    SExpr *Ei = getCanonicalVal(Ph->values()[i]);
> +    SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
>      if (Ei == V)
>        continue;  // Recursive reference to itself.  Don't count.
>      if (Ei != E0) {
>
> Modified: cfe/trunk/lib/Sema/AnalysisBasedWarnings.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Sema/AnalysisBasedWarnings.cpp?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/lib/Sema/AnalysisBasedWarnings.cpp (original)
> +++ cfe/trunk/lib/Sema/AnalysisBasedWarnings.cpp Mon Jul 28 10:57:27 2014
> @@ -1444,9 +1444,9 @@ struct SortDiagBySourceLocation {
>  // -Wthread-safety
>
>  //===----------------------------------------------------------------------===//
>  namespace clang {
> -namespace thread_safety {
> -namespace {
> -class ThreadSafetyReporter : public
> clang::thread_safety::ThreadSafetyHandler {
> +namespace threadSafety {
> +
> +class ThreadSafetyReporter : public
> clang::threadSafety::ThreadSafetyHandler {
>    Sema &S;
>    DiagList Warnings;
>    SourceLocation FunLocation, FunEndLocation;
> @@ -1608,7 +1608,7 @@ class ThreadSafetyReporter : public clan
>      Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
>    }
>  };
> -}
> +
>  }
>  }
>
> @@ -1896,11 +1896,11 @@ AnalysisBasedWarnings::IssueWarnings(sem
>    if (P.enableThreadSafetyAnalysis) {
>      SourceLocation FL = AC.getDecl()->getLocation();
>      SourceLocation FEL = AC.getDecl()->getLocEnd();
> -    thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
> +    threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
>      if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
>        Reporter.setIssueBetaWarnings(true);
>
> -    thread_safety::runThreadSafetyAnalysis(AC, Reporter);
> +    threadSafety::runThreadSafetyAnalysis(AC, Reporter);
>      Reporter.emitDiagnostics();
>    }
>
>
> Modified: cfe/trunk/test/SemaCXX/warn-thread-safety-analysis.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/SemaCXX/warn-thread-safety-analysis.cpp?rev=214089&r1=214088&r2=214089&view=diff
>
> ==============================================================================
> --- cfe/trunk/test/SemaCXX/warn-thread-safety-analysis.cpp (original)
> +++ cfe/trunk/test/SemaCXX/warn-thread-safety-analysis.cpp Mon Jul 28
> 10:57:27 2014
> @@ -95,6 +95,13 @@ public:
>  };
>
>
> +template <class K, class T>
> +class MyMap {
> +public:
> +  T& operator[](const K& k);
> +};
> +
> +
>
>  Mutex sls_mu;
>
> @@ -2280,6 +2287,15 @@ void test() {
>    (a > 0 ? fooArray[1] : fooArray[b]).mu_.Lock();
>    (a > 0 ? fooArray[1] : fooArray[b]).a = 0;
>    (a > 0 ? fooArray[1] : fooArray[b]).mu_.Unlock();
> +}
> +
> +
> +void test2() {
> +  Foo *fooArray;
> +  Bar bar;
> +  int a;
> +  int b;
> +  int c;
>
>    bar.getFoo().mu_.Lock();
>    bar.getFooey().a = 0; // \
> @@ -2295,20 +2311,20 @@ void test() {
>
>    bar.getFoo3(a, b).mu_.Lock();
>    bar.getFoo3(a, c).a = 0;  // \
> -    // expected-warning {{writing variable 'a' requires holding mutex
> 'bar.getFoo3(a,c).mu_' exclusively}} \
> -    // expected-note {{'bar.getFoo3(a,b).mu_'}}
> +    // expected-warning {{writing variable 'a' requires holding mutex
> 'bar.getFoo3(a, c).mu_' exclusively}} \
> +    // expected-note {{found near match 'bar.getFoo3(a, b).mu_'}}
>    bar.getFoo3(a, b).mu_.Unlock();
>
>    getBarFoo(bar, a).mu_.Lock();
>    getBarFoo(bar, b).a = 0;  // \
> -    // expected-warning {{writing variable 'a' requires holding mutex
> 'getBarFoo(bar,b).mu_' exclusively}} \
> -    // expected-note {{'getBarFoo(bar,a).mu_'}}
> +    // expected-warning {{writing variable 'a' requires holding mutex
> 'getBarFoo(bar, b).mu_' exclusively}} \
> +    // expected-note {{found near match 'getBarFoo(bar, a).mu_'}}
