r207832 - XCore target: Add TypeString meta data to IR output.

Evgeniy Stepanov eugeni.stepanov at gmail.com
Tue May 6 00:30:54 PDT 2014


Hi,

this change broke MSan bot.
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/3242

IncompleteUsedCount is never initialized.


On Fri, May 2, 2014 at 1:33 PM, Robert Lytton <robert at xmos.com> wrote:
> Author: rlytton
> Date: Fri May  2 04:33:20 2014
> New Revision: 207832
>
> URL: http://llvm.org/viewvc/llvm-project?rev=207832&view=rev
> Log:
> XCore target: Add TypeString meta data to IR output.
>
> This includes the addition of the virtual function:
>         TargetCodeGenInfo::EmitTargetMD()
>
> Added:
>     cfe/trunk/test/CodeGen/xcore-stringtype.c
> Modified:
>     cfe/trunk/lib/CodeGen/CodeGenModule.cpp
>     cfe/trunk/lib/CodeGen/TargetInfo.cpp
>     cfe/trunk/lib/CodeGen/TargetInfo.h
>
> Modified: cfe/trunk/lib/CodeGen/CodeGenModule.cpp
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CodeGenModule.cpp?rev=207832&r1=207831&r2=207832&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/CodeGenModule.cpp (original)
> +++ cfe/trunk/lib/CodeGen/CodeGenModule.cpp Fri May  2 04:33:20 2014
> @@ -1463,6 +1463,8 @@ CodeGenModule::GetOrCreateLLVMFunction(S
>      }
>    }
>
> +  getTargetCodeGenInfo().emitTargetMD(D, F, *this);
> +
>    // Make sure the result is of the requested type.
>    if (!IsIncompleteFunction) {
>      assert(F->getType()->getElementType() == Ty);
> @@ -1616,6 +1618,8 @@ CodeGenModule::GetOrCreateLLVMGlobal(Str
>        isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
>      GV->setSection(".cp.rodata");
>
> +  getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
> +
>    return GV;
>  }
>
>
> Modified: cfe/trunk/lib/CodeGen/TargetInfo.cpp
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.cpp?rev=207832&r1=207831&r2=207832&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/TargetInfo.cpp (original)
> +++ cfe/trunk/lib/CodeGen/TargetInfo.cpp Fri May  2 04:33:20 2014
> @@ -23,6 +23,9 @@
>  #include "llvm/IR/DataLayout.h"
>  #include "llvm/IR/Type.h"
>  #include "llvm/Support/raw_ostream.h"
> +
> +#include <algorithm>    // std::sort
> +
>  using namespace clang;
>  using namespace CodeGen;
>
> @@ -6105,7 +6108,100 @@ SparcV9TargetCodeGenInfo::initDwarfEHReg
>  //===----------------------------------------------------------------------===//
>  // XCore ABI Implementation
>  //===----------------------------------------------------------------------===//
> +
>  namespace {
> +
> +/// A SmallStringEnc instance is used to build up the TypeString by passing
> +/// it by reference between functions that append to it.
> +typedef llvm::SmallString<128> SmallStringEnc;
> +
> +/// TypeStringCache caches the meta encodings of Types.
> +///
> +/// The reason for caching TypeStrings is two fold:
> +///   1. To cache a type's encoding for later uses;
> +///   2. As a means to break recursive member type inclusion.
> +///
> +/// A cache Entry can have a Status of:
> +///   NonRecursive:   The type encoding is not recursive;
> +///   Recursive:      The type encoding is recursive;
> +///   Incomplete:     An incomplete TypeString;
> +///   IncompleteUsed: An incomplete TypeString that has been used in a
> +///                   Recursive type encoding.
> +///
> +/// A NonRecursive entry will have all of its sub-members expanded as fully
> +/// as possible. Whilst it may contain types which are recursive, the type
> +/// itself is not recursive and thus its encoding may be safely used whenever
> +/// the type is encountered.
> +///
> +/// A Recursive entry will have all of its sub-members expanded as fully as
> +/// possible. The type itself is recursive and it may contain other types which
> +/// are recursive. The Recursive encoding must not be used during the expansion
> +/// of a recursive type's recursive branch. For simplicity the code uses
> +/// IncompleteCount to reject all usage of Recursive encodings for member types.
> +///
> +/// An Incomplete entry is always a RecordType and only encodes its
> +/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
> +/// are placed into the cache during type expansion as a means to identify and
> +/// handle recursive inclusion of types as sub-members. If there is recursion
> +/// the entry becomes IncompleteUsed.
