r207832 - XCore target: Add TypeString meta data to IR output.
Robert Lytton
robert at xmos.com
Fri May 2 02:33:21 PDT 2014
Author: rlytton
Date: Fri May 2 04:33:20 2014
New Revision: 207832
URL: http://llvm.org/viewvc/llvm-project?rev=207832&view=rev
Log:
XCore target: Add TypeString meta data to IR output.
This includes the addition of the virtual function:
TargetCodeGenInfo::EmitTargetMD()
Added:
cfe/trunk/test/CodeGen/xcore-stringtype.c
Modified:
cfe/trunk/lib/CodeGen/CodeGenModule.cpp
cfe/trunk/lib/CodeGen/TargetInfo.cpp
cfe/trunk/lib/CodeGen/TargetInfo.h
Modified: cfe/trunk/lib/CodeGen/CodeGenModule.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CodeGenModule.cpp?rev=207832&r1=207831&r2=207832&view=diff
==============================================================================
--- cfe/trunk/lib/CodeGen/CodeGenModule.cpp (original)
+++ cfe/trunk/lib/CodeGen/CodeGenModule.cpp Fri May 2 04:33:20 2014
@@ -1463,6 +1463,8 @@ CodeGenModule::GetOrCreateLLVMFunction(S
}
}
+ getTargetCodeGenInfo().emitTargetMD(D, F, *this);
+
// Make sure the result is of the requested type.
if (!IsIncompleteFunction) {
assert(F->getType()->getElementType() == Ty);
@@ -1616,6 +1618,8 @@ CodeGenModule::GetOrCreateLLVMGlobal(Str
isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
GV->setSection(".cp.rodata");
+ getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
+
return GV;
}
Modified: cfe/trunk/lib/CodeGen/TargetInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.cpp?rev=207832&r1=207831&r2=207832&view=diff
==============================================================================
--- cfe/trunk/lib/CodeGen/TargetInfo.cpp (original)
+++ cfe/trunk/lib/CodeGen/TargetInfo.cpp Fri May 2 04:33:20 2014
@@ -23,6 +23,9 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/raw_ostream.h"
+
+#include <algorithm> // std::sort
+
using namespace clang;
using namespace CodeGen;
@@ -6105,7 +6108,100 @@ SparcV9TargetCodeGenInfo::initDwarfEHReg
//===----------------------------------------------------------------------===//
// XCore ABI Implementation
//===----------------------------------------------------------------------===//
+
namespace {
+
+/// A SmallStringEnc instance is used to build up the TypeString by passing
+/// it by reference between functions that append to it.
+typedef llvm::SmallString<128> SmallStringEnc;
+
+/// TypeStringCache caches the meta encodings of Types.
+///
+/// The reason for caching TypeStrings is two fold:
+/// 1. To cache a type's encoding for later uses;
+/// 2. As a means to break recursive member type inclusion.
+///
+/// A cache Entry can have a Status of:
+/// NonRecursive: The type encoding is not recursive;
+/// Recursive: The type encoding is recursive;
+/// Incomplete: An incomplete TypeString;
+/// IncompleteUsed: An incomplete TypeString that has been used in a
+/// Recursive type encoding.
+///
+/// A NonRecursive entry will have all of its sub-members expanded as fully
+/// as possible. Whilst it may contain types which are recursive, the type
+/// itself is not recursive and thus its encoding may be safely used whenever
+/// the type is encountered.
+///
+/// A Recursive entry will have all of its sub-members expanded as fully as
+/// possible. The type itself is recursive and it may contain other types which
+/// are recursive. The Recursive encoding must not be used during the expansion
+/// of a recursive type's recursive branch. For simplicity the code uses
+/// IncompleteCount to reject all usage of Recursive encodings for member types.
+///
+/// An Incomplete entry is always a RecordType and only encodes its
+/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
+/// are placed into the cache during type expansion as a means to identify and
+/// handle recursive inclusion of types as sub-members. If there is recursion
+/// the entry becomes IncompleteUsed.
