[cfe-commits] r81337 - in /cfe/trunk/lib/CodeGen: CGBlocks.cpp CGExpr.cpp CGExprComplex.cpp CGExprScalar.cpp

Mike Stump mrs at apple.com
Wed Sep 9 06:00:44 PDT 2009


Author: mrs
Date: Wed Sep  9 08:00:44 2009
New Revision: 81337

URL: http://llvm.org/viewvc/llvm-project?rev=81337&view=rev
Log:
Reflow comments and some minor whitespace fixups.

Modified:
    cfe/trunk/lib/CodeGen/CGBlocks.cpp
    cfe/trunk/lib/CodeGen/CGExpr.cpp
    cfe/trunk/lib/CodeGen/CGExprComplex.cpp
    cfe/trunk/lib/CodeGen/CGExprScalar.cpp

Modified: cfe/trunk/lib/CodeGen/CGBlocks.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGBlocks.cpp?rev=81337&r1=81336&r2=81337&view=diff

==============================================================================
--- cfe/trunk/lib/CodeGen/CGBlocks.cpp (original)
+++ cfe/trunk/lib/CodeGen/CGBlocks.cpp Wed Sep  9 08:00:44 2009
@@ -459,7 +459,7 @@
   llvm::Value *BlockLiteral = LoadBlockStruct();
   llvm::Value *V = Builder.CreateGEP(BlockLiteral,
                                   llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext),
-                                                            offset),
+                                                         offset),
                                      "block.literal");
   if (E->isByRef()) {
     bool needsCopyDispose = BlockRequiresCopying(E->getType());

Modified: cfe/trunk/lib/CodeGen/CGExpr.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGExpr.cpp?rev=81337&r1=81336&r2=81337&view=diff

==============================================================================
--- cfe/trunk/lib/CodeGen/CGExpr.cpp (original)
+++ cfe/trunk/lib/CodeGen/CGExpr.cpp Wed Sep  9 08:00:44 2009
@@ -46,9 +46,9 @@
 
 /// EmitAnyExpr - Emit code to compute the specified expression which can have
 /// any type.  The result is returned as an RValue struct.  If this is an
-/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
-/// the result should be returned.
-RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc, 
+/// aggregate expression, the aggloc/agglocvolatile arguments indicate where the
+/// result should be returned.
+RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
                                     bool IsAggLocVolatile, bool IgnoreResult,
                                     bool IsInitializer) {
   if (!hasAggregateLLVMType(E->getType()))
@@ -56,23 +56,22 @@
   else if (E->getType()->isAnyComplexType())
     return RValue::getComplex(EmitComplexExpr(E, false, false,
                                               IgnoreResult, IgnoreResult));
-  
+
   EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer);
   return RValue::getAggregate(AggLoc, IsAggLocVolatile);
 }
 
-/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result
-/// will always be accessible even if no aggregate location is
-/// provided.
-RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E, 
+/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
+/// always be accessible even if no aggregate location is provided.
+RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E,
                                           bool IsAggLocVolatile,
                                           bool IsInitializer) {
   llvm::Value *AggLoc = 0;
-  
-  if (hasAggregateLLVMType(E->getType()) && 
+
+  if (hasAggregateLLVMType(E->getType()) &&
       !E->getType()->isAnyComplexType())
     AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp");
-  return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false, 
+  return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false,
                      IsInitializer);
 }
 
@@ -92,15 +91,15 @@
     // if B inherits from A.
     Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false,
                             IsInitializer);
-    
+
     if (IsInitializer) {
       // We might have to destroy the temporary variable.
       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
         if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
           if (!ClassDecl->hasTrivialDestructor()) {
-            const CXXDestructorDecl *Dtor = 
+            const CXXDestructorDecl *Dtor =
               ClassDecl->getDestructor(getContext());
-          
+
             CleanupScope scope(*this);
             EmitCXXDestructorCall(Dtor, Dtor_Complete, Val.getAggregateAddr());
           }
@@ -113,7 +112,7 @@
     Val = RValue::get(Val.getAggregateAddr());
   } else {
     // Create a temporary variable that we can bind the reference to.
-    llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), 
+    llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()),
                                          "reftmp");
     if (Val.isScalar())
       EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
@@ -126,13 +125,13 @@
 }
 
 
-/// getAccessedFieldNo - Given an encoded value and a result number, return
-/// the input field number being accessed.
-unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 
+/// getAccessedFieldNo - Given an encoded value and a result number, return the
+/// input field number being accessed.
+unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
                                              const llvm::Constant *Elts) {
   if (isa<llvm::ConstantAggregateZero>(Elts))
     return 0;
-  
+
   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
 }
 
@@ -175,32 +174,31 @@
 /// EmitLValue - Emit code to compute a designator that specifies the location
 /// of the expression.
 ///
-/// This can return one of two things: a simple address or a bitfield
-/// reference.  In either case, the LLVM Value* in the LValue structure is
-/// guaranteed to be an LLVM pointer type.
+/// This can return one of two things: a simple address or a bitfield reference.
+/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
+/// an LLVM pointer type.
 ///
-/// If this returns a bitfield reference, nothing about the pointee type of
-/// the LLVM value is known: For example, it may not be a pointer to an
-/// integer.
+/// If this returns a bitfield reference, nothing about the pointee type of the
+/// LLVM value is known: For example, it may not be a pointer to an integer.
 ///
-/// If this returns a normal address, and if the lvalue's C type is fixed
-/// size, this method guarantees that the returned pointer type will point to
-/// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
-/// variable length type, this is not possible.
+/// If this returns a normal address, and if the lvalue's C type is fixed size,
+/// this method guarantees that the returned pointer type will point to an LLVM
+/// type of the same size of the lvalue's type.  If the lvalue has a variable
+/// length type, this is not possible.
 ///
 LValue CodeGenFunction::EmitLValue(const Expr *E) {
   switch (E->getStmtClass()) {
   default: return EmitUnsupportedLValue(E, "l-value expression");
 
-  case Expr::BinaryOperatorClass: 
+  case Expr::BinaryOperatorClass:
     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
-  case Expr::CallExprClass: 
+  case Expr::CallExprClass:
   case Expr::CXXMemberCallExprClass:
   case Expr::CXXOperatorCallExprClass:
     return EmitCallExprLValue(cast<CallExpr>(E));
   case Expr::VAArgExprClass:
     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
-  case Expr::DeclRefExprClass: 
+  case Expr::DeclRefExprClass:
   case Expr::QualifiedDeclRefExprClass:
     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
   case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
@@ -211,7 +209,7 @@
   case Expr::ObjCEncodeExprClass:
     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
 
-  case Expr::BlockDeclRefExprClass: 
+  case Expr::BlockDeclRefExprClass:
     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
 
   case Expr::CXXConditionDeclExprClass:
@@ -224,7 +222,7 @@
 
   case Expr::ObjCMessageExprClass:
     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
-  case Expr::ObjCIvarRefExprClass: 
+  case Expr::ObjCIvarRefExprClass:
     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
   case Expr::ObjCPropertyRefExprClass:
     return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
@@ -235,13 +233,13 @@
 
   case Expr::StmtExprClass:
     return EmitStmtExprLValue(cast<StmtExpr>(E));
-  case Expr::UnaryOperatorClass: 
+  case Expr::UnaryOperatorClass:
     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
   case Expr::ArraySubscriptExprClass:
     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
   case Expr::ExtVectorElementExprClass:
     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
-  case Expr::MemberExprClass: 
+  case Expr::MemberExprClass:
     return EmitMemberExpr(cast<MemberExpr>(E));
   case Expr::CompoundLiteralExprClass:
     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
@@ -268,52 +266,52 @@
   if (Ty->isBooleanType())
     if (V->getType() != llvm::Type::getInt1Ty(VMContext))
       V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool");
-  
+
   return V;
 }
 
 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
                                         bool Volatile, QualType Ty) {
-  
+
   if (Ty->isBooleanType()) {
     // Bool can have different representation in memory than in registers.
     const llvm::Type *SrcTy = Value->getType();
     const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
     if (DstPtr->getElementType() != SrcTy) {
-      const llvm::Type *MemTy = 
+      const llvm::Type *MemTy =
         llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
     }
   }
-  Builder.CreateStore(Value, Addr, Volatile);  
+  Builder.CreateStore(Value, Addr, Volatile);
 }
 
-/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
-/// this method emits the address of the lvalue, then loads the result as an
-/// rvalue, returning the rvalue.
+/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
+/// method emits the address of the lvalue, then loads the result as an rvalue,
+/// returning the rvalue.
 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
   if (LV.isObjCWeak()) {
-    // load of a __weak object. 
+    // load of a __weak object.
     llvm::Value *AddrWeakObj = LV.getAddress();
-    llvm::Value *read_weak = CGM.getObjCRuntime().EmitObjCWeakRead(*this, 
+    llvm::Value *read_weak = CGM.getObjCRuntime().EmitObjCWeakRead(*this,
                                                                    AddrWeakObj);
     return RValue::get(read_weak);
   }
-      
+
   if (LV.isSimple()) {
     llvm::Value *Ptr = LV.getAddress();
     const llvm::Type *EltTy =
       cast<llvm::PointerType>(Ptr->getType())->getElementType();
-    
+
     // Simple scalar l-value.
     if (EltTy->isSingleValueType())
-      return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(), 
+      return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
                                           ExprType));
-    
+
     assert(ExprType->isFunctionType() && "Unknown scalar value");
     return RValue::get(Ptr);
   }
-  
+
   if (LV.isVectorElt()) {
     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
                                           LV.isVolatileQualified(), "tmp");
@@ -342,58 +340,58 @@
   unsigned BitfieldSize = LV.getBitfieldSize();
   llvm::Value *Ptr = LV.getBitfieldAddr();
 
-  const llvm::Type *EltTy = 
+  const llvm::Type *EltTy =
     cast<llvm::PointerType>(Ptr->getType())->getElementType();
   unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
 
