[cfe-commits] r72962 - in /cfe/trunk/lib/CodeGen: ABIInfo.h CGCall.cpp TargetABIInfo.cpp
Anton Korobeynikov
asl at math.spbu.ru
Fri Jun 5 15:08:42 PDT 2009
Author: asl
Date: Fri Jun 5 17:08:42 2009
New Revision: 72962
URL: http://llvm.org/viewvc/llvm-project?rev=72962&view=rev
Log:
Factor out TargetABIInfo stuff into separate file. No functionality change.
Added:
cfe/trunk/lib/CodeGen/TargetABIInfo.cpp
Modified:
cfe/trunk/lib/CodeGen/ABIInfo.h
cfe/trunk/lib/CodeGen/CGCall.cpp
Modified: cfe/trunk/lib/CodeGen/ABIInfo.h
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/ABIInfo.h?rev=72962&r1=72961&r2=72962&view=diff
==============================================================================
--- cfe/trunk/lib/CodeGen/ABIInfo.h (original)
+++ cfe/trunk/lib/CodeGen/ABIInfo.h Fri Jun 5 17:08:42 2009
@@ -10,8 +10,13 @@
#ifndef CLANG_CODEGEN_ABIINFO_H
#define CLANG_CODEGEN_ABIINFO_H
+#include "clang/AST/Type.h"
+
+#include <cassert>
+
namespace llvm {
class Type;
+ class Value;
}
namespace clang {
@@ -38,32 +43,32 @@
Direct, /// Pass the argument directly using the normal
/// converted LLVM type. Complex and structure types
/// are passed using first class aggregates.
-
+
Indirect, /// Pass the argument indirectly via a hidden pointer
/// with the specified alignment (0 indicates default
/// alignment).
-
+
Ignore, /// Ignore the argument (treat as void). Useful for
/// void and empty structs.
-
+
Coerce, /// Only valid for aggregate return types, the argument
/// should be accessed by coercion to a provided type.
-
+
Expand, /// Only valid for aggregate argument types. The
/// structure should be expanded into consecutive
/// arguments for its constituent fields. Currently
/// expand is only allowed on structures whose fields
/// are all scalar types or are themselves expandable
/// types.
-
+
KindFirst=Direct, KindLast=Expand
};
-
+
private:
Kind TheKind;
const llvm::Type *TypeData;
unsigned UIntData;
-
+
ABIArgInfo(Kind K, const llvm::Type *TD=0,
unsigned UI=0) : TheKind(K),
TypeData(TD),
@@ -71,13 +76,13 @@
public:
ABIArgInfo() : TheKind(Direct), TypeData(0), UIntData(0) {}
- static ABIArgInfo getDirect() {
- return ABIArgInfo(Direct);
+ static ABIArgInfo getDirect() {
+ return ABIArgInfo(Direct);
}
static ABIArgInfo getIgnore() {
return ABIArgInfo(Ignore);
}
- static ABIArgInfo getCoerce(const llvm::Type *T) {
+ static ABIArgInfo getCoerce(const llvm::Type *T) {
return ABIArgInfo(Coerce, T);
}
static ABIArgInfo getIndirect(unsigned Alignment) {
@@ -86,20 +91,20 @@
static ABIArgInfo getExpand() {
return ABIArgInfo(Expand);
}
-
+
Kind getKind() const { return TheKind; }
bool isDirect() const { return TheKind == Direct; }
bool isIgnore() const { return TheKind == Ignore; }
bool isCoerce() const { return TheKind == Coerce; }
bool isIndirect() const { return TheKind == Indirect; }
bool isExpand() const { return TheKind == Expand; }
-
+
// Coerce accessors
const llvm::Type *getCoerceToType() const {
assert(TheKind == Coerce && "Invalid kind!");
return TypeData;
}
-
+
// ByVal accessors
unsigned getIndirectAlign() const {
assert(TheKind == Indirect && "Invalid kind!");
@@ -120,7 +125,7 @@
/// EmitVAArg - Emit the target dependent code to load a value of
/// \arg Ty from the va_list pointed to by \arg VAListAddr.
-
+
// FIXME: This is a gaping layering violation if we wanted to drop
// the ABI information any lower than CodeGen. Of course, for
// VAArg handling it has to be at this level; there is no way to
Modified: cfe/trunk/lib/CodeGen/CGCall.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGCall.cpp?rev=72962&r1=72961&r2=72962&view=diff
==============================================================================
--- cfe/trunk/lib/CodeGen/CGCall.cpp (original)
+++ cfe/trunk/lib/CodeGen/CGCall.cpp Fri Jun 5 17:08:42 2009
@@ -16,16 +16,12 @@
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
-#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
-#include "clang/AST/RecordLayout.h"
#include "clang/Frontend/CompileOptions.h"
-#include "llvm/ADT/StringExtras.h"
#include "llvm/Attributes.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetData.h"
#include "ABIInfo.h"
@@ -127,1370 +123,6 @@
return *FI;
}
-/***/
-
-ABIInfo::~ABIInfo() {}
-
-void ABIArgInfo::dump() const {
- fprintf(stderr, "(ABIArgInfo Kind=");
- switch (TheKind) {
- case Direct:
- fprintf(stderr, "Direct");
- break;
- case Ignore:
- fprintf(stderr, "Ignore");
- break;
- case Coerce:
- fprintf(stderr, "Coerce Type=");
- getCoerceToType()->print(llvm::errs());
- break;
- case Indirect:
- fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
- break;
- case Expand:
- fprintf(stderr, "Expand");
- break;
- }
- fprintf(stderr, ")\n");
-}
-
-/***/
-
-static bool isEmptyRecord(ASTContext &Context, QualType T);
-
-/// isEmptyField - Return true iff a the field is "empty", that is it
-/// is an unnamed bit-field or an (array of) empty record(s).
-static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) {
- if (FD->isUnnamedBitfield())
- return true;
-
- QualType FT = FD->getType();
- // Constant arrays of empty records count as empty, strip them off.
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
- FT = AT->getElementType();
-
- return isEmptyRecord(Context, FT);
-}
-
-/// isEmptyRecord - Return true iff a structure contains only empty
-/// fields. Note that a structure with a flexible array member is not
-/// considered empty.
-static bool isEmptyRecord(ASTContext &Context, QualType T) {
- const RecordType *RT = T->getAsRecordType();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- for (RecordDecl::field_iterator i = RD->field_begin(Context),
- e = RD->field_end(Context); i != e; ++i)
- if (!isEmptyField(Context, *i))
- return false;
- return true;
-}
-
-/// isSingleElementStruct - Determine if a structure is a "single
-/// element struct", i.e. it has exactly one non-empty field or
-/// exactly one field which is itself a single element
-/// struct. Structures with flexible array members are never
-/// considered single element structs.
-///
-/// \return The field declaration for the single non-empty field, if
-/// it exists.
-static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
- const RecordType *RT = T->getAsStructureType();
- if (!RT)
- return 0;
-
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return 0;
-
- const Type *Found = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(Context),
- e = RD->field_end(Context); i != e; ++i) {
- const FieldDecl *FD = *i;
- QualType FT = FD->getType();
-
- // Ignore empty fields.
- if (isEmptyField(Context, FD))
- continue;
-
- // If we already found an element then this isn't a single-element
- // struct.
- if (Found)
- return 0;
-
- // Treat single element arrays as the element.
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize().getZExtValue() != 1)
- break;
- FT = AT->getElementType();
- }
-
- if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
- Found = FT.getTypePtr();
- } else {
- Found = isSingleElementStruct(FT, Context);
- if (!Found)
- return 0;
- }
- }
-
- return Found;
-}
-
-static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
- if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
- return false;
-
- uint64_t Size = Context.getTypeSize(Ty);
- return Size == 32 || Size == 64;
-}
-
-static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
- ASTContext &Context) {
- for (RecordDecl::field_iterator i = RD->field_begin(Context),
- e = RD->field_end(Context); i != e; ++i) {
- const FieldDecl *FD = *i;
-
- if (!is32Or64BitBasicType(FD->getType(), Context))
- return false;
-
- // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
- // how to expand them yet, and the predicate for telling if a bitfield still
- // counts as "basic" is more complicated than what we were doing previously.
- if (FD->isBitField())
- return false;
- }
-
- return true;
-}
-
-namespace {
-/// DefaultABIInfo - The default implementation for ABI specific
-/// details. This implementation provides information which results in
-/// self-consistent and sensible LLVM IR generation, but does not
-/// conform to any particular ABI.
-class DefaultABIInfo : public ABIInfo {
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-
-/// X86_32ABIInfo - The X86-32 ABI information.