+///
+/// During the expansion of a RecordType's members:
+///
+/// If the cache contains a NonRecursive encoding for the member type, the
+/// cached encoding is used;
+///
+/// If the cache contains a Recursive encoding for the member type, the
+/// cached encoding is 'Swapped' out, as it may be incorrect, and...
+///
+/// If the member is a RecordType, an Incomplete encoding is placed into the
+/// cache to break potential recursive inclusion of itself as a sub-member;
+///
+/// Once a member RecordType has been expanded, its temporary incomplete
+/// entry is removed from the cache. If a Recursive encoding was swapped out
+/// it is swapped back in;
+///
+/// If an incomplete entry is used to expand a sub-member, the incomplete
+/// entry is marked as IncompleteUsed. The cache keeps count of how many
+/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
+///
+/// If a member's encoding is found to be a NonRecursive or Recursive viz:
+/// IncompleteUsedCount==0, the member's encoding is added to the cache.
+/// Else the member is part of a recursive type and thus the recursion has
+/// been exited too soon for the encoding to be correct for the member.
+///
+class TypeStringCache {
+ enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
+ struct Entry {
+ std::string Str; // The encoded TypeString for the type.
+ enum Status State; // Information about the encoding in 'Str'.
+ std::string Swapped; // A temporary place holder for a Recursive encoding
+ // during the expansion of RecordType's members.
+ };
+ std::map<const IdentifierInfo *, struct Entry> Map;
+ unsigned IncompleteCount; // Number of Incomplete entries in the Map.
+ unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
+public:
+ void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
+ bool removeIncomplete(const IdentifierInfo *ID);
+ void addIfComplete(const IdentifierInfo *ID, StringRef Str,
+ bool IsRecursive);
+ StringRef lookupStr(const IdentifierInfo *ID);
+};
+
+/// TypeString encodings for union fields must be order.
+/// FieldEncoding is a helper for this ordering process.
+class FieldEncoding {
+ bool HasName;
+ std::string Enc;
+public:
+ FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
+ StringRef str() {return Enc.c_str();};
+ bool operator<(const FieldEncoding &rhs) const {
+ if (HasName != rhs.HasName) return HasName;
+ return Enc < rhs.Enc;
+ }
+};
+
class XCoreABIInfo : public DefaultABIInfo {
public:
XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
@@ -6114,10 +6210,14 @@ public:
};
class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
+ mutable TypeStringCache TSC;
public:
XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
:TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
+ virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const;
};
+
} // End anonymous namespace.
llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
@@ -6169,6 +6269,448 @@ llvm::Value *XCoreABIInfo::EmitVAArg(llv
return Val;
}
+/// During the expansion of a RecordType, an incomplete TypeString is placed
+/// into the cache as a means to identify and break recursion.
+/// If there is a Recursive encoding in the cache, it is swapped out and will
+/// be reinserted by removeIncomplete().
+/// All other types of encoding should have been used rather than arriving here.
+void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
+ std::string StubEnc) {
+ if (!ID)
+ return;
+ Entry &E = Map[ID];
+ assert( (E.Str.empty() || E.State == Recursive) &&
+ "Incorrectly use of addIncomplete");
+ assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
+ E.Swapped.swap(E.Str); // swap out the Recursive
+ E.Str.swap(StubEnc);
+ E.State = Incomplete;
+ ++IncompleteCount;
+}
+
+/// Once the RecordType has been expanded, the temporary incomplete TypeString
+/// must be removed from the cache.
+/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
+/// Returns true if the RecordType was defined recursively.
+bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
+ if (!ID)
+ return false;
+ auto I = Map.find(ID);
+ assert(I != Map.end() && "Entry not present");
+ Entry &E = I->second;
+ assert( (E.State == Incomplete ||
+ E.State == IncompleteUsed) &&
+ "Entry must be an incomplete type");
+ bool IsRecursive = false;
+ if (E.State == IncompleteUsed) {
+ // We made use of our Incomplete encoding, thus we are recursive.
