r207832 - XCore target: Add TypeString meta data to IR output.
Evgeniy Stepanov
eugeni.stepanov at gmail.com
Tue May 6 00:30:54 PDT 2014
Hi,
this change broke MSan bot.
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/3242
IncompleteUsedCount is never initialized.
On Fri, May 2, 2014 at 1:33 PM, Robert Lytton <robert at xmos.com> wrote:
> Author: rlytton
> Date: Fri May 2 04:33:20 2014
> New Revision: 207832
>
> URL: http://llvm.org/viewvc/llvm-project?rev=207832&view=rev
> Log:
> XCore target: Add TypeString meta data to IR output.
>
> This includes the addition of the virtual function:
> TargetCodeGenInfo::EmitTargetMD()
>
> Added:
> cfe/trunk/test/CodeGen/xcore-stringtype.c
> Modified:
> cfe/trunk/lib/CodeGen/CodeGenModule.cpp
> cfe/trunk/lib/CodeGen/TargetInfo.cpp
> cfe/trunk/lib/CodeGen/TargetInfo.h
>
> Modified: cfe/trunk/lib/CodeGen/CodeGenModule.cpp
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CodeGenModule.cpp?rev=207832&r1=207831&r2=207832&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/CodeGenModule.cpp (original)
> +++ cfe/trunk/lib/CodeGen/CodeGenModule.cpp Fri May 2 04:33:20 2014
> @@ -1463,6 +1463,8 @@ CodeGenModule::GetOrCreateLLVMFunction(S
> }
> }
>
> + getTargetCodeGenInfo().emitTargetMD(D, F, *this);
> +
> // Make sure the result is of the requested type.
> if (!IsIncompleteFunction) {
> assert(F->getType()->getElementType() == Ty);
> @@ -1616,6 +1618,8 @@ CodeGenModule::GetOrCreateLLVMGlobal(Str
> isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
> GV->setSection(".cp.rodata");
>
> + getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
> +
> return GV;
> }
>
>
> Modified: cfe/trunk/lib/CodeGen/TargetInfo.cpp
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.cpp?rev=207832&r1=207831&r2=207832&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/TargetInfo.cpp (original)
> +++ cfe/trunk/lib/CodeGen/TargetInfo.cpp Fri May 2 04:33:20 2014
> @@ -23,6 +23,9 @@
> #include "llvm/IR/DataLayout.h"
> #include "llvm/IR/Type.h"
> #include "llvm/Support/raw_ostream.h"
> +
> +#include <algorithm> // std::sort
> +
> using namespace clang;
> using namespace CodeGen;
>
> @@ -6105,7 +6108,100 @@ SparcV9TargetCodeGenInfo::initDwarfEHReg
> //===----------------------------------------------------------------------===//
> // XCore ABI Implementation
> //===----------------------------------------------------------------------===//
> +
> namespace {
> +
> +/// A SmallStringEnc instance is used to build up the TypeString by passing
> +/// it by reference between functions that append to it.
> +typedef llvm::SmallString<128> SmallStringEnc;
> +
> +/// TypeStringCache caches the meta encodings of Types.
> +///
> +/// The reason for caching TypeStrings is two fold:
> +/// 1. To cache a type's encoding for later uses;
> +/// 2. As a means to break recursive member type inclusion.
> +///
> +/// A cache Entry can have a Status of:
> +/// NonRecursive: The type encoding is not recursive;
> +/// Recursive: The type encoding is recursive;
> +/// Incomplete: An incomplete TypeString;
> +/// IncompleteUsed: An incomplete TypeString that has been used in a
> +/// Recursive type encoding.
> +///
> +/// A NonRecursive entry will have all of its sub-members expanded as fully
> +/// as possible. Whilst it may contain types which are recursive, the type
> +/// itself is not recursive and thus its encoding may be safely used whenever
> +/// the type is encountered.
> +///
> +/// A Recursive entry will have all of its sub-members expanded as fully as
> +/// possible. The type itself is recursive and it may contain other types which
> +/// are recursive. The Recursive encoding must not be used during the expansion
> +/// of a recursive type's recursive branch. For simplicity the code uses
> +/// IncompleteCount to reject all usage of Recursive encodings for member types.