-  // In some cases the bitfield may straddle two memory locations.
-  // Currently we load the entire bitfield, then do the magic to
-  // sign-extend it if necessary. This results in somewhat more code
-  // than necessary for the common case (one load), since two shifts
-  // accomplish both the masking and sign extension.
+  // In some cases the bitfield may straddle two memory locations.  Currently we
+  // load the entire bitfield, then do the magic to sign-extend it if
+  // necessary. This results in somewhat more code than necessary for the common
+  // case (one load), since two shifts accomplish both the masking and sign
+  // extension.
   unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
-  
+
   // Shift to proper location.
   if (StartBit)
-    Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit), 
+    Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit),
                              "bf.lo");
-  
+
   // Mask off unused bits.
-  llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext, 
+  llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext,
                                 llvm::APInt::getLowBitsSet(EltTySize, LowBits));
   Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
-  
+
   // Fetch the high bits if necessary.
   if (LowBits < BitfieldSize) {
     unsigned HighBits = BitfieldSize - LowBits;
     llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
-                            llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");    
-    llvm::Value *HighVal = Builder.CreateLoad(HighPtr, 
+                            llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
+    llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
                                               LV.isVolatileQualified(),
                                               "tmp");
-    
+
     // Mask off unused bits.
     llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext,
                                llvm::APInt::getLowBitsSet(EltTySize, HighBits));
     HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
 
     // Shift to proper location and or in to bitfield value.
-    HighVal = Builder.CreateShl(HighVal, 
+    HighVal = Builder.CreateShl(HighVal,
                                 llvm::ConstantInt::get(EltTy, LowBits));
     Val = Builder.CreateOr(Val, HighVal, "bf.val");
   }
 
   // Sign extend if necessary.
   if (LV.isBitfieldSigned()) {
-    llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy, 
+    llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
                                                     EltTySize - BitfieldSize);
-    Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits), 
+    Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
                              ExtraBits, "bf.val.sext");
   }
 
-  // The bitfield type and the normal type differ when the storage sizes
-  // differ (currently just _Bool).
+  // The bitfield type and the normal type differ when the storage sizes differ
+  // (currently just _Bool).
   Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
 
   return RValue::get(Val);
@@ -415,11 +413,11 @@
                                                          QualType ExprType) {
   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
                                         LV.isVolatileQualified(), "tmp");
-  
+
   const llvm::Constant *Elts = LV.getExtVectorElts();
-  
-  // If the result of the expression is a non-vector type, we must be
-  // extracting a single element.  Just codegen as an extractelement.
+
+  // If the result of the expression is a non-vector type, we must be extracting
+  // a single element.  Just codegen as an extractelement.
   const VectorType *ExprVT = ExprType->getAsVectorType();
   if (!ExprVT) {
     unsigned InIdx = getAccessedFieldNo(0, Elts);
@@ -430,14 +428,14 @@
 
   // Always use shuffle vector to try to retain the original program structure
   unsigned NumResultElts = ExprVT->getNumElements();
-  
+
   llvm::SmallVector<llvm::Constant*, 4> Mask;
   for (unsigned i = 0; i != NumResultElts; ++i) {
     unsigned InIdx = getAccessedFieldNo(i, Elts);
     Mask.push_back(llvm::ConstantInt::get(
                                      llvm::Type::getInt32Ty(VMContext), InIdx));
   }
-  
+
   llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
   Vec = Builder.CreateShuffleVector(Vec,
                                     llvm::UndefValue::get(Vec->getType()),
@@ -450,7 +448,7 @@
 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
 /// lvalue, where both are guaranteed to the have the same type, and that type
 /// is 'Ty'.
-void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 
+void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
                                              QualType Ty) {
   if (!Dst.isSimple()) {
     if (Dst.isVectorElt()) {
@@ -462,7 +460,7 @@
       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
       return;
     }
-  
+
     // If this is an update of extended vector elements, insert them as
     // appropriate.
     if (Dst.isExtVectorElt())
@@ -479,21 +477,21 @@
 
     assert(0 && "Unknown LValue type");
   }
-  
+
   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
-    // load of a __weak object. 
+    // load of a __weak object.
     llvm::Value *LvalueDst = Dst.getAddress();
     llvm::Value *src = Src.getScalarVal();
      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
     return;
   }
-  
+
   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
-    // load of a __strong object. 
+    // load of a __strong object.
     llvm::Value *LvalueDst = Dst.getAddress();
     llvm::Value *src = Src.getScalarVal();
 #if 0
-    // FIXME. We cannot positively determine if we have an 'ivar' assignment,
+    // FIXME: We cannot positively determine if we have an 'ivar' assignment,
     // object assignment or an unknown assignment. For now, generate call to
     // objc_assign_strongCast assignment which is a safe, but consevative
     // assumption.
@@ -508,25 +506,25 @@
       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
     return;
   }
-  
+
   assert(Src.isScalar() && "Can't emit an agg store with this method");
   EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
                     Dst.isVolatileQualified(), Ty);
 }
 
 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
-                                                     QualType Ty, 
+                                                     QualType Ty,
                                                      llvm::Value **Result) {
   unsigned StartBit = Dst.getBitfieldStartBit();
   unsigned BitfieldSize = Dst.getBitfieldSize();
   llvm::Value *Ptr = Dst.getBitfieldAddr();
 
-  const llvm::Type *EltTy = 
+  const llvm::Type *EltTy =
     cast<llvm::PointerType>(Ptr->getType())->getElementType();
   unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
 
-  // Get the new value, cast to the appropriate type and masked to
-  // exactly the size of the bit-field.
+  // Get the new value, cast to the appropriate type and masked to exactly the
+  // size of the bit-field.
   llvm::Value *SrcVal = Src.getScalarVal();
   llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
   llvm::Constant *Mask = llvm::ConstantInt::get(VMContext,
@@ -545,34 +543,33 @@
       unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
       llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
                                                       SrcTySize - BitfieldSize);
-      SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits), 
+      SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
                                     ExtraBits, "bf.reload.sext");
     }
 
     *Result = SrcTrunc;
   }
 
-  // In some cases the bitfield may straddle two memory locations.
-  // Emit the low part first and check to see if the high needs to be
-  // done.
+  // In some cases the bitfield may straddle two memory locations.  Emit the low
+  // part first and check to see if the high needs to be done.
   unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
   llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
                                            "bf.prev.low");
 
   // Compute the mask for zero-ing the low part of this bitfield.
-  llvm::Constant *InvMask = 
+  llvm::Constant *InvMask =
     llvm::ConstantInt::get(VMContext,
              ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits));
-  
+
   // Compute the new low part as
   //   LowVal = (LowVal & InvMask) | (NewVal << StartBit),
   // with the shift of NewVal implicitly stripping the high bits.
-  llvm::Value *NewLowVal = 
-    Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit), 
-                      "bf.value.lo");  
+  llvm::Value *NewLowVal =
+    Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit),
+                      "bf.value.lo");
   LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
   LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
-    
+
   // Write back.
   Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
 
@@ -580,26 +577,26 @@
   if (LowBits < BitfieldSize) {
     unsigned HighBits = BitfieldSize - LowBits;
     llvm::Value *HighPtr =  Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
-                            llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");    
-    llvm::Value *HighVal = Builder.CreateLoad(HighPtr, 
+                            llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
+    llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
                                               Dst.isVolatileQualified(),
                                               "bf.prev.hi");
-    
+
     // Compute the mask for zero-ing the high part of this bitfield.
-    llvm::Constant *InvMask = 
-      llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize, 
+    llvm::Constant *InvMask =
+      llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize,
                                HighBits));
-  
+
     // Compute the new high part as
     //   HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
     // where the high bits of NewVal have already been cleared and the
     // shift stripping the low bits.
-    llvm::Value *NewHighVal = 
-      Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits), 
-                        "bf.value.high");  
+    llvm::Value *NewHighVal =
+      Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits),
+                        "bf.value.high");
     HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
     HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
-    
+
     // Write back.
     Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
   }
@@ -625,24 +622,24 @@
   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
                                         Dst.isVolatileQualified(), "tmp");
   const llvm::Constant *Elts = Dst.getExtVectorElts();
-  
+
   llvm::Value *SrcVal = Src.getScalarVal();
-  
+
   if (const VectorType *VTy = Ty->getAsVectorType()) {
     unsigned NumSrcElts = VTy->getNumElements();
     unsigned NumDstElts =
        cast<llvm::VectorType>(Vec->getType())->getNumElements();
     if (NumDstElts == NumSrcElts) {
-      // Use shuffle vector is the src and destination are the same number
-      // of elements and restore the vector mask since it is on the side
-      // it will be stored.
+      // Use shuffle vector is the src and destination are the same number of
+      // elements and restore the vector mask since it is on the side it will be
+      // stored.
       llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
       for (unsigned i = 0; i != NumSrcElts; ++i) {
         unsigned InIdx = getAccessedFieldNo(i, Elts);
         Mask[InIdx] = llvm::ConstantInt::get(
                                           llvm::Type::getInt32Ty(VMContext), i);
       }
-    
+
       llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
       Vec = Builder.CreateShuffleVector(SrcVal,
                                         llvm::UndefValue::get(Vec->getType()),
@@ -662,7 +659,7 @@
                                             llvm::Type::getInt32Ty(VMContext)));
       llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
                                                         ExtMask.size());
-      llvm::Value *ExtSrcVal = 
+      llvm::Value *ExtSrcVal =
         Builder.CreateShuffleVector(SrcVal,
                                     llvm::UndefValue::get(SrcVal->getType()),
                                     ExtMaskV, "tmp");
@@ -691,17 +688,17 @@
                                       llvm::Type::getInt32Ty(VMContext), InIdx);
     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
   }
-  
+
   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
 }
 
 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
   const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
-  
+
   if (VD && (VD->isBlockVarDecl() || isa<ParmVarDecl>(VD) ||
         isa<ImplicitParamDecl>(VD))) {
     LValue LV;
-    bool NonGCable = VD->hasLocalStorage() && 
+    bool NonGCable = VD->hasLocalStorage() &&
       !VD->hasAttr<BlocksAttr>();
     if (VD->hasExternalStorage()) {
       llvm::Value *V = CGM.GetAddrOfGlobalVar(VD);
@@ -778,7 +775,7 @@
 }
 