+ IsRecursive = true;
+ --IncompleteUsedCount;
+ }
+ if (E.Swapped.empty())
+ Map.erase(I);
+ else {
+ // Swap the Recursive back.
+ E.Swapped.swap(E.Str);
+ E.Swapped.clear();
+ E.State = Recursive;
+ }
+ --IncompleteCount;
+ return IsRecursive;
+}
+
+/// Add the encoded TypeString to the cache only if it is NonRecursive or
+/// Recursive (viz: all sub-members were expanded as fully as possible).
+void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
+ bool IsRecursive) {
+ if (!ID || IncompleteUsedCount)
+ return; // No key or it is is an incomplete sub-type so don't add.
+ Entry &E = Map[ID];
+ if (IsRecursive && !E.Str.empty()) {
+ assert(E.State==Recursive && E.Str.size() == Str.size() &&
+ "This is not the same Recursive entry");
+ // The parent container was not recursive after all, so we could have used
+ // this Recursive sub-member entry after all, but we assumed the worse when
+ // we started viz: IncompleteCount!=0.
+ return;
+ }
+ assert(E.Str.empty() && "Entry already present");
+ E.Str = Str.str();
+ E.State = IsRecursive? Recursive : NonRecursive;
+}
+
+/// Return a cached TypeString encoding for the ID. If there isn't one, or we
+/// are recursively expanding a type (IncompleteCount != 0) and the cached
+/// encoding is Recursive, return an empty StringRef.
+StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
+ if (!ID)
+ return StringRef(); // We have no key.
+ auto I = Map.find(ID);
+ if (I == Map.end())
+ return StringRef(); // We have no encoding.
+ Entry &E = I->second;
+ if (E.State == Recursive && IncompleteCount)
+ return StringRef(); // We don't use Recursive encodings for member types.
+
+ if (E.State == Incomplete) {
+ // The incomplete type is being used to break out of recursion.
+ E.State = IncompleteUsed;
+ ++IncompleteUsedCount;
+ }
+ return E.Str.c_str();
+}
+
+/// The XCore ABI includes a type information section that communicates symbol
+/// type information to the linker. The linker uses this information to verify
+/// safety/correctness of things such as array bound and pointers et al.
+/// The ABI only requires C (and XC) language modules to emit TypeStrings.
+/// This type information (TypeString) is emitted into meta data for all global
+/// symbols: definitions, declarations, functions & variables.
+///
+/// The TypeString carries type, qualifier, name, size & value details.
+/// Please see 'Tools Development Guide' section 2.16.2 for format details:
+/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
+/// The output is tested by test/CodeGen/xcore-stringtype.c.
+///
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+ CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
+
+/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
+void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const {
+ SmallStringEnc Enc;
+ if (getTypeString(Enc, D, CGM, TSC)) {
+ llvm::LLVMContext &Ctx = CGM.getModule().getContext();
+ llvm::SmallVector<llvm::Value *, 2> MDVals;
+ MDVals.push_back(GV);
+ MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
+ llvm::NamedMDNode *MD =
+ CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+ }
+}
+
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC);
+
+/// Helper function for appendRecordType().
+/// Builds a SmallVector containing the encoded field types in declaration order.
+static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
+ const RecordDecl *RD,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+ I != E; ++I) {
+ SmallStringEnc Enc;
+ Enc += "m(";
+ Enc += I->getName();
+ Enc += "){";
+ if (I->isBitField()) {
+ Enc += "b(";
+ llvm::raw_svector_ostream OS(Enc);
+ OS.resync();
+ OS << I->getBitWidthValue(CGM.getContext());
+ OS.flush();
+ Enc += ':';
+ }
+ if (!appendType(Enc, I->getType(), CGM, TSC))
+ return false;
+ if (I->isBitField())
+ Enc += ')';
+ Enc += '}';
+ FE.push_back(FieldEncoding(!I->getName().empty(), Enc));
+ }
+ return true;
+}
+
+/// Appends structure and union types to Enc and adds encoding to cache.
+/// Recursively calls appendType (via extractFieldType) for each field.
