[cfe-commits] r93117 - in /cfe/trunk/lib/CodeGen: TargetABIInfo.cpp TargetInfo.cpp
Anton Korobeynikov
asl at math.spbu.ru
Sun Jan 10 04:57:31 PST 2010
Author: asl
Date: Sun Jan 10 06:57:30 2010
New Revision: 93117
URL: http://llvm.org/viewvc/llvm-project?rev=93117&view=rev
Log:
Rename file to generalization in next commits
Added:
cfe/trunk/lib/CodeGen/TargetInfo.cpp
- copied, changed from r93114, cfe/trunk/lib/CodeGen/TargetABIInfo.cpp
Removed:
cfe/trunk/lib/CodeGen/TargetABIInfo.cpp
Removed: cfe/trunk/lib/CodeGen/TargetABIInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetABIInfo.cpp?rev=93116&view=auto
==============================================================================
--- cfe/trunk/lib/CodeGen/TargetABIInfo.cpp (original)
+++ cfe/trunk/lib/CodeGen/TargetABIInfo.cpp (removed)
@@ -1,1821 +0,0 @@
-//===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// These classes wrap the information about a call or function
-// definition used to handle ABI compliancy.
-//
-//===----------------------------------------------------------------------===//
-
-#include "ABIInfo.h"
-#include "CodeGenFunction.h"
-#include "clang/AST/RecordLayout.h"
-#include "llvm/Type.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/Support/raw_ostream.h"
-using namespace clang;
-using namespace CodeGen;
-
-ABIInfo::~ABIInfo() {}
-
-void ABIArgInfo::dump() const {
- llvm::raw_ostream &OS = llvm::errs();
- OS << "(ABIArgInfo Kind=";
- switch (TheKind) {
- case Direct:
- OS << "Direct";
- break;
- case Extend:
- OS << "Extend";
- break;
- case Ignore:
- OS << "Ignore";
- break;
- case Coerce:
- OS << "Coerce Type=";
- getCoerceToType()->print(OS);
- break;
- case Indirect:
- OS << "Indirect Align=" << getIndirectAlign();
- break;
- case Expand:
- OS << "Expand";
- break;
- }
- OS << ")\n";
-}
-
-static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
-
-/// isEmptyField - Return true iff a the field is "empty", that is it
-/// is an unnamed bit-field or an (array of) empty record(s).
-static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
- bool AllowArrays) {
- if (FD->isUnnamedBitfield())
- return true;
-
- QualType FT = FD->getType();
-
- // Constant arrays of empty records count as empty, strip them off.
- if (AllowArrays)
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
- FT = AT->getElementType();
-
- return isEmptyRecord(Context, FT, AllowArrays);
-}
-
-/// isEmptyRecord - Return true iff a structure contains only empty
-/// fields. Note that a structure with a flexible array member is not
-/// considered empty.
-static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i)
- if (!isEmptyField(Context, *i, AllowArrays))
- return false;
- return true;
-}
-
-/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
-/// a non-trivial destructor or a non-trivial copy constructor.
-static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
- const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
- if (!RD)
- return false;
-
- return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
-}
-
-/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
-/// a record type with either a non-trivial destructor or a non-trivial copy
-/// constructor.
-static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return false;
-
- return hasNonTrivialDestructorOrCopyConstructor(RT);
-}
-
-/// isSingleElementStruct - Determine if a structure is a "single
-/// element struct", i.e. it has exactly one non-empty field or
-/// exactly one field which is itself a single element
-/// struct. Structures with flexible array members are never
-/// considered single element structs.
-///
-/// \return The field declaration for the single non-empty field, if
-/// it exists.
-static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
- const RecordType *RT = T->getAsStructureType();
- if (!RT)
- return 0;
-
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return 0;
-
- const Type *Found = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- QualType FT = FD->getType();
-
- // Ignore empty fields.
- if (isEmptyField(Context, FD, true))
- continue;
-
- // If we already found an element then this isn't a single-element
- // struct.
- if (Found)
- return 0;
-
- // Treat single element arrays as the element.
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize().getZExtValue() != 1)
- break;
- FT = AT->getElementType();
- }
-
- if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
- Found = FT.getTypePtr();
- } else {
- Found = isSingleElementStruct(FT, Context);
- if (!Found)
- return 0;
- }
- }
-
- return Found;
-}
-
-static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
- if (!Ty->getAs<BuiltinType>() && !Ty->isAnyPointerType() &&
- !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
- !Ty->isBlockPointerType())
- return false;
-
- uint64_t Size = Context.getTypeSize(Ty);
- return Size == 32 || Size == 64;
-}
-
-/// canExpandIndirectArgument - Test whether an argument type which is to be
-/// passed indirectly (on the stack) would have the equivalent layout if it was
-/// expanded into separate arguments. If so, we prefer to do the latter to avoid
-/// inhibiting optimizations.
-///
-// FIXME: This predicate is missing many cases, currently it just follows
-// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
-// should probably make this smarter, or better yet make the LLVM backend
-// capable of handling it.
-static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
- // We can only expand structure types.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT)
- return false;
-
- // We can only expand (C) structures.
- //
- // FIXME: This needs to be generalized to handle classes as well.