-class X86_32ABIInfo : public ABIInfo {
- ASTContext &Context;
- bool IsDarwin;
-
- static bool isRegisterSize(unsigned Size) {
- return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
- }
-
- static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
-
-public:
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-
- X86_32ABIInfo(ASTContext &Context, bool d)
- : ABIInfo(), Context(Context), IsDarwin(d) {}
-};
-}
-
-
-/// shouldReturnTypeInRegister - Determine if the given type should be
-/// passed in a register (for the Darwin ABI).
-bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
- ASTContext &Context) {
- uint64_t Size = Context.getTypeSize(Ty);
-
- // Type must be register sized.
- if (!isRegisterSize(Size))
- return false;
-
- if (Ty->isVectorType()) {
- // 64- and 128- bit vectors inside structures are not returned in
- // registers.
- if (Size == 64 || Size == 128)
- return false;
-
- return true;
- }
-
- // If this is a builtin, pointer, or complex type, it is ok.
- if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
- return true;
-
- // Arrays are treated like records.
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
- return shouldReturnTypeInRegister(AT->getElementType(), Context);
-
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAsRecordType();
- if (!RT) return false;
-
- // Structure types are passed in register if all fields would be
- // passed in a register.
- for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context),
- e = RT->getDecl()->field_end(Context); i != e; ++i) {
- const FieldDecl *FD = *i;
-
- // Empty fields are ignored.
- if (isEmptyField(Context, FD))
- continue;
-
- // Check fields recursively.
- if (!shouldReturnTypeInRegister(FD->getType(), Context))
- return false;
- }
-
- return true;
-}
-
-ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else if (const VectorType *VT = RetTy->getAsVectorType()) {
- // On Darwin, some vectors are returned in registers.
- if (IsDarwin) {
- uint64_t Size = Context.getTypeSize(RetTy);
-
- // 128-bit vectors are a special case; they are returned in
- // registers and we need to make sure to pick a type the LLVM
- // backend will like.
- if (Size == 128)
- return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty,
- 2));
-
- // Always return in register if it fits in a general purpose
- // register, or if it is 64 bits and has a single element.
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
-
- return ABIArgInfo::getIndirect(0);
- }
-
- return ABIArgInfo::getDirect();
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- // Structures with flexible arrays are always indirect.
- if (const RecordType *RT = RetTy->getAsStructureType())
- if (RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(0);
-
- // Outside of Darwin, structs and unions are always indirect.
- if (!IsDarwin && !RetTy->isAnyComplexType())
- return ABIArgInfo::getIndirect(0);
-
- // Classify "single element" structs as their element type.
- if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
- if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
- if (BT->isIntegerType()) {
- // We need to use the size of the structure, padding
- // bit-fields can adjust that to be larger than the single
- // element type.
- uint64_t Size = Context.getTypeSize(RetTy);
- return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
- } else if (BT->getKind() == BuiltinType::Float) {
- assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
- "Unexpect single element structure size!");
- return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
- } else if (BT->getKind() == BuiltinType::Double) {
- assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
- "Unexpect single element structure size!");
- return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
- }
- } else if (SeltTy->isPointerType()) {
- // FIXME: It would be really nice if this could come out as the proper
- // pointer type.
- llvm::Type *PtrTy =
- llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
- return ABIArgInfo::getCoerce(PtrTy);
- } else if (SeltTy->isVectorType()) {
- // 64- and 128-bit vectors are never returned in a
- // register when inside a structure.
- uint64_t Size = Context.getTypeSize(RetTy);
- if (Size == 64 || Size == 128)
- return ABIArgInfo::getIndirect(0);
-
- return classifyReturnType(QualType(SeltTy, 0), Context);
- }
- }
-
- // Small structures which are register sized are generally returned
- // in a register.
- if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
- uint64_t Size = Context.getTypeSize(RetTy);
- return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
- }
-
- return ABIArgInfo::getIndirect(0);
- } else {
- return ABIArgInfo::getDirect();
- }
-}
-
-ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context) const {
- // FIXME: Set alignment on indirect arguments.
- if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
- // Structures with flexible arrays are always indirect.
- if (const RecordType *RT = Ty->getAsStructureType())
- if (RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(0);
-
- // Ignore empty structs.
- uint64_t Size = Context.getTypeSize(Ty);
- if (Ty->isStructureType() && Size == 0)
- return ABIArgInfo::getIgnore();
-
- // Expand structs with size <= 128-bits which consist only of
- // basic types (int, long long, float, double, xxx*). This is
- // non-recursive and does not ignore empty fields.
- if (const RecordType *RT = Ty->getAsStructureType()) {
- if (Context.getTypeSize(Ty) <= 4*32 &&
- areAllFields32Or64BitBasicType(RT->getDecl(), Context))
- return ABIArgInfo::getExpand();
- }
-
- return ABIArgInfo::getIndirect(0);
- } else {
- return ABIArgInfo::getDirect();
- }
-}
-
-llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
- const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
-
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
-
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr,
- llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
- return AddrTyped;
-}
-
-namespace {
-/// X86_64ABIInfo - The X86_64 ABI information.
-class X86_64ABIInfo : public ABIInfo {
- enum Class {
- Integer = 0,
- SSE,
- SSEUp,
- X87,
- X87Up,
- ComplexX87,
- NoClass,
- Memory
- };
-
- /// merge - Implement the X86_64 ABI merging algorithm.
- ///
- /// Merge an accumulating classification \arg Accum with a field
- /// classification \arg Field.
- ///
- /// \param Accum - The accumulating classification. This should
- /// always be either NoClass or the result of a previous merge
- /// call. In addition, this should never be Memory (the caller
- /// should just return Memory for the aggregate).
- Class merge(Class Accum, Class Field) const;
-
- /// classify - Determine the x86_64 register classes in which the
- /// given type T should be passed.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the high word of the containing object.
- ///
- /// \param OffsetBase - The bit offset of this type in the
- /// containing object. Some parameters are classified different
- /// depending on whether they straddle an eightbyte boundary.
- ///
- /// If a word is unused its result will be NoClass; if a type should
- /// be passed in Memory then at least the classification of \arg Lo
- /// will be Memory.
- ///
- /// The \arg Lo class will be NoClass iff the argument is ignored.
- ///
- /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
- /// also be ComplexX87.
- void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
- Class &Lo, Class &Hi) const;
-
- /// getCoerceResult - Given a source type \arg Ty and an LLVM type
- /// to coerce to, chose the best way to pass Ty in the same place
- /// that \arg CoerceTo would be passed, but while keeping the
- /// emitted code as simple as possible.
- ///
- /// FIXME: Note, this should be cleaned up to just take an enumeration of all
- /// the ways we might want to pass things, instead of constructing an LLVM
- /// type. This makes this code more explicit, and it makes it clearer that we
- /// are also doing this for correctness in the case of passing scalar types.
- ABIArgInfo getCoerceResult(QualType Ty,
- const llvm::Type *CoerceTo,
- ASTContext &Context) const;
-
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ABIArgInfo getIndirectResult(QualType Ty,
- ASTContext &Context) const;
-
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context) const;
-
- ABIArgInfo classifyArgumentType(QualType Ty,
- ASTContext &Context,
- unsigned &neededInt,
- unsigned &neededSSE) const;
-
-public:
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-}
-
-X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
- Class Field) const {
- // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
- // classified recursively so that always two fields are
- // considered. The resulting class is calculated according to
- // the classes of the fields in the eightbyte:
- //
- // (a) If both classes are equal, this is the resulting class.
- //
- // (b) If one of the classes is NO_CLASS, the resulting class is
- // the other class.
- //
- // (c) If one of the classes is MEMORY, the result is the MEMORY
- // class.
- //
- // (d) If one of the classes is INTEGER, the result is the
- // INTEGER.
- //
- // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
- // MEMORY is used as class.
- //
- // (f) Otherwise class SSE is used.
-
- // Accum should never be memory (we should have returned) or
- // ComplexX87 (because this cannot be passed in a structure).
- assert((Accum != Memory && Accum != ComplexX87) &&
- "Invalid accumulated classification during merge.");
- if (Accum == Field || Field == NoClass)
- return Accum;
- else if (Field == Memory)
- return Memory;
- else if (Accum == NoClass)
- return Field;
- else if (Accum == Integer || Field == Integer)
- return Integer;
- else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
- Accum == X87 || Accum == X87Up)
- return Memory;
- else
- return SSE;
-}
-
-void X86_64ABIInfo::classify(QualType Ty,
- ASTContext &Context,
- uint64_t OffsetBase,
- Class &Lo, Class &Hi) const {
- // FIXME: This code can be simplified by introducing a simple value class for
- // Class pairs with appropriate constructor methods for the various
- // situations.
-
- // FIXME: Some of the split computations are wrong; unaligned vectors
- // shouldn't be passed in registers for example, so there is no chance they
- // can straddle an eightbyte. Verify & simplify.