+/// Union types have their fields ordered according to the ABI.
+static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC, const IdentifierInfo *ID) {
+ // Append the cached TypeString if we have one.
+ StringRef TypeString = TSC.lookupStr(ID);
+ if (!TypeString.empty()) {
+ Enc += TypeString;
+ return true;
+ }
+
+ // Start to emit an incomplete TypeString.
+ size_t Start = Enc.size();
+ Enc += (RT->isUnionType()? 'u' : 's');
+ Enc += '(';
+ if (ID)
+ Enc += ID->getName();
+ Enc += "){";
+
+ // We collect all encoded fields and order as necessary.
+ bool IsRecursive = false;
+ SmallVector<FieldEncoding, 16> FE;
+ const RecordDecl *RD = RT->getDecl()->getDefinition();
+ if (RD && !RD->field_empty()) {
+ // An incomplete TypeString stub is placed in the cache for this RecordType
+ // so that recursive calls to this RecordType will use it whilst building a
+ // complete TypeString for this RecordType.
+ std::string StubEnc(Enc.substr(Start).str());
+ StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
+ TSC.addIncomplete(ID, std::move(StubEnc));
+ if (!extractFieldType(FE, RD, CGM, TSC)) {
+ (void) TSC.removeIncomplete(ID);
+ return false;
+ }
+ IsRecursive = TSC.removeIncomplete(ID);
+ // The ABI requires unions to be sorted but not structures.
+ // See FieldEncoding::operator< for sort algorithm.
+ if (RT->isUnionType())
+ std::sort(FE.begin(), FE.end());
+ }
+
+ // We can now complete the TypeString.
+ if (unsigned E = FE.size())
+ for (unsigned I = 0; I != E; ++I) {
+ if (I)
+ Enc += ',';
+ Enc += FE[I].str();
+ }
+ Enc += '}';
+ TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
+ return true;
+}
+
+/// Appends enum types to Enc and adds the encoding to the cache.
+static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
+ TypeStringCache &TSC,
+ const IdentifierInfo *ID) {
+ // Append the cached TypeString if we have one.
+ StringRef TypeString = TSC.lookupStr(ID);
+ if (!TypeString.empty()) {
+ Enc += TypeString;
+ return true;
+ }
+
+ size_t Start = Enc.size();
+ Enc += "e(";
+ if (ID)
+ Enc += ID->getName();
+ Enc += "){";
+ if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
+ auto I = ED->enumerator_begin();
+ auto E = ED->enumerator_end();
+ while (I != E) {
+ Enc += "m(";
+ Enc += I->getName();
+ Enc += "){";
+ I->getInitVal().toString(Enc);
+ Enc += '}';
+ ++I;
+ if (I != E)
+ Enc += ',';
+ }
+ }
+ Enc += '}';
+ TSC.addIfComplete(ID, Enc.substr(Start), false);
+ return true;
+}
+
+/// Appends type's qualifier to Enc.
+/// This is done prior to appending the type's encoding.
+static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
+ // Qualifiers are emitted in alphabetical order.
+ static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
+ int Lookup = 0;
+ if (QT.isConstQualified())
+ Lookup += 1<<0;
+ if (QT.isRestrictQualified())
+ Lookup += 1<<1;
+ if (QT.isVolatileQualified())
+ Lookup += 1<<2;
+ Enc += Table[Lookup];
+}
+
+/// Appends built-in types to Enc.
