r187190 - Remove trailing whitespace.
Craig Topper
craig.topper at gmail.com
Thu Jul 25 23:16:11 PDT 2013
Author: ctopper
Date: Fri Jul 26 01:16:11 2013
New Revision: 187190
URL: http://llvm.org/viewvc/llvm-project?rev=187190&view=rev
Log:
Remove trailing whitespace.
Modified:
cfe/trunk/lib/CodeGen/CGExprScalar.cpp
Modified: cfe/trunk/lib/CodeGen/CGExprScalar.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGExprScalar.cpp?rev=187190&r1=187189&r2=187190&view=diff
==============================================================================
--- cfe/trunk/lib/CodeGen/CGExprScalar.cpp (original)
+++ cfe/trunk/lib/CodeGen/CGExprScalar.cpp Fri Jul 26 01:16:11 2013
@@ -161,18 +161,18 @@ public:
Value *Visit(Expr *E) {
return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
}
-
+
Value *VisitStmt(Stmt *S) {
S->dump(CGF.getContext().getSourceManager());
llvm_unreachable("Stmt can't have complex result type!");
}
Value *VisitExpr(Expr *S);
-
+
Value *VisitParenExpr(ParenExpr *PE) {
- return Visit(PE->getSubExpr());
+ return Visit(PE->getSubExpr());
}
Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
- return Visit(E->getReplacement());
+ return Visit(E->getReplacement());
}
Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
return Visit(GE->getResultExpr());
@@ -243,7 +243,7 @@ public:
return EmitLoadOfLValue(E);
}
Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
- if (E->getMethodDecl() &&
+ if (E->getMethodDecl() &&
E->getMethodDecl()->getResultType()->isReferenceType())
return EmitLoadOfLValue(E);
return CGF.EmitObjCMessageExpr(E).getScalarVal();
@@ -310,7 +310,7 @@ public:
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
-
+
Value *VisitUnaryAddrOf(const UnaryOperator *E) {
if (isa<MemberPointerType>(E->getType())) // never sugared
return CGF.CGM.getMemberPointerConstant(E);
@@ -335,12 +335,12 @@ public:
Value *VisitUnaryExtension(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
-
+
// C++
Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
return EmitLoadOfLValue(E);
}
-
+
Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
return Visit(DAE->getExpr());
}
@@ -430,7 +430,7 @@ public:
Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
// Check for undefined division and modulus behaviors.
- void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
+ void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
llvm::Value *Zero,bool isDiv);
// Common helper for getting how wide LHS of shift is.
static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
@@ -893,35 +893,35 @@ Value *ScalarExprEmitter::VisitExpr(Expr
Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
// Vector Mask Case
- if (E->getNumSubExprs() == 2 ||
+ if (E->getNumSubExprs() == 2 ||
(E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
Value *Mask;
-
+
llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
unsigned LHSElts = LTy->getNumElements();
if (E->getNumSubExprs() == 3) {
Mask = CGF.EmitScalarExpr(E->getExpr(2));
-
+
// Shuffle LHS & RHS into one input vector.
SmallVector<llvm::Constant*, 32> concat;
for (unsigned i = 0; i != LHSElts; ++i) {
concat.push_back(Builder.getInt32(2*i));
concat.push_back(Builder.getInt32(2*i+1));
}
-
+
Value* CV = llvm::ConstantVector::get(concat);
LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
LHSElts *= 2;
} else {
Mask = RHS;
}
-
+
llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
llvm::Constant* EltMask;
-
+
// Treat vec3 like vec4.
if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
EltMask = llvm::ConstantInt::get(MTy->getElementType(),
@@ -932,12 +932,12 @@ Value *ScalarExprEmitter::VisitShuffleVe
else
EltMask = llvm::ConstantInt::get(MTy->getElementType(),
(1 << llvm::Log2_32(LHSElts))-1);
-
+
// Mask off the high bits of each shuffle index.
Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
EltMask);
Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
-
+
// newv = undef
// mask = mask & maskbits
// for each elt
@@ -951,7 +951,7 @@ Value *ScalarExprEmitter::VisitShuffleVe
Value *IIndx = Builder.getInt32(i);
Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
-
+
// Handle vec3 special since the index will be off by one for the RHS.
if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
Value *cmpIndx, *newIndx;
@@ -965,10 +965,10 @@ Value *ScalarExprEmitter::VisitShuffleVe
}
return NewV;
}
-
+
Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
-
+
// Handle vec3 special since the index will be off by one for the RHS.
llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
SmallVector<llvm::Constant*, 32> indices;
@@ -1022,7 +1022,7 @@ Value *ScalarExprEmitter::VisitArraySubs
static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
unsigned Off, llvm::Type *I32Ty) {
int MV = SVI->getMaskValue(Idx);
- if (MV == -1)
+ if (MV == -1)
return llvm::UndefValue::get(I32Ty);
return llvm::ConstantInt::get(I32Ty, Off+MV);
}
@@ -1032,13 +1032,13 @@ Value *ScalarExprEmitter::VisitInitListE
(void)Ignore;
assert (Ignore == false && "init list ignored");
unsigned NumInitElements = E->getNumInits();
-
+
if (E->hadArrayRangeDesignator())
CGF.ErrorUnsupported(E, "GNU array range designator extension");
-
+
llvm::VectorType *VType =
dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
-
+
if (!VType) {
if (NumInitElements == 0) {
// C++11 value-initialization for the scalar.
@@ -1047,10 +1047,10 @@ Value *ScalarExprEmitter::VisitInitListE
// We have a scalar in braces. Just use the first element.
return Visit(E->getInit(0));
}
-
+
unsigned ResElts = VType->getNumElements();
-
- // Loop over initializers collecting the Value for each, and remembering
+
+ // Loop over initializers collecting the Value for each, and remembering
// whether the source was swizzle (ExtVectorElementExpr). This will allow
// us to fold the shuffle for the swizzle into the shuffle for the vector
// initializer, since LLVM optimizers generally do not want to touch
@@ -1062,11 +1062,11 @@ Value *ScalarExprEmitter::VisitInitListE
Expr *IE = E->getInit(i);
Value *Init = Visit(IE);
SmallVector<llvm::Constant*, 16> Args;
-
+
llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
-
+
// Handle scalar elements. If the scalar initializer is actually one
- // element of a different vector of the same width, use shuffle instead of
+ // element of a different vector of the same width, use shuffle instead of
// extract+insert.
if (!VVT) {
if (isa<ExtVectorElementExpr>(IE)) {
@@ -1109,10 +1109,10 @@ Value *ScalarExprEmitter::VisitInitListE
++CurIdx;
continue;
}
-
+
unsigned InitElts = VVT->getNumElements();
- // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
+ // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
// input is the same width as the vector being constructed, generate an
// optimized shuffle of the swizzle input into the result.
unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
@@ -1120,7 +1120,7 @@ Value *ScalarExprEmitter::VisitInitListE
llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
Value *SVOp = SVI->getOperand(0);
llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
-
+
if (OpTy->getNumElements() == ResElts) {
for (unsigned j = 0; j != CurIdx; ++j) {
// If the current vector initializer is a shuffle with undef, merge
@@ -1170,11 +1170,11 @@ Value *ScalarExprEmitter::VisitInitListE
VIsUndefShuffle = isa<llvm::UndefValue>(Init);
CurIdx += InitElts;
}
-
+
// FIXME: evaluate codegen vs. shuffling against constant null vector.