> +///
> +/// During the expansion of a RecordType's members:
> +///
> +///   If the cache contains a NonRecursive encoding for the member type, the
> +///   cached encoding is used;
> +///
> +///   If the cache contains a Recursive encoding for the member type, the
> +///   cached encoding is 'Swapped' out, as it may be incorrect, and...
> +///
> +///   If the member is a RecordType, an Incomplete encoding is placed into the
> +///   cache to break potential recursive inclusion of itself as a sub-member;
> +///
> +///   Once a member RecordType has been expanded, its temporary incomplete
> +///   entry is removed from the cache. If a Recursive encoding was swapped out
> +///   it is swapped back in;
> +///
> +///   If an incomplete entry is used to expand a sub-member, the incomplete
> +///   entry is marked as IncompleteUsed. The cache keeps count of how many
> +///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
> +///
> +///   If a member's encoding is found to be a NonRecursive or Recursive viz:
> +///   IncompleteUsedCount==0, the member's encoding is added to the cache.
> +///   Else the member is part of a recursive type and thus the recursion has
> +///   been exited too soon for the encoding to be correct for the member.
> +///
> +class TypeStringCache {
> +  enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
> +  struct Entry {
> +    std::string Str;     // The encoded TypeString for the type.
> +    enum Status State;   // Information about the encoding in 'Str'.
> +    std::string Swapped; // A temporary place holder for a Recursive encoding
> +                         // during the expansion of RecordType's members.
> +  };
> +  std::map<const IdentifierInfo *, struct Entry> Map;
> +  unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
> +  unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
> +public:
> +  void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
> +  bool removeIncomplete(const IdentifierInfo *ID);
> +  void addIfComplete(const IdentifierInfo *ID, StringRef Str,
> +                     bool IsRecursive);
> +  StringRef lookupStr(const IdentifierInfo *ID);
> +};
> +
> +/// TypeString encodings for union fields must be order.
> +/// FieldEncoding is a helper for this ordering process.
> +class FieldEncoding {
> +  bool HasName;
> +  std::string Enc;
> +public:
> +  FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
> +  StringRef str() {return Enc.c_str();};
> +  bool operator<(const FieldEncoding &rhs) const {
> +    if (HasName != rhs.HasName) return HasName;
> +    return Enc < rhs.Enc;
> +  }
> +};
> +
>  class XCoreABIInfo : public DefaultABIInfo {
>  public:
>    XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
> @@ -6114,10 +6210,14 @@ public:
>  };
>
>  class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
> +  mutable TypeStringCache TSC;
>  public:
>    XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
>      :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
> +  virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
> +                            CodeGen::CodeGenModule &M) const;
>  };
> +
>  } // End anonymous namespace.
>
>  llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
> @@ -6169,6 +6269,448 @@ llvm::Value *XCoreABIInfo::EmitVAArg(llv
>    return Val;
>  }
>
> +/// During the expansion of a RecordType, an incomplete TypeString is placed
> +/// into the cache as a means to identify and break recursion.
> +/// If there is a Recursive encoding in the cache, it is swapped out and will
> +/// be reinserted by removeIncomplete().
> +/// All other types of encoding should have been used rather than arriving here.
> +void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
> +                                    std::string StubEnc) {
> +  if (!ID)
> +    return;
> +  Entry &E = Map[ID];
> +  assert( (E.Str.empty() || E.State == Recursive) &&
> +         "Incorrectly use of addIncomplete");
> +  assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
> +  E.Swapped.swap(E.Str); // swap out the Recursive
> +  E.Str.swap(StubEnc);
> +  E.State = Incomplete;
> +  ++IncompleteCount;
> +}
> +
> +/// Once the RecordType has been expanded, the temporary incomplete TypeString
> +/// must be removed from the cache.
> +/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
> +/// Returns true if the RecordType was defined recursively.
> +bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
> +  if (!ID)
> +    return false;
> +  auto I = Map.find(ID);
> +  assert(I != Map.end() && "Entry not present");
> +  Entry &E = I->second;
> +  assert( (E.State == Incomplete ||
> +           E.State == IncompleteUsed) &&
> +         "Entry must be an incomplete type");
> +  bool IsRecursive = false;
> +  if (E.State == IncompleteUsed) {
> +    // We made use of our Incomplete encoding, thus we are recursive.