+static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
+ const char *EncType;
+ switch (BT->getKind()) {
+ case BuiltinType::Void:
+ EncType = "0";
+ break;
+ case BuiltinType::Bool:
+ EncType = "b";
+ break;
+ case BuiltinType::Char_U:
+ EncType = "uc";
+ break;
+ case BuiltinType::UChar:
+ EncType = "uc";
+ break;
+ case BuiltinType::SChar:
+ EncType = "sc";
+ break;
+ case BuiltinType::UShort:
+ EncType = "us";
+ break;
+ case BuiltinType::Short:
+ EncType = "ss";
+ break;
+ case BuiltinType::UInt:
+ EncType = "ui";
+ break;
+ case BuiltinType::Int:
+ EncType = "si";
+ break;
+ case BuiltinType::ULong:
+ EncType = "ul";
+ break;
+ case BuiltinType::Long:
+ EncType = "sl";
+ break;
+ case BuiltinType::ULongLong:
+ EncType = "ull";
+ break;
+ case BuiltinType::LongLong:
+ EncType = "sll";
+ break;
+ case BuiltinType::Float:
+ EncType = "ft";
+ break;
+ case BuiltinType::Double:
+ EncType = "d";
+ break;
+ case BuiltinType::LongDouble:
+ EncType = "ld";
+ break;
+ default:
+ return false;
+ }
+ Enc += EncType;
+ return true;
+}
+
+/// Appends a pointer encoding to Enc before calling appendType for the pointee.
+static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ Enc += "p(";
+ if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
+ return false;
+ Enc += ')';
+ return true;
+}
+
+/// Appends array encoding to Enc before calling appendType for the element.
+static bool appendArrayType(SmallStringEnc &Enc, const ArrayType *AT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC, StringRef NoSizeEnc) {
+ if (AT->getSizeModifier() != ArrayType::Normal)
+ return false;
+ Enc += "a(";
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ CAT->getSize().toStringUnsigned(Enc);
+ else
+ Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
+ Enc += ':';
+ if (!appendType(Enc, AT->getElementType(), CGM, TSC))
+ return false;
+ Enc += ')';
+ return true;
+}
+
+/// Appends a function encoding to Enc, calling appendType for the return type
+/// and the arguments.
+static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ Enc += "f{";
+ if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
+ return false;
+ Enc += "}(";
+ if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
+ // N.B. we are only interested in the adjusted param types.
+ auto I = FPT->param_type_begin();
+ auto E = FPT->param_type_end();
+ if (I != E) {
+ do {
+ if (!appendType(Enc, *I, CGM, TSC))
+ return false;
+ ++I;
+ if (I != E)
+ Enc += ',';
+ } while (I != E);
+ if (FPT->isVariadic())
+ Enc += ",va";
+ } else {
+ if (FPT->isVariadic())
+ Enc += "va";
+ else
+ Enc += '0';
+ }
+ }
+ Enc += ')';
+ return true;
+}
+
+/// Handles the type's qualifier before dispatching a call to handle specific
+/// type encodings.
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+
+ QualType QT = QType.getCanonicalType();
+
+ appendQualifier(Enc, QT);
+
+ if (const BuiltinType *BT = QT->getAs<BuiltinType>())
+ return appendBuiltinType(Enc, BT);
+
+ if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
+ return appendArrayType(Enc, AT, CGM, TSC, "");
+
+ if (const PointerType *PT = QT->getAs<PointerType>())
+ return appendPointerType(Enc, PT, CGM, TSC);
+
+ if (const EnumType *ET = QT->getAs<EnumType>())
+ return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
+
+ if (const RecordType *RT = QT->getAsStructureType())
+ return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+ if (const RecordType *RT = QT->getAsUnionType())
+ return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+ if (const FunctionType *FT = QT->getAs<FunctionType>())
+ return appendFunctionType(Enc, FT, CGM, TSC);
+
+ return false;
+}
+
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+ CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
+ if (!D)
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getLanguageLinkage() != CLanguageLinkage)
+ return false;
+ return appendType(Enc, FD->getType(), CGM, TSC);
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->getLanguageLinkage() != CLanguageLinkage)
+ return false;
+ QualType QT = VD->getType().getCanonicalType();
+ if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
+ // Global ArrayTypes are given a size of '*' if the size is unknown.