> +///
> +/// An Incomplete entry is always a RecordType and only encodes its
> +/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
> +/// are placed into the cache during type expansion as a means to identify and
> +/// handle recursive inclusion of types as sub-members. If there is recursion
> +/// the entry becomes IncompleteUsed.
> +///
> +/// During the expansion of a RecordType's members:
> +///
> +/// If the cache contains a NonRecursive encoding for the member type, the
> +/// cached encoding is used;
> +///
> +/// If the cache contains a Recursive encoding for the member type, the
> +/// cached encoding is 'Swapped' out, as it may be incorrect, and...
> +///
> +/// If the member is a RecordType, an Incomplete encoding is placed into the
> +/// cache to break potential recursive inclusion of itself as a sub-member;
> +///
> +/// Once a member RecordType has been expanded, its temporary incomplete
> +/// entry is removed from the cache. If a Recursive encoding was swapped out
> +/// it is swapped back in;
> +///
> +/// If an incomplete entry is used to expand a sub-member, the incomplete
> +/// entry is marked as IncompleteUsed. The cache keeps count of how many
> +/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
> +///
> +/// If a member's encoding is found to be a NonRecursive or Recursive viz:
> +/// IncompleteUsedCount==0, the member's encoding is added to the cache.
> +/// Else the member is part of a recursive type and thus the recursion has
> +/// been exited too soon for the encoding to be correct for the member.
> +///
> +class TypeStringCache {
> + enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
> + struct Entry {
> + std::string Str; // The encoded TypeString for the type.
> + enum Status State; // Information about the encoding in 'Str'.
> + std::string Swapped; // A temporary place holder for a Recursive encoding
> + // during the expansion of RecordType's members.
> + };
> + std::map<const IdentifierInfo *, struct Entry> Map;
> + unsigned IncompleteCount; // Number of Incomplete entries in the Map.
> + unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
> +public:
> + void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
> + bool removeIncomplete(const IdentifierInfo *ID);
> + void addIfComplete(const IdentifierInfo *ID, StringRef Str,
> + bool IsRecursive);
> + StringRef lookupStr(const IdentifierInfo *ID);
> +};
> +
> +/// TypeString encodings for union fields must be order.
> +/// FieldEncoding is a helper for this ordering process.
> +class FieldEncoding {
> + bool HasName;
> + std::string Enc;
> +public:
> + FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
> + StringRef str() {return Enc.c_str();};
> + bool operator<(const FieldEncoding &rhs) const {
> + if (HasName != rhs.HasName) return HasName;
> + return Enc < rhs.Enc;
> + }
> +};
> +
> class XCoreABIInfo : public DefaultABIInfo {
> public:
> XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
> @@ -6114,10 +6210,14 @@ public:
> };
>
> class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
> + mutable TypeStringCache TSC;
> public:
> XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
> :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
> + virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
> + CodeGen::CodeGenModule &M) const;
> };
> +
> } // End anonymous namespace.
>
> llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
> @@ -6169,6 +6269,448 @@ llvm::Value *XCoreABIInfo::EmitVAArg(llv
> return Val;
> }
>
> +/// During the expansion of a RecordType, an incomplete TypeString is placed
> +/// into the cache as a means to identify and break recursion.
> +/// If there is a Recursive encoding in the cache, it is swapped out and will
> +/// be reinserted by removeIncomplete().
> +/// All other types of encoding should have been used rather than arriving here.
> +void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
> + std::string StubEnc) {
> + if (!ID)
> + return;
> + Entry &E = Map[ID];
> + assert( (E.Str.empty() || E.State == Recursive) &&
> + "Incorrectly use of addIncomplete");
> + assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
> + E.Swapped.swap(E.Str); // swap out the Recursive
> + E.Str.swap(StubEnc);
> + E.State = Incomplete;
> + ++IncompleteCount;
> +}
> +
> +/// Once the RecordType has been expanded, the temporary incomplete TypeString
> +/// must be removed from the cache.
> +/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
> +/// Returns true if the RecordType was defined recursively.
> +bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
> + if (!ID)
> + return false;
> + auto I = Map.find(ID);
> + assert(I != Map.end() && "Entry not present");
> + Entry &E = I->second;
> + assert( (E.State == Incomplete ||
> + E.State == IncompleteUsed) &&
> + "Entry must be an incomplete type");
> + bool IsRecursive = false;
> + if (E.State == IncompleteUsed) {
> + // We made use of our Incomplete encoding, thus we are recursive.