 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
-  return LValue::MakeAddr(GetAddrOfBlockDecl(E), 
+  return LValue::MakeAddr(GetAddrOfBlockDecl(E),
                           E->getType().getCVRQualifiers(),
                           getContext().getObjCGCAttrKind(E->getType()),
                           E->getType().getAddressSpace());
@@ -788,7 +785,7 @@
   // __extension__ doesn't affect lvalue-ness.
   if (E->getOpcode() == UnaryOperator::Extension)
     return EmitLValue(E->getSubExpr());
-  
+
   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
   switch (E->getOpcode()) {
   default: assert(0 && "Unknown unary operator lvalue!");
@@ -796,9 +793,9 @@
     {
       QualType T = E->getSubExpr()->getType()->getPointeeType();
       assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
-        
+
       LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()),
-                                   T.getCVRQualifiers(), 
+                                   T.getCVRQualifiers(),
                                    getContext().getObjCGCAttrKind(T),
                                    ExprTy.getAddressSpace());
      // We should not generate __weak write barrier on indirect reference
@@ -854,12 +851,12 @@
                                 CurCodeDecl);
 
   GlobalVarName += FunctionName;
-  llvm::Constant *C = 
+  llvm::Constant *C =
     CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
   return LValue::MakeAddr(C, 0);
 }
 
-LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {  
+LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
   switch (E->getIdentType()) {
   default:
     return EmitUnsupportedLValue(E, "predefined expression");
@@ -882,15 +879,15 @@
     // Emit the vector as an lvalue to get its address.
     LValue LHS = EmitLValue(E->getBase());
     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
-    Idx = Builder.CreateIntCast(Idx, 
+    Idx = Builder.CreateIntCast(Idx,
                           llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx");
     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
       E->getBase()->getType().getCVRQualifiers());
   }
-  
+
   // The base must be a pointer, which is not an aggregate.  Emit it.
   llvm::Value *Base = EmitScalarExpr(E->getBase());
-  
+
   // Extend or truncate the index type to 32 or 64-bits.
   unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
   if (IdxBitwidth != LLVMPointerWidth)
@@ -898,28 +895,28 @@
                             llvm::IntegerType::get(VMContext, LLVMPointerWidth),
                                 IdxSigned, "idxprom");
 
-  // We know that the pointer points to a type of the correct size,
-  // unless the size is a VLA or Objective-C interface.
+  // We know that the pointer points to a type of the correct size, unless the
+  // size is a VLA or Objective-C interface.
   llvm::Value *Address = 0;
-  if (const VariableArrayType *VAT = 
+  if (const VariableArrayType *VAT =
         getContext().getAsVariableArrayType(E->getType())) {
     llvm::Value *VLASize = GetVLASize(VAT);
-    
+
     Idx = Builder.CreateMul(Idx, VLASize);
-    
+
     QualType BaseType = getContext().getBaseElementType(VAT);
-  
+
     uint64_t BaseTypeSize = getContext().getTypeSize(BaseType) / 8;
     Idx = Builder.CreateUDiv(Idx,
-                             llvm::ConstantInt::get(Idx->getType(), 
+                             llvm::ConstantInt::get(Idx->getType(),
                                                     BaseTypeSize));
     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
-  } else if (const ObjCInterfaceType *OIT = 
+  } else if (const ObjCInterfaceType *OIT =
              dyn_cast<ObjCInterfaceType>(E->getType())) {
-    llvm::Value *InterfaceSize = 
+    llvm::Value *InterfaceSize =
       llvm::ConstantInt::get(Idx->getType(),
                              getContext().getTypeSize(OIT) / 8);
-    
+
     Idx = Builder.CreateMul(Idx, InterfaceSize);
 
     llvm::Type *i8PTy =
@@ -930,11 +927,11 @@
   } else {
     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
   }
-  
+
   QualType T = E->getBase()->getType()->getPointeeType();
-  assert(!T.isNull() && 
+  assert(!T.isNull() &&
          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
-    
+
   LValue LV = LValue::MakeAddr(Address,
                                T.getCVRQualifiers(),
                                getContext().getObjCGCAttrKind(T),
@@ -945,11 +942,11 @@
   return LV;
 }
 
-static 
+static
 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
                                        llvm::SmallVector<unsigned, 4> &Elts) {
   llvm::SmallVector<llvm::Constant *, 4> CElts;
-  
+
   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
     CElts.push_back(llvm::ConstantInt::get(
                                    llvm::Type::getInt32Ty(VMContext), Elts[i]));
@@ -1011,7 +1008,7 @@
   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
   if (E->isArrow()) {
     BaseValue = EmitScalarExpr(BaseExpr);
-    const PointerType *PTy = 
+    const PointerType *PTy =
       BaseExpr->getType()->getAs<PointerType>();
     if (PTy->getPointeeType()->isUnionType())
       isUnion = true;
@@ -1055,7 +1052,7 @@
 
   // FIXME: CodeGenTypes should expose a method to get the appropriate type for
   // FieldTy (the appropriate type is ABI-dependent).
-  const llvm::Type *FieldTy = 
+  const llvm::Type *FieldTy =
     CGM.getTypes().ConvertTypeForMem(Field->getType());
   const llvm::PointerType *BaseTy =
   cast<llvm::PointerType>(BaseValue->getType());
@@ -1063,11 +1060,11 @@
   BaseValue = Builder.CreateBitCast(BaseValue,
                                     llvm::PointerType::get(FieldTy, AS),
                                     "tmp");
-  
-  llvm::Value *Idx = 
+
+  llvm::Value *Idx =
     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo);
   llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp");
-  
+
   return LValue::MakeBitfield(V, Info.Start, Info.Size,
                               Field->getType()->isSignedIntegerType(),
                             Field->getType().getCVRQualifiers()|CVRQualifiers);
@@ -1080,19 +1077,19 @@
 {
   if (Field->isBitField())
     return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
-  
+
   unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
 
   // Match union field type.
   if (isUnion) {
-    const llvm::Type *FieldTy = 
+    const llvm::Type *FieldTy =
       CGM.getTypes().ConvertTypeForMem(Field->getType());
-    const llvm::PointerType * BaseTy = 
+    const llvm::PointerType * BaseTy =
       cast<llvm::PointerType>(BaseValue->getType());
     unsigned AS = BaseTy->getAddressSpace();
-    V = Builder.CreateBitCast(V, 
-                              llvm::PointerType::get(FieldTy, AS), 
+    V = Builder.CreateBitCast(V,
+                              llvm::PointerType::get(FieldTy, AS),
                               "tmp");
   }
   if (Field->getType()->isReferenceType())
@@ -1110,8 +1107,8 @@
     } else if (Ty->isObjCObjectPointerType())
       attr = QualType::Strong;
   }
-  LValue LV =  
-    LValue::MakeAddr(V, 
+  LValue LV =
+    LValue::MakeAddr(V,
                      Field->getType().getCVRQualifiers()|CVRQualifiers,
                      attr,
                      Field->getType().getAddressSpace());
@@ -1143,7 +1140,7 @@
     return EmitUnsupportedLValue(E, "conditional operator");
 
   // ?: here should be an aggregate.
-  assert((hasAggregateLLVMType(E->getType()) && 
+  assert((hasAggregateLLVMType(E->getType()) &&
           !E->getType()->isAnyComplexType()) &&
          "Unexpected conditional operator!");
 
@@ -1153,7 +1150,7 @@
   return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
                           getContext().getObjCGCAttrKind(E->getType()),
                           E->getType().getAddressSpace());
- 
+
 }
 
 /// EmitCastLValue - Casts are never lvalues.  If a cast is needed by the code
@@ -1163,15 +1160,15 @@
 /// noop aggregate casts, and cast from scalar to union.
 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
   if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) {
-    if (const CXXFunctionalCastExpr *CXXFExpr = 
+    if (const CXXFunctionalCastExpr *CXXFExpr =
           dyn_cast<CXXFunctionalCastExpr>(E))
       return  LValue::MakeAddr(
                 EmitCXXFunctionalCastExpr(CXXFExpr).getScalarVal(), 0);
-    assert(isa<CStyleCastExpr>(E) && 
+    assert(isa<CStyleCastExpr>(E) &&
            "EmitCastLValue - Expected CStyleCastExpr");
     return EmitLValue(E->getSubExpr());
   }
-  
+
   // If this is an aggregate-to-aggregate cast, just use the input's address as
   // the lvalue.
   if (E->getCastKind() == CastExpr::CK_NoOp)
@@ -1186,11 +1183,11 @@
   // Otherwise, we must have a cast from scalar to union.
   assert(E->getCastKind() == CastExpr::CK_ToUnion &&
          "Expected scalar-to-union cast");
-  
+
   // Casts are only lvalues when the source and destination types are the same.
   llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
   EmitAnyExpr(E->getSubExpr(), Temp, false);
-  
+
   return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
                           getContext().getObjCGCAttrKind(E->getType()),
                           E->getType().getAddressSpace());
@@ -1208,7 +1205,7 @@
 
   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
     return EmitCXXMemberCallExpr(CE);
-  
+
   const Decl *TargetDecl = 0;
   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
@@ -1222,17 +1219,17 @@
   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
       return EmitCXXOperatorMemberCallExpr(CE, MD);
-      
+
   if (isa<CXXPseudoDestructorExpr>(E->getCallee())) {
     // C++ [expr.pseudo]p1:
-    //   The result shall only be used as the operand for the function call 
+    //   The result shall only be used as the operand for the function call
     //   operator (), and the result of such a call has type void. The only
     //   effect is the evaluation of the postfix-expression before the dot or
     //   arrow.
     EmitScalarExpr(E->getCallee());
     return RValue::get(0);
   }
-      
+
   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
   return EmitCall(Callee, E->getCallee()->getType(),
                   E->arg_begin(), E->arg_end(), TargetDecl);
@@ -1244,7 +1241,7 @@
     EmitAnyExpr(E->getLHS());
     return EmitLValue(E->getRHS());
   }
-  
+
   // Can only get l-value for binary operator expressions which are a
   // simple assignment of aggregate type.
   if (E->getOpcode() != BinaryOperator::Assign)
@@ -1265,12 +1262,12 @@
     assert(E->getCallReturnType()->isReferenceType() &&
            "Can't have a scalar return unless the return type is a "
            "reference type!");
-    
-    return LValue::MakeAddr(RV.getScalarVal(), E->getType().getCVRQualifiers(), 
+
+    return LValue::MakeAddr(RV.getScalarVal(), E->getType().getCVRQualifiers(),
                             getContext().getObjCGCAttrKind(E->getType()),
                             E->getType().getAddressSpace());
   }
-  
+
   return LValue::MakeAddr(RV.getAggregateAddr(),
                           E->getType().getCVRQualifiers(),
                           getContext().getObjCGCAttrKind(E->getType()),
@@ -1301,9 +1298,9 @@
 LValue
 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
   LValue LV = EmitLValue(E->getSubExpr());
-  
+
   PushCXXTemporary(E->getTemporary(), LV.getAddress());
-  
+
   return LV;
 }
 