> +    IsRecursive = true;
> +    --IncompleteUsedCount;
> +  }
> +  if (E.Swapped.empty())
> +    Map.erase(I);
> +  else {
> +    // Swap the Recursive back.
> +    E.Swapped.swap(E.Str);
> +    E.Swapped.clear();
> +    E.State = Recursive;
> +  }
> +  --IncompleteCount;
> +  return IsRecursive;
> +}
> +
> +/// Add the encoded TypeString to the cache only if it is NonRecursive or
> +/// Recursive (viz: all sub-members were expanded as fully as possible).
> +void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
> +                                    bool IsRecursive) {
> +  if (!ID || IncompleteUsedCount)
> +    return; // No key or it is is an incomplete sub-type so don't add.
> +  Entry &E = Map[ID];
> +  if (IsRecursive && !E.Str.empty()) {
> +    assert(E.State==Recursive && E.Str.size() == Str.size() &&
> +           "This is not the same Recursive entry");
> +    // The parent container was not recursive after all, so we could have used
> +    // this Recursive sub-member entry after all, but we assumed the worse when
> +    // we started viz: IncompleteCount!=0.
> +    return;
> +  }
> +  assert(E.Str.empty() && "Entry already present");
> +  E.Str = Str.str();
> +  E.State = IsRecursive? Recursive : NonRecursive;
> +}
> +
> +/// Return a cached TypeString encoding for the ID. If there isn't one, or we
> +/// are recursively expanding a type (IncompleteCount != 0) and the cached
> +/// encoding is Recursive, return an empty StringRef.
> +StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
> +  if (!ID)
> +    return StringRef();   // We have no key.
> +  auto I = Map.find(ID);
> +  if (I == Map.end())
> +    return StringRef();   // We have no encoding.
> +  Entry &E = I->second;
> +  if (E.State == Recursive && IncompleteCount)
> +    return StringRef();   // We don't use Recursive encodings for member types.
> +
> +  if (E.State == Incomplete) {
> +    // The incomplete type is being used to break out of recursion.
> +    E.State = IncompleteUsed;
> +    ++IncompleteUsedCount;
> +  }
> +  return E.Str.c_str();
> +}
> +
> +/// The XCore ABI includes a type information section that communicates symbol
> +/// type information to the linker. The linker uses this information to verify
> +/// safety/correctness of things such as array bound and pointers et al.
> +/// The ABI only requires C (and XC) language modules to emit TypeStrings.
> +/// This type information (TypeString) is emitted into meta data for all global
> +/// symbols: definitions, declarations, functions & variables.
> +///
> +/// The TypeString carries type, qualifier, name, size & value details.
> +/// Please see 'Tools Development Guide' section 2.16.2 for format details:
> +/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
> +/// The output is tested by test/CodeGen/xcore-stringtype.c.
> +///
> +static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
> +                          CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
> +
> +/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
> +void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
> +                                          CodeGen::CodeGenModule &CGM) const {
> +  SmallStringEnc Enc;
> +  if (getTypeString(Enc, D, CGM, TSC)) {
> +    llvm::LLVMContext &Ctx = CGM.getModule().getContext();
> +    llvm::SmallVector<llvm::Value *, 2> MDVals;
> +    MDVals.push_back(GV);
> +    MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
> +    llvm::NamedMDNode *MD =
> +      CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
> +    MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
> +  }
> +}
> +
> +static bool appendType(SmallStringEnc &Enc, QualType QType,
> +                       const CodeGen::CodeGenModule &CGM,
> +                       TypeStringCache &TSC);
> +
> +/// Helper function for appendRecordType().
> +/// Builds a SmallVector containing the encoded field types in declaration order.
> +static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
> +                             const RecordDecl *RD,
> +                             const CodeGen::CodeGenModule &CGM,
> +                             TypeStringCache &TSC) {
> +  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
> +       I != E; ++I) {
> +    SmallStringEnc Enc;
> +    Enc += "m(";
> +    Enc += I->getName();
> +    Enc += "){";
> +    if (I->isBitField()) {
> +      Enc += "b(";
> +      llvm::raw_svector_ostream OS(Enc);
> +      OS.resync();
> +      OS << I->getBitWidthValue(CGM.getContext());
> +      OS.flush();
> +      Enc += ':';
> +    }
> +    if (!appendType(Enc, I->getType(), CGM, TSC))
> +      return false;
> +    if (I->isBitField())
> +      Enc += ')';
> +    Enc += '}';
> +    FE.push_back(FieldEncoding(!I->getName().empty(), Enc));
> +  }
> +  return true;
> +}
> +
> +/// Appends structure and union types to Enc and adds encoding to cache.