-
- Lo = Hi = NoClass;
-
- Class &Current = OffsetBase < 64 ? Lo : Hi;
- Current = Memory;
-
- if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
- BuiltinType::Kind k = BT->getKind();
-
- if (k == BuiltinType::Void) {
- Current = NoClass;
- } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
- Lo = Integer;
- Hi = Integer;
- } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
- Current = Integer;
- } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
- Current = SSE;
- } else if (k == BuiltinType::LongDouble) {
- Lo = X87;
- Hi = X87Up;
- }
- // FIXME: _Decimal32 and _Decimal64 are SSE.
- // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
- } else if (const EnumType *ET = Ty->getAsEnumType()) {
- // Classify the underlying integer type.
- classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
- } else if (Ty->hasPointerRepresentation()) {
- Current = Integer;
- } else if (const VectorType *VT = Ty->getAsVectorType()) {
- uint64_t Size = Context.getTypeSize(VT);
- if (Size == 32) {
- // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
- // float> as integer.
- Current = Integer;
-
- // If this type crosses an eightbyte boundary, it should be
- // split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
- if (EB_Real != EB_Imag)
- Hi = Lo;
- } else if (Size == 64) {
- // gcc passes <1 x double> in memory. :(
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
- return;
-
- // gcc passes <1 x long long> as INTEGER.
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
- Current = Integer;
- else
- Current = SSE;
-
- // If this type crosses an eightbyte boundary, it should be
- // split.
- if (OffsetBase && OffsetBase != 64)
- Hi = Lo;
- } else if (Size == 128) {
- Lo = SSE;
- Hi = SSEUp;
- }
- } else if (const ComplexType *CT = Ty->getAsComplexType()) {
- QualType ET = Context.getCanonicalType(CT->getElementType());
-
- uint64_t Size = Context.getTypeSize(Ty);
- if (ET->isIntegralType()) {
- if (Size <= 64)
- Current = Integer;
- else if (Size <= 128)
- Lo = Hi = Integer;
- } else if (ET == Context.FloatTy)
- Current = SSE;
- else if (ET == Context.DoubleTy)
- Lo = Hi = SSE;
- else if (ET == Context.LongDoubleTy)
- Current = ComplexX87;
-
- // If this complex type crosses an eightbyte boundary then it
- // should be split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
- if (Hi == NoClass && EB_Real != EB_Imag)
- Hi = Lo;
- } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- // Arrays are treated like structures.
-
- uint64_t Size = Context.getTypeSize(Ty);
-
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than two eightbytes, ..., it has class MEMORY.
- if (Size > 128)
- return;
-
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Only need to check alignment of array base.
- if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
- return;
-
- // Otherwise implement simplified merge. We could be smarter about
- // this, but it isn't worth it and would be harder to verify.
- Current = NoClass;
- uint64_t EltSize = Context.getTypeSize(AT->getElementType());
- uint64_t ArraySize = AT->getSize().getZExtValue();
- for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
- Class FieldLo, FieldHi;
- classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
-
- // Do post merger cleanup (see below). Only case we worry about is Memory.
- if (Hi == Memory)
- Lo = Memory;
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
- } else if (const RecordType *RT = Ty->getAsRecordType()) {
- uint64_t Size = Context.getTypeSize(Ty);
-
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than two eightbytes, ..., it has class MEMORY.
- if (Size > 128)
- return;
-
- const RecordDecl *RD = RT->getDecl();
-
- // Assume variable sized types are passed in memory.
- if (RD->hasFlexibleArrayMember())
- return;
-
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
-
- // Reset Lo class, this will be recomputed.
- Current = NoClass;
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(Context),
- e = RD->field_end(Context); i != e; ++i, ++idx) {
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- bool BitField = i->isBitField();
-
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Note, skip this test for bit-fields, see below.
- if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
- Lo = Memory;
- return;
- }
-
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
- // exceeds a single eightbyte, each is classified
- // separately. Each eightbyte gets initialized to class
- // NO_CLASS.
- Class FieldLo, FieldHi;
-
- // Bit-fields require special handling, they do not force the
- // structure to be passed in memory even if unaligned, and
- // therefore they can straddle an eightbyte.
- if (BitField) {
- // Ignore padding bit-fields.
- if (i->isUnnamedBitfield())
- continue;
-
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
-
- uint64_t EB_Lo = Offset / 64;
- uint64_t EB_Hi = (Offset + Size - 1) / 64;
- FieldLo = FieldHi = NoClass;
- if (EB_Lo) {
- assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
- FieldLo = NoClass;
- FieldHi = Integer;
- } else {
- FieldLo = Integer;
- FieldHi = EB_Hi ? Integer : NoClass;
- }
- } else
- classify(i->getType(), Context, Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
-
- // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
- //
- // (a) If one of the classes is MEMORY, the whole argument is
- // passed in memory.
- //
- // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
-
- // The first of these conditions is guaranteed by how we implement
- // the merge (just bail).
- //
- // The second condition occurs in the case of unions; for example
- // union { _Complex double; unsigned; }.
- if (Hi == Memory)
- Lo = Memory;
- if (Hi == SSEUp && Lo != SSE)
- Hi = SSE;
- }
-}
-
-ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
- const llvm::Type *CoerceTo,
- ASTContext &Context) const {
- if (CoerceTo == llvm::Type::Int64Ty) {
- // Integer and pointer types will end up in a general purpose
- // register.
- if (Ty->isIntegralType() || Ty->isPointerType())
- return ABIArgInfo::getDirect();
-
- } else if (CoerceTo == llvm::Type::DoubleTy) {
- // FIXME: It would probably be better to make CGFunctionInfo only map using
- // canonical types than to canonize here.
- QualType CTy = Context.getCanonicalType(Ty);
-
- // Float and double end up in a single SSE reg.
- if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
- return ABIArgInfo::getDirect();
-
- }
-
- return ABIArgInfo::getCoerce(CoerceTo);
-}
-
-ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
- ASTContext &Context) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- if (!CodeGenFunction::hasAggregateLLVMType(Ty))
- return ABIArgInfo::getDirect();
-
- // FIXME: Set alignment correctly.
- return ABIArgInfo::getIndirect(0);
-}
-
-ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context) const {
- // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
- // classification algorithm.
- X86_64ABIInfo::Class Lo, Hi;
- classify(RetTy, Context, 0, Lo, Hi);
-
- // Check some invariants.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
- const llvm::Type *ResType = 0;
- switch (Lo) {
- case NoClass:
- return ABIArgInfo::getIgnore();
-
- case SSEUp:
- case X87Up:
- assert(0 && "Invalid classification for lo word.");
-
- // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
- // hidden argument.
- case Memory:
- return getIndirectResult(RetTy, Context);
-
- // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
- // available register of the sequence %rax, %rdx is used.
- case Integer:
- ResType = llvm::Type::Int64Ty; break;
-
- // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
- // available SSE register of the sequence %xmm0, %xmm1 is used.
- case SSE:
- ResType = llvm::Type::DoubleTy; break;
-
- // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
- // returned on the X87 stack in %st0 as 80-bit x87 number.
- case X87:
- ResType = llvm::Type::X86_FP80Ty; break;
-
- // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
- // part of the value is returned in %st0 and the imaginary part in
- // %st1.
- case ComplexX87:
- assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
- ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty,
- llvm::Type::X86_FP80Ty,
- NULL);
- break;
- }
-
- switch (Hi) {
- // Memory was handled previously and X87 should
- // never occur as a hi class.
- case Memory:
- case X87:
- assert(0 && "Invalid classification for hi word.");
-
- case ComplexX87: // Previously handled.
- case NoClass: break;
-
- case Integer:
- ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
- break;
- case SSE:
- ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
- break;
-
- // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
- // is passed in the upper half of the last used SSE register.
- //
- // SSEUP should always be preceeded by SSE, just widen.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification.");
- ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
- break;
-
- // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
- // returned together with the previous X87 value in %st0.
- case X87Up:
- // If X87Up is preceeded by X87, we don't need to do
- // anything. However, in some cases with unions it may not be
- // preceeded by X87. In such situations we follow gcc and pass the
- // extra bits in an SSE reg.
- if (Lo != X87)
- ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
- break;
- }
-
- return getCoerceResult(RetTy, ResType, Context);
-}
-
-ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
- unsigned &neededInt,
- unsigned &neededSSE) const {
- X86_64ABIInfo::Class Lo, Hi;
- classify(Ty, Context, 0, Lo, Hi);
-
- // Check some invariants.
- // FIXME: Enforce these by construction.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
- neededInt = 0;
- neededSSE = 0;
- const llvm::Type *ResType = 0;
- switch (Lo) {
- case NoClass:
- return ABIArgInfo::getIgnore();
-
- // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
- // on the stack.
- case Memory:
-
- // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
- // COMPLEX_X87, it is passed in memory.