- const RecordDecl *RD = RT->getDecl();
- if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
- return false;
-
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
-
- if (!is32Or64BitBasicType(FD->getType(), Context))
- return false;
-
- // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
- // how to expand them yet, and the predicate for telling if a bitfield still
- // counts as "basic" is more complicated than what we were doing previously.
- if (FD->isBitField())
- return false;
- }
-
- return true;
-}
-
-static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) {
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
-
- if (FD->getType()->isVectorType() &&
- Context.getTypeSize(FD->getType()) >= 128)
- return true;
-
- if (const RecordType* RT = FD->getType()->getAs<RecordType>())
- if (typeContainsSSEVector(RT->getDecl(), Context))
- return true;
- }
-
- return false;
-}
-
-namespace {
-/// DefaultABIInfo - The default implementation for ABI specific
-/// details. This implementation provides information which results in
-/// self-consistent and sensible LLVM IR generation, but does not
-/// conform to any particular ABI.
-class DefaultABIInfo : public ABIInfo {
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
- VMContext);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context, VMContext);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-
-/// X86_32ABIInfo - The X86-32 ABI information.
-class X86_32ABIInfo : public ABIInfo {
- ASTContext &Context;
- bool IsDarwinVectorABI;
- bool IsSmallStructInRegABI;
-
- static bool isRegisterSize(unsigned Size) {
- return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
- }
-
- static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
-
- static unsigned getIndirectArgumentAlignment(QualType Ty,
- ASTContext &Context);
-
-public:
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
- VMContext);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context, VMContext);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-
- X86_32ABIInfo(ASTContext &Context, bool d, bool p)
- : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
- IsSmallStructInRegABI(p) {}
-};
-}
-
-
-/// shouldReturnTypeInRegister - Determine if the given type should be
-/// passed in a register (for the Darwin ABI).
-bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
- ASTContext &Context) {
- uint64_t Size = Context.getTypeSize(Ty);
-
- // Type must be register sized.
- if (!isRegisterSize(Size))
- return false;
-
- if (Ty->isVectorType()) {
- // 64- and 128- bit vectors inside structures are not returned in
- // registers.
- if (Size == 64 || Size == 128)
- return false;
-
- return true;
- }
-
- // If this is a builtin, pointer, enum, or complex type, it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->isAnyPointerType() ||
- Ty->isAnyComplexType() || Ty->isEnumeralType() ||
- Ty->isBlockPointerType())
- return true;
-
- // Arrays are treated like records.
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
- return shouldReturnTypeInRegister(AT->getElementType(), Context);
-
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
-
- // Structure types are passed in register if all fields would be
- // passed in a register.
- for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
- e = RT->getDecl()->field_end(); i != e; ++i) {
- const FieldDecl *FD = *i;
-
- // Empty fields are ignored.
- if (isEmptyField(Context, FD, true))
- continue;
-
- // Check fields recursively.
- if (!shouldReturnTypeInRegister(FD->getType(), Context))
- return false;
- }
-
- return true;
-}
-
-ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
- // On Darwin, some vectors are returned in registers.
- if (IsDarwinVectorABI) {
- uint64_t Size = Context.getTypeSize(RetTy);
-
- // 128-bit vectors are a special case; they are returned in
- // registers and we need to make sure to pick a type the LLVM
- // backend will like.
- if (Size == 128)
- return ABIArgInfo::getCoerce(llvm::VectorType::get(
- llvm::Type::getInt64Ty(VMContext), 2));
-
- // Always return in register if it fits in a general purpose
- // register, or if it is 64 bits and has a single element.
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
-
- return ABIArgInfo::getIndirect(0);
- }
-
- return ABIArgInfo::getDirect();
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- if (const RecordType *RT = RetTy->getAsStructureType()) {
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (hasNonTrivialDestructorOrCopyConstructor(RT))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
-
- // Structures with flexible arrays are always indirect.
- if (RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(0);
- }
-
- // If specified, structs and unions are always indirect.
- if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
- return ABIArgInfo::getIndirect(0);
-
- // Classify "single element" structs as their element type.
- if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
- if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
- if (BT->isIntegerType()) {
- // We need to use the size of the structure, padding
- // bit-fields can adjust that to be larger than the single
- // element type.
- uint64_t Size = Context.getTypeSize(RetTy);
- return ABIArgInfo::getCoerce(
- llvm::IntegerType::get(VMContext, (unsigned) Size));
- } else if (BT->getKind() == BuiltinType::Float) {
- assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
- "Unexpect single element structure size!");
- return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
- } else if (BT->getKind() == BuiltinType::Double) {
- assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
- "Unexpect single element structure size!");
- return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
- }
- } else if (SeltTy->isPointerType()) {
- // FIXME: It would be really nice if this could come out as the proper
- // pointer type.
- const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
- return ABIArgInfo::getCoerce(PtrTy);
- } else if (SeltTy->isVectorType()) {
- // 64- and 128-bit vectors are never returned in a
- // register when inside a structure.
- uint64_t Size = Context.getTypeSize(RetTy);
- if (Size == 64 || Size == 128)
- return ABIArgInfo::getIndirect(0);
-
- return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
- }
- }
-
- // Small structures which are register sized are generally returned
- // in a register.