> +/// Recursively calls appendType (via extractFieldType) for each field.
> +/// Union types have their fields ordered according to the ABI.
> +static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
> +                             const CodeGen::CodeGenModule &CGM,
> +                             TypeStringCache &TSC, const IdentifierInfo *ID) {
> +  // Append the cached TypeString if we have one.
> +  StringRef TypeString = TSC.lookupStr(ID);
> +  if (!TypeString.empty()) {
> +    Enc += TypeString;
> +    return true;
> +  }
> +
> +  // Start to emit an incomplete TypeString.
> +  size_t Start = Enc.size();
> +  Enc += (RT->isUnionType()? 'u' : 's');
> +  Enc += '(';
> +  if (ID)
> +    Enc += ID->getName();
> +  Enc += "){";
> +
> +  // We collect all encoded fields and order as necessary.
> +  bool IsRecursive = false;
> +  SmallVector<FieldEncoding, 16> FE;
> +  const RecordDecl *RD = RT->getDecl()->getDefinition();
> +  if (RD && !RD->field_empty()) {
> +    // An incomplete TypeString stub is placed in the cache for this RecordType
> +    // so that recursive calls to this RecordType will use it whilst building a
> +    // complete TypeString for this RecordType.
> +    std::string StubEnc(Enc.substr(Start).str());
> +    StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
> +    TSC.addIncomplete(ID, std::move(StubEnc));
> +    if (!extractFieldType(FE, RD, CGM, TSC)) {
> +      (void) TSC.removeIncomplete(ID);
> +      return false;
> +    }
> +    IsRecursive = TSC.removeIncomplete(ID);
> +    // The ABI requires unions to be sorted but not structures.
> +    // See FieldEncoding::operator< for sort algorithm.
> +    if (RT->isUnionType())
> +      std::sort(FE.begin(), FE.end());
> +  }
> +
> +  // We can now complete the TypeString.
> +  if (unsigned E = FE.size())
> +    for (unsigned I = 0; I != E; ++I) {
> +      if (I)
> +        Enc += ',';
> +      Enc += FE[I].str();
> +    }
> +  Enc += '}';
> +  TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
> +  return true;
> +}
> +
> +/// Appends enum types to Enc and adds the encoding to the cache.
> +static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
> +                           TypeStringCache &TSC,
> +                           const IdentifierInfo *ID) {
> +  // Append the cached TypeString if we have one.
> +  StringRef TypeString = TSC.lookupStr(ID);
> +  if (!TypeString.empty()) {
> +    Enc += TypeString;
> +    return true;
> +  }
> +
> +  size_t Start = Enc.size();
> +  Enc += "e(";
> +  if (ID)
> +    Enc += ID->getName();
> +  Enc += "){";
> +  if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
> +    auto I = ED->enumerator_begin();
> +    auto E = ED->enumerator_end();
> +    while (I != E) {
> +      Enc += "m(";
> +      Enc += I->getName();
> +      Enc += "){";
> +      I->getInitVal().toString(Enc);
> +      Enc += '}';
> +      ++I;
> +      if (I != E)
> +        Enc += ',';
> +    }
> +  }
> +  Enc += '}';
> +  TSC.addIfComplete(ID, Enc.substr(Start), false);
> +  return true;
> +}
> +
> +/// Appends type's qualifier to Enc.
> +/// This is done prior to appending the type's encoding.
> +static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
> +  // Qualifiers are emitted in alphabetical order.
> +  static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
> +  int Lookup = 0;
> +  if (QT.isConstQualified())
> +    Lookup += 1<<0;
> +  if (QT.isRestrictQualified())
> +    Lookup += 1<<1;
> +  if (QT.isVolatileQualified())
> +    Lookup += 1<<2;
> +  Enc += Table[Lookup];
> +}
> +
> +/// Appends built-in types to Enc.