@@ -1351,18 +1348,18 @@
   return EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), CVRQualifiers);
 }
 
-LValue 
+LValue
 CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
-  // This is a special l-value that just issues sends when we load or
-  // store through it.
+  // This is a special l-value that just issues sends when we load or store
+  // through it.
   return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
 }
 
-LValue 
+LValue
 CodeGenFunction::EmitObjCKVCRefLValue(
                                 const ObjCImplicitSetterGetterRefExpr *E) {
-  // This is a special l-value that just issues sends when we load or
-  // store through it.
+  // This is a special l-value that just issues sends when we load or store
+  // through it.
   return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
 }
 
@@ -1372,7 +1369,7 @@
 }
 
 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
-  
+
   // Can only get l-value for message expression returning aggregate type
   RValue RV = EmitAnyExprToTemp(E);
   // FIXME: can this be volatile?
@@ -1383,13 +1380,13 @@
 }
 
 
-RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType, 
+RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType,
                                  CallExpr::const_arg_iterator ArgBeg,
                                  CallExpr::const_arg_iterator ArgEnd,
                                  const Decl *TargetDecl) {
-  // Get the actual function type. The callee type will always be a
-  // pointer to function type or a block pointer type.
-  assert(CalleeType->isFunctionPointerType() && 
+  // Get the actual function type. The callee type will always be a pointer to
+  // function type or a block pointer type.
+  assert(CalleeType->isFunctionPointerType() &&
          "Call must have function pointer type!");
 
   QualType FnType = CalleeType->getAs<PointerType>()->getPointeeType();
@@ -1398,6 +1395,6 @@
   CallArgList Args;
   EmitCallArgs(Args, FnType->getAsFunctionProtoType(), ArgBeg, ArgEnd);
 
-  return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args), 
+  return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args),
                   Callee, Args, TargetDecl);
 }

Modified: cfe/trunk/lib/CodeGen/CGExprComplex.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGExprComplex.cpp?rev=81337&r1=81336&r2=81337&view=diff

==============================================================================
--- cfe/trunk/lib/CodeGen/CGExprComplex.cpp (original)
+++ cfe/trunk/lib/CodeGen/CGExprComplex.cpp Wed Sep  9 08:00:44 2009
@@ -46,7 +46,7 @@
     IgnoreRealAssign(irn), IgnoreImagAssign(iin) {
   }
 
-  
+
   //===--------------------------------------------------------------------===//
   //                               Utilities
   //===--------------------------------------------------------------------===//
@@ -82,23 +82,23 @@
 
     if (LV.isPropertyRef())
       return CGF.EmitObjCPropertyGet(LV.getPropertyRefExpr()).getComplexVal();
-    
+
     assert(LV.isKVCRef() && "Unknown LValue type!");
     return CGF.EmitObjCPropertyGet(LV.getKVCRefExpr()).getComplexVal();
   }
-  
+
   /// EmitLoadOfComplex - Given a pointer to a complex value, emit code to load
   /// the real and imaginary pieces.
   ComplexPairTy EmitLoadOfComplex(llvm::Value *SrcPtr, bool isVolatile);
-  
+
   /// EmitStoreOfComplex - Store the specified real/imag parts into the
   /// specified value pointer.
   void EmitStoreOfComplex(ComplexPairTy Val, llvm::Value *ResPtr, bool isVol);
-  
+
   /// EmitComplexToComplexCast - Emit a cast from complex value Val to DestType.
   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
                                          QualType DestType);
-  
+
   //===--------------------------------------------------------------------===//
   //                            Visitor Methods
   //===--------------------------------------------------------------------===//
@@ -111,10 +111,10 @@
   ComplexPairTy VisitExpr(Expr *S);
   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
-  
+
   // l-values.
   ComplexPairTy VisitDeclRefExpr(const Expr *E) { return EmitLoadOfLValue(E); }
-  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 
+  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
     return EmitLoadOfLValue(E);
   }
   ComplexPairTy VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
@@ -131,7 +131,7 @@
   ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
 
   // FIXME: CompoundLiteralExpr
-  
+
   ComplexPairTy EmitCast(Expr *Op, QualType DestTy);
   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
     // Unlike for scalars, we don't have to worry about function->ptr demotion
@@ -182,24 +182,23 @@
   ComplexPairTy VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) {
     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
     QualType Elem = E->getType()->getAsComplexType()->getElementType();
-    llvm::Constant *Null = 
-                       llvm::Constant::getNullValue(CGF.ConvertType(Elem));
+    llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
     return ComplexPairTy(Null, Null);
   }
   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
     QualType Elem = E->getType()->getAsComplexType()->getElementType();
-    llvm::Constant *Null = 
+    llvm::Constant *Null =
                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
     return ComplexPairTy(Null, Null);
   }
-  
+
   struct BinOpInfo {
     ComplexPairTy LHS;
     ComplexPairTy RHS;
     QualType Ty;  // Computation Type.
-  };    
-  
+  };
+
   BinOpInfo EmitBinOps(const BinaryOperator *E);
   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
                                    ComplexPairTy (ComplexExprEmitter::*Func)
@@ -209,7 +208,7 @@
   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
-  
+
   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
     return EmitBinMul(EmitBinOps(E));
   }
@@ -222,7 +221,7 @@
   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
     return EmitBinDiv(EmitBinOps(E));
   }
-  
+
   // Compound assignments.
   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
@@ -236,7 +235,7 @@
   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
   }
-  
+
   // GCC rejects rem/and/or/xor for integer complex.
   // Logical and/or always return int, never complex.
 
@@ -244,7 +243,7 @@
   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
 
-  
+
   ComplexPairTy VisitConditionalOperator(const ConditionalOperator *CO);
   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
 
@@ -264,7 +263,7 @@
                                                     bool isVolatile) {
   llvm::SmallString<64> Name(SrcPtr->getName().begin(),
                              SrcPtr->getName().end());
-  
+
   llvm::Value *Real=0, *Imag=0;
 
   if (!IgnoreReal) {
@@ -279,10 +278,10 @@
                               Name.str().str().c_str());
     Name.resize(Name.size()-4); // .real -> .imagp
   }
-  
+
   if (!IgnoreImag) {
     Name += "imagp";
-  
+
     // FIXME: Clean this up once builder takes Twine/StringRef.
     llvm::Value *ImagPtr = Builder.CreateStructGEP(SrcPtr, 1,
                                                    Name.str().str().c_str());
@@ -300,7 +299,7 @@
                                             bool isVolatile) {
   llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, "real");
   llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, "imag");
-  
+
   Builder.CreateStore(Val.first, RealPtr, isVolatile);
   Builder.CreateStore(Val.second, ImagPtr, isVolatile);
 }
@@ -313,7 +312,7 @@
 
 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
   CGF.ErrorUnsupported(E, "complex expression");
-  const llvm::Type *EltTy = 
+  const llvm::Type *EltTy =
     CGF.ConvertType(E->getType()->getAsComplexType()->getElementType());
   llvm::Value *U = llvm::UndefValue::get(EltTy);
   return ComplexPairTy(U, U);
@@ -358,7 +357,7 @@
   // Two cases here: cast from (complex to complex) and (scalar to complex).
   if (Op->getType()->isAnyComplexType())
     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy);
-  
+
   // C99 6.3.1.7: When a value of real type is converted to a complex type, the
   // real part of the complex result value is determined by the rules of
   // conversion to the corresponding real type and the imaginary part of the
@@ -368,7 +367,7 @@
   // Convert the input element to the element type of the complex.
   DestTy = DestTy->getAsComplexType()->getElementType();
   Elt = CGF.EmitScalarConversion(Elt, Op->getType(), DestTy);
-  
+
   // Return (realval, 0).
   return ComplexPairTy(Elt, llvm::Constant::getNullValue(Elt->getType()));
 }
@@ -378,12 +377,12 @@
   LValue LV = CGF.EmitLValue(E->getSubExpr());
   ComplexPairTy InVal = EmitLoadOfComplex(LV.getAddress(),
                                           LV.isVolatileQualified());
-  
+
   llvm::Value *NextVal;
   if (isa<llvm::IntegerType>(InVal.first->getType())) {
     uint64_t AmountVal = isInc ? 1 : -1;
     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
-    
+
     // Add the inc/dec to the real part.
     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
   } else {
@@ -392,16 +391,16 @@
     if (!isInc)
       FVal.changeSign();
     NextVal = llvm::ConstantFP::get(CGF.getLLVMContext(), FVal);
-    
+
     // Add the inc/dec to the real part.
     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
   }
-  
+
   ComplexPairTy IncVal(NextVal, InVal.second);
-  
+
   // Store the updated result through the lvalue.
   EmitStoreOfComplex(IncVal, LV.getAddress(), LV.isVolatileQualified());
-  
+
   // If this is a postinc, return the value read from memory, otherwise use the
   // updated value.
   return isPre ? IncVal : InVal;
@@ -413,7 +412,7 @@
   TestAndClearIgnoreRealAssign();
   TestAndClearIgnoreImagAssign();
   ComplexPairTy Op = Visit(E->getSubExpr());
-  
+
   llvm::Value *ResR, *ResI;
   if (Op.first->getType()->isFloatingPoint()) {
     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
@@ -437,13 +436,13 @@
     ResI = Builder.CreateFNeg(Op.second, "conj.i");
   else
     ResI = Builder.CreateNeg(Op.second, "conj.i");
-    
+
   return ComplexPairTy(Op.first, ResI);
 }
 