// Emit remaining default initializers.
llvm::Type *EltTy = VType->getElementType();
-
+
// Emit remaining default initializers
for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
Value *Idx = Builder.getInt32(CurIdx);
@@ -1189,12 +1189,12 @@ static bool ShouldNullCheckClassCastValu
if (CE->getCastKind() == CK_UncheckedDerivedToBase)
return false;
-
+
if (isa<CXXThisExpr>(E)) {
// We always assume that 'this' is never null.
return false;
}
-
+
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
// And that glvalue casts are never null.
if (ICE->getValueKind() != VK_RValue)
@@ -1211,7 +1211,7 @@ Value *ScalarExprEmitter::VisitCastExpr(
Expr *E = CE->getSubExpr();
QualType DestTy = CE->getType();
CastKind Kind = CE->getCastKind();
-
+
if (!DestTy->isVoidType())
TestAndClearIgnoreResultAssign();
@@ -1223,10 +1223,10 @@ Value *ScalarExprEmitter::VisitCastExpr(
case CK_BuiltinFnToFnPtr:
llvm_unreachable("builtin functions are handled elsewhere");
- case CK_LValueBitCast:
+ case CK_LValueBitCast:
case CK_ObjCObjectLValueCast: {
Value *V = EmitLValue(E).getAddress();
- V = Builder.CreateBitCast(V,
+ V = Builder.CreateBitCast(V,
ConvertType(CGF.getContext().getPointerType(DestTy)));
return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
}
@@ -1266,7 +1266,7 @@ Value *ScalarExprEmitter::VisitCastExpr(
E->getType()->getPointeeCXXRecordDecl();
assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
- return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
+ return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
CE->path_begin(), CE->path_end(),
ShouldNullCheckClassCastValue(CE));
}
@@ -1318,7 +1318,7 @@ Value *ScalarExprEmitter::VisitCastExpr(
case CK_BaseToDerivedMemberPointer:
case CK_DerivedToBaseMemberPointer: {
Value *Src = Visit(E);
-
+
// Note that the AST doesn't distinguish between checked and
// unchecked member pointer conversions, so we always have to
// implement checked conversions here. This is inefficient when
@@ -1342,7 +1342,7 @@ Value *ScalarExprEmitter::VisitCastExpr(
case CK_CopyAndAutoreleaseBlockObject:
return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
-
+
case CK_FloatingRealToComplex:
case CK_FloatingComplexCast:
case CK_IntegralRealToComplex:
@@ -1469,7 +1469,7 @@ EmitAddConsiderOverflowBehavior(const Un
llvm::Value *
ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre) {
-
+
QualType type = E->getSubExpr()->getType();
llvm::PHINode *atomicPHI = 0;
llvm::Value *value;
@@ -1495,7 +1495,7 @@ ScalarExprEmitter::EmitScalarPrePostIncD
}
// Special case for atomic increment / decrement on integers, emit
// atomicrmw instructions. We skip this if we want to be doing overflow
- // checking, and fall into the slow path with the atomic cmpxchg loop.
+ // checking, and fall into the slow path with the atomic cmpxchg loop.
if (!type->isBooleanType() && type->isIntegerType() &&
!(type->isUnsignedIntegerType() &&
CGF.SanOpts->UnsignedIntegerOverflow) &&
@@ -1561,7 +1561,7 @@ ScalarExprEmitter::EmitScalarPrePostIncD
value = EmitOverflowCheckedBinOp(BinOp);
} else
value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
-
+
// Next most common: pointer increment.
} else if (const PointerType *ptr = type->getAs<PointerType>()) {
QualType type = ptr->getPointeeType();
@@ -1575,7 +1575,7 @@ ScalarExprEmitter::EmitScalarPrePostIncD
value = Builder.CreateGEP(value, numElts, "vla.inc");
else
value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
-
+
// Arithmetic on function pointers (!) is just +-1.
} else if (type->isFunctionType()) {
llvm::Value *amt = Builder.getInt32(amount);
@@ -1657,7 +1657,7 @@ ScalarExprEmitter::EmitScalarPrePostIncD
value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
value = Builder.CreateBitCast(value, input->getType());
}
-
+
if (atomicPHI) {
llvm::BasicBlock *opBB = Builder.GetInsertBlock();
llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
@@ -1688,10 +1688,10 @@ Value *ScalarExprEmitter::VisitUnaryMinu
// Emit unary minus with EmitSub so we handle overflow cases etc.
