[all-commits] [llvm/llvm-project] 4c4fb6: [BPF] Do atomic_fetch_*() pattern matching with me...

yonghong-song via All-commits all-commits at lists.llvm.org
Tue Sep 24 15:56:11 PDT 2024


  Branch: refs/heads/main
  Home:   https://github.com/llvm/llvm-project
  Commit: 4c4fb6ada7a168e5129a22efb4d604bb6fc60b17
      https://github.com/llvm/llvm-project/commit/4c4fb6ada7a168e5129a22efb4d604bb6fc60b17
  Author: yonghong-song <yhs at fb.com>
  Date:   2024-09-24 (Tue, 24 Sep 2024)

  Changed paths:
    M clang/lib/Basic/Targets/BPF.cpp
    M clang/lib/CodeGen/CGDebugInfo.cpp
    A clang/test/CodeGen/bpf-attr-type-tag-atomic.c
    M llvm/lib/Target/BPF/BPFInstrInfo.td
    M llvm/lib/Target/BPF/BPFMIChecking.cpp
    M llvm/lib/Target/BPF/BTFDebug.cpp
    A llvm/test/CodeGen/BPF/BTF/atomics.ll
    A llvm/test/CodeGen/BPF/BTF/print_btf.py
    A llvm/test/CodeGen/BPF/atomics_mem_order_v1.ll
    A llvm/test/CodeGen/BPF/atomics_mem_order_v3.ll
    A llvm/test/CodeGen/BPF/atomics_sub64_relaxed_v1.ll
    A llvm/test/CodeGen/BPF/xaddd_v1.ll

  Log Message:
  -----------
  [BPF] Do atomic_fetch_*() pattern matching with memory ordering (#107343)

Three commits in this pull request:
commit 1: implement pattern matching for memory ordering seq_cst,
acq_rel, release, acquire and monotonic. Specially, for monotonic memory
ordering (relaxed memory model), if no return value is used, locked insn
is used.
commit 2: add support to handle dwarf atomic modifier in BTF generation.
Actually atomic modifier is ignored in BTF.
commit 3: add tests for new atomic ordering support and BTF support with
_Atomic type.
I removed RFC tag as now patch sets are in reasonable states.

For atomic fetch_and_*() operations, do pattern matching with memory
ordering
seq_cst, acq_rel, release, acquire and monotonic (relaxed). For
fetch_and_*()
operations with seq_cst/acq_rel/release/acquire ordering,
atomic_fetch_*()
instructions are generated. For monotonic ordering, locked insns are
generated
if return value is not used. Otherwise, atomic_fetch_*() insns are used.
The main motivation is to resolve the kernel issue [1].
   
The following are memory ordering are supported:
  seq_cst, acq_rel, release, acquire, relaxed
Current gcc style __sync_fetch_and_*() operations are all seq_cst.

To use explicit memory ordering, the _Atomic type is needed. The
following is
an example:

```
$ cat test.c
\#include <stdatomic.h>
void f1(_Atomic int *i) {
   (void)__c11_atomic_fetch_and(i, 10, memory_order_relaxed);
}
void f2(_Atomic int *i) {
   (void)__c11_atomic_fetch_and(i, 10, memory_order_acquire);
}
void f3(_Atomic int *i) {
   (void)__c11_atomic_fetch_and(i, 10, memory_order_seq_cst);
}
$ cat run.sh
clang  -I/home/yhs/work/bpf-next/tools/testing/selftests/bpf -O2 --target=bpf -c test.c -o test.o && llvm-objdum
p -d test.o
$ ./run.sh
       
test.o: file format elf64-bpf
       
Disassembly of section .text:

0000000000000000 <f1>:
       0:       b4 02 00 00 0a 00 00 00 w2 = 0xa
       1:       c3 21 00 00 50 00 00 00 lock *(u32 *)(r1 + 0x0) &= w2
       2:       95 00 00 00 00 00 00 00 exit
       
0000000000000018 <f2>:
       3:       b4 02 00 00 0a 00 00 00 w2 = 0xa
       4:       c3 21 00 00 51 00 00 00 w2 = atomic_fetch_and((u32 *)(r1 + 0x0), w2)
       5:       95 00 00 00 00 00 00 00 exit
       
0000000000000030 <f3>:
       6:       b4 02 00 00 0a 00 00 00 w2 = 0xa
       7:       c3 21 00 00 51 00 00 00 w2 = atomic_fetch_and((u32 *)(r1 + 0x0), w2)
       8:       95 00 00 00 00 00 00 00 exit
```    