 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
   llvm::Value *ResR, *ResI;
-  
+
   if (Op.LHS.first->getType()->isFloatingPoint()) {
     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
     ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
@@ -470,12 +469,12 @@
 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
   using llvm::Value;
   Value *ResR, *ResI;
-  
+
   if (Op.LHS.first->getType()->isFloatingPoint()) {
     Value *ResRl = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
     Value *ResRr = Builder.CreateFMul(Op.LHS.second, Op.RHS.second,"mul.rr");
     ResR  = Builder.CreateFSub(ResRl, ResRr, "mul.r");
-    
+
     Value *ResIl = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il");
     Value *ResIr = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
     ResI  = Builder.CreateFAdd(ResIl, ResIr, "mul.i");
@@ -483,7 +482,7 @@
     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second,"mul.rr");
     ResR  = Builder.CreateSub(ResRl, ResRr, "mul.r");
-    
+
     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
     ResI  = Builder.CreateAdd(ResIl, ResIr, "mul.i");
@@ -494,7 +493,7 @@
 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
-  
+
 
   llvm::Value *DSTr, *DSTi;
   if (Op.LHS.first->getType()->isFloatingPoint()) {
@@ -502,15 +501,15 @@
     llvm::Value *Tmp1 = Builder.CreateFMul(LHSr, RHSr, "tmp"); // a*c
     llvm::Value *Tmp2 = Builder.CreateFMul(LHSi, RHSi, "tmp"); // b*d
     llvm::Value *Tmp3 = Builder.CreateFAdd(Tmp1, Tmp2, "tmp"); // ac+bd
-    
+
     llvm::Value *Tmp4 = Builder.CreateFMul(RHSr, RHSr, "tmp"); // c*c
     llvm::Value *Tmp5 = Builder.CreateFMul(RHSi, RHSi, "tmp"); // d*d
     llvm::Value *Tmp6 = Builder.CreateFAdd(Tmp4, Tmp5, "tmp"); // cc+dd
-    
+
     llvm::Value *Tmp7 = Builder.CreateFMul(LHSi, RHSr, "tmp"); // b*c
     llvm::Value *Tmp8 = Builder.CreateFMul(LHSr, RHSi, "tmp"); // a*d
     llvm::Value *Tmp9 = Builder.CreateFSub(Tmp7, Tmp8, "tmp"); // bc-ad
-    
+
     DSTr = Builder.CreateFDiv(Tmp3, Tmp6, "tmp");
     DSTi = Builder.CreateFDiv(Tmp9, Tmp6, "tmp");
   } else {
@@ -518,15 +517,15 @@
     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr, "tmp"); // a*c
     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi, "tmp"); // b*d
     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2, "tmp"); // ac+bd
-    
+
     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr, "tmp"); // c*c
     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi, "tmp"); // d*d
     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5, "tmp"); // cc+dd
-    
+
     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr, "tmp"); // b*c
     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi, "tmp"); // a*d
     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8, "tmp"); // bc-ad
-    
+
     if (Op.Ty->getAsComplexType()->getElementType()->isUnsignedIntegerType()) {
       DSTr = Builder.CreateUDiv(Tmp3, Tmp6, "tmp");
       DSTi = Builder.CreateUDiv(Tmp9, Tmp6, "tmp");
@@ -535,11 +534,11 @@
       DSTi = Builder.CreateSDiv(Tmp9, Tmp6, "tmp");
     }
   }
-    
+
   return ComplexPairTy(DSTr, DSTi);
 }
 
-ComplexExprEmitter::BinOpInfo 
+ComplexExprEmitter::BinOpInfo
 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
   TestAndClearIgnoreReal();
   TestAndClearIgnoreImag();
@@ -564,27 +563,27 @@
   QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
 
   BinOpInfo OpInfo;
-  
+
   // Load the RHS and LHS operands.
   // __block variables need to have the rhs evaluated first, plus this should
   // improve codegen a little.  It is possible for the RHS to be complex or
   // scalar.
   OpInfo.Ty = E->getComputationResultType();
   OpInfo.RHS = EmitCast(E->getRHS(), OpInfo.Ty);
-  
+
   LValue LHSLV = CGF.EmitLValue(E->getLHS());
 
 
   // We know the LHS is a complex lvalue.
-  OpInfo.LHS=EmitLoadOfComplex(LHSLV.getAddress(),LHSLV.isVolatileQualified());
+  OpInfo.LHS=EmitLoadOfComplex(LHSLV.getAddress(), LHSLV.isVolatileQualified());
   OpInfo.LHS=EmitComplexToComplexCast(OpInfo.LHS, LHSTy, OpInfo.Ty);
-    
+
   // Expand the binary operator.
   ComplexPairTy Result = (this->*Func)(OpInfo);
-  
+
   // Truncate the result back to the LHS type.
   Result = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy);
-  
+
   // Store the result value into the LHS lvalue.
   EmitStoreOfComplex(Result, LHSLV.getAddress(), LHSLV.isVolatileQualified());
   // And now return the LHS
@@ -608,7 +607,7 @@
 
   // Compute the address to store into.
   LValue LHS = CGF.EmitLValue(E->getLHS());
-   
+
   // Store into it, if simple.
   if (LHS.isSimple()) {
     EmitStoreOfComplex(Val, LHS.getAddress(), LHS.isVolatileQualified());
@@ -620,7 +619,7 @@
     IgnoreImagAssign = ignimag;
     return EmitLoadOfComplex(LHS.getAddress(), LHS.isVolatileQualified());
   }
-  
+
   // Otherwise we must have a property setter (no complex vector/bitfields).
   if (LHS.isPropertyRef())
     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), RValue::getComplex(Val));
@@ -651,27 +650,27 @@
   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
-  
+
   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
-  
+
   CGF.EmitBlock(LHSBlock);
-  
+
   // Handle the GNU extension for missing LHS.
   assert(E->getLHS() && "Must have LHS for complex value");
 
   ComplexPairTy LHS = Visit(E->getLHS());
   LHSBlock = Builder.GetInsertBlock();
   CGF.EmitBranch(ContBlock);
-  
+
   CGF.EmitBlock(RHSBlock);
-  
+
   ComplexPairTy RHS = Visit(E->getRHS());
   RHSBlock = Builder.GetInsertBlock();
   CGF.EmitBranch(ContBlock);
-  
+
   CGF.EmitBlock(ContBlock);
-  
+
   // Create a PHI node for the real part.
   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), "cond.r");
   RealPN->reserveOperandSpace(2);
@@ -683,7 +682,7 @@
   ImagPN->reserveOperandSpace(2);
   ImagPN->addIncoming(LHS.second, LHSBlock);
   ImagPN->addIncoming(RHS.second, RHSBlock);
-  
+
   return ComplexPairTy(RealPN, ImagPN);
 }
 
@@ -714,7 +713,7 @@
 
   if (!ArgPtr) {
     CGF.ErrorUnsupported(E, "complex va_arg expression");
-    const llvm::Type *EltTy = 
+    const llvm::Type *EltTy =
       CGF.ConvertType(E->getType()->getAsComplexType()->getElementType());
     llvm::Value *U = llvm::UndefValue::get(EltTy);
     return ComplexPairTy(U, U);
@@ -734,7 +733,7 @@
                                                bool IgnoreImag, bool IgnoreRealAssign, bool IgnoreImagAssign) {
   assert(E && E->getType()->isAnyComplexType() &&
          "Invalid complex expression to emit");
-  
+
   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag, IgnoreRealAssign,
                             IgnoreImagAssign)
     .Visit(const_cast<Expr*>(E));
@@ -760,7 +759,7 @@
 }
 
 /// LoadComplexFromAddr - Load a complex number from the specified address.
-ComplexPairTy CodeGenFunction::LoadComplexFromAddr(llvm::Value *SrcAddr, 
+ComplexPairTy CodeGenFunction::LoadComplexFromAddr(llvm::Value *SrcAddr,
                                                    bool SrcIsVolatile) {
   return ComplexExprEmitter(*this).EmitLoadOfComplex(SrcAddr, SrcIsVolatile);
 }

Modified: cfe/trunk/lib/CodeGen/CGExprScalar.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGExprScalar.cpp?rev=81337&r1=81336&r2=81337&view=diff

==============================================================================
--- cfe/trunk/lib/CodeGen/CGExprScalar.cpp (original)
+++ cfe/trunk/lib/CodeGen/CGExprScalar.cpp Wed Sep  9 08:00:44 2009
@@ -53,10 +53,10 @@
 public:
 
   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
-    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 
+    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
       VMContext(cgf.getLLVMContext()) {
   }
-  
+
   //===--------------------------------------------------------------------===//
   //                               Utilities
   //===--------------------------------------------------------------------===//
@@ -73,25 +73,25 @@
   Value *EmitLoadOfLValue(LValue LV, QualType T) {
     return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
   }
-    
+
   /// EmitLoadOfLValue - Given an expression with complex type that represents a
   /// value l-value, this method emits the address of the l-value, then loads
   /// and returns the result.
   Value *EmitLoadOfLValue(const Expr *E) {
     return EmitLoadOfLValue(EmitLValue(E), E->getType());
   }
-    
+
   /// EmitConversionToBool - Convert the specified expression value to a
   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
   Value *EmitConversionToBool(Value *Src, QualType DstTy);
-    
+
   /// EmitScalarConversion - Emit a conversion from the specified type to the
   /// specified destination type, both of which are LLVM scalar types.
   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
 
   /// EmitComplexToScalarConversion - Emit a conversion from the specified
-  /// complex type to the specified destination type, where the destination
-  /// type is an LLVM scalar type.
+  /// complex type to the specified destination type, where the destination type
+  /// is an LLVM scalar type.
   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
                                        QualType SrcTy, QualType DstTy);
 
@@ -133,26 +133,26 @@
   }
   Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
-    llvm::Value *V = 
+    llvm::Value *V =
       llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
                              CGF.GetIDForAddrOfLabel(E->getLabel()));
-    
+
     return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
   }
-    
+
   // l-values.
   Value *VisitDeclRefExpr(DeclRefExpr *E) {
     if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
       return llvm::ConstantInt::get(VMContext, EC->getInitVal());
     return EmitLoadOfLValue(E);
   }
-  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 
-    return CGF.EmitObjCSelectorExpr(E); 
+  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+    return CGF.EmitObjCSelectorExpr(E);
   }
-  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 
-    return CGF.EmitObjCProtocolExpr(E); 
+  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+    return CGF.EmitObjCProtocolExpr(E);
   }
-  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 
+  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
     return EmitLoadOfLValue(E);
   }
   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
@@ -177,7 +177,7 @@
   Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
      return EmitLValue(E).getAddress();
   }
-    
+
   Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
 