BinOpInfo BinOp;
BinOp.RHS = Visit(E->getSubExpr());
-
+
if (BinOp.RHS->getType()->isFPOrFPVectorTy())
BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
- else
+ else
BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
BinOp.Ty = E->getType();
BinOp.Opcode = BO_Sub;
@@ -1718,7 +1718,7 @@ Value *ScalarExprEmitter::VisitUnaryLNot
Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
}
-
+
// Compare operand to zero.
Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
@@ -1806,7 +1806,7 @@ Value *ScalarExprEmitter::VisitOffsetOfE
// Save the element type.
CurrentType = ON.getBase()->getType();
-
+
// Compute the offset to the base.
const RecordType *BaseRT = CurrentType->getAs<RecordType>();
CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
@@ -1918,10 +1918,10 @@ LValue ScalarExprEmitter::EmitCompoundAs
Value *&Result) {
QualType LHSTy = E->getLHS()->getType();
BinOpInfo OpInfo;
-
+
if (E->getComputationResultType()->isAnyComplexType())
return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
-
+
// Emit the RHS first. __block variables need to have the rhs evaluated
// first, plus this should improve codegen a little.
OpInfo.RHS = Visit(E->getRHS());
@@ -1994,7 +1994,7 @@ LValue ScalarExprEmitter::EmitCompoundAs
// Expand the binary operator.
Result = (this->*Func)(OpInfo);
-
+
// Convert the result back to the LHS type.
Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
@@ -2009,7 +2009,7 @@ LValue ScalarExprEmitter::EmitCompoundAs
Builder.SetInsertPoint(contBB);
return LHSLV;
}
-
+
// Store the result value into the LHS lvalue. Bit-fields are handled
// specially because the result is altered by the store, i.e., [C99 6.5.16p1]
// 'An assignment expression has the value of the left operand after the
@@ -2221,7 +2221,7 @@ static Value *emitPointerArithmetic(Code
// Must have binary (not unary) expr here. Unary pointer
// increment/decrement doesn't use this path.
const BinaryOperator *expr = cast<BinaryOperator>(op.E);
-
+
Value *pointer = op.LHS;
Expr *pointerOperand = expr->getLHS();
Value *index = op.RHS;
@@ -2310,7 +2310,7 @@ static Value* buildFMulAdd(llvm::BinaryO
const CodeGenFunction &CGF, CGBuilderTy &Builder,
bool negMul, bool negAdd) {
assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
-
+
Value *MulOp0 = MulOp->getOperand(0);
Value *MulOp1 = MulOp->getOperand(1);
if (negMul) {
@@ -2340,7 +2340,7 @@ static Value* buildFMulAdd(llvm::BinaryO
// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
// Does NOT check the type of the operation - it's assumed that this function
// will be called from contexts where it's known that the type is contractable.
-static Value* tryEmitFMulAdd(const BinOpInfo &op,
+static Value* tryEmitFMulAdd(const BinOpInfo &op,
const CodeGenFunction &CGF, CGBuilderTy &Builder,
bool isSub=false) {
@@ -2488,7 +2488,7 @@ Value *ScalarExprEmitter::EmitSub(const
divisor = CGF.CGM.getSize(elementSize);
}
-
+
// Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
// pointer difference in C is only defined in the case where both operands
// are pointing to elements of an array.
@@ -2813,9 +2813,9 @@ Value *ScalarExprEmitter::VisitBinLAnd(c
Value *And = Builder.CreateAnd(LHS, RHS);
return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
}
-
+
llvm::Type *ResTy = ConvertType(E->getType());
-
+
// If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
// If we have 1 && X, just emit X without inserting the control flow.
bool LHSCondVal;
@@ -2884,9 +2884,9 @@ Value *ScalarExprEmitter::VisitBinLOr(co
Value *Or = Builder.CreateOr(LHS, RHS);
return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
}
-
+
llvm::Type *ResTy = ConvertType(E->getType());
-
+
// If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
// If we have 0 || X, just emit X without inserting the control flow.
bool LHSCondVal;
@@ -3008,26 +3008,26 @@ VisitAbstractConditionalOperator(const A
// OpenCL: If the condition is a vector, we can treat this condition like
// the select function.