The following is another example where return value is used:

```
$ cat test1.c
\#include <stdatomic.h>
int f1(_Atomic int *i) {
   return __c11_atomic_fetch_and(i, 10, memory_order_relaxed);
}  
int f2(_Atomic int *i) {
   return __c11_atomic_fetch_and(i, 10, memory_order_acquire);
}  
int f3(_Atomic int *i) {
   return __c11_atomic_fetch_and(i, 10, memory_order_seq_cst);
}  
$ cat run.sh
clang  -I/home/yhs/work/bpf-next/tools/testing/selftests/bpf -O2 --target=bpf -c test1.c -o test1.o && llvm-objdump -d test1.o
$ ./run.sh

test.o: file format elf64-bpf

Disassembly of section .text:

0000000000000000 <f1>:
       0:       b4 00 00 00 0a 00 00 00 w0 = 0xa
       1:       c3 01 00 00 51 00 00 00 w0 = atomic_fetch_and((u32 *)(r1 + 0x0), w0)
       2:       95 00 00 00 00 00 00 00 exit
       
0000000000000018 <f2>:
       3:       b4 00 00 00 0a 00 00 00 w0 = 0xa
       4:       c3 01 00 00 51 00 00 00 w0 = atomic_fetch_and((u32 *)(r1 + 0x0), w0)
       5:       95 00 00 00 00 00 00 00 exit
       
0000000000000030 <f3>:
       6:       b4 00 00 00 0a 00 00 00 w0 = 0xa
       7:       c3 01 00 00 51 00 00 00 w0 = atomic_fetch_and((u32 *)(r1 + 0x0), w0)
       8:       95 00 00 00 00 00 00 00 exit
```    

You can see that for relaxed memory ordering, if return value is used,
atomic_fetch_and()
insn is used. Otherwise, if return value is not used, locked insn is
used.

Here is another example with global _Atomic variable:

```
$ cat test3.c
\#include <stdatomic.h>

_Atomic int i;

void f1(void) {
   (void)__c11_atomic_fetch_and(&i, 10, memory_order_relaxed);
}
void f2(void) {
   (void)__c11_atomic_fetch_and(&i, 10, memory_order_seq_cst);
}
$ cat run.sh
clang  -I/home/yhs/work/bpf-next/tools/testing/selftests/bpf -O2 --target=bpf -c test3.c -o test3.o && llvm-objdump -d test3.o
$ ./run.sh

test3.o:        file format elf64-bpf

Disassembly of section .text:

0000000000000000 <f1>:
       0:       b4 01 00 00 0a 00 00 00 w1 = 0xa
       1:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0x0 ll
       3:       c3 12 00 00 50 00 00 00 lock *(u32 *)(r2 + 0x0) &= w1
       4:       95 00 00 00 00 00 00 00 exit
       
0000000000000028 <f2>:
       5:       b4 01 00 00 0a 00 00 00 w1 = 0xa
       6:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0x0 ll
       8:       c3 12 00 00 51 00 00 00 w1 = atomic_fetch_and((u32 *)(r2 + 0x0), w1)
       9:       95 00 00 00 00 00 00 00 exit
```    

Note that in the above compilations, '-g' is not used. The reason is due
to the following IR
related to _Atomic type:
```
$clang  -I/home/yhs/work/bpf-next/tools/testing/selftests/bpf -O2 --target=bpf -g -S -emit-llvm test3.c
```
The related debug info for test3.c:
```
!0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
!1 = distinct !DIGlobalVariable(name: "i", scope: !2, file: !3, line: 3, type: !16, isLocal: false, isDefinition: true)
...
!16 = !DIDerivedType(tag: DW_TAG_atomic_type, baseType: !17)
!17 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
```

If compiling test.c, the related debug info:
```
...
!19 = distinct !DISubprogram(name: "f1", scope: !1, file: !1, line: 3, type: !20, scopeLine: 3, flags: DIFlagPrototyped | DIFlagAllCallsDescribed, spFlags: DISPFlagDefinition | DISPFlagOptimized, unit: !0, retainedNodes: !25)
!20 = !DISubroutineType(types: !21)
!21 = !{null, !22}
!22 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !23, size: 64)
!23 = !DIDerivedType(tag: DW_TAG_atomic_type, baseType: !24)
!24 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
!25 = !{!26}
!26 = !DILocalVariable(name: "i", arg: 1, scope: !19, file: !1, line: 3, type: !22)
```

All the above suggests _Atomic behaves like a modifier (e.g. const,
restrict, volatile).
This seems true based on doc [1].

Without proper handling DW_TAG_atomic_type, llvm BTF generation will be
incorrect since
the current implementation assumes no existence of DW_TAG_atomic_type.
So we have
two choices here:
(1). llvm bpf backend processes DW_TAG_atomic_type but ignores it in BTF
encoding.
(2). Add another type, e.g., BTF_KIND_ATOMIC to BTF. BTF_KIND_ATOMIC
behaves as a
       modifier like const/volatile/restrict.

For choice (1), llvm bpf backend should skip dwarf::DW_TAG_atomic_type
during
BTF generation whenever necessary.

For choice (2), BTF_KIND_ATOMIC will be added to BTF so llvm backend and
kernel
needs to handle that properly. The main advantage of it probably is to
maintain
this atomic type so it is also available to skeleton. But I think for
skeleton
a raw type might be good enough unless user space intends to do some
atomic
operation with that, which is a unlikely case.
    
So I choose choice (1) in this RFC implementation. See the commit
message of the second commit for details.

[1]
https://lore.kernel.org/bpf/7b941f53-2a05-48ec-9032-8f106face3a3@linux.dev/
 [2] https://dwarfstd.org/issues/131112.1.html

---------



To unsubscribe from these emails, change your notification settings at https://github.com/llvm/llvm-project/settings/notifications


More information about the All-commits mailing list