+ appendQualifier(Enc, QT);
+ return appendArrayType(Enc, AT, CGM, TSC, "*");
+ }
+ return appendType(Enc, QT, CGM, TSC);
+ }
+ return false;
+}
+
+
//===----------------------------------------------------------------------===//
// Driver code
//===----------------------------------------------------------------------===//
Modified: cfe/trunk/lib/CodeGen/TargetInfo.h
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.h?rev=207832&r1=207831&r2=207832&view=diff
==============================================================================
--- cfe/trunk/lib/CodeGen/TargetInfo.h (original)
+++ cfe/trunk/lib/CodeGen/TargetInfo.h Fri May 2 04:33:20 2014
@@ -56,6 +56,11 @@ namespace clang {
virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const { }
+ /// EmitTargetMD - Provides a convenient hook to handle extra
+ /// target-specific metadata for the given global.
+ virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const { }
+
/// Determines the size of struct _Unwind_Exception on this platform,
/// in 8-bit units. The Itanium ABI defines this as:
/// struct _Unwind_Exception {
Added: cfe/trunk/test/CodeGen/xcore-stringtype.c
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/xcore-stringtype.c?rev=207832&view=auto
==============================================================================
--- cfe/trunk/test/CodeGen/xcore-stringtype.c (added)
+++ cfe/trunk/test/CodeGen/xcore-stringtype.c Fri May 2 04:33:20 2014
@@ -0,0 +1,169 @@
+// REQUIRES: xcore-registered-target
+// RUN: %clang_cc1 -triple xcore-unknown-unknown -fno-signed-char -fno-common -emit-llvm -o - %s | FileCheck %s
+
+// CHECK: target triple = "xcore-unknown-unknown"
+
+// In the tests below, some types are not supported by the ABI (_Complex,
+// variable length arrays) and will thus emit no meta data.
+// The 33 tests that do emit typstrings are gathered into '!xcore.typestrings'
+// Please see 'Tools Developement Guide' section 2.16.2 for format details:
+// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
+
+// CHECK: !xcore.typestrings = !{!0, !1, !2, !3, !4, !5, !6, !7, !8, !9, !10,
+// CHECK: !11, !12, !13, !14, !15, !16, !17, !18, !19, !20, !21, !22, !23,
+// CHECK: !24, !25, !26, !27, !28, !29, !30, !31, !32, !33, !34}
+
+
+// test BuiltinType
+// CHECK: !0 = metadata !{void (i1, i8, i8, i8, i16, i16, i16, i32, i32, i32,
+// CHECK: i32, i32, i32, i64, i64, i64, float, double, double)*
+// CHECK: @builtinType, metadata !"f{0}(b,uc,uc,sc,ss,us,ss,si,ui,si,sl,
+// CHECK: ul,sl,sll,ull,sll,ft,d,ld)"}
+void builtinType(_Bool B, char C, unsigned char UC, signed char SC, short S,
+ unsigned short US, signed short SS, int I, unsigned int UI,
+ signed int SI, long L, unsigned long UL, signed long SL,
+ long long LL, unsigned long long ULL, signed long long SLL,
+ float F, double D, long double LD) {}
+double _Complex Complex; // not supported
+
+
+// test FunctionType & Qualifiers
+// CHECK: !1 = metadata !{void ()* @gI, metadata !"f{0}()"}
+// CHECK: !2 = metadata !{void (...)* @eI, metadata !"f{0}()"}
+// CHECK: !3 = metadata !{void ()* @gV, metadata !"f{0}(0)"}