- case X87:
- case ComplexX87:
- return getIndirectResult(Ty, Context);
-
- case SSEUp:
- case X87Up:
- assert(0 && "Invalid classification for lo word.");
-
- // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
- // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
- // and %r9 is used.
- case Integer:
- ++neededInt;
- ResType = llvm::Type::Int64Ty;
- break;
-
- // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
- // available SSE register is used, the registers are taken in the
- // order from %xmm0 to %xmm7.
- case SSE:
- ++neededSSE;
- ResType = llvm::Type::DoubleTy;
- break;
- }
-
- switch (Hi) {
- // Memory was handled previously, ComplexX87 and X87 should
- // never occur as hi classes, and X87Up must be preceed by X87,
- // which is passed in memory.
- case Memory:
- case X87:
- case ComplexX87:
- assert(0 && "Invalid classification for hi word.");
- break;
-
- case NoClass: break;
- case Integer:
- ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
- ++neededInt;
- break;
-
- // X87Up generally doesn't occur here (long double is passed in
- // memory), except in situations involving unions.
- case X87Up:
- case SSE:
- ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
- ++neededSSE;
- break;
-
- // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
- // eightbyte is passed in the upper half of the last used SSE
- // register.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification.");
- ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
- break;
- }
-
- return getCoerceResult(Ty, ResType, Context);
-}
-
-void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
-
- // Keep track of the number of assigned registers.
- unsigned freeIntRegs = 6, freeSSERegs = 8;
-
- // If the return value is indirect, then the hidden argument is consuming one
- // integer register.
- if (FI.getReturnInfo().isIndirect())
- --freeIntRegs;
-
- // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
- // get assigned (in left-to-right order) for passing as follows...
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it) {
- unsigned neededInt, neededSSE;
- it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE);
-
- // AMD64-ABI 3.2.3p3: If there are no registers available for any
- // eightbyte of an argument, the whole argument is passed on the
- // stack. If registers have already been assigned for some
- // eightbytes of such an argument, the assignments get reverted.
- if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
- freeIntRegs -= neededInt;
- freeSSERegs -= neededSSE;
- } else {
- it->info = getIndirectResult(it->type, Context);
- }
- }
-}
-
-static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) {
- llvm::Value *overflow_arg_area_p =
- CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
- llvm::Value *overflow_arg_area =
- CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
-
- // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
- // byte boundary if alignment needed by type exceeds 8 byte boundary.
- uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
- if (Align > 8) {
- // Note that we follow the ABI & gcc here, even though the type
- // could in theory have an alignment greater than 16. This case
- // shouldn't ever matter in practice.
-
- // overflow_arg_area = (overflow_arg_area + 15) & ~15;
- llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
- llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
- llvm::Type::Int64Ty);
- llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL);
- overflow_arg_area =
- CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
- overflow_arg_area->getType(),
- "overflow_arg_area.align");
- }
-
- // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
- const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *Res =
- CGF.Builder.CreateBitCast(overflow_arg_area,
- llvm::PointerType::getUnqual(LTy));
-
- // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
- // l->overflow_arg_area + sizeof(type).
- // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
- // an 8 byte boundary.
-
- uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
- llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
- (SizeInBytes + 7) & ~7);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
- "overflow_arg_area.next");
- CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
-
- // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
- return Res;
-}
-
-llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // Assume that va_list type is correct; should be pointer to LLVM type:
- // struct {
- // i32 gp_offset;
- // i32 fp_offset;
- // i8* overflow_arg_area;
- // i8* reg_save_area;
- // };
- unsigned neededInt, neededSSE;
- ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(),
- neededInt, neededSSE);
-
- // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
- // in the registers. If not go to step 7.
- if (!neededInt && !neededSSE)
- return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
-
- // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
- // general purpose registers needed to pass type and num_fp to hold
- // the number of floating point registers needed.
-
- // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
- // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
- // l->fp_offset > 304 - num_fp * 16 go to step 7.
- //
- // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
- // register save space).
-
- llvm::Value *InRegs = 0;
- llvm::Value *gp_offset_p = 0, *gp_offset = 0;
- llvm::Value *fp_offset_p = 0, *fp_offset = 0;
- if (neededInt) {
- gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
- gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
- InRegs =
- CGF.Builder.CreateICmpULE(gp_offset,
- llvm::ConstantInt::get(llvm::Type::Int32Ty,
- 48 - neededInt * 8),
- "fits_in_gp");
- }
-
- if (neededSSE) {
- fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
- fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
- llvm::Value *FitsInFP =
- CGF.Builder.CreateICmpULE(fp_offset,
- llvm::ConstantInt::get(llvm::Type::Int32Ty,
- 176 - neededSSE * 16),
- "fits_in_fp");
- InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
- }
-
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
-
- // Emit code to load the value if it was passed in registers.
-
- CGF.EmitBlock(InRegBlock);
-
- // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
- // an offset of l->gp_offset and/or l->fp_offset. This may require
- // copying to a temporary location in case the parameter is passed
- // in different register classes or requires an alignment greater
- // than 8 for general purpose registers and 16 for XMM registers.
- //
- // FIXME: This really results in shameful code when we end up needing to
- // collect arguments from different places; often what should result in a
- // simple assembling of a structure from scattered addresses has many more
- // loads than necessary. Can we clean this up?
- const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *RegAddr =
- CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
- "reg_save_area");
- if (neededInt && neededSSE) {
- // FIXME: Cleanup.
- assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
- const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
- llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
- assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
- const llvm::Type *TyLo = ST->getElementType(0);
- const llvm::Type *TyHi = ST->getElementType(1);
- assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
- "Unexpected ABI info for mixed regs");
- const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
- const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
- llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
- llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
- llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
- llvm::Value *V =
- CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
-
- RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy));
- } else if (neededInt) {
- RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
- RegAddr = CGF.Builder.CreateBitCast(RegAddr,
- llvm::PointerType::getUnqual(LTy));
- } else {
- if (neededSSE == 1) {
- RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- RegAddr = CGF.Builder.CreateBitCast(RegAddr,
- llvm::PointerType::getUnqual(LTy));
- } else {
- assert(neededSSE == 2 && "Invalid number of needed registers!");
- // SSE registers are spaced 16 bytes apart in the register save
- // area, we need to collect the two eightbytes together.
- llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- llvm::Value *RegAddrHi =
- CGF.Builder.CreateGEP(RegAddrLo,
- llvm::ConstantInt::get(llvm::Type::Int32Ty, 16));
- const llvm::Type *DblPtrTy =
- llvm::PointerType::getUnqual(llvm::Type::DoubleTy);
- const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy,
- llvm::Type::DoubleTy,
- NULL);
- llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
- DblPtrTy));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
- DblPtrTy));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
- RegAddr = CGF.Builder.CreateBitCast(Tmp,
- llvm::PointerType::getUnqual(LTy));
- }
- }
-
- // AMD64-ABI 3.5.7p5: Step 5. Set:
- // l->gp_offset = l->gp_offset + num_gp * 8
- // l->fp_offset = l->fp_offset + num_fp * 16.
- if (neededInt) {
- llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
- neededInt * 8);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
- gp_offset_p);
- }
- if (neededSSE) {
- llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
- neededSSE * 16);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
- fp_offset_p);
- }
- CGF.EmitBranch(ContBlock);
-
- // Emit code to load the value if it was passed in memory.
-
- CGF.EmitBlock(InMemBlock);
- llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
-
- // Return the appropriate result.
-
- CGF.EmitBlock(ContBlock);
- llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
- "vaarg.addr");
- ResAddr->reserveOperandSpace(2);
- ResAddr->addIncoming(RegAddr, InRegBlock);
- ResAddr->addIncoming(MemAddr, InMemBlock);
-
- return ResAddr;
-}
-
-// ABI Info for PIC16
-class PIC16ABIInfo : public ABIInfo {
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Context);
- }
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-
-};
-
-ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else {
- return ABIArgInfo::getDirect();
- }
-}
-
-ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context) const {
- return ABIArgInfo::getDirect();
-}
-
-llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- return 0;
-}
-
-class ARMABIInfo : public ABIInfo {
- ABIArgInfo classifyReturnType(QualType RetTy,
- ASTContext &Context) const;
-
- ABIArgInfo classifyArgumentType(QualType RetTy,
- ASTContext &Context) const;
-
- virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
-
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
-};
-
-void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it) {
- it->info = classifyArgumentType(it->type, Context);
- }
-}
-
-ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context) const {
- if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
- return ABIArgInfo::getDirect();
- }
- // FIXME: This is kind of nasty... but there isn't much choice because the ARM
- // backend doesn't support byval.
- // FIXME: This doesn't handle alignment > 64 bits.