> +static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
> +  const char *EncType;
> +  switch (BT->getKind()) {
> +    case BuiltinType::Void:
> +      EncType = "0";
> +      break;
> +    case BuiltinType::Bool:
> +      EncType = "b";
> +      break;
> +    case BuiltinType::Char_U:
> +      EncType = "uc";
> +      break;
> +    case BuiltinType::UChar:
> +      EncType = "uc";
> +      break;
> +    case BuiltinType::SChar:
> +      EncType = "sc";
> +      break;
> +    case BuiltinType::UShort:
> +      EncType = "us";
> +      break;
> +    case BuiltinType::Short:
> +      EncType = "ss";
> +      break;
> +    case BuiltinType::UInt:
> +      EncType = "ui";
> +      break;
> +    case BuiltinType::Int:
> +      EncType = "si";
> +      break;
> +    case BuiltinType::ULong:
> +      EncType = "ul";
> +      break;
> +    case BuiltinType::Long:
> +      EncType = "sl";
> +      break;
> +    case BuiltinType::ULongLong:
> +      EncType = "ull";
> +      break;
> +    case BuiltinType::LongLong:
> +      EncType = "sll";
> +      break;
> +    case BuiltinType::Float:
> +      EncType = "ft";
> +      break;
> +    case BuiltinType::Double:
> +      EncType = "d";
> +      break;
> +    case BuiltinType::LongDouble:
> +      EncType = "ld";
> +      break;
> +    default:
> +      return false;
> +  }
> +  Enc += EncType;
> +  return true;
> +}
> +
> +/// Appends a pointer encoding to Enc before calling appendType for the pointee.
> +static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
> +                              const CodeGen::CodeGenModule &CGM,
> +                              TypeStringCache &TSC) {
> +  Enc += "p(";
> +  if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
> +    return false;
> +  Enc += ')';
> +  return true;
> +}
> +
> +/// Appends array encoding to Enc before calling appendType for the element.
> +static bool appendArrayType(SmallStringEnc &Enc, const ArrayType *AT,
> +                            const CodeGen::CodeGenModule &CGM,
> +                            TypeStringCache &TSC, StringRef NoSizeEnc) {
> +  if (AT->getSizeModifier() != ArrayType::Normal)
> +    return false;
> +  Enc += "a(";
> +  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
> +    CAT->getSize().toStringUnsigned(Enc);
> +  else
> +    Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
> +  Enc += ':';
> +  if (!appendType(Enc, AT->getElementType(), CGM, TSC))
> +    return false;
> +  Enc += ')';
> +  return true;
> +}
> +
> +/// Appends a function encoding to Enc, calling appendType for the return type
> +/// and the arguments.
> +static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
> +                             const CodeGen::CodeGenModule &CGM,
> +                             TypeStringCache &TSC) {
> +  Enc += "f{";
> +  if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
> +    return false;
> +  Enc += "}(";
> +  if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
> +    // N.B. we are only interested in the adjusted param types.
> +    auto I = FPT->param_type_begin();
> +    auto E = FPT->param_type_end();
> +    if (I != E) {
> +      do {
> +        if (!appendType(Enc, *I, CGM, TSC))
> +          return false;
> +        ++I;
> +        if (I != E)
> +          Enc += ',';
> +      } while (I != E);
> +      if (FPT->isVariadic())
> +        Enc += ",va";
> +    } else {
> +      if (FPT->isVariadic())
> +        Enc += "va";
> +      else
> +        Enc += '0';
> +    }
> +  }
> +  Enc += ')';
> +  return true;
> +}
> +
> +/// Handles the type's qualifier before dispatching a call to handle specific
> +/// type encodings.
> +static bool appendType(SmallStringEnc &Enc, QualType QType,
> +                       const CodeGen::CodeGenModule &CGM,
> +                       TypeStringCache &TSC) {
> +
> +  QualType QT = QType.getCanonicalType();
> +
> +  appendQualifier(Enc, QT);
> +
> +  if (const BuiltinType *BT = QT->getAs<BuiltinType>())
> +    return appendBuiltinType(Enc, BT);
> +
> +  if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
> +    return appendArrayType(Enc, AT, CGM, TSC, "");
> +
> +  if (const PointerType *PT = QT->getAs<PointerType>())
> +    return appendPointerType(Enc, PT, CGM, TSC);
> +
> +  if (const EnumType *ET = QT->getAs<EnumType>())
> +    return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
> +
> +  if (const RecordType *RT = QT->getAsStructureType())
> +    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
> +
> +  if (const RecordType *RT = QT->getAsUnionType())
> +    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
> +
> +  if (const FunctionType *FT = QT->getAs<FunctionType>())
> +    return appendFunctionType(Enc, FT, CGM, TSC);
> +
> +  return false;
> +}
> +
> +static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
> +                          CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
> +  if (!D)
> +    return false;
> +
> +  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
> +    if (FD->getLanguageLinkage() != CLanguageLinkage)
> +      return false;
> +    return appendType(Enc, FD->getType(), CGM, TSC);
> +  }
> +
> +  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
> +    if (VD->getLanguageLinkage() != CLanguageLinkage)
> +      return false;
> +    QualType QT = VD->getType().getCanonicalType();
> +    if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
> +      // Global ArrayTypes are given a size of '*' if the size is unknown.