+// CHECK: !4 = metadata !{void ()* @eV, metadata !"f{0}(0)"}
+// CHECK: !5 = metadata !{void (i32, ...)* @gVA, metadata !"f{0}(si,va)"}
+// CHECK: !6 = metadata !{void (i32, ...)* @eVA, metadata !"f{0}(si,va)"}
+// CHECK: !7 = metadata !{i32* (i32*)* @gQ, metadata !"f{crv:p(cv:si)}(p(cv:si))"}
+// CHECK: !8 = metadata !{i32* (i32*)* @eQ, metadata !"f{crv:p(cv:si)}(p(cv:si))"}
+extern void eI();
+void gI() {eI();};
+extern void eV(void);
+void gV(void) {eV();}
+extern void eVA(int, ...);
+void gVA(int i, ...) {eVA(i);}
+extern const volatile int* volatile restrict const
+ eQ(const volatile int * volatile restrict const);
+const volatile int* volatile restrict const
+ gQ(const volatile int * volatile restrict const i) {return eQ(i);}
+
+
+// test PointerType
+// CHECK: !9 = metadata !{i32* (i32*, i32* (i32*)*)*
+// CHECK: @pointerType, metadata !"f{p(si)}(p(si),p(f{p(si)}(p(si))))"}
+// CHECK: !10 = metadata !{i32** @EP, metadata !"p(si)"}
+// CHECK: !11 = metadata !{i32** @GP, metadata !"p(si)"}
+extern int* EP;
+int* GP;
+int* pointerType(int *I, int * (*FP)(int *)) {
+ return I? EP : GP;
+}
+
+
+// test ArrayType
+// CHECK: !12 = metadata !{[2 x i32]* (i32*, i32*, [2 x i32]*, [2 x i32]*, i32*)*
+// CHECK: @arrayType, metadata !"f{p(a(2:si))}(p(si),p(si),p(a(2:si)),
+// CHECK: p(a(2:si)),p(si))"}
+// CHECK: !13 = metadata !{[0 x i32]* @EA1, metadata !"a(*:si)"}
+// CHECK: !14 = metadata !{[2 x i32]* @EA2, metadata !"a(2:si)"}
+// CHECK: !15 = metadata !{[0 x [2 x i32]]* @EA3, metadata !"a(*:a(2:si))"}
+// CHECK: !16 = metadata !{[3 x [2 x i32]]* @EA4, metadata !"a(3:a(2:si))"}
+// CHECK: !17 = metadata !{[2 x i32]* @GA1, metadata !"a(2:si)"}
+// CHECK: !18 = metadata !{void ([2 x i32]*)* @arrayTypeVariable1,
+// CHECK: metadata !"f{0}(p(a(2:si)))"}
+// CHECK: !19 = metadata !{void (void ([2 x i32]*)*)* @arrayTypeVariable2,
+// CHECK: metadata !"f{0}(p(f{0}(p(a(2:si)))))"}
+// CHECK: !20 = metadata !{[3 x [2 x i32]]* @GA2, metadata !"a(3:a(2:si))"}
+extern int EA1[];
+extern int EA2[2];
+extern int EA3[][2];
+extern int EA4[3][2];
+int GA1[2];
+int GA2[3][2];
+extern void arrayTypeVariable1(int[*][2]);
+extern void arrayTypeVariable2( void(*fp)(int[*][2]) );
+extern void arrayTypeVariable3(int[3][*]); // not supported
+extern void arrayTypeVariable4( void(*fp)(int[3][*]) ); // not supported
+typedef int RetType[2];
+RetType* arrayType(int A1[], int A2[2], int A3[][2], int A4[3][2],
+ int A5[const volatile restrict static 2]) {
+ if (A1) return &EA1;
+ if (A2) return &EA2;
+ if (A3) return EA3;
+ if (A4) return EA4;
+ if (A5) return &GA1;
+ arrayTypeVariable1(EA4);
+ arrayTypeVariable2(arrayTypeVariable1);
+ arrayTypeVariable3(EA4);
+ arrayTypeVariable4(arrayTypeVariable3);
+ return GA2;
+}
+
+
+// test StructureType
+// CHECK: !21 = metadata !{void (%struct.S1*)* @structureType1, metadata
+// CHECK: !"f{0}(s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){m(s1){s(S1){}}})}})}})"}
+// CHECK: !22 = metadata !{void (%struct.S2*)* @structureType2, metadata
+// CHECK: !"f{0}(s(S2){m(ps3){p(s(S3){m(s1){s(S1){m(ps2){p(s(S2){})}}}})}})"}