> + IsRecursive = true;
> + --IncompleteUsedCount;
> + }
> + if (E.Swapped.empty())
> + Map.erase(I);
> + else {
> + // Swap the Recursive back.
> + E.Swapped.swap(E.Str);
> + E.Swapped.clear();
> + E.State = Recursive;
> + }
> + --IncompleteCount;
> + return IsRecursive;
> +}
> +
> +/// Add the encoded TypeString to the cache only if it is NonRecursive or
> +/// Recursive (viz: all sub-members were expanded as fully as possible).
> +void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
> + bool IsRecursive) {
> + if (!ID || IncompleteUsedCount)
> + return; // No key or it is is an incomplete sub-type so don't add.
> + Entry &E = Map[ID];
> + if (IsRecursive && !E.Str.empty()) {
> + assert(E.State==Recursive && E.Str.size() == Str.size() &&
> + "This is not the same Recursive entry");
> + // The parent container was not recursive after all, so we could have used
> + // this Recursive sub-member entry after all, but we assumed the worse when
> + // we started viz: IncompleteCount!=0.
> + return;
> + }
> + assert(E.Str.empty() && "Entry already present");
> + E.Str = Str.str();
> + E.State = IsRecursive? Recursive : NonRecursive;
> +}
> +
> +/// Return a cached TypeString encoding for the ID. If there isn't one, or we
> +/// are recursively expanding a type (IncompleteCount != 0) and the cached
> +/// encoding is Recursive, return an empty StringRef.
> +StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
> + if (!ID)
> + return StringRef(); // We have no key.
> + auto I = Map.find(ID);
> + if (I == Map.end())
> + return StringRef(); // We have no encoding.
> + Entry &E = I->second;
> + if (E.State == Recursive && IncompleteCount)
> + return StringRef(); // We don't use Recursive encodings for member types.
> +
> + if (E.State == Incomplete) {
> + // The incomplete type is being used to break out of recursion.
> + E.State = IncompleteUsed;
> + ++IncompleteUsedCount;
> + }
> + return E.Str.c_str();
> +}
> +
> +/// The XCore ABI includes a type information section that communicates symbol
> +/// type information to the linker. The linker uses this information to verify
> +/// safety/correctness of things such as array bound and pointers et al.
> +/// The ABI only requires C (and XC) language modules to emit TypeStrings.
> +/// This type information (TypeString) is emitted into meta data for all global
> +/// symbols: definitions, declarations, functions & variables.
> +///
> +/// The TypeString carries type, qualifier, name, size & value details.
> +/// Please see 'Tools Development Guide' section 2.16.2 for format details:
> +/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
> +/// The output is tested by test/CodeGen/xcore-stringtype.c.
> +///
> +static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
> + CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
> +
> +/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
> +void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
> + CodeGen::CodeGenModule &CGM) const {
> + SmallStringEnc Enc;
> + if (getTypeString(Enc, D, CGM, TSC)) {
> + llvm::LLVMContext &Ctx = CGM.getModule().getContext();
> + llvm::SmallVector<llvm::Value *, 2> MDVals;
> + MDVals.push_back(GV);
> + MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
> + llvm::NamedMDNode *MD =
> + CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
> + MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
> + }
> +}
> +
> +static bool appendType(SmallStringEnc &Enc, QualType QType,
> + const CodeGen::CodeGenModule &CGM,
> + TypeStringCache &TSC);
> +
> +/// Helper function for appendRecordType().
> +/// Builds a SmallVector containing the encoded field types in declaration order.
> +static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
> + const RecordDecl *RD,
> + const CodeGen::CodeGenModule &CGM,
> + TypeStringCache &TSC) {
> + for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
> + I != E; ++I) {
> + SmallStringEnc Enc;
> + Enc += "m(";
> + Enc += I->getName();
> + Enc += "){";
> + if (I->isBitField()) {
> + Enc += "b(";
> + llvm::raw_svector_ostream OS(Enc);
> + OS.resync();
> + OS << I->getBitWidthValue(CGM.getContext());
> + OS.flush();
> + Enc += ':';
> + }
> + if (!appendType(Enc, I->getType(), CGM, TSC))
> + return false;
> + if (I->isBitField())
> + Enc += ')';
> + Enc += '}';
> + FE.push_back(FieldEncoding(!I->getName().empty(), Enc));
> + }
> + return true;
> +}
> +
> +/// Appends structure and union types to Enc and adds encoding to cache.