- const llvm::Type* ElemTy;
- unsigned SizeRegs;
- if (Context.getTypeAlign(Ty) > 32) {
- ElemTy = llvm::Type::Int64Ty;
- SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
- } else {
- ElemTy = llvm::Type::Int32Ty;
- SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
- }
- std::vector<const llvm::Type*> LLVMFields;
- LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
- const llvm::Type* STy = llvm::StructType::get(LLVMFields, true);
- return ABIArgInfo::getCoerce(STy);
-}
-
-ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- // Aggregates <= 4 bytes are returned in r0; other aggregates
- // are returned indirectly.
- uint64_t Size = Context.getTypeSize(RetTy);
- if (Size <= 32)
- return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
- return ABIArgInfo::getIndirect(0);
- } else {
- return ABIArgInfo::getDirect();
- }
-}
-
-llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // FIXME: Need to handle alignment
- const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
- const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
-
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
-
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr,
- llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
- return AddrTyped;
-}
-
-ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
- ASTContext &Context) const {
- if (RetTy->isVoidType()) {
- return ABIArgInfo::getIgnore();
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- return ABIArgInfo::getIndirect(0);
- } else {
- return ABIArgInfo::getDirect();
- }
-}
-
-ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
- ASTContext &Context) const {
- if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
- return ABIArgInfo::getIndirect(0);
- } else {
- return ABIArgInfo::getDirect();
- }
-}
-
-llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- return 0;
-}
-
-const ABIInfo &CodeGenTypes::getABIInfo() const {
- if (TheABIInfo)
- return *TheABIInfo;
-
- // For now we just cache this in the CodeGenTypes and don't bother
- // to free it.
- const char *TargetPrefix = getContext().Target.getTargetPrefix();
- if (strcmp(TargetPrefix, "x86") == 0) {
- bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
- switch (getContext().Target.getPointerWidth(0)) {
- case 32:
- return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
- case 64:
- return *(TheABIInfo = new X86_64ABIInfo());
- }
- } else if (strcmp(TargetPrefix, "arm") == 0) {
- // FIXME: Support for OABI?
- return *(TheABIInfo = new ARMABIInfo());
- } else if (strcmp(TargetPrefix, "pic16") == 0) {
- return *(TheABIInfo = new PIC16ABIInfo());
- }
-
- return *(TheABIInfo = new DefaultABIInfo);
-}
-
-/***/
-
CGFunctionInfo::CGFunctionInfo(QualType ResTy,
const llvm::SmallVector<QualType, 16> &ArgTys) {
NumArgs = ArgTys.size();
Added: cfe/trunk/lib/CodeGen/TargetABIInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetABIInfo.cpp?rev=72962&view=auto
==============================================================================
--- cfe/trunk/lib/CodeGen/TargetABIInfo.cpp (added)
+++ cfe/trunk/lib/CodeGen/TargetABIInfo.cpp Fri Jun 5 17:08:42 2009
@@ -0,0 +1,1379 @@
+//===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfo.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/RecordLayout.h"
+#include "llvm/Type.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+ABIInfo::~ABIInfo() {}
+
+void ABIArgInfo::dump() const {
+ fprintf(stderr, "(ABIArgInfo Kind=");
+ switch (TheKind) {
+ case Direct:
+ fprintf(stderr, "Direct");
+ break;
+ case Ignore:
+ fprintf(stderr, "Ignore");
+ break;
+ case Coerce:
+ fprintf(stderr, "Coerce Type=");
+ getCoerceToType()->print(llvm::errs());
+ break;
+ case Indirect:
+ fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
+ break;
+ case Expand:
+ fprintf(stderr, "Expand");
+ break;
+ }
+ fprintf(stderr, ")\n");
+}
+
+static bool isEmptyRecord(ASTContext &Context, QualType T);
+
+/// isEmptyField - Return true iff a the field is "empty", that is it
+/// is an unnamed bit-field or an (array of) empty record(s).
+static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) {
+ if (FD->isUnnamedBitfield())
+ return true;
+
+ QualType FT = FD->getType();
+ // Constant arrays of empty records count as empty, strip them off.
+ while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
+ FT = AT->getElementType();
+
+ return isEmptyRecord(Context, FT);
+}
+
+/// isEmptyRecord - Return true iff a structure contains only empty
+/// fields. Note that a structure with a flexible array member is not
+/// considered empty.
+static bool isEmptyRecord(ASTContext &Context, QualType T) {
+ const RecordType *RT = T->getAsRecordType();
+ if (!RT)
+ return 0;
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i)
+ if (!isEmptyField(Context, *i))
+ return false;
+ return true;
+}
+
+/// isSingleElementStruct - Determine if a structure is a "single
+/// element struct", i.e. it has exactly one non-empty field or
+/// exactly one field which is itself a single element
+/// struct. Structures with flexible array members are never
+/// considered single element structs.
+///
+/// \return The field declaration for the single non-empty field, if
+/// it exists.
+static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
+ const RecordType *RT = T->getAsStructureType();
+ if (!RT)
+ return 0;
+
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return 0;
+
+ const Type *Found = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i) {
+ const FieldDecl *FD = *i;
+ QualType FT = FD->getType();
+
+ // Ignore empty fields.
+ if (isEmptyField(Context, FD))
+ continue;
+
+ // If we already found an element then this isn't a single-element
+ // struct.
+ if (Found)
+ return 0;
+
+ // Treat single element arrays as the element.
+ while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+ if (AT->getSize().getZExtValue() != 1)
+ break;
+ FT = AT->getElementType();
+ }
+
+ if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
+ Found = FT.getTypePtr();
+ } else {
+ Found = isSingleElementStruct(FT, Context);
+ if (!Found)
+ return 0;
+ }
+ }
+
+ return Found;
+}
+
+static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
+ if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
+ return false;
+
+ uint64_t Size = Context.getTypeSize(Ty);
+ return Size == 32 || Size == 64;
+}
+
+static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
+ ASTContext &Context) {
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i) {
+ const FieldDecl *FD = *i;
+
+ if (!is32Or64BitBasicType(FD->getType(), Context))
+ return false;
+
+ // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
+ // how to expand them yet, and the predicate for telling if a bitfield still
+ // counts as "basic" is more complicated than what we were doing previously.
+ if (FD->isBitField())
+ return false;
+ }
+
+ return true;
+}
+
+namespace {
+/// DefaultABIInfo - The default implementation for ABI specific
+/// details. This implementation provides information which results in
+/// self-consistent and sensible LLVM IR generation, but does not
+/// conform to any particular ABI.
+class DefaultABIInfo : public ABIInfo {
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType RetTy,
+ ASTContext &Context) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it)
+ it->info = classifyArgumentType(it->type, Context);
+ }
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+};
+
+/// X86_32ABIInfo - The X86-32 ABI information.
+class X86_32ABIInfo : public ABIInfo {
+ ASTContext &Context;
+ bool IsDarwin;
+
+ static bool isRegisterSize(unsigned Size) {
+ return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
+ }
+
+ static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
+
+public:
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType RetTy,
+ ASTContext &Context) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it)
+ it->info = classifyArgumentType(it->type, Context);
+ }
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+ X86_32ABIInfo(ASTContext &Context, bool d)
+ : ABIInfo(), Context(Context), IsDarwin(d) {}
+};
+}
+
+
+/// shouldReturnTypeInRegister - Determine if the given type should be
+/// passed in a register (for the Darwin ABI).
+bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
+ ASTContext &Context) {
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // Type must be register sized.
+ if (!isRegisterSize(Size))
+ return false;
+
+ if (Ty->isVectorType()) {
+ // 64- and 128- bit vectors inside structures are not returned in
+ // registers.
+ if (Size == 64 || Size == 128)
+ return false;
+
+ return true;
+ }
+
+ // If this is a builtin, pointer, or complex type, it is ok.
+ if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
+ return true;
+
+ // Arrays are treated like records.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
+ return shouldReturnTypeInRegister(AT->getElementType(), Context);
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAsRecordType();
+ if (!RT) return false;
+
+ // Structure types are passed in register if all fields would be
+ // passed in a register.
+ for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context),
+ e = RT->getDecl()->field_end(Context); i != e; ++i) {
+ const FieldDecl *FD = *i;
+
+ // Empty fields are ignored.
+ if (isEmptyField(Context, FD))
+ continue;
+
+ // Check fields recursively.
+ if (!shouldReturnTypeInRegister(FD->getType(), Context))
+ return false;
+ }
+
+ return true;
+}
+
+ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ if (RetTy->isVoidType()) {
+ return ABIArgInfo::getIgnore();
+ } else if (const VectorType *VT = RetTy->getAsVectorType()) {
+ // On Darwin, some vectors are returned in registers.