   Value *VisitInitListExpr(InitListExpr *E) {
@@ -185,24 +185,24 @@
     (void)Ignore;
     assert (Ignore == false && "init list ignored");
     unsigned NumInitElements = E->getNumInits();
-    
+
     if (E->hadArrayRangeDesignator()) {
       CGF.ErrorUnsupported(E, "GNU array range designator extension");
     }
 
-    const llvm::VectorType *VType = 
+    const llvm::VectorType *VType =
       dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
-    
+
     // We have a scalar in braces. Just use the first element.
-    if (!VType) 
+    if (!VType)
       return Visit(E->getInit(0));
-    
+
     unsigned NumVectorElements = VType->getNumElements();
     const llvm::Type *ElementType = VType->getElementType();
 
     // Emit individual vector element stores.
     llvm::Value *V = llvm::UndefValue::get(VType);
-    
+
     // Emit initializers
     unsigned i;
     for (i = 0; i < NumInitElements; ++i) {
@@ -211,7 +211,7 @@
         llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), i);
       V = Builder.CreateInsertElement(V, NewV, Idx);
     }
-    
+
     // Emit remaining default initializers
     for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
       Value *Idx =
@@ -219,22 +219,22 @@
       llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
       V = Builder.CreateInsertElement(V, NewV, Idx);
     }
-    
+
     return V;
   }
-  
+
   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
     return llvm::Constant::getNullValue(ConvertType(E->getType()));
   }
   Value *VisitCastExpr(const CastExpr *E) {
     if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) {
-      if (const CXXFunctionalCastExpr *CXXFExpr = 
+      if (const CXXFunctionalCastExpr *CXXFExpr =
             dyn_cast<CXXFunctionalCastExpr>(E))
         return CGF.EmitCXXFunctionalCastExpr(CXXFExpr).getScalarVal();
-      assert(isa<CStyleCastExpr>(E) && 
+      assert(isa<CStyleCastExpr>(E) &&
              "VisitCastExpr - missing CStyleCastExpr");
     }
-      
+
     // Make sure to evaluate VLA bounds now so that we have them for later.
     if (E->getType()->isVariablyModifiedType())
       CGF.EmitVLASize(E->getType());
@@ -246,14 +246,14 @@
   Value *VisitCallExpr(const CallExpr *E) {
     if (E->getCallReturnType()->isReferenceType())
       return EmitLoadOfLValue(E);
-    
+
     return CGF.EmitCallExpr(E).getScalarVal();
   }
 
   Value *VisitStmtExpr(const StmtExpr *E);
 
   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
-  
+
   // Unary Operators.
   Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
   Value *VisitUnaryPostDec(const UnaryOperator *E) {
@@ -286,15 +286,15 @@
     return Visit(E->getSubExpr());
   }
   Value *VisitUnaryOffsetOf(const UnaryOperator *E);
-    
+
   // C++
   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
     return Visit(DAE->getExpr());
   }
   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
     return CGF.LoadCXXThis();
-  }      
-    
+  }
+
   Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
     return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
   }
@@ -305,17 +305,17 @@
     CGF.EmitCXXDeleteExpr(E);
     return 0;
   }
-  
+
   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
     // C++ [expr.pseudo]p1:
-    //   The result shall only be used as the operand for the function call 
+    //   The result shall only be used as the operand for the function call
     //   operator (), and the result of such a call has type void. The only
     //   effect is the evaluation of the postfix-expression before the dot or
     //   arrow.
     CGF.EmitScalarExpr(E->getBase());
     return 0;
   }
-    
+
   // Binary Operators.
   Value *EmitMul(const BinOpInfo &Ops) {
     if (CGF.getContext().getLangOptions().OverflowChecking
@@ -382,7 +382,7 @@
   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
 #undef VISITCOMP
-  
+
   Value *VisitBinAssign     (const BinaryOperator *E);
 
   Value *VisitBinLAnd       (const BinaryOperator *E);
@@ -408,24 +408,24 @@
 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
   assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
-  
+
   if (SrcType->isRealFloatingType()) {
     // Compare against 0.0 for fp scalars.
     llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
     return Builder.CreateFCmpUNE(Src, Zero, "tobool");
   }
-  
+
   if (SrcType->isMemberPointerType()) {
     // FIXME: This is ABI specific.
-    
+
     // Compare against -1.
     llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
     return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
   }
-  
+
   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
          "Unknown scalar type to convert");
-  
+
   // Because of the type rules of C, we often end up computing a logical value,
   // then zero extending it to int, then wanting it as a logical value again.
   // Optimize this common case.
@@ -441,7 +441,7 @@
       return Result;
     }
   }
-  
+
   // Compare against an integer or pointer null.
   llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
   return Builder.CreateICmpNE(Src, Zero, "tobool");
@@ -454,32 +454,31 @@
   SrcType = CGF.getContext().getCanonicalType(SrcType);
   DstType = CGF.getContext().getCanonicalType(DstType);
   if (SrcType == DstType) return Src;
-  
+
   if (DstType->isVoidType()) return 0;
-  
+
   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
 
   // Handle conversions to bool first, they are special: comparisons against 0.
   if (DstType->isBooleanType())
     return EmitConversionToBool(Src, SrcType);
-  
+
   const llvm::Type *DstTy = ConvertType(DstType);
 
   // Ignore conversions like int -> uint.
   if (Src->getType() == DstTy)
     return Src;
 
-  // Handle pointer conversions next: pointers can only be converted
-  // to/from other pointers and integers. Check for pointer types in
-  // terms of LLVM, as some native types (like Obj-C id) may map to a
-  // pointer type.
+  // Handle pointer conversions next: pointers can only be converted to/from
+  // other pointers and integers. Check for pointer types in terms of LLVM, as
+  // some native types (like Obj-C id) may map to a pointer type.
   if (isa<llvm::PointerType>(DstTy)) {
     // The source value may be an integer, or a pointer.
     if (isa<llvm::PointerType>(Src->getType())) {
       // Some heavy lifting for derived to base conversion.
-      if (const CXXRecordDecl *ClassDecl = 
+      if (const CXXRecordDecl *ClassDecl =
             SrcType->getCXXRecordDeclForPointerType())
-        if (const CXXRecordDecl *BaseClassDecl = 
+        if (const CXXRecordDecl *BaseClassDecl =
               DstType->getCXXRecordDeclForPointerType())
           Src = CGF.AddressCXXOfBaseClass(Src, ClassDecl, BaseClassDecl);
       return Builder.CreateBitCast(Src, DstTy, "conv");
@@ -487,7 +486,7 @@
     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
     // First, convert to the correct width so that we control the kind of
     // extension.
-    const llvm::Type *MiddleTy = 
+    const llvm::Type *MiddleTy =
           llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
     bool InputSigned = SrcType->isSignedIntegerType();
     llvm::Value* IntResult =
@@ -495,13 +494,13 @@
     // Then, cast to pointer.
     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
   }
-  
+
   if (isa<llvm::PointerType>(Src->getType())) {
     // Must be an ptr to int cast.
     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
     return Builder.CreatePtrToInt(Src, DstTy, "conv");
   }
-  
+
   // A scalar can be splatted to an extended vector of the same element type
   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
     // Cast the scalar to element type
@@ -520,7 +519,7 @@
     for (unsigned i = 0; i < NumElements; i++)
       Args.push_back(llvm::ConstantInt::get(
                                         llvm::Type::getInt32Ty(VMContext), 0));
-    
+
     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
     return Yay;
@@ -530,7 +529,7 @@
   if (isa<llvm::VectorType>(Src->getType()) ||
       isa<llvm::VectorType>(DstTy))
     return Builder.CreateBitCast(Src, DstTy, "conv");
-      
+
   // Finally, we have the arithmetic types: real int/float.
   if (isa<llvm::IntegerType>(Src->getType())) {
     bool InputSigned = SrcType->isSignedIntegerType();
@@ -541,7 +540,7 @@
     else
       return Builder.CreateUIToFP(Src, DstTy, "conv");
   }
-  
+
   assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
   if (isa<llvm::IntegerType>(DstTy)) {
     if (DstType->isSignedIntegerType())
@@ -557,15 +556,15 @@
     return Builder.CreateFPExt(Src, DstTy, "conv");
 }
 
-/// EmitComplexToScalarConversion - Emit a conversion from the specified
-/// complex type to the specified destination type, where the destination
-/// type is an LLVM scalar type.
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
 Value *ScalarExprEmitter::
 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
                               QualType SrcTy, QualType DstTy) {
   // Get the source element type.
   SrcTy = SrcTy->getAsComplexType()->getElementType();
-  
+
   // Handle conversions to bool first, they are special: comparisons against 0.
   if (DstTy->isBooleanType()) {
     //  Complex != 0  -> (Real != 0) | (Imag != 0)
@@ -573,11 +572,11 @@
     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
     return Builder.CreateOr(Src.first, Src.second, "tobool");
   }
-  
+
   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
   // the imaginary part of the complex value is discarded and the value of the
   // real part is converted according to the conversion rules for the
-  // corresponding real type. 
+  // corresponding real type.
   return EmitScalarConversion(Src.first, SrcTy, DstTy);
 }
 
@@ -613,14 +612,14 @@
   // so we can't get it as an lvalue.
   if (!E->getBase()->getType()->isVectorType())
     return EmitLoadOfLValue(E);
-  
+
   // Handle the vector case.  The base must be a vector, the index must be an
   // integer value.
   Value *Base = Visit(E->getBase());
   Value *Idx  = Visit(E->getIdx());
   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
   Idx = Builder.CreateIntCast(Idx,
-                              llvm::Type::getInt32Ty(CGF.getLLVMContext()), 
+                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
                               IdxSigned,
                               "vecidxcast");
   return Builder.CreateExtractElement(Base, Idx, "vecext");
@@ -633,7 +632,7 @@
                                        CastExpr::CastKind Kind) {
   if (!DestTy->isVoidType())
     TestAndClearIgnoreResultAssign();
-  
+
   switch (Kind) {
   default:
     break;
@@ -644,7 +643,7 @@
   case CastExpr::CK_ArrayToPointerDecay: {
     assert(E->getType()->isArrayType() &&
            "Array to pointer decay must have array source type!");
-    
+
     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
 