> +/// Recursively calls appendType (via extractFieldType) for each field.
> +/// Union types have their fields ordered according to the ABI.
> +static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
> + const CodeGen::CodeGenModule &CGM,
> + TypeStringCache &TSC, const IdentifierInfo *ID) {
> + // Append the cached TypeString if we have one.
> + StringRef TypeString = TSC.lookupStr(ID);
> + if (!TypeString.empty()) {
> + Enc += TypeString;
> + return true;
> + }
> +
> + // Start to emit an incomplete TypeString.
> + size_t Start = Enc.size();
> + Enc += (RT->isUnionType()? 'u' : 's');
> + Enc += '(';
> + if (ID)
> + Enc += ID->getName();
> + Enc += "){";
> +
> + // We collect all encoded fields and order as necessary.
> + bool IsRecursive = false;
> + SmallVector<FieldEncoding, 16> FE;
> + const RecordDecl *RD = RT->getDecl()->getDefinition();
> + if (RD && !RD->field_empty()) {
> + // An incomplete TypeString stub is placed in the cache for this RecordType
> + // so that recursive calls to this RecordType will use it whilst building a
> + // complete TypeString for this RecordType.
> + std::string StubEnc(Enc.substr(Start).str());
> + StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
> + TSC.addIncomplete(ID, std::move(StubEnc));
> + if (!extractFieldType(FE, RD, CGM, TSC)) {
> + (void) TSC.removeIncomplete(ID);
> + return false;
> + }
> + IsRecursive = TSC.removeIncomplete(ID);
> + // The ABI requires unions to be sorted but not structures.
> + // See FieldEncoding::operator< for sort algorithm.
> + if (RT->isUnionType())
> + std::sort(FE.begin(), FE.end());
> + }
> +
> + // We can now complete the TypeString.
> + if (unsigned E = FE.size())
> + for (unsigned I = 0; I != E; ++I) {
> + if (I)
> + Enc += ',';
> + Enc += FE[I].str();
> + }
> + Enc += '}';
> + TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
> + return true;
> +}
> +
> +/// Appends enum types to Enc and adds the encoding to the cache.
> +static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
> + TypeStringCache &TSC,
> + const IdentifierInfo *ID) {
> + // Append the cached TypeString if we have one.
> + StringRef TypeString = TSC.lookupStr(ID);
> + if (!TypeString.empty()) {
> + Enc += TypeString;
> + return true;
> + }
> +
> + size_t Start = Enc.size();
> + Enc += "e(";
> + if (ID)
> + Enc += ID->getName();
> + Enc += "){";
> + if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
> + auto I = ED->enumerator_begin();
> + auto E = ED->enumerator_end();
> + while (I != E) {
> + Enc += "m(";
> + Enc += I->getName();
> + Enc += "){";
> + I->getInitVal().toString(Enc);
> + Enc += '}';
> + ++I;
> + if (I != E)
> + Enc += ',';
> + }
> + }
> + Enc += '}';
> + TSC.addIfComplete(ID, Enc.substr(Start), false);
> + return true;
> +}
> +
> +/// Appends type's qualifier to Enc.
> +/// This is done prior to appending the type's encoding.
> +static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
> + // Qualifiers are emitted in alphabetical order.
> + static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
> + int Lookup = 0;
> + if (QT.isConstQualified())
> + Lookup += 1<<0;
> + if (QT.isRestrictQualified())
> + Lookup += 1<<1;
> + if (QT.isVolatileQualified())
> + Lookup += 1<<2;
> + Enc += Table[Lookup];
> +}
> +
> +/// Appends built-in types to Enc.