>    getBarFoo(bar, a).mu_.Unlock();
>
>    (a > 0 ? fooArray[1] : fooArray[b]).mu_.Lock();
>    (a > 0 ? fooArray[b] : fooArray[c]).a = 0; // \
> -    // expected-warning {{writing variable 'a' requires holding mutex
> '((a#_)#_#fooArray[b]).mu_' exclusively}} \
> -    // expected-note {{'((a#_)#_#fooArray[_]).mu_'}}
> +    // expected-warning {{writing variable 'a' requires holding mutex
> '((0 < a) ? fooArray[b] : fooArray[c]).mu_' exclusively}} \
> +    // expected-note {{found near match '((0 < a) ? fooArray[1] :
> fooArray[b]).mu_'}}
>    (a > 0 ? fooArray[1] : fooArray[b]).mu_.Unlock();
>  }
>
> @@ -4378,3 +4394,126 @@ class Foo {
>  };
>
>  }  // end namespace ThreadAttributesOnLambdas
> +
> +
> +
> +namespace AttributeExpressionCornerCases {
> +
> +class Foo {
> +  int a GUARDED_BY(getMu());
> +
> +  Mutex* getMu()   LOCK_RETURNED("");
> +  Mutex* getUniv() LOCK_RETURNED("*");
> +
> +  void test1() {
> +    a = 0;
> +  }
> +
> +  void test2() EXCLUSIVE_LOCKS_REQUIRED(getUniv()) {
> +    a = 0;
> +  }
> +
> +  void foo(Mutex* mu) EXCLUSIVE_LOCKS_REQUIRED(mu);
> +
> +  void test3() {
> +    foo(nullptr);
> +  }
> +};
> +
> +
> +class MapTest {
> +  struct MuCell { Mutex* mu; };
> +
> +  MyMap<MyString, Mutex*> map;
> +  MyMap<MyString, MuCell> mapCell;
> +
> +  int a GUARDED_BY(map["foo"]);
> +  int b GUARDED_BY(mapCell["foo"].mu);
> +
> +  void test() {
> +    map["foo"]->Lock();
> +    a = 0;
> +    map["foo"]->Unlock();
> +  }
> +
> +  void test2() {
> +    mapCell["foo"].mu->Lock();
> +    b = 0;
> +    mapCell["foo"].mu->Unlock();
> +  }
> +};
> +
> +
> +class PreciseSmartPtr {
> +  SmartPtr<Mutex> mu;
> +  int val GUARDED_BY(mu);
> +
> +  static bool compare(PreciseSmartPtr& a, PreciseSmartPtr &b) {
> +    a.mu->Lock();
> +    bool result = (a.val == b.val);   // expected-warning {{reading
> variable 'val' requires holding mutex 'b.mu'}} \
> +                                      // expected-note {{found near match
> 'a.mu'}}
> +    a.mu->Unlock();
> +    return result;
> +  }
> +};
> +
> +
> +class SmartRedeclare {
> +  SmartPtr<Mutex> mu;
> +  int val GUARDED_BY(mu);
> +
> +  void test()  EXCLUSIVE_LOCKS_REQUIRED(mu);
> +  void test2() EXCLUSIVE_LOCKS_REQUIRED(mu.get());
> +  void test3() EXCLUSIVE_LOCKS_REQUIRED(mu.get());
> +};
> +
> +
> +void SmartRedeclare::test() EXCLUSIVE_LOCKS_REQUIRED(mu.get()) {
> +  val = 0;
> +}
> +
> +void SmartRedeclare::test2() EXCLUSIVE_LOCKS_REQUIRED(mu) {
> +  val = 0;
> +}
> +
> +void SmartRedeclare::test3() {
> +  val = 0;
> +}
> +
> +
> +namespace CustomMutex {
> +
> +
> +class LOCKABLE BaseMutex { };
> +class DerivedMutex : public BaseMutex { };
> +
> +void customLock(const BaseMutex *m)   EXCLUSIVE_LOCK_FUNCTION(m);
> +void customUnlock(const BaseMutex *m) UNLOCK_FUNCTION(m);
> +
> +static struct DerivedMutex custMu;
> +
> +static void doSomethingRequiringLock() EXCLUSIVE_LOCKS_REQUIRED(custMu) {
> }
> +
> +void customTest() {
> +  customLock(reinterpret_cast<BaseMutex*>(&custMu));  // ignore casts
> +  doSomethingRequiringLock();
> +  customUnlock(reinterpret_cast<BaseMutex*>(&custMu));
> +}
> +
> +} // end namespace CustomMutex
> +
> +} // end AttributeExpressionCornerCases
> +
> +
> +namespace ScopedLockReturnedInvalid {
> +
> +class Opaque;
> +
> +Mutex* getMutex(Opaque* o) LOCK_RETURNED("");
> +
> +void test(Opaque* o) {
> +  MutexLock lock(getMutex(o));
> +}
> +
> +}  // end namespace ScopedLockReturnedInvalid
> +
>
>
> _______________________________________________
> cfe-commits mailing list
> cfe-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/cfe-commits/attachments/20140728/6f4e04bb/attachment.html>


More information about the cfe-commits mailing list