- if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
- uint64_t Size = Context.getTypeSize(RetTy);
- return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
- }
-
- return ABIArgInfo::getIndirect(0);
- } else {
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
-}
-
-unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty,
- ASTContext &Context) {
- unsigned Align = Context.getTypeAlign(Ty);
- if (Align < 128) return 0;
- if (const RecordType* RT = Ty->getAs<RecordType>())
- if (typeContainsSSEVector(RT->getDecl(), Context))
- return 16;
- return 0;
-}
-
-ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- // FIXME: Set alignment on indirect arguments.
- if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
- // Structures with flexible arrays are always indirect.
- if (const RecordType *RT = Ty->getAsStructureType())
- if (RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty,
- Context));
-
- // Ignore empty structs.
- if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
- return ABIArgInfo::getIgnore();
-
- // Expand small (<= 128-bit) record types when we know that the stack layout
- // of those arguments will match the struct. This is important because the
- // LLVM backend isn't smart enough to remove byval, which inhibits many
- // optimizations.
- if (Context.getTypeSize(Ty) <= 4*32 &&
- canExpandIndirectArgument(Ty, Context))
- return ABIArgInfo::getExpand();
-
- return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context));
- } else {
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
-}
-
-llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
- const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
-
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
-
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(
- llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
- return AddrTyped;
-}
-
-namespace {
-/// X86_64ABIInfo - The X86_64 ABI information.
-class X86_64ABIInfo : public ABIInfo {
- enum Class {
- Integer = 0,
- SSE,
- SSEUp,
- X87,
- X87Up,
- ComplexX87,
- NoClass,
- Memory
- };
-
- /// merge - Implement the X86_64 ABI merging algorithm.
- ///
- /// Merge an accumulating classification \arg Accum with a field
- /// classification \arg Field.
- ///
- /// \param Accum - The accumulating classification. This should
- /// always be either NoClass or the result of a previous merge
- /// call. In addition, this should never be Memory (the caller
- /// should just return Memory for the aggregate).
- Class merge(Class Accum, Class Field) const;
-
- /// classify - Determine the x86_64 register classes in which the
- /// given type T should be passed.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the high word of the containing object.
- ///
- /// \param OffsetBase - The bit offset of this type in the
- /// containing object. Some parameters are classified different
- /// depending on whether they straddle an eightbyte boundary.
- ///
- /// If a word is unused its result will be NoClass; if a type should
- /// be passed in Memory then at least the classification of \arg Lo
- /// will be Memory.
- ///
- /// The \arg Lo class will be NoClass iff the argument is ignored.
- ///
- /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
- /// also be ComplexX87.
- void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
- Class &Lo, Class &Hi) const;
-
- /// getCoerceResult - Given a source type \arg Ty and an LLVM type
- /// to coerce to, chose the best way to pass Ty in the same place
- /// that \arg CoerceTo would be passed, but while keeping the
- /// emitted code as simple as possible.
- ///
- /// FIXME: Note, this should be cleaned up to just take an enumeration of all
- /// the ways we might want to pass things, instead of constructing an LLVM
- /// type. This makes this code more explicit, and it makes it clearer that we
- /// are also doing this for correctness in the case of passing scalar types.
- ABIArgInfo getCoerceResult(QualType Ty,
- const llvm::Type *CoerceTo,
- ASTContext &Context) const;
-
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ABIArgInfo getIndirectResult(QualType Ty,
- ASTContext &Context) const;
-
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- ABIArgInfo classifyArgumentType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext,
- unsigned &neededInt,
- unsigned &neededSSE) const;
-
-public:
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-}
-
-X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
- Class Field) const {
- // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
- // classified recursively so that always two fields are
- // considered. The resulting class is calculated according to
- // the classes of the fields in the eightbyte:
- //
- // (a) If both classes are equal, this is the resulting class.
- //
- // (b) If one of the classes is NO_CLASS, the resulting class is
- // the other class.
- //
- // (c) If one of the classes is MEMORY, the result is the MEMORY
- // class.
- //
- // (d) If one of the classes is INTEGER, the result is the
- // INTEGER.
- //
- // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
- // MEMORY is used as class.
- //
- // (f) Otherwise class SSE is used.
-
- // Accum should never be memory (we should have returned) or
- // ComplexX87 (because this cannot be passed in a structure).
- assert((Accum != Memory && Accum != ComplexX87) &&
- "Invalid accumulated classification during merge.");
- if (Accum == Field || Field == NoClass)
- return Accum;
- else if (Field == Memory)
- return Memory;
- else if (Accum == NoClass)
- return Field;
- else if (Accum == Integer || Field == Integer)
- return Integer;
- else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
- Accum == X87 || Accum == X87Up)
- return Memory;
- else
- return SSE;
-}
-
-void X86_64ABIInfo::classify(QualType Ty,
- ASTContext &Context,
- uint64_t OffsetBase,
- Class &Lo, Class &Hi) const {
- // FIXME: This code can be simplified by introducing a simple value class for
- // Class pairs with appropriate constructor methods for the various
- // situations.
-
- // FIXME: Some of the split computations are wrong; unaligned vectors
- // shouldn't be passed in registers for example, so there is no chance they
- // can straddle an eightbyte. Verify & simplify.
-
- Lo = Hi = NoClass;
-
- Class &Current = OffsetBase < 64 ? Lo : Hi;
- Current = Memory;
-
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- BuiltinType::Kind k = BT->getKind();
-
- if (k == BuiltinType::Void) {
- Current = NoClass;
- } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
- Lo = Integer;
- Hi = Integer;
- } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
- Current = Integer;
- } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
- Current = SSE;
- } else if (k == BuiltinType::LongDouble) {
- Lo = X87;
- Hi = X87Up;
- }
- // FIXME: _Decimal32 and _Decimal64 are SSE.
- // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
- } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
- // Classify the underlying integer type.
- classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
- } else if (Ty->hasPointerRepresentation()) {
- Current = Integer;
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- uint64_t Size = Context.getTypeSize(VT);
- if (Size == 32) {
- // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
- // float> as integer.
- Current = Integer;
-
- // If this type crosses an eightbyte boundary, it should be
- // split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
- if (EB_Real != EB_Imag)
- Hi = Lo;
- } else if (Size == 64) {
- // gcc passes <1 x double> in memory. :(
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
- return;
-
- // gcc passes <1 x long long> as INTEGER.
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
- Current = Integer;
- else
- Current = SSE;
-
- // If this type crosses an eightbyte boundary, it should be
- // split.
- if (OffsetBase && OffsetBase != 64)
- Hi = Lo;
- } else if (Size == 128) {
- Lo = SSE;
- Hi = SSEUp;
- }
- } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- QualType ET = Context.getCanonicalType(CT->getElementType());
-
- uint64_t Size = Context.getTypeSize(Ty);
- if (ET->isIntegralType()) {
- if (Size <= 64)
- Current = Integer;
- else if (Size <= 128)
- Lo = Hi = Integer;
- } else if (ET == Context.FloatTy)
- Current = SSE;
- else if (ET == Context.DoubleTy)
- Lo = Hi = SSE;
- else if (ET == Context.LongDoubleTy)
- Current = ComplexX87;
-
- // If this complex type crosses an eightbyte boundary then it
- // should be split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
- if (Hi == NoClass && EB_Real != EB_Imag)
- Hi = Lo;
- } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- // Arrays are treated like structures.
-
- uint64_t Size = Context.getTypeSize(Ty);
-
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than two eightbytes, ..., it has class MEMORY.
- if (Size > 128)
- return;
-
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Only need to check alignment of array base.
- if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
- return;
-
- // Otherwise implement simplified merge. We could be smarter about
- // this, but it isn't worth it and would be harder to verify.
- Current = NoClass;
- uint64_t EltSize = Context.getTypeSize(AT->getElementType());
- uint64_t ArraySize = AT->getSize().getZExtValue();
- for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
- Class FieldLo, FieldHi;
- classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
-
- // Do post merger cleanup (see below). Only case we worry about is Memory.
- if (Hi == Memory)
- Lo = Memory;
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
- } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
- uint64_t Size = Context.getTypeSize(Ty);
-
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than two eightbytes, ..., it has class MEMORY.
- if (Size > 128)
- return;
-
- // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
- // copy constructor or a non-trivial destructor, it is passed by invisible
- // reference.
- if (hasNonTrivialDestructorOrCopyConstructor(RT))
- return;
-
- const RecordDecl *RD = RT->getDecl();
-
- // Assume variable sized types are passed in memory.
- if (RD->hasFlexibleArrayMember())
- return;
-
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
-
- // Reset Lo class, this will be recomputed.
- Current = NoClass;
-
- // If this is a C++ record, classify the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
- e = CXXRD->bases_end(); i != e; ++i) {
- assert(!i->isVirtual() && !i->getType()->isDependentType() &&
- "Unexpected base class!");
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
-
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
- // single eightbyte, each is classified separately. Each eightbyte gets
- // initialized to class NO_CLASS.
- Class FieldLo, FieldHi;
- uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
- classify(i->getType(), Context, Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
-
- // If this record has no fields but isn't empty, classify as INTEGER.
- if (RD->field_empty() && Size)
- Current = Integer;
- }
-
- // Classify the fields one at a time, merging the results.
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- bool BitField = i->isBitField();
-
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Note, skip this test for bit-fields, see below.
- if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
- Lo = Memory;
- return;
- }
-
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
- // exceeds a single eightbyte, each is classified
- // separately. Each eightbyte gets initialized to class
- // NO_CLASS.
- Class FieldLo, FieldHi;
-
- // Bit-fields require special handling, they do not force the
- // structure to be passed in memory even if unaligned, and
- // therefore they can straddle an eightbyte.
- if (BitField) {
- // Ignore padding bit-fields.
- if (i->isUnnamedBitfield())
- continue;
-
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
-
- uint64_t EB_Lo = Offset / 64;
- uint64_t EB_Hi = (Offset + Size - 1) / 64;
- FieldLo = FieldHi = NoClass;
- if (EB_Lo) {
- assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
- FieldLo = NoClass;
- FieldHi = Integer;
- } else {
- FieldLo = Integer;
- FieldHi = EB_Hi ? Integer : NoClass;
- }
- } else
- classify(i->getType(), Context, Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
-
- // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
- //
- // (a) If one of the classes is MEMORY, the whole argument is
- // passed in memory.
- //
- // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
-
- // The first of these conditions is guaranteed by how we implement
- // the merge (just bail).
- //
- // The second condition occurs in the case of unions; for example
- // union { _Complex double; unsigned; }.