> +static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
> + const char *EncType;
> + switch (BT->getKind()) {
> + case BuiltinType::Void:
> + EncType = "0";
> + break;
> + case BuiltinType::Bool:
> + EncType = "b";
> + break;
> + case BuiltinType::Char_U:
> + EncType = "uc";
> + break;
> + case BuiltinType::UChar:
> + EncType = "uc";
> + break;
> + case BuiltinType::SChar:
> + EncType = "sc";
> + break;
> + case BuiltinType::UShort:
> + EncType = "us";
> + break;
> + case BuiltinType::Short:
> + EncType = "ss";
> + break;
> + case BuiltinType::UInt:
> + EncType = "ui";
> + break;
> + case BuiltinType::Int:
> + EncType = "si";
> + break;
> + case BuiltinType::ULong:
> + EncType = "ul";
> + break;
> + case BuiltinType::Long:
> + EncType = "sl";
> + break;
> + case BuiltinType::ULongLong:
> + EncType = "ull";
> + break;
> + case BuiltinType::LongLong:
> + EncType = "sll";
> + break;
> + case BuiltinType::Float:
> + EncType = "ft";
> + break;
> + case BuiltinType::Double:
> + EncType = "d";
> + break;
> + case BuiltinType::LongDouble:
> + EncType = "ld";
> + break;
> + default:
> + return false;
> + }
> + Enc += EncType;
> + return true;
> +}
> +
> +/// Appends a pointer encoding to Enc before calling appendType for the pointee.
> +static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
> + const CodeGen::CodeGenModule &CGM,
> + TypeStringCache &TSC) {
> + Enc += "p(";
> + if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
> + return false;
> + Enc += ')';
> + return true;
> +}
> +
> +/// Appends array encoding to Enc before calling appendType for the element.
> +static bool appendArrayType(SmallStringEnc &Enc, const ArrayType *AT,
> + const CodeGen::CodeGenModule &CGM,
> + TypeStringCache &TSC, StringRef NoSizeEnc) {
> + if (AT->getSizeModifier() != ArrayType::Normal)
> + return false;
> + Enc += "a(";
> + if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
> + CAT->getSize().toStringUnsigned(Enc);
> + else
> + Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
> + Enc += ':';
> + if (!appendType(Enc, AT->getElementType(), CGM, TSC))
> + return false;
> + Enc += ')';
> + return true;
> +}
> +
> +/// Appends a function encoding to Enc, calling appendType for the return type
> +/// and the arguments.
> +static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
> + const CodeGen::CodeGenModule &CGM,
> + TypeStringCache &TSC) {
> + Enc += "f{";
> + if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
> + return false;
> + Enc += "}(";
> + if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
> + // N.B. we are only interested in the adjusted param types.
> + auto I = FPT->param_type_begin();
> + auto E = FPT->param_type_end();
> + if (I != E) {
> + do {
> + if (!appendType(Enc, *I, CGM, TSC))
> + return false;
> + ++I;
> + if (I != E)
> + Enc += ',';
> + } while (I != E);
> + if (FPT->isVariadic())
> + Enc += ",va";
> + } else {
> + if (FPT->isVariadic())
> + Enc += "va";
> + else
> + Enc += '0';
> + }
> + }
> + Enc += ')';
> + return true;
> +}
> +
> +/// Handles the type's qualifier before dispatching a call to handle specific
> +/// type encodings.
> +static bool appendType(SmallStringEnc &Enc, QualType QType,
> + const CodeGen::CodeGenModule &CGM,
> + TypeStringCache &TSC) {
> +
> + QualType QT = QType.getCanonicalType();
> +
> + appendQualifier(Enc, QT);
> +
> + if (const BuiltinType *BT = QT->getAs<BuiltinType>())
> + return appendBuiltinType(Enc, BT);
> +
> + if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
> + return appendArrayType(Enc, AT, CGM, TSC, "");
> +
> + if (const PointerType *PT = QT->getAs<PointerType>())
> + return appendPointerType(Enc, PT, CGM, TSC);
> +
> + if (const EnumType *ET = QT->getAs<EnumType>())
> + return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
> +
> + if (const RecordType *RT = QT->getAsStructureType())
> + return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
> +
> + if (const RecordType *RT = QT->getAsUnionType())
> + return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
> +
> + if (const FunctionType *FT = QT->getAs<FunctionType>())
> + return appendFunctionType(Enc, FT, CGM, TSC);
> +
> + return false;
> +}
> +
> +static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
> + CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
> + if (!D)
> + return false;
> +
> + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
> + if (FD->getLanguageLinkage() != CLanguageLinkage)
> + return false;
> + return appendType(Enc, FD->getType(), CGM, TSC);
> + }
> +
> + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
> + if (VD->getLanguageLinkage() != CLanguageLinkage)
> + return false;
> + QualType QT = VD->getType().getCanonicalType();
> + if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
> + // Global ArrayTypes are given a size of '*' if the size is unknown.