> +      appendQualifier(Enc, QT);
> +      return appendArrayType(Enc, AT, CGM, TSC, "*");
> +    }
> +    return appendType(Enc, QT, CGM, TSC);
> +  }
> +  return false;
> +}
> +
> +
>  //===----------------------------------------------------------------------===//
>  // Driver code
>  //===----------------------------------------------------------------------===//
>
> Modified: cfe/trunk/lib/CodeGen/TargetInfo.h
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.h?rev=207832&r1=207831&r2=207832&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/TargetInfo.h (original)
> +++ cfe/trunk/lib/CodeGen/TargetInfo.h Fri May  2 04:33:20 2014
> @@ -56,6 +56,11 @@ namespace clang {
>      virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
>                                       CodeGen::CodeGenModule &M) const { }
>
> +    /// EmitTargetMD - Provides a convenient hook to handle extra
> +    /// target-specific metadata for the given global.
> +    virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
> +                              CodeGen::CodeGenModule &M) const { }
> +
>      /// Determines the size of struct _Unwind_Exception on this platform,
>      /// in 8-bit units.  The Itanium ABI defines this as:
>      ///   struct _Unwind_Exception {
>
> Added: cfe/trunk/test/CodeGen/xcore-stringtype.c
> URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/xcore-stringtype.c?rev=207832&view=auto
> ==============================================================================
> --- cfe/trunk/test/CodeGen/xcore-stringtype.c (added)
> +++ cfe/trunk/test/CodeGen/xcore-stringtype.c Fri May  2 04:33:20 2014
> @@ -0,0 +1,169 @@
> +// REQUIRES: xcore-registered-target
> +// RUN: %clang_cc1 -triple xcore-unknown-unknown -fno-signed-char -fno-common -emit-llvm -o - %s | FileCheck %s
> +
> +// CHECK: target triple = "xcore-unknown-unknown"
> +
> +// In the tests below, some types are not supported by the ABI (_Complex,
> +// variable length arrays) and will thus emit no meta data.
> +// The 33 tests that do emit typstrings are gathered into '!xcore.typestrings'
> +// Please see 'Tools Developement Guide' section 2.16.2 for format details:
> +// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
> +
> +// CHECK: !xcore.typestrings = !{!0, !1, !2, !3, !4, !5, !6, !7, !8, !9, !10,
> +// CHECK: !11, !12, !13, !14, !15, !16, !17, !18, !19, !20, !21, !22, !23,
> +// CHECK: !24, !25, !26, !27, !28, !29, !30, !31, !32, !33, !34}
> +
> +
> +// test BuiltinType
> +// CHECK: !0 = metadata !{void (i1, i8, i8, i8, i16, i16, i16, i32, i32, i32,
> +// CHECK:      i32, i32, i32, i64, i64, i64, float, double, double)*
> +// CHECK:      @builtinType, metadata !"f{0}(b,uc,uc,sc,ss,us,ss,si,ui,si,sl,
> +// CHECK:      ul,sl,sll,ull,sll,ft,d,ld)"}
> +void builtinType(_Bool B, char C, unsigned char UC, signed char SC, short S,
> +                 unsigned short US, signed short SS, int I, unsigned int UI,
> +                 signed int SI, long L, unsigned long UL, signed long SL,
> +                 long long LL, unsigned long long ULL, signed long long SLL,
> +                 float F, double D, long double LD) {}
> +double _Complex Complex; // not supported
> +
> +
> +// test FunctionType & Qualifiers
> +// CHECK: !1 = metadata !{void ()* @gI, metadata !"f{0}()"}
> +// CHECK: !2 = metadata !{void (...)* @eI, metadata !"f{0}()"}