+// CHECK: !23 = metadata !{void (%struct.S3*)* @structureType3, metadata
+// CHECK: !"f{0}(s(S3){m(s1){s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){})}})}}}})"}
+// CHECK: !24 = metadata !{void (%struct.S4*)* @structureType4, metadata
+// CHECK: !"f{0}(s(S4){m(s1){s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){m(s1){s(S1){}}})}})}}}})"}
+// CHECK: !25 = metadata !{%struct.anon* @StructAnon, metadata !"s(){m(A){si}}"}
+// CHECK: !26 = metadata !{i32 (%struct.SB*)* @structureTypeB, metadata
+// CHECK: !"f{si}(s(SB){m(){b(4:si)},m(){b(2:si)},m(N4){b(4:si)},
+// CHECK: m(N2){b(2:si)},m(){b(4:ui)},m(){b(4:si)},m(){b(4:c:si)},
+// CHECK: m(){b(4:c:si)},m(){b(4:cv:si)}})"}
+struct S2;
+struct S1{struct S2 *ps2;};
+struct S3;
+struct S2{struct S3 *ps3;};
+struct S3{struct S1 s1;};
+struct S4{struct S1 s1;};
+void structureType1(struct S1 s1){}
+void structureType2(struct S2 s2){}
+void structureType3(struct S3 s3){}
+void structureType4(struct S4 s4){}
+struct {int A;} StructAnon = {1};
+struct SB{int:4; int:2; int N4:4; int N2:2; unsigned int:4; signed int:4;
+ const int:4; int const :4; volatile const int:4;};
+int structureTypeB(struct SB sb){return StructAnon.A;}
+
+
+// test UnionType
+// CHECK: !27 = metadata !{void (%union.U1*)* @unionType1, metadata
+// CHECK: !"f{0}(u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){m(u1){u(U1){}}})}})}})"}
+// CHECK: !28 = metadata !{void (%union.U2*)* @unionType2, metadata
+// CHECK: !"f{0}(u(U2){m(pu3){p(u(U3){m(u1){u(U1){m(pu2){p(u(U2){})}}}})}})"}
+// CHECK: !29 = metadata !{void (%union.U3*)* @unionType3, metadata
+// CHECK: !"f{0}(u(U3){m(u1){u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){})}})}}}})"}
+// CHECK: !30 = metadata !{void (%union.U4*)* @unionType4, metadata
+// CHECK: !"f{0}(u(U4){m(u1){u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){m(u1){u(U1){}}})}})}}}})"}
+// CHECK: !31 = metadata !{%union.anon* @UnionAnon, metadata !"u(){m(A){si}}"}
+// CHECK: !32 = metadata !{i32 (%union.UB*)* @unionTypeB, metadata
+// CHECK: !"f{si}(u(UB){m(N2){b(2:si)},m(N4){b(4:si)},m(){b(2:si)},
+// CHECK: m(){b(4:c:si)},m(){b(4:c:si)},m(){b(4:cv:si)},m(){b(4:si)},
+// CHECK: m(){b(4:si)},m(){b(4:ui)}})"}
+union U2;
+union U1{union U2 *pu2;};
+union U3;
+union U2{union U3 *pu3;};
+union U3{union U1 u1;};
+union U4{union U1 u1;};
+void unionType1(union U1 u1) {}
+void unionType2(union U2 u2) {}
+void unionType3(union U3 u3) {}
+void unionType4(union U4 u4) {}
+union UB{int:4; int:2; int N4:4; int N2:2; unsigned int:4; signed int:4;
+ const int:4; int const :4; volatile const int:4;};
+union {int A;} UnionAnon = {1};
+int unionTypeB(union UB ub) {return UnionAnon.A;}
+
+
+// test EnumType
+// CHECK: !33 = metadata !{i32* @EnumAnon, metadata !"e(){m(EA){3}}"}
+// CHECK: !34 = metadata !{i32 (i32)* @enumType, metadata
+// CHECK: !"f{si}(e(E){m(A){0},m(B){1},m(C){5},m(D){6}})"}
+enum E {A, B, C=5, D};
+enum {EA=3} EnumAnon = EA;
+int enumType(enum E e) {return EnumAnon;}
More information about the cfe-commits
mailing list