> + appendQualifier(Enc, QT);
> + return appendArrayType(Enc, AT, CGM, TSC, "*");
> + }
> + return appendType(Enc, QT, CGM, TSC);
> + }
> + return false;
> +}
> +
> +
> //===----------------------------------------------------------------------===//
> // Driver code
> //===----------------------------------------------------------------------===//
>
> Modified: cfe/trunk/lib/CodeGen/TargetInfo.h
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.h?rev=207832&r1=207831&r2=207832&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/TargetInfo.h (original)
> +++ cfe/trunk/lib/CodeGen/TargetInfo.h Fri May 2 04:33:20 2014
> @@ -56,6 +56,11 @@ namespace clang {
> virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
> CodeGen::CodeGenModule &M) const { }
>
> + /// EmitTargetMD - Provides a convenient hook to handle extra
> + /// target-specific metadata for the given global.
> + virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
> + CodeGen::CodeGenModule &M) const { }
> +
> /// Determines the size of struct _Unwind_Exception on this platform,
> /// in 8-bit units. The Itanium ABI defines this as:
> /// struct _Unwind_Exception {
>
> Added: cfe/trunk/test/CodeGen/xcore-stringtype.c
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/xcore-stringtype.c?rev=207832&view=auto
> ==============================================================================
> --- cfe/trunk/test/CodeGen/xcore-stringtype.c (added)
> +++ cfe/trunk/test/CodeGen/xcore-stringtype.c Fri May 2 04:33:20 2014
> @@ -0,0 +1,169 @@
> +// REQUIRES: xcore-registered-target
> +// RUN: %clang_cc1 -triple xcore-unknown-unknown -fno-signed-char -fno-common -emit-llvm -o - %s | FileCheck %s
> +
> +// CHECK: target triple = "xcore-unknown-unknown"
> +
> +// In the tests below, some types are not supported by the ABI (_Complex,
> +// variable length arrays) and will thus emit no meta data.
> +// The 33 tests that do emit typstrings are gathered into '!xcore.typestrings'
> +// Please see 'Tools Developement Guide' section 2.16.2 for format details:
> +// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
> +
> +// CHECK: !xcore.typestrings = !{!0, !1, !2, !3, !4, !5, !6, !7, !8, !9, !10,
> +// CHECK: !11, !12, !13, !14, !15, !16, !17, !18, !19, !20, !21, !22, !23,
> +// CHECK: !24, !25, !26, !27, !28, !29, !30, !31, !32, !33, !34}
> +
> +
> +// test BuiltinType
> +// CHECK: !0 = metadata !{void (i1, i8, i8, i8, i16, i16, i16, i32, i32, i32,
> +// CHECK: i32, i32, i32, i64, i64, i64, float, double, double)*
> +// CHECK: @builtinType, metadata !"f{0}(b,uc,uc,sc,ss,us,ss,si,ui,si,sl,
> +// CHECK: ul,sl,sll,ull,sll,ft,d,ld)"}
> +void builtinType(_Bool B, char C, unsigned char UC, signed char SC, short S,
> + unsigned short US, signed short SS, int I, unsigned int UI,
> + signed int SI, long L, unsigned long UL, signed long SL,
> + long long LL, unsigned long long ULL, signed long long SLL,
> + float F, double D, long double LD) {}
> +double _Complex Complex; // not supported
> +
> +
> +// test FunctionType & Qualifiers
> +// CHECK: !1 = metadata !{void ()* @gI, metadata !"f{0}()"}
> +// CHECK: !2 = metadata !{void (...)* @eI, metadata !"f{0}()"}
> +// CHECK: !3 = metadata !{void ()* @gV, metadata !"f{0}(0)"}