+ if (IsDarwin) {
+ uint64_t Size = Context.getTypeSize(RetTy);
+
+ // 128-bit vectors are a special case; they are returned in
+ // registers and we need to make sure to pick a type the LLVM
+ // backend will like.
+ if (Size == 128)
+ return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty,
+ 2));
+
+ // Always return in register if it fits in a general purpose
+ // register, or if it is 64 bits and has a single element.
+ if ((Size == 8 || Size == 16 || Size == 32) ||
+ (Size == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
+
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ return ABIArgInfo::getDirect();
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ // Structures with flexible arrays are always indirect.
+ if (const RecordType *RT = RetTy->getAsStructureType())
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return ABIArgInfo::getIndirect(0);
+
+ // Outside of Darwin, structs and unions are always indirect.
+ if (!IsDarwin && !RetTy->isAnyComplexType())
+ return ABIArgInfo::getIndirect(0);
+
+ // Classify "single element" structs as their element type.
+ if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
+ if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
+ if (BT->isIntegerType()) {
+ // We need to use the size of the structure, padding
+ // bit-fields can adjust that to be larger than the single
+ // element type.
+ uint64_t Size = Context.getTypeSize(RetTy);
+ return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
+ } else if (BT->getKind() == BuiltinType::Float) {
+ assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
+ "Unexpect single element structure size!");
+ return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
+ } else if (BT->getKind() == BuiltinType::Double) {
+ assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
+ "Unexpect single element structure size!");
+ return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
+ }
+ } else if (SeltTy->isPointerType()) {
+ // FIXME: It would be really nice if this could come out as the proper
+ // pointer type.
+ llvm::Type *PtrTy =
+ llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ return ABIArgInfo::getCoerce(PtrTy);
+ } else if (SeltTy->isVectorType()) {
+ // 64- and 128-bit vectors are never returned in a
+ // register when inside a structure.
+ uint64_t Size = Context.getTypeSize(RetTy);
+ if (Size == 64 || Size == 128)
+ return ABIArgInfo::getIndirect(0);
+
+ return classifyReturnType(QualType(SeltTy, 0), Context);
+ }
+ }
+
+ // Small structures which are register sized are generally returned
+ // in a register.
+ if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
+ uint64_t Size = Context.getTypeSize(RetTy);
+ return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
+ }
+
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
+ ASTContext &Context) const {
+ // FIXME: Set alignment on indirect arguments.
+ if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
+ // Structures with flexible arrays are always indirect.
+ if (const RecordType *RT = Ty->getAsStructureType())
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return ABIArgInfo::getIndirect(0);
+
+ // Ignore empty structs.
+ uint64_t Size = Context.getTypeSize(Ty);
+ if (Ty->isStructureType() && Size == 0)
+ return ABIArgInfo::getIgnore();
+
+ // Expand structs with size <= 128-bits which consist only of
+ // basic types (int, long long, float, double, xxx*). This is
+ // non-recursive and does not ignore empty fields.
+ if (const RecordType *RT = Ty->getAsStructureType()) {
+ if (Context.getTypeSize(Ty) <= 4*32 &&
+ areAllFields32Or64BitBasicType(RT->getDecl(), Context))
+ return ABIArgInfo::getExpand();
+ }
+
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+namespace {
+/// X86_64ABIInfo - The X86_64 ABI information.
+class X86_64ABIInfo : public ABIInfo {
+ enum Class {
+ Integer = 0,
+ SSE,
+ SSEUp,
+ X87,
+ X87Up,
+ ComplexX87,
+ NoClass,
+ Memory
+ };
+
+ /// merge - Implement the X86_64 ABI merging algorithm.
+ ///
+ /// Merge an accumulating classification \arg Accum with a field
+ /// classification \arg Field.
+ ///
+ /// \param Accum - The accumulating classification. This should
+ /// always be either NoClass or the result of a previous merge
+ /// call. In addition, this should never be Memory (the caller
+ /// should just return Memory for the aggregate).
+ Class merge(Class Accum, Class Field) const;
+
+ /// classify - Determine the x86_64 register classes in which the
+ /// given type T should be passed.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the high word of the containing object.
+ ///
+ /// \param OffsetBase - The bit offset of this type in the
+ /// containing object. Some parameters are classified different
+ /// depending on whether they straddle an eightbyte boundary.
+ ///
+ /// If a word is unused its result will be NoClass; if a type should
+ /// be passed in Memory then at least the classification of \arg Lo
+ /// will be Memory.
+ ///
+ /// The \arg Lo class will be NoClass iff the argument is ignored.
+ ///
+ /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
+ /// also be ComplexX87.
+ void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
+ Class &Lo, Class &Hi) const;
+
+ /// getCoerceResult - Given a source type \arg Ty and an LLVM type
+ /// to coerce to, chose the best way to pass Ty in the same place
+ /// that \arg CoerceTo would be passed, but while keeping the
+ /// emitted code as simple as possible.
+ ///
+ /// FIXME: Note, this should be cleaned up to just take an enumeration of all
+ /// the ways we might want to pass things, instead of constructing an LLVM
+ /// type. This makes this code more explicit, and it makes it clearer that we
+ /// are also doing this for correctness in the case of passing scalar types.
+ ABIArgInfo getCoerceResult(QualType Ty,
+ const llvm::Type *CoerceTo,
+ ASTContext &Context) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ABIArgInfo getIndirectResult(QualType Ty,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType Ty,
+ ASTContext &Context,
+ unsigned &neededInt,
+ unsigned &neededSSE) const;
+
+public:
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+};
+}
+
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
+ Class Field) const {
+ // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+ // classified recursively so that always two fields are
+ // considered. The resulting class is calculated according to
+ // the classes of the fields in the eightbyte:
+ //
+ // (a) If both classes are equal, this is the resulting class.
+ //
+ // (b) If one of the classes is NO_CLASS, the resulting class is
+ // the other class.
+ //
+ // (c) If one of the classes is MEMORY, the result is the MEMORY
+ // class.
+ //
+ // (d) If one of the classes is INTEGER, the result is the
+ // INTEGER.
+ //
+ // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+ // MEMORY is used as class.
+ //
+ // (f) Otherwise class SSE is used.
+
+ // Accum should never be memory (we should have returned) or
+ // ComplexX87 (because this cannot be passed in a structure).
+ assert((Accum != Memory && Accum != ComplexX87) &&
+ "Invalid accumulated classification during merge.");
+ if (Accum == Field || Field == NoClass)
+ return Accum;
+ else if (Field == Memory)
+ return Memory;
+ else if (Accum == NoClass)
+ return Field;
+ else if (Accum == Integer || Field == Integer)
+ return Integer;
+ else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
+ Accum == X87 || Accum == X87Up)
+ return Memory;
+ else
+ return SSE;
+}
+
+void X86_64ABIInfo::classify(QualType Ty,
+ ASTContext &Context,
+ uint64_t OffsetBase,
+ Class &Lo, Class &Hi) const {
+ // FIXME: This code can be simplified by introducing a simple value class for
+ // Class pairs with appropriate constructor methods for the various
+ // situations.
+
+ // FIXME: Some of the split computations are wrong; unaligned vectors
+ // shouldn't be passed in registers for example, so there is no chance they
+ // can straddle an eightbyte. Verify & simplify.
+
+ Lo = Hi = NoClass;
+
+ Class &Current = OffsetBase < 64 ? Lo : Hi;
+ Current = Memory;
+
+ if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
+ BuiltinType::Kind k = BT->getKind();
+
+ if (k == BuiltinType::Void) {
+ Current = NoClass;
+ } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
+ Lo = Integer;
+ Hi = Integer;
+ } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
+ Current = Integer;
+ } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
+ Current = SSE;
+ } else if (k == BuiltinType::LongDouble) {
+ Lo = X87;
+ Hi = X87Up;
+ }
+ // FIXME: _Decimal32 and _Decimal64 are SSE.
+ // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
+ } else if (const EnumType *ET = Ty->getAsEnumType()) {
+ // Classify the underlying integer type.
+ classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
+ } else if (Ty->hasPointerRepresentation()) {
+ Current = Integer;
+ } else if (const VectorType *VT = Ty->getAsVectorType()) {
+ uint64_t Size = Context.getTypeSize(VT);
+ if (Size == 32) {
+ // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
+ // float> as integer.
+ Current = Integer;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
+ if (EB_Real != EB_Imag)
+ Hi = Lo;
+ } else if (Size == 64) {
+ // gcc passes <1 x double> in memory. :(
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
+ return;
+
+ // gcc passes <1 x long long> as INTEGER.
