[allcommits] [llvm/llvmproject] b508c5: [MLIR] Add a utility to sort the operands of commu...
Srishti Srivastava via Allcommits
allcommits at lists.llvm.org
Sat Jul 30 16:25:30 PDT 2022
Branch: refs/heads/main
Home: https://github.com/llvm/llvmproject
Commit: b508c5649f5e21e17e9f5633236ec61c551803af
https://github.com/llvm/llvmproject/commit/b508c5649f5e21e17e9f5633236ec61c551803af
Author: srishticb <srishti.srivastava at polymagelabs.com>
Date: 20220730 (Sat, 30 Jul 2022)
Changed paths:
A mlir/include/mlir/Transforms/CommutativityUtils.h
M mlir/lib/Transforms/Utils/CMakeLists.txt
A mlir/lib/Transforms/Utils/CommutativityUtils.cpp
A mlir/test/Transforms/testcommutativityutils.mlir
M mlir/test/lib/Dialect/Test/TestOps.td
M mlir/test/lib/Transforms/CMakeLists.txt
A mlir/test/lib/Transforms/TestCommutativityUtils.cpp
M mlir/tools/mliropt/mliropt.cpp
Log Message:

[MLIR] Add a utility to sort the operands of commutative ops
Added a commutativity utility pattern and a function to populate it. The pattern sorts the operands of an op in ascending order of the "key" associated with each operand iff the op is commutative. This sorting is stable.
The function is intended to be used inside passes to simplify the matching of commutative operations. After the application of the abovementioned pattern, since the commutative operands now have a deterministic order in which they occur in an op, the matching of large DAGs becomes much simpler, i.e., requires much less number of checks to be written by a user in her/his pattern matching function.
The "key" associated with an operand is the list of the "AncestorKeys" associated with the ancestors of this operand, in a breadthfirst order.
The operand of any op is produced by a set of ops and block arguments. Each of these ops and block arguments is called an "ancestor" of this operand.
Now, the "AncestorKey" associated with:
1. A block argument is `{type: BLOCK_ARGUMENT, opName: ""}`.
2. A nonconstantlike op, for example, `arith.addi`, is `{type: NON_CONSTANT_OP, opName: "arith.addi"}`.
3. A constantlike op, for example, `arith.constant`, is `{type: CONSTANT_OP, opName: "arith.constant"}`.
So, if an operand, say `A`, was produced as follows:
```
`<block argument>` `<block argument>`
\ /
\ /
`arith.subi` `arith.constant`
\ /
`arith.addi`

returns `A`
```
Then, the block arguments and operations present in the backward slice of `A`, in the breadthfirst order are:
`arith.addi`, `arith.subi`, `arith.constant`, `<block argument>`, and `<block argument>`.
Thus, the "key" associated with operand `A` is:
```
{
{type: NON_CONSTANT_OP, opName: "arith.addi"},
{type: NON_CONSTANT_OP, opName: "arith.subi"},
{type: CONSTANT_OP, opName: "arith.constant"},
{type: BLOCK_ARGUMENT, opName: ""},
{type: BLOCK_ARGUMENT, opName: ""}
}
```
Now, if "keyA" is the key associated with operand `A` and "keyB" is the key associated with operand `B`, then:
"keyA" < "keyB" iff:
1. In the first unequal pair of corresponding AncestorKeys, the AncestorKey in operand `A` is smaller, or,
2. Both the AncestorKeys in every pair are the same and the size of operand `A`'s "key" is smaller.
AncestorKeys of type `BLOCK_ARGUMENT` are considered the smallest, those of type `CONSTANT_OP`, the largest, and `NON_CONSTANT_OP` types come in between. Within the types `NON_CONSTANT_OP` and `CONSTANT_OP`, the smaller ones are the ones with smaller op names (lexicographically).

Some examples of such a sorting:
Assume that the sorting is being applied to `foo.commutative`, which is a commutative op.
Example 1:
> %1 = foo.const 0
> %2 = foo.mul <block argument>, <block argument>
> %3 = foo.commutative %1, %2
Here,
1. The key associated with %1 is:
```
{
{CONSTANT_OP, "foo.const"}
}
```
2. The key associated with %2 is:
```
{
{NON_CONSTANT_OP, "foo.mul"},
{BLOCK_ARGUMENT, ""},
{BLOCK_ARGUMENT, ""}
}
```
The key of %2 < the key of %1
Thus, the sorted `foo.commutative` is:
> %3 = foo.commutative %2, %1
Example 2:
> %1 = foo.const 0
> %2 = foo.mul <block argument>, <block argument>
> %3 = foo.mul %2, %1
> %4 = foo.add %2, %1
> %5 = foo.commutative %1, %2, %3, %4
Here,
1. The key associated with %1 is:
```
{
{CONSTANT_OP, "foo.const"}
}
```
2. The key associated with %2 is:
```
{
{NON_CONSTANT_OP, "foo.mul"},
{BLOCK_ARGUMENT, ""}
}
```
3. The key associated with %3 is:
```
{
{NON_CONSTANT_OP, "foo.mul"},
{NON_CONSTANT_OP, "foo.mul"},
{CONSTANT_OP, "foo.const"},
{BLOCK_ARGUMENT, ""},
{BLOCK_ARGUMENT, ""}
}
```
4. The key associated with %4 is:
```
{
{NON_CONSTANT_OP, "foo.add"},
{NON_CONSTANT_OP, "foo.mul"},
{CONSTANT_OP, "foo.const"},
{BLOCK_ARGUMENT, ""},
{BLOCK_ARGUMENT, ""}
}
```
Thus, the sorted `foo.commutative` is:
> %5 = foo.commutative %4, %3, %2, %1
Signedoffby: Srishti Srivastava <srishti.srivastava at polymagelabs.com>
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D124750
More information about the Allcommits
mailing list