- if (Hi == Memory)
- Lo = Memory;
- if (Hi == SSEUp && Lo != SSE)
- Hi = SSE;
- }
-}
-
-ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
- const llvm::Type *CoerceTo,
- ASTContext &Context) const {
- if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
- // Integer and pointer types will end up in a general purpose
- // register.
- if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
- // FIXME: It would probably be better to make CGFunctionInfo only map using
- // canonical types than to canonize here.
- QualType CTy = Context.getCanonicalType(Ty);
-
- // Float and double end up in a single SSE reg.
- if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
- return ABIArgInfo::getDirect();
-
- }
-
- return ABIArgInfo::getCoerce(CoerceTo);
-}
-
-ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
- ASTContext &Context) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- if (!CodeGenFunction::hasAggregateLLVMType(Ty))
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-
- bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty);
-
- // FIXME: Set alignment correctly.
- return ABIArgInfo::getIndirect(0, ByVal);
-}
-
-ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
- // classification algorithm.
- X86_64ABIInfo::Class Lo, Hi;
- classify(RetTy, Context, 0, Lo, Hi);
-
- // Check some invariants.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
- const llvm::Type *ResType = 0;
- switch (Lo) {
- case NoClass:
- return ABIArgInfo::getIgnore();
-
- case SSEUp:
- case X87Up:
- assert(0 && "Invalid classification for lo word.");
-
- // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
- // hidden argument.
- case Memory:
- return getIndirectResult(RetTy, Context);
-
- // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
- // available register of the sequence %rax, %rdx is used.
- case Integer:
- ResType = llvm::Type::getInt64Ty(VMContext); break;
-
- // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
- // available SSE register of the sequence %xmm0, %xmm1 is used.
- case SSE:
- ResType = llvm::Type::getDoubleTy(VMContext); break;
-
- // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
- // returned on the X87 stack in %st0 as 80-bit x87 number.
- case X87:
- ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
-
- // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
- // part of the value is returned in %st0 and the imaginary part in
- // %st1.
- case ComplexX87:
- assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
- ResType = llvm::StructType::get(VMContext, llvm::Type::getX86_FP80Ty(VMContext),
- llvm::Type::getX86_FP80Ty(VMContext),
- NULL);
- break;
- }
-
- switch (Hi) {
- // Memory was handled previously and X87 should
- // never occur as a hi class.
- case Memory:
- case X87:
- assert(0 && "Invalid classification for hi word.");
-
- case ComplexX87: // Previously handled.
- case NoClass: break;
-
- case Integer:
- ResType = llvm::StructType::get(VMContext, ResType,
- llvm::Type::getInt64Ty(VMContext), NULL);
- break;
- case SSE:
- ResType = llvm::StructType::get(VMContext, ResType,
- llvm::Type::getDoubleTy(VMContext), NULL);
- break;
-
- // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
- // is passed in the upper half of the last used SSE register.
- //
- // SSEUP should always be preceeded by SSE, just widen.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification.");
- ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
- break;
-
- // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
- // returned together with the previous X87 value in %st0.
- case X87Up:
- // If X87Up is preceeded by X87, we don't need to do
- // anything. However, in some cases with unions it may not be
- // preceeded by X87. In such situations we follow gcc and pass the
- // extra bits in an SSE reg.
- if (Lo != X87)
- ResType = llvm::StructType::get(VMContext, ResType,
- llvm::Type::getDoubleTy(VMContext), NULL);
- break;
- }
-
- return getCoerceResult(RetTy, ResType, Context);
-}
-
-ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
- llvm::LLVMContext &VMContext,
- unsigned &neededInt,
- unsigned &neededSSE) const {
- X86_64ABIInfo::Class Lo, Hi;
- classify(Ty, Context, 0, Lo, Hi);
-
- // Check some invariants.
- // FIXME: Enforce these by construction.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
- neededInt = 0;
- neededSSE = 0;
- const llvm::Type *ResType = 0;
- switch (Lo) {
- case NoClass:
- return ABIArgInfo::getIgnore();
-
- // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
- // on the stack.
- case Memory:
-
- // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
- // COMPLEX_X87, it is passed in memory.
- case X87:
- case ComplexX87:
- return getIndirectResult(Ty, Context);
-
- case SSEUp:
- case X87Up:
- assert(0 && "Invalid classification for lo word.");
-
- // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
- // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
- // and %r9 is used.
- case Integer:
- ++neededInt;
- ResType = llvm::Type::getInt64Ty(VMContext);
- break;
-
- // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
- // available SSE register is used, the registers are taken in the
- // order from %xmm0 to %xmm7.
- case SSE:
- ++neededSSE;
- ResType = llvm::Type::getDoubleTy(VMContext);
- break;
- }
-
- switch (Hi) {
- // Memory was handled previously, ComplexX87 and X87 should
- // never occur as hi classes, and X87Up must be preceed by X87,
- // which is passed in memory.
- case Memory:
- case X87:
- case ComplexX87:
- assert(0 && "Invalid classification for hi word.");
- break;
-
- case NoClass: break;
- case Integer:
- ResType = llvm::StructType::get(VMContext, ResType,
- llvm::Type::getInt64Ty(VMContext), NULL);
- ++neededInt;
- break;
-
- // X87Up generally doesn't occur here (long double is passed in
- // memory), except in situations involving unions.