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
+ Current = Integer;
+ else
+ Current = SSE;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ if (OffsetBase && OffsetBase != 64)
+ Hi = Lo;
+ } else if (Size == 128) {
+ Lo = SSE;
+ Hi = SSEUp;
+ }
+ } else if (const ComplexType *CT = Ty->getAsComplexType()) {
+ QualType ET = Context.getCanonicalType(CT->getElementType());
+
+ uint64_t Size = Context.getTypeSize(Ty);
+ if (ET->isIntegralType()) {
+ if (Size <= 64)
+ Current = Integer;
+ else if (Size <= 128)
+ Lo = Hi = Integer;
+ } else if (ET == Context.FloatTy)
+ Current = SSE;
+ else if (ET == Context.DoubleTy)
+ Lo = Hi = SSE;
+ else if (ET == Context.LongDoubleTy)
+ Current = ComplexX87;
+
+ // If this complex type crosses an eightbyte boundary then it
+ // should be split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
+ if (Hi == NoClass && EB_Real != EB_Imag)
+ Hi = Lo;
+ } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+ // Arrays are treated like structures.
+
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than two eightbytes, ..., it has class MEMORY.
+ if (Size > 128)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+ // fields, it has class MEMORY.
+ //
+ // Only need to check alignment of array base.
+ if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
+ return;
+
+ // Otherwise implement simplified merge. We could be smarter about
+ // this, but it isn't worth it and would be harder to verify.
+ Current = NoClass;
+ uint64_t EltSize = Context.getTypeSize(AT->getElementType());
+ uint64_t ArraySize = AT->getSize().getZExtValue();
+ for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
+ Class FieldLo, FieldHi;
+ classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ // Do post merger cleanup (see below). Only case we worry about is Memory.
+ if (Hi == Memory)
+ Lo = Memory;
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
+ } else if (const RecordType *RT = Ty->getAsRecordType()) {
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than two eightbytes, ..., it has class MEMORY.
+ if (Size > 128)
+ return;
+
+ const RecordDecl *RD = RT->getDecl();
+
+ // Assume variable sized types are passed in memory.
+ if (RD->hasFlexibleArrayMember())
+ return;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Reset Lo class, this will be recomputed.
+ Current = NoClass;
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i, ++idx) {
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ bool BitField = i->isBitField();
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+ // fields, it has class MEMORY.
+ //
+ // Note, skip this test for bit-fields, see below.
+ if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
+ Lo = Memory;
+ return;
+ }
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
+ // exceeds a single eightbyte, each is classified
+ // separately. Each eightbyte gets initialized to class
+ // NO_CLASS.
+ Class FieldLo, FieldHi;
+
+ // Bit-fields require special handling, they do not force the
+ // structure to be passed in memory even if unaligned, and
+ // therefore they can straddle an eightbyte.
+ if (BitField) {
+ // Ignore padding bit-fields.
+ if (i->isUnnamedBitfield())
+ continue;
+
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
+
+ uint64_t EB_Lo = Offset / 64;
+ uint64_t EB_Hi = (Offset + Size - 1) / 64;
+ FieldLo = FieldHi = NoClass;
+ if (EB_Lo) {
+ assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
+ FieldLo = NoClass;
+ FieldHi = Integer;
+ } else {
+ FieldLo = Integer;
+ FieldHi = EB_Hi ? Integer : NoClass;
+ }
+ } else
+ classify(i->getType(), Context, Offset, FieldLo, FieldHi);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+ //
+ // (a) If one of the classes is MEMORY, the whole argument is
+ // passed in memory.
+ //
+ // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
+
+ // The first of these conditions is guaranteed by how we implement
+ // the merge (just bail).
+ //
+ // The second condition occurs in the case of unions; for example
+ // union { _Complex double; unsigned; }.
+ if (Hi == Memory)
+ Lo = Memory;
+ if (Hi == SSEUp && Lo != SSE)
+ Hi = SSE;
+ }
+}
+
+ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
+ const llvm::Type *CoerceTo,
+ ASTContext &Context) const {
+ if (CoerceTo == llvm::Type::Int64Ty) {
+ // Integer and pointer types will end up in a general purpose
+ // register.
+ if (Ty->isIntegralType() || Ty->isPointerType())
+ return ABIArgInfo::getDirect();
+
+ } else if (CoerceTo == llvm::Type::DoubleTy) {
+ // FIXME: It would probably be better to make CGFunctionInfo only map using
+ // canonical types than to canonize here.
+ QualType CTy = Context.getCanonicalType(Ty);
+
+ // Float and double end up in a single SSE reg.
+ if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
+ return ABIArgInfo::getDirect();
+
+ }
+
+ return ABIArgInfo::getCoerce(CoerceTo);
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
+ ASTContext &Context) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ if (!CodeGenFunction::hasAggregateLLVMType(Ty))
+ return ABIArgInfo::getDirect();
+
+ // FIXME: Set alignment correctly.
+ return ABIArgInfo::getIndirect(0);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+ // classification algorithm.
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(RetTy, Context, 0, Lo, Hi);
+
+ // Check some invariants.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ const llvm::Type *ResType = 0;
+ switch (Lo) {
+ case NoClass:
+ return ABIArgInfo::getIgnore();
+
+ case SSEUp:
+ case X87Up:
+ assert(0 && "Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+ // hidden argument.
+ case Memory:
+ return getIndirectResult(RetTy, Context);
+
+ // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+ // available register of the sequence %rax, %rdx is used.
+ case Integer:
+ ResType = llvm::Type::Int64Ty; break;
+
+ // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+ // available SSE register of the sequence %xmm0, %xmm1 is used.
+ case SSE:
+ ResType = llvm::Type::DoubleTy; break;
+
+ // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+ // returned on the X87 stack in %st0 as 80-bit x87 number.
+ case X87:
+ ResType = llvm::Type::X86_FP80Ty; break;
+
+ // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+ // part of the value is returned in %st0 and the imaginary part in
+ // %st1.
+ case ComplexX87:
+ assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
+ ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty,
+ llvm::Type::X86_FP80Ty,
+ NULL);
+ break;
+ }
+
+ switch (Hi) {
+ // Memory was handled previously and X87 should
+ // never occur as a hi class.
+ case Memory:
+ case X87:
+ assert(0 && "Invalid classification for hi word.");
+
+ case ComplexX87: // Previously handled.
+ case NoClass: break;
+
+ case Integer:
+ ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
+ break;
+ case SSE:
+ ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+ // is passed in the upper half of the last used SSE register.
+ //
+ // SSEUP should always be preceeded by SSE, just widen.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification.");
+ ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+ // returned together with the previous X87 value in %st0.
+ case X87Up:
+ // If X87Up is preceeded by X87, we don't need to do
+ // anything. However, in some cases with unions it may not be
+ // preceeded by X87. In such situations we follow gcc and pass the
+ // extra bits in an SSE reg.
+ if (Lo != X87)
+ ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+ break;
+ }
+
+ return getCoerceResult(RetTy, ResType, Context);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
+ unsigned &neededInt,
+ unsigned &neededSSE) const {
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(Ty, Context, 0, Lo, Hi);
+
+ // Check some invariants.
+ // FIXME: Enforce these by construction.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ neededInt = 0;
+ neededSSE = 0;
+ const llvm::Type *ResType = 0;
+ switch (Lo) {
+ case NoClass:
+ return ABIArgInfo::getIgnore();
+
+ // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+ // on the stack.
+ case Memory:
+
+ // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+ // COMPLEX_X87, it is passed in memory.
+ case X87:
+ case ComplexX87:
+ return getIndirectResult(Ty, Context);
+
+ case SSEUp:
+ case X87Up:
+ assert(0 && "Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+ // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+ // and %r9 is used.
+ case Integer:
+ ++neededInt;
+ ResType = llvm::Type::Int64Ty;
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+ // available SSE register is used, the registers are taken in the
+ // order from %xmm0 to %xmm7.
+ case SSE:
+ ++neededSSE;
+ ResType = llvm::Type::DoubleTy;
+ break;
+ }
+
+ switch (Hi) {
+ // Memory was handled previously, ComplexX87 and X87 should
+ // never occur as hi classes, and X87Up must be preceed by X87,
+ // which is passed in memory.
+ case Memory:
+ case X87:
+ case ComplexX87:
+ assert(0 && "Invalid classification for hi word.");
+ break;
+
+ case NoClass: break;
+ case Integer:
+ ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
+ ++neededInt;
+ break;
+
+ // X87Up generally doesn't occur here (long double is passed in
+ // memory), except in situations involving unions.
+ case X87Up:
+ case SSE:
+ ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+ ++neededSSE;
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+ // eightbyte is passed in the upper half of the last used SSE
+ // register.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification.");
+ ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
+ break;
+ }
+
+ return getCoerceResult(Ty, ResType, Context);
+}
+
+void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+
+ // Keep track of the number of assigned registers.
+ unsigned freeIntRegs = 6, freeSSERegs = 8;
+
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (FI.getReturnInfo().isIndirect())
+ --freeIntRegs;
+
+ // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
+ // get assigned (in left-to-right order) for passing as follows...