> +// CHECK: !3 = metadata !{void ()* @gV, metadata !"f{0}(0)"}
> +// CHECK: !4 = metadata !{void ()* @eV, metadata !"f{0}(0)"}
> +// CHECK: !5 = metadata !{void (i32, ...)* @gVA, metadata !"f{0}(si,va)"}
> +// CHECK: !6 = metadata !{void (i32, ...)* @eVA, metadata !"f{0}(si,va)"}
> +// CHECK: !7 = metadata !{i32* (i32*)* @gQ, metadata !"f{crv:p(cv:si)}(p(cv:si))"}
> +// CHECK: !8 = metadata !{i32* (i32*)* @eQ, metadata !"f{crv:p(cv:si)}(p(cv:si))"}
> +extern void eI();
> +void gI() {eI();};
> +extern void eV(void);
> +void gV(void) {eV();}
> +extern void eVA(int, ...);
> +void gVA(int i, ...) {eVA(i);}
> +extern const volatile int* volatile restrict const
> +    eQ(const volatile int * volatile restrict const);
> +const volatile int* volatile restrict const
> +    gQ(const volatile int * volatile restrict const i) {return eQ(i);}
> +
> +
> +// test PointerType
> +// CHECK: !9 = metadata !{i32* (i32*, i32* (i32*)*)*
> +// CHECK:      @pointerType, metadata !"f{p(si)}(p(si),p(f{p(si)}(p(si))))"}
> +// CHECK: !10 = metadata !{i32** @EP, metadata !"p(si)"}
> +// CHECK: !11 = metadata !{i32** @GP, metadata !"p(si)"}
> +extern int* EP;
> +int* GP;
> +int* pointerType(int *I, int * (*FP)(int *)) {
> +  return I? EP : GP;
> +}
> +
> +
> +// test ArrayType
> +// CHECK: !12 = metadata !{[2 x i32]* (i32*, i32*, [2 x i32]*, [2 x i32]*, i32*)*
> +// CHECK:       @arrayType, metadata !"f{p(a(2:si))}(p(si),p(si),p(a(2:si)),
> +// CHECK:       p(a(2:si)),p(si))"}
> +// CHECK: !13 = metadata !{[0 x i32]* @EA1, metadata !"a(*:si)"}
> +// CHECK: !14 = metadata !{[2 x i32]* @EA2, metadata !"a(2:si)"}
> +// CHECK: !15 = metadata !{[0 x [2 x i32]]* @EA3, metadata !"a(*:a(2:si))"}
> +// CHECK: !16 = metadata !{[3 x [2 x i32]]* @EA4, metadata !"a(3:a(2:si))"}
> +// CHECK: !17 = metadata !{[2 x i32]* @GA1, metadata !"a(2:si)"}
> +// CHECK: !18 = metadata !{void ([2 x i32]*)* @arrayTypeVariable1,
> +// CHECK:       metadata !"f{0}(p(a(2:si)))"}
> +// CHECK: !19 = metadata !{void (void ([2 x i32]*)*)* @arrayTypeVariable2,
> +// CHECK:       metadata !"f{0}(p(f{0}(p(a(2:si)))))"}
> +// CHECK: !20 = metadata !{[3 x [2 x i32]]* @GA2, metadata !"a(3:a(2:si))"}
> +extern int EA1[];
> +extern int EA2[2];
> +extern int EA3[][2];
> +extern int EA4[3][2];
> +int GA1[2];
> +int GA2[3][2];
> +extern void arrayTypeVariable1(int[*][2]);
> +extern void arrayTypeVariable2( void(*fp)(int[*][2]) );
> +extern void arrayTypeVariable3(int[3][*]);                // not supported
> +extern void arrayTypeVariable4( void(*fp)(int[3][*]) );   // not supported
> +typedef int RetType[2];
> +RetType* arrayType(int A1[], int A2[2], int A3[][2], int A4[3][2],
> +                   int A5[const volatile restrict static 2]) {
> +  if (A1) return &EA1;
> +  if (A2) return &EA2;
> +  if (A3) return EA3;
> +  if (A4) return EA4;
> +  if (A5) return &GA1;
> +  arrayTypeVariable1(EA4);
> +  arrayTypeVariable2(arrayTypeVariable1);
> +  arrayTypeVariable3(EA4);
> +  arrayTypeVariable4(arrayTypeVariable3);
> +  return GA2;
> +}
> +
> +
> +// test StructureType
> +// CHECK: !21 = metadata !{void (%struct.S1*)* @structureType1, metadata
> +// CHECK:       !"f{0}(s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){m(s1){s(S1){}}})}})}})"}
> +// CHECK: !22 = metadata !{void (%struct.S2*)* @structureType2, metadata
> +// CHECK:       !"f{0}(s(S2){m(ps3){p(s(S3){m(s1){s(S1){m(ps2){p(s(S2){})}}}})}})"}