- case X87Up:
- case SSE:
- ResType = llvm::StructType::get(VMContext, ResType,
- llvm::Type::getDoubleTy(VMContext), NULL);
- ++neededSSE;
- break;
-
- // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
- // eightbyte is passed in the upper half of the last used SSE
- // register.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification.");
- ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
- break;
- }
-
- return getCoerceResult(Ty, ResType, Context);
-}
-
-void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
- Context, VMContext);
-
- // Keep track of the number of assigned registers.
- unsigned freeIntRegs = 6, freeSSERegs = 8;
-
- // If the return value is indirect, then the hidden argument is consuming one
- // integer register.
- if (FI.getReturnInfo().isIndirect())
- --freeIntRegs;
-
- // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
- // get assigned (in left-to-right order) for passing as follows...
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it) {
- unsigned neededInt, neededSSE;
- it->info = classifyArgumentType(it->type, Context, VMContext,
- neededInt, neededSSE);
-
- // AMD64-ABI 3.2.3p3: If there are no registers available for any
- // eightbyte of an argument, the whole argument is passed on the
- // stack. If registers have already been assigned for some
- // eightbytes of such an argument, the assignments get reverted.
- if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
- freeIntRegs -= neededInt;
- freeSSERegs -= neededSSE;
- } else {
- it->info = getIndirectResult(it->type, Context);
- }
- }
-}
-
-static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) {
- llvm::Value *overflow_arg_area_p =
- CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
- llvm::Value *overflow_arg_area =
- CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
-
- // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
- // byte boundary if alignment needed by type exceeds 8 byte boundary.
- uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
- if (Align > 8) {
- // Note that we follow the ABI & gcc here, even though the type
- // could in theory have an alignment greater than 16. This case
- // shouldn't ever matter in practice.
-
- // overflow_arg_area = (overflow_arg_area + 15) & ~15;
- llvm::Value *Offset =
- llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
- llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
- llvm::Type::getInt64Ty(CGF.getLLVMContext()));
- llvm::Value *Mask = llvm::ConstantInt::get(
- llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL);
- overflow_arg_area =
- CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
- overflow_arg_area->getType(),
- "overflow_arg_area.align");
- }
-
- // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
- const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *Res =
- CGF.Builder.CreateBitCast(overflow_arg_area,
- llvm::PointerType::getUnqual(LTy));
-
- // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
- // l->overflow_arg_area + sizeof(type).
- // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
- // an 8 byte boundary.
-
- uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
- llvm::Value *Offset =
- llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
- (SizeInBytes + 7) & ~7);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
- "overflow_arg_area.next");
- CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
-
- // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
- return Res;
-}
-
-llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::LLVMContext &VMContext = CGF.getLLVMContext();
- const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext);
- const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
-
- // Assume that va_list type is correct; should be pointer to LLVM type:
- // struct {
- // i32 gp_offset;
- // i32 fp_offset;
- // i8* overflow_arg_area;
- // i8* reg_save_area;
- // };
- unsigned neededInt, neededSSE;
- ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
- neededInt, neededSSE);
-
- // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
- // in the registers. If not go to step 7.
- if (!neededInt && !neededSSE)
- return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
-
- // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
- // general purpose registers needed to pass type and num_fp to hold
- // the number of floating point registers needed.
-
- // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
- // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
- // l->fp_offset > 304 - num_fp * 16 go to step 7.
- //
- // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
- // register save space).
-
- llvm::Value *InRegs = 0;
- llvm::Value *gp_offset_p = 0, *gp_offset = 0;
- llvm::Value *fp_offset_p = 0, *fp_offset = 0;
- if (neededInt) {
- gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
- gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
- InRegs =
- CGF.Builder.CreateICmpULE(gp_offset,
- llvm::ConstantInt::get(i32Ty,
- 48 - neededInt * 8),
- "fits_in_gp");
- }
-
- if (neededSSE) {
- fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
- fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
- llvm::Value *FitsInFP =
- CGF.Builder.CreateICmpULE(fp_offset,
- llvm::ConstantInt::get(i32Ty,
- 176 - neededSSE * 16),
- "fits_in_fp");
- InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
- }
-
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
-
- // Emit code to load the value if it was passed in registers.
-
- CGF.EmitBlock(InRegBlock);
-
- // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
- // an offset of l->gp_offset and/or l->fp_offset. This may require
- // copying to a temporary location in case the parameter is passed
- // in different register classes or requires an alignment greater
- // than 8 for general purpose registers and 16 for XMM registers.
- //
- // FIXME: This really results in shameful code when we end up needing to
- // collect arguments from different places; often what should result in a
- // simple assembling of a structure from scattered addresses has many more
- // loads than necessary. Can we clean this up?
- const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *RegAddr =
- CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
- "reg_save_area");
- if (neededInt && neededSSE) {
- // FIXME: Cleanup.
- assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
- const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
- llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
- assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
- const llvm::Type *TyLo = ST->getElementType(0);
- const llvm::Type *TyHi = ST->getElementType(1);
- assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
- "Unexpected ABI info for mixed regs");
- const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
- const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
- llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
- llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
- llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
- llvm::Value *V =
- CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
-
- RegAddr = CGF.Builder.CreateBitCast(Tmp,
- llvm::PointerType::getUnqual(LTy));
- } else if (neededInt) {
- RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
- RegAddr = CGF.Builder.CreateBitCast(RegAddr,
- llvm::PointerType::getUnqual(LTy));
- } else {
- if (neededSSE == 1) {
- RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- RegAddr = CGF.Builder.CreateBitCast(RegAddr,
- llvm::PointerType::getUnqual(LTy));
- } else {
- assert(neededSSE == 2 && "Invalid number of needed registers!");
- // SSE registers are spaced 16 bytes apart in the register save
- // area, we need to collect the two eightbytes together.
- llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- llvm::Value *RegAddrHi =
- CGF.Builder.CreateGEP(RegAddrLo,
- llvm::ConstantInt::get(i32Ty, 16));
- const llvm::Type *DblPtrTy =
- llvm::PointerType::getUnqual(DoubleTy);
- const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
- DoubleTy, NULL);
- llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
- DblPtrTy));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
- DblPtrTy));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
- RegAddr = CGF.Builder.CreateBitCast(Tmp,
- llvm::PointerType::getUnqual(LTy));
- }
- }
-
- // AMD64-ABI 3.5.7p5: Step 5. Set:
- // l->gp_offset = l->gp_offset + num_gp * 8
- // l->fp_offset = l->fp_offset + num_fp * 16.
- if (neededInt) {
- llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
- gp_offset_p);
- }
- if (neededSSE) {
- llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
- fp_offset_p);
- }
- CGF.EmitBranch(ContBlock);
-
- // Emit code to load the value if it was passed in memory.
-
- CGF.EmitBlock(InMemBlock);
- llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
-
- // Return the appropriate result.
-
- CGF.EmitBlock(ContBlock);
- llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
- "vaarg.addr");
- ResAddr->reserveOperandSpace(2);
- ResAddr->addIncoming(RegAddr, InRegBlock);
- ResAddr->addIncoming(MemAddr, InMemBlock);
-
- return ResAddr;
-}
-
-// PIC16 ABI Implementation
-
-namespace {
-
-class PIC16ABIInfo : public ABIInfo {
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
- VMContext);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context, VMContext);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-
-}
-
-ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else {
- return ABIArgInfo::getDirect();
- }
-}
-
-ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- return ABIArgInfo::getDirect();
-}
-
-llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- return 0;
-}
-
-// ARM ABI Implementation
-
-namespace {
-
-class ARMABIInfo : public ABIInfo {
-public:
- enum ABIKind {
- APCS = 0,
- AAPCS = 1,
- AAPCS_VFP
- };
-
-private:
- ABIKind Kind;
-
-public:
- ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
-
-private:
- ABIKind getABIKind() const { return Kind; }
-
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMCOntext) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-
-}
-
-void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
- VMContext);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it) {
- it->info = classifyArgumentType(it->type, Context, VMContext);
- }
-
- // ARM always overrides the calling convention.
- switch (getABIKind()) {
- case APCS:
- FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
- break;
-
- case AAPCS:
- FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
- break;
-
- case AAPCS_VFP:
- FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
- break;
- }
-}
-
-ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (!CodeGenFunction::hasAggregateLLVMType(Ty))
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-
- // Ignore empty records.
- if (isEmptyRecord(Context, Ty, true))
- return ABIArgInfo::getIgnore();
-
- // FIXME: This is kind of nasty... but there isn't much choice because the ARM
- // backend doesn't support byval.
- // FIXME: This doesn't handle alignment > 64 bits.
- const llvm::Type* ElemTy;
- unsigned SizeRegs;
- if (Context.getTypeAlign(Ty) > 32) {
- ElemTy = llvm::Type::getInt64Ty(VMContext);
- SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
- } else {
- ElemTy = llvm::Type::getInt32Ty(VMContext);
- SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
- }
- std::vector<const llvm::Type*> LLVMFields;
- LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
- const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
- return ABIArgInfo::getCoerce(STy);
-}
-
-static bool isIntegerLikeType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) {
- // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
- // is called integer-like if its size is less than or equal to one word, and
- // the offset of each of its addressable sub-fields is zero.
-
- uint64_t Size = Context.getTypeSize(Ty);
-
- // Check that the type fits in a word.
- if (Size > 32)
- return false;
-
- // FIXME: Handle vector types!
- if (Ty->isVectorType())
- return false;
-
- // Float types are never treated as "integer like".
- if (Ty->isRealFloatingType())
- return false;
-
- // If this is a builtin or pointer type then it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
- return true;
-
- // Complex types "should" be ok by the definition above, but they are not.
- if (Ty->isAnyComplexType())
- return false;
-
- // Single element and zero sized arrays should be allowed, by the definition
- // above, but they are not.
-
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
-
- // Ignore records with flexible arrays.
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
-
- // Check that all sub-fields are at offset 0, and are themselves "integer
- // like".
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
-
- bool HadField = false;
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- const FieldDecl *FD = *i;
-
- // Check if this field is at offset 0.
- uint64_t Offset = Layout.getFieldOffset(idx);
- if (Offset != 0) {
- // Allow padding bit-fields, but only if they are all at the end of the
- // structure (despite the wording above, this matches gcc).
- if (FD->isBitField() &&
- !FD->getBitWidth()->EvaluateAsInt(Context).getZExtValue()) {
- for (; i != e; ++i)
- if (!i->isBitField() ||
- i->getBitWidth()->EvaluateAsInt(Context).getZExtValue())
- return false;
-
- // All remaining fields are padding, allow this.