     // Note that VLA pointers are always decayed, so we don't need to do
@@ -656,7 +655,7 @@
              "Expected pointer to array");
       V = Builder.CreateStructGEP(V, 0, "arraydecay");
     }
-    
+
     // The resultant pointer type can be implicitly casted to other pointer
     // types as well (e.g. void*) and can be implicitly converted to integer.
     const llvm::Type *DestLTy = ConvertType(DestTy);
@@ -669,20 +668,20 @@
       }
     }
     return V;
-  }      
+  }
   case CastExpr::CK_NullToMemberPointer:
     return CGF.CGM.EmitNullConstant(DestTy);
   }
-  
+
   // Handle cases where the source is an non-complex type.
-  
+
   if (!CGF.hasAggregateLLVMType(E->getType())) {
     Value *Src = Visit(const_cast<Expr*>(E));
 
     // Use EmitScalarConversion to perform the conversion.
     return EmitScalarConversion(Src, E->getType(), DestTy);
   }
-  
+
   if (E->getType()->isAnyComplexType()) {
     // Handle cases where the source is a complex type.
     bool IgnoreImag = true;
@@ -727,7 +726,7 @@
   Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
 
   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
-  
+
   int AmountVal = isInc ? 1 : -1;
 
   if (ValTy->isPointerType() &&
@@ -737,26 +736,26 @@
   }
 
   Value *NextVal;
-  if (const llvm::PointerType *PT = 
+  if (const llvm::PointerType *PT =
          dyn_cast<llvm::PointerType>(InVal->getType())) {
     llvm::Constant *Inc =
       llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
     if (!isa<llvm::FunctionType>(PT->getElementType())) {
       QualType PTEE = ValTy->getPointeeType();
-      if (const ObjCInterfaceType *OIT = 
+      if (const ObjCInterfaceType *OIT =
           dyn_cast<ObjCInterfaceType>(PTEE)) {
         // Handle interface types, which are not represented with a concrete type.
         int size = CGF.getContext().getTypeSize(OIT) / 8;
         if (!isInc)
           size = -size;
         Inc = llvm::ConstantInt::get(Inc->getType(), size);
-        const llvm::Type *i8Ty = 
+        const llvm::Type *i8Ty =
           llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
         InVal = Builder.CreateBitCast(InVal, i8Ty);
         NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
         llvm::Value *lhs = LV.getAddress();
         lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
-        LV = LValue::MakeAddr(lhs, ValTy.getCVRQualifiers(), 
+        LV = LValue::MakeAddr(lhs, ValTy.getCVRQualifiers(),
                               CGF.getContext().getObjCGCAttrKind(ValTy));
       } else
         NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
@@ -785,11 +784,11 @@
   } else {
     // Add the inc/dec to the real part.
     if (InVal->getType() == llvm::Type::getFloatTy(VMContext))
-      NextVal = 
-        llvm::ConstantFP::get(VMContext, 
+      NextVal =
+        llvm::ConstantFP::get(VMContext,
                               llvm::APFloat(static_cast<float>(AmountVal)));
     else if (InVal->getType() == llvm::Type::getDoubleTy(VMContext))
-      NextVal = 
+      NextVal =
         llvm::ConstantFP::get(VMContext,
                               llvm::APFloat(static_cast<double>(AmountVal)));
     else {
@@ -801,7 +800,7 @@
     }
     NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
   }
-  
+
   // Store the updated result through the lvalue.
   if (LV.isBitfield())
     CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
@@ -832,12 +831,12 @@
 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
   // Compare operand to zero.
   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
-  
+
   // Invert value.
   // TODO: Could dynamically modify easy computations here.  For example, if
   // the operand is an icmp ne, turn into icmp eq.
   BoolVal = Builder.CreateNot(BoolVal, "lnot");
-  
+
   // ZExt result to the expr type.
   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
 }
@@ -848,7 +847,7 @@
 ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
   QualType TypeToSize = E->getTypeOfArgument();
   if (E->isSizeOf()) {
-    if (const VariableArrayType *VAT = 
+    if (const VariableArrayType *VAT =
           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
       if (E->isArgumentType()) {
         // sizeof(type) - make sure to emit the VLA size.
@@ -858,13 +857,13 @@
         // VLA, it is evaluated.
         CGF.EmitAnyExpr(E->getArgumentExpr());
       }
-      
+
       return CGF.GetVLASize(VAT);
     }
   }
 
-  // If this isn't sizeof(vla), the result must be constant; use the
-  // constant folding logic so we don't have to duplicate it here.
+  // If this isn't sizeof(vla), the result must be constant; use the constant
+  // folding logic so we don't have to duplicate it here.
   Expr::EvalResult Result;
   E->Evaluate(Result, CGF.getContext());
   return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
@@ -880,7 +879,7 @@
   Expr *Op = E->getSubExpr();
   if (Op->getType()->isAnyComplexType())
     return CGF.EmitComplexExpr(Op, true, false, true, false).second;
-  
+
   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
   // effects are evaluated, but not the actual value.
   if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
@@ -919,10 +918,10 @@
   BinOpInfo OpInfo;
 
   if (E->getComputationResultType()->isAnyComplexType()) {
-    // This needs to go through the complex expression emitter, but
-    // it's a tad complicated to do that... I'm leaving it out for now.
-    // (Note that we do actually need the imaginary part of the RHS for
-    // multiplication and division.)
+    // This needs to go through the complex expression emitter, but it's a tad
+    // complicated to do that... I'm leaving it out for now.  (Note that we do
+    // actually need the imaginary part of the RHS for multiplication and
+    // division.)
     CGF.ErrorUnsupported(E, "complex compound assignment");
     return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
   }
@@ -937,17 +936,17 @@
   OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
                                     E->getComputationLHSType());
-  
+
   // Expand the binary operator.
   Value *Result = (this->*Func)(OpInfo);
-  
+
   // Convert the result back to the LHS type.
   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
 
-  // Store the result value into the LHS lvalue. Bit-fields are
-  // handled specially because the result is altered by the store,
-  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
-  // the left operand after the assignment...'.
+  // Store the result value into the LHS lvalue. Bit-fields are handled
+  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
+  // 'An assignment expression has the value of the left operand after the
+  // assignment...'.
   if (LHSLV.isBitfield()) {
     if (!LHSLV.isVolatileQualified()) {
       CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
@@ -1029,7 +1028,7 @@
   Builder.SetInsertPoint(overflowBB);
 
   // Handler is:
-  // long long *__overflow_handler)(long long a, long long b, char op, 
+  // long long *__overflow_handler)(long long a, long long b, char op,
   // char width)
   std::vector<const llvm::Type*> handerArgTypes;
   handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
@@ -1047,13 +1046,13 @@
       Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
       Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
       llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
-      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), 
+      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
         cast<llvm::IntegerType>(opTy)->getBitWidth()));
 
   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
 
   Builder.CreateBr(continueBB);
-  
+
   // Set up the continuation
   Builder.SetInsertPoint(continueBB);
   // Get the correct result
@@ -1070,7 +1069,7 @@
     if (CGF.getContext().getLangOptions().OverflowChecking &&
         Ops.Ty->isSignedIntegerType())
       return EmitOverflowCheckedBinOp(Ops);
-    
+
     if (Ops.LHS->getType()->isFPOrFPVector())
       return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
 
@@ -1089,7 +1088,7 @@
   Value *Ptr, *Idx;
   Expr *IdxExp;
   const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
-  const ObjCObjectPointerType *OPT = 
+  const ObjCObjectPointerType *OPT =
     Ops.E->getLHS()->getType()->getAsObjCObjectPointerType();
   if (PT || OPT) {
     Ptr = Ops.LHS;
@@ -1116,10 +1115,9 @@
       Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
   }
   const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
-  // Handle interface types, which are not represented with a concrete
-  // type.
+  // Handle interface types, which are not represented with a concrete type.
   if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
-    llvm::Value *InterfaceSize = 
+    llvm::Value *InterfaceSize =
       llvm::ConstantInt::get(Idx->getType(),
                              CGF.getContext().getTypeSize(OIT) / 8);
     Idx = Builder.CreateMul(Idx, InterfaceSize);
@@ -1128,19 +1126,19 @@
     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
     return Builder.CreateBitCast(Res, Ptr->getType());
-  } 
+  }
 
-  // Explicitly handle GNU void* and function pointer arithmetic
-  // extensions. The GNU void* casts amount to no-ops since our void*
-  // type is i8*, but this is future proof.
+  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
+  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
+  // future proof.
   if (ElementType->isVoidType() || ElementType->isFunctionType()) {
     const llvm::Type *i8Ty =
         llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
     return Builder.CreateBitCast(Res, Ptr->getType());
-  } 
-  
+  }
+
   return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
 }
 
@@ -1182,38 +1180,37 @@
     }
     Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
 
-    // Handle interface types, which are not represented with a concrete
-    // type.
-    if (const ObjCInterfaceType *OIT = 
+    // Handle interface types, which are not represented with a concrete type.
+    if (const ObjCInterfaceType *OIT =
         dyn_cast<ObjCInterfaceType>(LHSElementType)) {
-      llvm::Value *InterfaceSize = 
+      llvm::Value *InterfaceSize =
         llvm::ConstantInt::get(Idx->getType(),
                                CGF.getContext().getTypeSize(OIT) / 8);
       Idx = Builder.CreateMul(Idx, InterfaceSize);
-      const llvm::Type *i8Ty = 
+      const llvm::Type *i8Ty =
         llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
       return Builder.CreateBitCast(Res, Ops.LHS->getType());
-    } 
+    }
 
     // Explicitly handle GNU void* and function pointer arithmetic
-    // extensions. The GNU void* casts amount to no-ops since our
-    // void* type is i8*, but this is future proof.
+    // extensions. The GNU void* casts amount to no-ops since our void* type is
+    // i8*, but this is future proof.
     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
       const llvm::Type *i8Ty =
         llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
       return Builder.CreateBitCast(Res, Ops.LHS->getType());
-    } 
-      
+    }
+
     return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
   } else {
     // pointer - pointer
     Value *LHS = Ops.LHS;
     Value *RHS = Ops.RHS;
-  
+
     uint64_t ElementSize;
 
