[all-commits] [llvm/llvm-project] 899c2b: [mlir][TilingInterface] Early return cloned ops if...

Han-Chung Wang via All-commits all-commits at lists.llvm.org
Tue Dec 19 09:14:56 PST 2023


  Branch: refs/heads/main
  Home:   https://github.com/llvm/llvm-project
  Commit: 899c2bed9e959e822d1eccb37336981af9664e02
      https://github.com/llvm/llvm-project/commit/899c2bed9e959e822d1eccb37336981af9664e02
  Author: Han-Chung Wang <hanhan0912 at gmail.com>
  Date:   2023-12-19 (Tue, 19 Dec 2023)

  Changed paths:
    M mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
    M mlir/test/Dialect/Linalg/tile-tensors.mlir

  Log Message:
  -----------
  [mlir][TilingInterface] Early return cloned ops if tile sizes are zeros. (#75410)

It is a trivial early-return case. If the cloned ops are not returned,
it will generate `extract_slice` op that extracts the whole slice.
However, it is not folded away. Early-return to avoid the case.

E.g.,

```mlir
func.func @matmul_tensors(
  %arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>)
    -> tensor<?x?xf32> {
  %0 = linalg.matmul  ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
                     outs(%arg2: tensor<?x?xf32>)
    -> tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    %1 = transform.structured.tile_using_for %0 [0, 0, 0] : (!transform.any_op) -> (!transform.any_op)
    transform.yield
  }
}
```

Apply the transforms and canonicalize the IR:

```
mlir-opt --transform-interpreter -canonicalize input.mlir
```

we will get

```mlir
module {
  func.func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>) -> tensor<?x?xf32> {
    %c1 = arith.constant 1 : index
    %c0 = arith.constant 0 : index
    %dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
    %dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
    %dim_1 = tensor.dim %arg1, %c1 : tensor<?x?xf32>
    %extracted_slice = tensor.extract_slice %arg0[0, 0] [%dim, %dim_0] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
    %extracted_slice_2 = tensor.extract_slice %arg1[0, 0] [%dim_0, %dim_1] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
    %extracted_slice_3 = tensor.extract_slice %arg2[0, 0] [%dim, %dim_1] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
    %0 = linalg.matmul ins(%extracted_slice, %extracted_slice_2 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%extracted_slice_3 : tensor<?x?xf32>) -> tensor<?x?xf32>
    return %0 : tensor<?x?xf32>
  }
}
```

The revision early-return the case so we can get:

```mlir
func.func @matmul_tensors(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>) -> tensor<?x?xf32> {
  %0 = linalg.matmul ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}
```




More information about the All-commits mailing list