- return true;
- }
-
- return false;
- }
-
- if (!isIntegerLikeType(FD->getType(), Context, VMContext))
- return false;
-
- // Only allow at most one field in a structure. Again this doesn't match the
- // wording above, but follows gcc.
- if (!RD->isUnion()) {
- if (HadField)
- return false;
-
- HadField = true;
- }
- }
-
- return true;
-}
-
-ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
-
- if (!CodeGenFunction::hasAggregateLLVMType(RetTy))
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-
- // Are we following APCS?
- if (getABIKind() == APCS) {
- if (isEmptyRecord(Context, RetTy, false))
- return ABIArgInfo::getIgnore();
-
- // Integer like structures are returned in r0.
- if (isIntegerLikeType(RetTy, Context, VMContext)) {
- // Return in the smallest viable integer type.
- uint64_t Size = Context.getTypeSize(RetTy);
- if (Size <= 8)
- return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
- if (Size <= 16)
- return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
- return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
- }
-
- // Otherwise return in memory.
- return ABIArgInfo::getIndirect(0);
- }
-
- // Otherwise this is an AAPCS variant.
-
- if (isEmptyRecord(Context, RetTy, true))
- return ABIArgInfo::getIgnore();
-
- // Aggregates <= 4 bytes are returned in r0; other aggregates
- // are returned indirectly.
- uint64_t Size = Context.getTypeSize(RetTy);
- if (Size <= 32) {
- // Return in the smallest viable integer type.
- if (Size <= 8)
- return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
- if (Size <= 16)
- return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
- return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
- }
-
- return ABIArgInfo::getIndirect(0);
-}
-
-llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // FIXME: Need to handle alignment
- const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
- const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
-
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
-
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(
- llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
- return AddrTyped;
-}
-
-ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- return ABIArgInfo::getIndirect(0);
- } else {
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
-}
-
-// SystemZ ABI Implementation
-
-namespace {
-
-class SystemZABIInfo : public ABIInfo {
- bool isPromotableIntegerType(QualType Ty) const;
-
- ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
- llvm::LLVMContext &VMContext) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
- Context, VMContext);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context, VMContext);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-
-}
-
-bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
- // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
- switch (BT->getKind()) {
- case BuiltinType::Bool:
- case BuiltinType::Char_S:
- case BuiltinType::Char_U:
- case BuiltinType::SChar:
- case BuiltinType::UChar:
- case BuiltinType::Short:
- case BuiltinType::UShort:
- case BuiltinType::Int:
- case BuiltinType::UInt:
- return true;
- default:
- return false;
- }
- return false;
-}
-
-llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // FIXME: Implement
- return 0;
-}
-
-
-ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- return ABIArgInfo::getIndirect(0);
- } else {
- return (isPromotableIntegerType(RetTy) ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
-}
-
-ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
- return ABIArgInfo::getIndirect(0);
- } else {
- return (isPromotableIntegerType(Ty) ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
-}
-
-ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context,
- llvm::LLVMContext &VMContext) const {
- if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
- return ABIArgInfo::getIndirect(0);
- } else {
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
-}
-
-llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- return 0;
-}
-
-const ABIInfo &CodeGenTypes::getABIInfo() const {
- if (TheABIInfo)
- return *TheABIInfo;
-
- // For now we just cache the ABIInfo in CodeGenTypes and don't free it.
-
- const llvm::Triple &Triple(getContext().Target.getTriple());
- switch (Triple.getArch()) {
- default:
- return *(TheABIInfo = new DefaultABIInfo);
-
- case llvm::Triple::arm:
- case llvm::Triple::thumb:
- // FIXME: We want to know the float calling convention as well.
- if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
- return *(TheABIInfo = new ARMABIInfo(ARMABIInfo::APCS));
-
- return *(TheABIInfo = new ARMABIInfo(ARMABIInfo::AAPCS));
-
- case llvm::Triple::pic16:
- return *(TheABIInfo = new PIC16ABIInfo());
-
- case llvm::Triple::systemz:
- return *(TheABIInfo = new SystemZABIInfo());
-
- case llvm::Triple::x86:
- switch (Triple.getOS()) {
- case llvm::Triple::Darwin:
- return *(TheABIInfo = new X86_32ABIInfo(Context, true, true));
- case llvm::Triple::Cygwin:
- case llvm::Triple::MinGW32:
- case llvm::Triple::MinGW64:
- case llvm::Triple::AuroraUX:
- case llvm::Triple::DragonFly:
- case llvm::Triple::FreeBSD:
- case llvm::Triple::OpenBSD:
- return *(TheABIInfo = new X86_32ABIInfo(Context, false, true));
-
- default:
- return *(TheABIInfo = new X86_32ABIInfo(Context, false, false));
- }
-
- case llvm::Triple::x86_64:
- return *(TheABIInfo = new X86_64ABIInfo());
- }
-}
Copied: cfe/trunk/lib/CodeGen/TargetInfo.cpp (from r93114, cfe/trunk/lib/CodeGen/TargetABIInfo.cpp)
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.cpp?p2=cfe/trunk/lib/CodeGen/TargetInfo.cpp&p1=cfe/trunk/lib/CodeGen/TargetABIInfo.cpp&r1=93114&r2=93117&rev=93117&view=diff
==============================================================================
(empty)
More information about the cfe-commits
mailing list