     // Handle GCC extension for pointer arithmetic on void* and function pointer
@@ -1223,19 +1220,19 @@
     } else {
       ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
     }
-    
+
     const llvm::Type *ResultType = ConvertType(Ops.Ty);
     LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
     RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
     Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
-    
+
     // Optimize out the shift for element size of 1.
     if (ElementSize == 1)
       return BytesBetween;
 
     // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
-    // pointer difference in C is only defined in the case where both
-    // operands are pointing to elements of an array.
+    // pointer difference in C is only defined in the case where both operands
+    // are pointing to elements of an array.
     Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
     return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
   }
@@ -1247,7 +1244,7 @@
   Value *RHS = Ops.RHS;
   if (Ops.LHS->getType() != RHS->getType())
     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
-  
+
   return Builder.CreateShl(Ops.LHS, RHS, "shl");
 }
 
@@ -1257,7 +1254,7 @@
   Value *RHS = Ops.RHS;
   if (Ops.LHS->getType() != RHS->getType())
     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
-  
+
   if (Ops.Ty->isUnsignedIntegerType())
     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
@@ -1271,7 +1268,7 @@
   if (!LHSTy->isAnyComplexType()) {
     Value *LHS = Visit(E->getLHS());
     Value *RHS = Visit(E->getRHS());
-    
+
     if (LHS->getType()->isFPOrFPVector()) {
       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
                                   LHS, RHS, "cmp");
@@ -1288,14 +1285,14 @@
     // vector integer type and return it (don't convert to bool).
     if (LHSTy->isVectorType())
       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
-    
+
   } else {
     // Complex Comparison: can only be an equality comparison.
     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
-    
+
     QualType CETy = LHSTy->getAsComplexType()->getElementType();
-    
+
     Value *ResultR, *ResultI;
     if (CETy->isRealFloatingType()) {
       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
@@ -1310,7 +1307,7 @@
       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
                                    LHS.second, RHS.second, "cmp.i");
     }
-    
+
     if (E->getOpcode() == BinaryOperator::EQ) {
       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
     } else {
@@ -1330,7 +1327,7 @@
   // improve codegen just a little.
   Value *RHS = Visit(E->getRHS());
   LValue LHS = EmitLValue(E->getLHS());
-  
+
   // Store the value into the LHS.  Bit-fields are handled specially
   // because the result is altered by the store, i.e., [C99 6.5.16p1]
   // 'An assignment expression has the value of the left operand after
@@ -1358,12 +1355,12 @@
       // ZExt result to int.
       return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
     }
-    
+
     // 0 && RHS: If it is safe, just elide the RHS, and return 0.
     if (!CGF.ContainsLabel(E->getRHS()))
       return llvm::Constant::getNullValue(CGF.LLVMIntTy);
   }
-  
+
   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
 
@@ -1379,12 +1376,12 @@
   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
        PI != PE; ++PI)
     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
-  
+
   CGF.PushConditionalTempDestruction();
   CGF.EmitBlock(RHSBlock);
   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   CGF.PopConditionalTempDestruction();
-  
+
   // Reaquire the RHS block, as there may be subblocks inserted.
   RHSBlock = Builder.GetInsertBlock();
 
@@ -1392,7 +1389,7 @@
   // into the phi node for the edge with the value of RHSCond.
   CGF.EmitBlock(ContBlock);
   PN->addIncoming(RHSCond, RHSBlock);
-  
+
   // ZExt result to int.
   return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
 }
@@ -1406,15 +1403,15 @@
       // ZExt result to int.
       return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
     }
-    
+
     // 1 || RHS: If it is safe, just elide the RHS, and return 1.
     if (!CGF.ContainsLabel(E->getRHS()))
       return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
   }
-  
+
   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
-  
+
   // Branch on the LHS first.  If it is true, go to the success (cont) block.
   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
 
@@ -1433,17 +1430,17 @@
   // Emit the RHS condition as a bool value.
   CGF.EmitBlock(RHSBlock);
   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
-  
+
   CGF.PopConditionalTempDestruction();
-  
+
   // Reaquire the RHS block, as there may be subblocks inserted.
   RHSBlock = Builder.GetInsertBlock();
-  
+
   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   // into the phi node for the edge with the value of RHSCond.
   CGF.EmitBlock(ContBlock);
   PN->addIncoming(RHSCond, RHSBlock);
-  
+
   // ZExt result to int.
   return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
 }
@@ -1465,19 +1462,19 @@
 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
     return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
-  
+
   // TODO: Allow anything we can constant fold to an integer or fp constant.
   if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
       isa<FloatingLiteral>(E))
     return true;
-  
+
   // Non-volatile automatic variables too, to get "cond ? X : Y" where
   // X and Y are local variables.
   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
       if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
         return true;
-  
+
   return false;
 }
 
@@ -1491,7 +1488,7 @@
     Expr *Live = E->getLHS(), *Dead = E->getRHS();
     if (Cond == -1)
       std::swap(Live, Dead);
-    
+
     // If the dead side doesn't have labels we need, and if the Live side isn't
     // the gnu missing ?: extension (which we could handle, but don't bother
     // to), just emit the Live part.
@@ -1499,8 +1496,8 @@
         Live)                                   // Live part isn't missing.
       return Visit(Live);
   }
-  
-  
+
+
   // If this is a really simple expression (like x ? 4 : 5), emit this as a
   // select instead of as control flow.  We can only do this if it is cheap and
   // safe to evaluate the LHS and RHS unconditionally.
@@ -1511,15 +1508,15 @@
     llvm::Value *RHS = Visit(E->getRHS());
     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
   }
-  
-  
+
+
   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
   Value *CondVal = 0;
 
-  // If we don't have the GNU missing condition extension, emit a branch on
-  // bool the normal way.
+  // If we don't have the GNU missing condition extension, emit a branch on bool
+  // the normal way.
   if (E->getLHS()) {
     // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
     // the branch on bool.
@@ -1529,7 +1526,7 @@
     // convert it to bool the hard way.  We do this explicitly because we need
     // the unconverted value for the missing middle value of the ?:.
     CondVal = CGF.EmitScalarExpr(E->getCond());
-    
+
     // In some cases, EmitScalarConversion will delete the "CondVal" expression
     // if there are no extra uses (an optimization).  Inhibit this by making an
     // extra dead use, because we're going to add a use of CondVal later.  We
@@ -1537,7 +1534,7 @@
     // away.  This leaves dead code, but the ?: extension isn't common.
     new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
                           Builder.GetInsertBlock());
-    
+
     Value *CondBoolVal =
       CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
                                CGF.getContext().BoolTy);
@@ -1546,33 +1543,33 @@
 
   CGF.PushConditionalTempDestruction();
   CGF.EmitBlock(LHSBlock);
-  
+
   // Handle the GNU extension for missing LHS.
   Value *LHS;
   if (E->getLHS())
     LHS = Visit(E->getLHS());
   else    // Perform promotions, to handle cases like "short ?: int"
     LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
-  
+
   CGF.PopConditionalTempDestruction();
   LHSBlock = Builder.GetInsertBlock();
   CGF.EmitBranch(ContBlock);
-  
+
   CGF.PushConditionalTempDestruction();
   CGF.EmitBlock(RHSBlock);
-  
+
   Value *RHS = Visit(E->getRHS());
   CGF.PopConditionalTempDestruction();
   RHSBlock = Builder.GetInsertBlock();
   CGF.EmitBranch(ContBlock);
-  
+
   CGF.EmitBlock(ContBlock);
-  
+
   if (!LHS || !RHS) {
     assert(E->getType()->isVoidType() && "Non-void value should have a value");
     return 0;
   }
-  
+
   // Create a PHI node for the real part.
   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
   PN->reserveOperandSpace(2);
@@ -1590,7 +1587,7 @@
   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
 
   // If EmitVAArg fails, we fall back to the LLVM instruction.
-  if (!ArgPtr) 
+  if (!ArgPtr)
     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
 
   // FIXME Volatility.
@@ -1605,12 +1602,12 @@
 //                         Entry Point into this File
 //===----------------------------------------------------------------------===//
 
-/// EmitScalarExpr - Emit the computation of the specified expression of
-/// scalar type, ignoring the result.
+/// EmitScalarExpr - Emit the computation of the specified expression of scalar
+/// type, ignoring the result.
 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
   assert(E && !hasAggregateLLVMType(E->getType()) &&
          "Invalid scalar expression to emit");
-  
+
   return ScalarExprEmitter(*this, IgnoreResultAssign)
     .Visit(const_cast<Expr*>(E));
 }
@@ -1624,9 +1621,9 @@
   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
 }
 
-/// EmitComplexToScalarConversion - Emit a conversion from the specified
-/// complex type to the specified destination type, where the destination
-/// type is an LLVM scalar type.
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
                                                       QualType SrcTy,
                                                       QualType DstTy) {
@@ -1639,40 +1636,40 @@
 Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
   assert(V1->getType() == V2->getType() &&
          "Vector operands must be of the same type");
-  unsigned NumElements = 
+  unsigned NumElements =
     cast<llvm::VectorType>(V1->getType())->getNumElements();
-  
+
   va_list va;
   va_start(va, V2);
-  
+
   llvm::SmallVector<llvm::Constant*, 16> Args;
   for (unsigned i = 0; i < NumElements; i++) {
     int n = va_arg(va, int);
-    assert(n >= 0 && n < (int)NumElements * 2 && 
+    assert(n >= 0 && n < (int)NumElements * 2 &&
            "Vector shuffle index out of bounds!");
     Args.push_back(llvm::ConstantInt::get(
                                          llvm::Type::getInt32Ty(VMContext), n));
   }
-  
+
   const char *Name = va_arg(va, const char *);
   va_end(va);
-  
+
   llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
-  
+
   return Builder.CreateShuffleVector(V1, V2, Mask, Name);
 }
 
-llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals, 
+llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
                                          unsigned NumVals, bool isSplat) {
   llvm::Value *Vec
     = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
-  
+
   for (unsigned i = 0, e = NumVals; i != e; ++i) {
     llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
     llvm::Value *Idx = llvm::ConstantInt::get(
                                           llvm::Type::getInt32Ty(VMContext), i);
     Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
   }
-  
-  return Vec;  
+
+  return Vec;
 }





More information about the cfe-commits mailing list