- if (CGF.getLangOpts().OpenCL
+ if (CGF.getLangOpts().OpenCL
&& condExpr->getType()->isVectorType()) {
llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
llvm::Value *LHS = Visit(lhsExpr);
llvm::Value *RHS = Visit(rhsExpr);
-
+
llvm::Type *condType = ConvertType(condExpr->getType());
llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
-
- unsigned numElem = vecTy->getNumElements();
+
+ unsigned numElem = vecTy->getNumElements();
llvm::Type *elemType = vecTy->getElementType();
-
+
llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
- llvm::Value *tmp = Builder.CreateSExt(TestMSB,
+ llvm::Value *tmp = Builder.CreateSExt(TestMSB,
llvm::VectorType::get(elemType,
- numElem),
+ numElem),
"sext");
llvm::Value *tmp2 = Builder.CreateNot(tmp);
-
+
// Cast float to int to perform ANDs if necessary.
llvm::Value *RHSTmp = RHS;
llvm::Value *LHSTmp = LHS;
@@ -3038,7 +3038,7 @@ VisitAbstractConditionalOperator(const A
LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
wasCast = true;
}
-
+
llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
@@ -3047,7 +3047,7 @@ VisitAbstractConditionalOperator(const A
return tmp5;
}
-
+
// If this is a really simple expression (like x ? 4 : 5), emit this as a
// select instead of as control flow. We can only do this if it is cheap and
// safe to evaluate the LHS and RHS unconditionally.
@@ -3123,49 +3123,49 @@ Value *ScalarExprEmitter::VisitBlockExpr
Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
llvm::Type *DstTy = ConvertType(E->getType());
-
+
// Going from vec4->vec3 or vec3->vec4 is a special case and requires
// a shuffle vector instead of a bitcast.
llvm::Type *SrcTy = Src->getType();
if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
- if ((numElementsDst == 3 && numElementsSrc == 4)
+ if ((numElementsDst == 3 && numElementsSrc == 4)
|| (numElementsDst == 4 && numElementsSrc == 3)) {
-
-
+
+
// In the case of going from int4->float3, a bitcast is needed before
// doing a shuffle.
- llvm::Type *srcElemTy =
+ llvm::Type *srcElemTy =
cast<llvm::VectorType>(SrcTy)->getElementType();
- llvm::Type *dstElemTy =
+ llvm::Type *dstElemTy =
cast<llvm::VectorType>(DstTy)->getElementType();
-
+
if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
|| (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
// Create a float type of the same size as the source or destination.
llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
numElementsSrc);
-
+
Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
}
-
+
llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
-
+
SmallVector<llvm::Constant*, 3> Args;
Args.push_back(Builder.getInt32(0));
Args.push_back(Builder.getInt32(1));
Args.push_back(Builder.getInt32(2));
-
+
if (numElementsDst == 4)
Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
-
+
llvm::Constant *Mask = llvm::ConstantVector::get(Args);
-
+
return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
}
}
-
+
return Builder.CreateBitCast(Src, DstTy, "astype");
}
@@ -3240,7 +3240,7 @@ LValue CodeGenFunction::EmitObjCIsaExpr(
else
V = EmitLValue(BaseExpr).getAddress();
}
-
+
// build Class* type
ClassPtrTy = ClassPtrTy->getPointerTo();
V = Builder.CreateBitCast(V, ClassPtrTy);
@@ -3268,7 +3268,7 @@ LValue CodeGenFunction::EmitCompoundAssi
COMPOUND_OP(Xor);
COMPOUND_OP(Or);
#undef COMPOUND_OP
-
+
case BO_PtrMemD:
case BO_PtrMemI:
case BO_Mul:
@@ -3293,6 +3293,6 @@ LValue CodeGenFunction::EmitCompoundAssi
case BO_Comma:
llvm_unreachable("Not valid compound assignment operators");
}
-
+
llvm_unreachable("Unhandled compound assignment operator");
}
More information about the cfe-commits
mailing list