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it) {
+ unsigned neededInt, neededSSE;
+ it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE);
+
+ // AMD64-ABI 3.2.3p3: If there are no registers available for any
+ // eightbyte of an argument, the whole argument is passed on the
+ // stack. If registers have already been assigned for some
+ // eightbytes of such an argument, the assignments get reverted.
+ if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
+ freeIntRegs -= neededInt;
+ freeSSERegs -= neededSSE;
+ } else {
+ it->info = getIndirectResult(it->type, Context);
+ }
+ }
+}
+
+static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
+ QualType Ty,
+ CodeGenFunction &CGF) {
+ llvm::Value *overflow_arg_area_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
+ llvm::Value *overflow_arg_area =
+ CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
+
+ // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
+ // byte boundary if alignment needed by type exceeds 8 byte boundary.
+ uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+ if (Align > 8) {
+ // Note that we follow the ABI & gcc here, even though the type
+ // could in theory have an alignment greater than 16. This case
+ // shouldn't ever matter in practice.
+
+ // overflow_arg_area = (overflow_arg_area + 15) & ~15;
+ llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15);
+ overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
+ llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
+ llvm::Type::Int64Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL);
+ overflow_arg_area =
+ CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
+ overflow_arg_area->getType(),
+ "overflow_arg_area.align");
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
+ const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *Res =
+ CGF.Builder.CreateBitCast(overflow_arg_area,
+ llvm::PointerType::getUnqual(LTy));
+
+ // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
+ // l->overflow_arg_area + sizeof(type).
+ // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
+ // an 8 byte boundary.
+
+ uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
+ llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ (SizeInBytes + 7) & ~7);
+ overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
+ "overflow_arg_area.next");
+ CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
+
+ // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
+ return Res;
+}
+
+llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i32 gp_offset;
+ // i32 fp_offset;
+ // i8* overflow_arg_area;
+ // i8* reg_save_area;
+ // };
+ unsigned neededInt, neededSSE;
+ ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(),
+ neededInt, neededSSE);
+
+ // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
+ // in the registers. If not go to step 7.
+ if (!neededInt && !neededSSE)
+ return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+ // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
+ // general purpose registers needed to pass type and num_fp to hold
+ // the number of floating point registers needed.
+
+ // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
+ // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
+ // l->fp_offset > 304 - num_fp * 16 go to step 7.
+ //
+ // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
+ // register save space).
+
+ llvm::Value *InRegs = 0;
+ llvm::Value *gp_offset_p = 0, *gp_offset = 0;
+ llvm::Value *fp_offset_p = 0, *fp_offset = 0;
+ if (neededInt) {
+ gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
+ gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
+ InRegs =
+ CGF.Builder.CreateICmpULE(gp_offset,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ 48 - neededInt * 8),
+ "fits_in_gp");
+ }
+
+ if (neededSSE) {
+ fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
+ fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
+ llvm::Value *FitsInFP =
+ CGF.Builder.CreateICmpULE(fp_offset,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ 176 - neededSSE * 16),
+ "fits_in_fp");
+ InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
+ }
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+
+ CGF.EmitBlock(InRegBlock);
+
+ // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
+ // an offset of l->gp_offset and/or l->fp_offset. This may require
+ // copying to a temporary location in case the parameter is passed
+ // in different register classes or requires an alignment greater
+ // than 8 for general purpose registers and 16 for XMM registers.
+ //
+ // FIXME: This really results in shameful code when we end up needing to
+ // collect arguments from different places; often what should result in a
+ // simple assembling of a structure from scattered addresses has many more
+ // loads than necessary. Can we clean this up?
+ const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *RegAddr =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
+ "reg_save_area");
+ if (neededInt && neededSSE) {
+ // FIXME: Cleanup.
+ assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
+ const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
+ llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
+ assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
+ const llvm::Type *TyLo = ST->getElementType(0);
+ const llvm::Type *TyHi = ST->getElementType(1);
+ assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
+ "Unexpected ABI info for mixed regs");
+ const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
+ const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
+ llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+ llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
+ llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
+ llvm::Value *V =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+ RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy));
+ } else if (neededInt) {
+ RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+ RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+ llvm::PointerType::getUnqual(LTy));
+ } else {
+ if (neededSSE == 1) {
+ RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+ llvm::PointerType::getUnqual(LTy));
+ } else {
+ assert(neededSSE == 2 && "Invalid number of needed registers!");
+ // SSE registers are spaced 16 bytes apart in the register save
+ // area, we need to collect the two eightbytes together.
+ llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ llvm::Value *RegAddrHi =
+ CGF.Builder.CreateGEP(RegAddrLo,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty, 16));
+ const llvm::Type *DblPtrTy =
+ llvm::PointerType::getUnqual(llvm::Type::DoubleTy);
+ const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy,
+ llvm::Type::DoubleTy,
+ NULL);
+ llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
+ DblPtrTy));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
+ DblPtrTy));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+ RegAddr = CGF.Builder.CreateBitCast(Tmp,
+ llvm::PointerType::getUnqual(LTy));
+ }
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 5. Set:
+ // l->gp_offset = l->gp_offset + num_gp * 8
+ // l->fp_offset = l->fp_offset + num_fp * 16.
+ if (neededInt) {
+ llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ neededInt * 8);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
+ gp_offset_p);
+ }
+ if (neededSSE) {
+ llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ neededSSE * 16);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
+ fp_offset_p);
+ }
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+
+ CGF.EmitBlock(InMemBlock);
+ llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+ // Return the appropriate result.
+
+ CGF.EmitBlock(ContBlock);
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
+ "vaarg.addr");
+ ResAddr->reserveOperandSpace(2);
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(MemAddr, InMemBlock);
+
+ return ResAddr;
+}
+
+// ABI Info for PIC16
+class PIC16ABIInfo : public ABIInfo {
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType RetTy,
+ ASTContext &Context) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it)
+ it->info = classifyArgumentType(it->type, Context);
+ }
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+};
+
+ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ if (RetTy->isVoidType()) {
+ return ABIArgInfo::getIgnore();
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
+ ASTContext &Context) const {
+ return ABIArgInfo::getDirect();
+}
+
+llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return 0;
+}
+
+class ARMABIInfo : public ABIInfo {
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType RetTy,
+ ASTContext &Context) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+};
+
+void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it) {
+ it->info = classifyArgumentType(it->type, Context);
+ }
+}
+
+ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
+ ASTContext &Context) const {
+ if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
+ return ABIArgInfo::getDirect();
+ }
+ // FIXME: This is kind of nasty... but there isn't much choice because the ARM
+ // backend doesn't support byval.
+ // FIXME: This doesn't handle alignment > 64 bits.
+ const llvm::Type* ElemTy;
+ unsigned SizeRegs;
+ if (Context.getTypeAlign(Ty) > 32) {
+ ElemTy = llvm::Type::Int64Ty;
+ SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
+ } else {
+ ElemTy = llvm::Type::Int32Ty;
+ SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
+ }
+ std::vector<const llvm::Type*> LLVMFields;
+ LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
+ const llvm::Type* STy = llvm::StructType::get(LLVMFields, true);
+ return ABIArgInfo::getCoerce(STy);
+}
+
+ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ if (RetTy->isVoidType()) {
+ return ABIArgInfo::getIgnore();
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ // Aggregates <= 4 bytes are returned in r0; other aggregates
+ // are returned indirectly.
+ uint64_t Size = Context.getTypeSize(RetTy);
+ if (Size <= 32)
+ return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // FIXME: Need to handle alignment
+ const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ if (RetTy->isVoidType()) {
+ return ABIArgInfo::getIgnore();
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
+ ASTContext &Context) const {
+ if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return 0;
+}
+
+const ABIInfo &CodeGenTypes::getABIInfo() const {
+ if (TheABIInfo)
+ return *TheABIInfo;
+
+ // For now we just cache this in the CodeGenTypes and don't bother
+ // to free it.
+ const char *TargetPrefix = getContext().Target.getTargetPrefix();
+ if (strcmp(TargetPrefix, "x86") == 0) {
+ bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
+ switch (getContext().Target.getPointerWidth(0)) {
+ case 32:
+ return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
+ case 64:
+ return *(TheABIInfo = new X86_64ABIInfo());
+ }
+ } else if (strcmp(TargetPrefix, "arm") == 0) {
+ // FIXME: Support for OABI?
+ return *(TheABIInfo = new ARMABIInfo());
+ } else if (strcmp(TargetPrefix, "pic16") == 0) {
+ return *(TheABIInfo = new PIC16ABIInfo());
+ }
+
+ return *(TheABIInfo = new DefaultABIInfo);
+}
More information about the cfe-commits
mailing list