> +// CHECK: !4 = metadata !{void ()* @eV, metadata !"f{0}(0)"}
> +// CHECK: !5 = metadata !{void (i32, ...)* @gVA, metadata !"f{0}(si,va)"}
> +// CHECK: !6 = metadata !{void (i32, ...)* @eVA, metadata !"f{0}(si,va)"}
> +// CHECK: !7 = metadata !{i32* (i32*)* @gQ, metadata !"f{crv:p(cv:si)}(p(cv:si))"}
> +// CHECK: !8 = metadata !{i32* (i32*)* @eQ, metadata !"f{crv:p(cv:si)}(p(cv:si))"}
> +extern void eI();
> +void gI() {eI();};
> +extern void eV(void);
> +void gV(void) {eV();}
> +extern void eVA(int, ...);
> +void gVA(int i, ...) {eVA(i);}
> +extern const volatile int* volatile restrict const
> + eQ(const volatile int * volatile restrict const);
> +const volatile int* volatile restrict const
> + gQ(const volatile int * volatile restrict const i) {return eQ(i);}
> +
> +
> +// test PointerType
> +// CHECK: !9 = metadata !{i32* (i32*, i32* (i32*)*)*
> +// CHECK: @pointerType, metadata !"f{p(si)}(p(si),p(f{p(si)}(p(si))))"}
> +// CHECK: !10 = metadata !{i32** @EP, metadata !"p(si)"}
> +// CHECK: !11 = metadata !{i32** @GP, metadata !"p(si)"}
> +extern int* EP;
> +int* GP;
> +int* pointerType(int *I, int * (*FP)(int *)) {
> + return I? EP : GP;
> +}
> +
> +
> +// test ArrayType
> +// CHECK: !12 = metadata !{[2 x i32]* (i32*, i32*, [2 x i32]*, [2 x i32]*, i32*)*
> +// CHECK: @arrayType, metadata !"f{p(a(2:si))}(p(si),p(si),p(a(2:si)),
> +// CHECK: p(a(2:si)),p(si))"}
> +// CHECK: !13 = metadata !{[0 x i32]* @EA1, metadata !"a(*:si)"}
> +// CHECK: !14 = metadata !{[2 x i32]* @EA2, metadata !"a(2:si)"}
> +// CHECK: !15 = metadata !{[0 x [2 x i32]]* @EA3, metadata !"a(*:a(2:si))"}
> +// CHECK: !16 = metadata !{[3 x [2 x i32]]* @EA4, metadata !"a(3:a(2:si))"}
> +// CHECK: !17 = metadata !{[2 x i32]* @GA1, metadata !"a(2:si)"}
> +// CHECK: !18 = metadata !{void ([2 x i32]*)* @arrayTypeVariable1,
> +// CHECK: metadata !"f{0}(p(a(2:si)))"}
> +// CHECK: !19 = metadata !{void (void ([2 x i32]*)*)* @arrayTypeVariable2,
> +// CHECK: metadata !"f{0}(p(f{0}(p(a(2:si)))))"}
> +// CHECK: !20 = metadata !{[3 x [2 x i32]]* @GA2, metadata !"a(3:a(2:si))"}
> +extern int EA1[];
> +extern int EA2[2];
> +extern int EA3[][2];
> +extern int EA4[3][2];
> +int GA1[2];
> +int GA2[3][2];
> +extern void arrayTypeVariable1(int[*][2]);
> +extern void arrayTypeVariable2( void(*fp)(int[*][2]) );
> +extern void arrayTypeVariable3(int[3][*]); // not supported
> +extern void arrayTypeVariable4( void(*fp)(int[3][*]) ); // not supported
> +typedef int RetType[2];
> +RetType* arrayType(int A1[], int A2[2], int A3[][2], int A4[3][2],
> + int A5[const volatile restrict static 2]) {
> + if (A1) return &EA1;
> + if (A2) return &EA2;
> + if (A3) return EA3;
> + if (A4) return EA4;
> + if (A5) return &GA1;
> + arrayTypeVariable1(EA4);
> + arrayTypeVariable2(arrayTypeVariable1);
> + arrayTypeVariable3(EA4);
> + arrayTypeVariable4(arrayTypeVariable3);
> + return GA2;
> +}
> +
> +
> +// test StructureType
> +// CHECK: !21 = metadata !{void (%struct.S1*)* @structureType1, metadata
> +// CHECK: !"f{0}(s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){m(s1){s(S1){}}})}})}})"}
> +// CHECK: !22 = metadata !{void (%struct.S2*)* @structureType2, metadata
> +// CHECK: !"f{0}(s(S2){m(ps3){p(s(S3){m(s1){s(S1){m(ps2){p(s(S2){})}}}})}})"}
> +// CHECK: !23 = metadata !{void (%struct.S3*)* @structureType3, metadata