> +// CHECK: !23 = metadata !{void (%struct.S3*)* @structureType3, metadata
> +// CHECK:       !"f{0}(s(S3){m(s1){s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){})}})}}}})"}
> +// CHECK: !24 = metadata !{void (%struct.S4*)* @structureType4, metadata
> +// CHECK:       !"f{0}(s(S4){m(s1){s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){m(s1){s(S1){}}})}})}}}})"}
> +// CHECK: !25 = metadata !{%struct.anon* @StructAnon, metadata !"s(){m(A){si}}"}
> +// CHECK: !26 = metadata !{i32 (%struct.SB*)* @structureTypeB, metadata
> +// CHECK:       !"f{si}(s(SB){m(){b(4:si)},m(){b(2:si)},m(N4){b(4:si)},
> +// CHECK:       m(N2){b(2:si)},m(){b(4:ui)},m(){b(4:si)},m(){b(4:c:si)},
> +// CHECK:       m(){b(4:c:si)},m(){b(4:cv:si)}})"}
> +struct S2;
> +struct S1{struct S2 *ps2;};
> +struct S3;
> +struct S2{struct S3 *ps3;};
> +struct S3{struct S1 s1;};
> +struct S4{struct S1 s1;};
> +void structureType1(struct S1 s1){}
> +void structureType2(struct S2 s2){}
> +void structureType3(struct S3 s3){}
> +void structureType4(struct S4 s4){}
> +struct {int A;} StructAnon = {1};
> +struct SB{int:4; int:2; int N4:4; int N2:2; unsigned int:4; signed int:4;
> +          const int:4; int const :4; volatile const int:4;};
> +int structureTypeB(struct SB sb){return StructAnon.A;}
> +
> +
> +// test UnionType
> +// CHECK: !27 = metadata !{void (%union.U1*)* @unionType1, metadata
> +// CHECK:       !"f{0}(u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){m(u1){u(U1){}}})}})}})"}
> +// CHECK: !28 = metadata !{void (%union.U2*)* @unionType2, metadata
> +// CHECK:       !"f{0}(u(U2){m(pu3){p(u(U3){m(u1){u(U1){m(pu2){p(u(U2){})}}}})}})"}
> +// CHECK: !29 = metadata !{void (%union.U3*)* @unionType3, metadata
> +// CHECK:       !"f{0}(u(U3){m(u1){u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){})}})}}}})"}
> +// CHECK: !30 = metadata !{void (%union.U4*)* @unionType4, metadata
> +// CHECK:       !"f{0}(u(U4){m(u1){u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){m(u1){u(U1){}}})}})}}}})"}
> +// CHECK: !31 = metadata !{%union.anon* @UnionAnon, metadata !"u(){m(A){si}}"}
> +// CHECK: !32 = metadata !{i32 (%union.UB*)* @unionTypeB, metadata
> +// CHECK:       !"f{si}(u(UB){m(N2){b(2:si)},m(N4){b(4:si)},m(){b(2:si)},
> +// CHECK:       m(){b(4:c:si)},m(){b(4:c:si)},m(){b(4:cv:si)},m(){b(4:si)},
> +// CHECK:       m(){b(4:si)},m(){b(4:ui)}})"}
> +union U2;
> +union U1{union U2 *pu2;};
> +union U3;
> +union U2{union U3 *pu3;};
> +union U3{union U1 u1;};
> +union U4{union U1 u1;};
> +void unionType1(union U1 u1) {}
> +void unionType2(union U2 u2) {}
> +void unionType3(union U3 u3) {}
> +void unionType4(union U4 u4) {}
> +union UB{int:4; int:2; int N4:4; int N2:2; unsigned int:4; signed int:4;
> +         const int:4; int const :4; volatile const int:4;};
> +union {int A;} UnionAnon = {1};
> +int unionTypeB(union UB ub) {return UnionAnon.A;}
> +
> +
> +// test EnumType
> +// CHECK: !33 = metadata !{i32* @EnumAnon, metadata !"e(){m(EA){3}}"}
> +// CHECK: !34 = metadata !{i32 (i32)* @enumType, metadata
> +// CHECK:       !"f{si}(e(E){m(A){0},m(B){1},m(C){5},m(D){6}})"}
> +enum E {A, B, C=5, D};
> +enum {EA=3} EnumAnon = EA;
> +int enumType(enum E e) {return EnumAnon;}
>
>
> _______________________________________________
> cfe-commits mailing list
> cfe-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits



More information about the cfe-commits mailing list