[all-commits] [llvm/llvm-project] ac4bd7: [mlir] Add apply_patterns.linalg.pad_vectorization...
Andrzej Warzyński via All-commits
all-commits at lists.llvm.org
Fri Oct 25 10:39:48 PDT 2024
Branch: refs/heads/main
Home: https://github.com/llvm/llvm-project
Commit: ac4bd74190fedfbe025ef757ff308dd184a507f5
https://github.com/llvm/llvm-project/commit/ac4bd74190fedfbe025ef757ff308dd184a507f5
Author: Andrzej Warzyński <andrzej.warzynski at arm.com>
Date: 2024-10-25 (Fri, 25 Oct 2024)
Changed paths:
M mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
M mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
M mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
A mlir/test/Dialect/Linalg/vectorization-pad-patterns.mlir
M mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
Log Message:
-----------
[mlir] Add apply_patterns.linalg.pad_vectorization TD Op (#112504)
This PR simply wraps `populatePadOpVectorizationPatterns` into a new
Transform Dialect Op: `apply_patterns.linalg.pad_vectorization`.
This change makes it possible to run (and test) the corresponding
patterns _without_:
`transform.structured.vectorize_children_and_apply_patterns`.
Note that the Op above only supports non-masked vectorisation (i.e. when
the inputs are static), so, effectively, only fixed-width vectorisation
(as opposed to scalable vectorisation). As such, this change is required
to construct vectorization pipelines for tensor.pad targeting scalable
vectors.
To test the new Op and the corresponding patterns, I added
"vectorization-pad-patterns.mlir" - most tests have been extracted from
"vectorization-with-patterns.mlir".
To unsubscribe from these emails, change your notification settings at https://github.com/llvm/llvm-project/settings/notifications
More information about the All-commits
mailing list