> +// CHECK: !"f{0}(s(S3){m(s1){s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){})}})}}}})"}
> +// CHECK: !24 = metadata !{void (%struct.S4*)* @structureType4, metadata
> +// CHECK: !"f{0}(s(S4){m(s1){s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){m(s1){s(S1){}}})}})}}}})"}
> +// CHECK: !25 = metadata !{%struct.anon* @StructAnon, metadata !"s(){m(A){si}}"}
> +// CHECK: !26 = metadata !{i32 (%struct.SB*)* @structureTypeB, metadata
> +// CHECK: !"f{si}(s(SB){m(){b(4:si)},m(){b(2:si)},m(N4){b(4:si)},
> +// CHECK: m(N2){b(2:si)},m(){b(4:ui)},m(){b(4:si)},m(){b(4:c:si)},
> +// CHECK: m(){b(4:c:si)},m(){b(4:cv:si)}})"}
> +struct S2;
> +struct S1{struct S2 *ps2;};
> +struct S3;
> +struct S2{struct S3 *ps3;};
> +struct S3{struct S1 s1;};
> +struct S4{struct S1 s1;};
> +void structureType1(struct S1 s1){}
> +void structureType2(struct S2 s2){}
> +void structureType3(struct S3 s3){}
> +void structureType4(struct S4 s4){}
> +struct {int A;} StructAnon = {1};
> +struct SB{int:4; int:2; int N4:4; int N2:2; unsigned int:4; signed int:4;
> + const int:4; int const :4; volatile const int:4;};
> +int structureTypeB(struct SB sb){return StructAnon.A;}
> +
> +
> +// test UnionType
> +// CHECK: !27 = metadata !{void (%union.U1*)* @unionType1, metadata
> +// CHECK: !"f{0}(u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){m(u1){u(U1){}}})}})}})"}
> +// CHECK: !28 = metadata !{void (%union.U2*)* @unionType2, metadata
> +// CHECK: !"f{0}(u(U2){m(pu3){p(u(U3){m(u1){u(U1){m(pu2){p(u(U2){})}}}})}})"}
> +// CHECK: !29 = metadata !{void (%union.U3*)* @unionType3, metadata
> +// CHECK: !"f{0}(u(U3){m(u1){u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){})}})}}}})"}
> +// CHECK: !30 = metadata !{void (%union.U4*)* @unionType4, metadata
> +// CHECK: !"f{0}(u(U4){m(u1){u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){m(u1){u(U1){}}})}})}}}})"}
> +// CHECK: !31 = metadata !{%union.anon* @UnionAnon, metadata !"u(){m(A){si}}"}
> +// CHECK: !32 = metadata !{i32 (%union.UB*)* @unionTypeB, metadata
> +// CHECK: !"f{si}(u(UB){m(N2){b(2:si)},m(N4){b(4:si)},m(){b(2:si)},
> +// CHECK: m(){b(4:c:si)},m(){b(4:c:si)},m(){b(4:cv:si)},m(){b(4:si)},
> +// CHECK: m(){b(4:si)},m(){b(4:ui)}})"}
> +union U2;
> +union U1{union U2 *pu2;};
> +union U3;
> +union U2{union U3 *pu3;};
> +union U3{union U1 u1;};
> +union U4{union U1 u1;};
> +void unionType1(union U1 u1) {}
> +void unionType2(union U2 u2) {}
> +void unionType3(union U3 u3) {}
> +void unionType4(union U4 u4) {}
> +union UB{int:4; int:2; int N4:4; int N2:2; unsigned int:4; signed int:4;
> + const int:4; int const :4; volatile const int:4;};
> +union {int A;} UnionAnon = {1};
> +int unionTypeB(union UB ub) {return UnionAnon.A;}
> +
> +
> +// test EnumType
> +// CHECK: !33 = metadata !{i32* @EnumAnon, metadata !"e(){m(EA){3}}"}
> +// CHECK: !34 = metadata !{i32 (i32)* @enumType, metadata
> +// CHECK: !"f{si}(e(E){m(A){0},m(B){1},m(C){5},m(D){6}})"}
> +enum E {A, B, C=5, D};
> +enum {EA=3} EnumAnon = EA;
> +int enumType(enum E e) {return EnumAnon;}
>
>
> _______________________________________________
> cfe-commits mailing list
> cfe-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits
More information about the cfe-commits
mailing list