
C / C++
If a list item in a map clause has a base pointer and it is a scalar variable with a predetermined1
data-sharing attribute of firstprivate (see Section 2.20.1.1 on page 271), then on entry to the2
target region:3

• If the list item is not a zero-length array section, the corresponding private variable is initialized4
such that the corresponding list item in the device data environment can be accessed through the5
pointer in the target region.6

• If the list item is a zero-length array section , the corresponding private variable is initialized7
according to Section 2.20.7.2 on page 326.8

C / C++
Fortran

When an internal procedure is called in a target region, any references to variables that are host9
associated in the procedure have unspecified behavior.10

Fortran

Execution Model Events11

Events associated with a target task are the same as for the task construct defined in12
Section 2.11.1 on page 135.13

Events associated with the initial task that executes the target region are defined in14
Section 2.11.5 on page 149.15

The target-begin event occurs when a thread enters a target region.16

The target-end event occurs when a thread exits a target region.17

The target-submit
::::::::::::::::
target-submit-begin event occurs prior to creating

:::::::
initiating

:::::::
creation

::
of

:::
an

:::::
initial18

:::
task

:::
on

:
a
:::::
target

::::::
device

:::
for

:
a
::::::::
target

::::::
region.19

:::
The

:::::::::::::::
target-submit-end

:::::
event

:::::
occurs

::::
after

::::::::
initiating

:::::::
creation

::
of

:
an initial task on a target device for a20

target region.21

174 OpenMP API – DIFF



Tool Callbacks1

Callbacks associated with events for target tasks are the same as for the task construct defined in2
Section 2.11.1 on page 135; (flags & ompt_task_target) always evaluates to true in the3
dispatched callback.4

A thread dispatches a registered ompt_callback_target callback with5
ompt_scope_begin as its endpoint argument and ompt_target as its kind argument for6
each occurrence of a target-begin event in that thread in the context of the target task on the host.7
Similarly, a thread dispatches a registered ompt_callback_target callback with8
ompt_scope_end as its endpoint argument and ompt_target as its kind argument for each9
occurrence of a target-end event in that thread in the context of the target task on the host. These10
callbacks have type signature ompt_callback_target_t.11

A thread dispatches a registered ompt_callback_target_submit callback for each12
occurrence of a target-submit

::::::::::::::::
target-submit-begin

:::
and

:::::::::::::::
target-submit-end event in that thread. The13

::::
Each callback has type signature ompt_callback_target_submit_t.

:::
Each

::::::::
callback14

::::::
receives

::::::::::::::::::::
ompt_scope_begin

::
or

::::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

::
as

:::::::::::
appropriate.15

Restrictions16

• If a target update, target data, target enter data, or target exit data17
construct is encountered during execution of a target region, the behavior is unspecified.18

• The result of an omp_set_default_device, omp_get_default_device, or19
omp_get_num_devices routine called within a target region is unspecified.20

• The effect of an access to a threadprivate variable in a target region is unspecified.21

• If a list item in a map clause is a structure element, any other element of that structure that is22
referenced in the target construct must also appear as a list item in a map clause.23

• A variable referenced in a target region but not the target construct that is not declared in24
the target region must appear in a declare target directive.25

• At most one defaultmap clause for each category can appear on the directive.26

• At most one nowait clause can appear on the directive.27

• At most one if clause can appear on the directive.28

• A map-type in a map clause must be to, from, tofrom or alloc.29

• A list item that appears in an is_device_ptr clause must be a valid device pointer in the30
device data environment.31

• At most one device clause can appear on the directive. The device clause expression must32
evaluate to a non-negative integer value less than the value of omp_get_num_devices() or33
to the value of omp_get_initial_device().34

CHAPTER 2. DIRECTIVES 175



C / C++
If a new list item is created then a new list item of the same type, with automatic storage duration, is1
allocated for the construct. The size and alignment of the new list item are determined by the static2
type of the variable. This allocation occurs if the region references the list item in any statement.3
Initialization and assignment of the new list item are through bitwise copy.4

C / C++
Fortran

If a new list item is created then a new list item of the same type, type parameter, and rank is5
allocated. The new list item inherits all default values for the type parameters from the original list6
item. The value of the new list item becomes that of the original list item in the map initialization7
and assignment.8

If the allocation status of the original list item with the ALLOCATABLE attribute is changed in the9
host device data environment and the corresponding list item is already present in the device data10
environment, the allocation status of the corresponding list item is unspecified until a mapping11
operation is performed with a map clause on entry to a target, target data, or12
target enter data region.13

Fortran
The map-type determines how the new list item is initialized.14

If a map-type is not specified, the map-type defaults to tofrom.15

The close map-type-modifier is a hint to the runtime to allocate memory close to the target device.16

Execution Model Events17

The target-map event occurs when a thread maps data to or from a target device.18

The target-data-op event occurs when
::::::::::::::::
target-data-op-begin

:::::
event

::::::
occurs

:::::
before

::
a
:::::
thread

:::::::
initiates

::
a19

:::
data

::::::::
operation

:::
on

:
a
:::::
target

::::::
device.

:
20

:::
The

::::::::::::::::
target-data-op-end

::::
event

::::::
occurs

::::
after

:
a thread initiates a data operation on a target device.21

Tool Callbacks22

A thread dispatches a registered ompt_callback_target_map callback for each occurrence23
of a target-map event in that thread. The callback occurs in the context of the target task and has24
type signature ompt_callback_target_map_t.25

A thread dispatches a registered ompt_callback_target_data_op callback for each26
occurrence of a target-data-op

::::::::::::::::
target-data-op-begin

::::
and

::::::::::::::::
target-data-op-end event in that thread.27

The
::::
Each callback occurs in the context of the target task and has type signature28

ompt_callback_target_data_op_t.
::::
Each

:::::::
callback

:::::::
receives

::::::::::::::::::::
ompt_scope_begin

::
or29

:::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

:::
as

::::::::::
appropriate.30

CHAPTER 2. DIRECTIVES 323



Format1

C / C++
void* omp_target_alloc(size_t size, int device_num);2

C / C++
Fortran

type(c_ptr) function omp_target_alloc(size, device_num) bind(c)3
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int4
integer(c_size_t), value :: size5
integer(c_int), value :: device_num6

Fortran

Effect7

The omp_target_alloc routine returns the device address of a storage location of size bytes.8
The storage location is dynamically allocated in the device data environment of the device specified9
by device_num, which must be greater than or equal to zero and less than the result of10
omp_get_num_devices() or the result of omp_get_initial_device(). When called11
from within a target region the effect of this routine is unspecified.12

The omp_target_alloc routine returns NULL (or, C_NULL_PTR, for Fortran) if it cannot13
dynamically allocate the memory in the device data environment.14

The device address returned by omp_target_alloc can be used in an is_device_ptr15
clause, Section 2.13.5 on page 170.16

C / C++
Unless unified_address clause appears on a requires directive in the compilation unit,17
pointer arithmetic is not supported on the device address returned by omp_target_alloc.18

C / C++
Freeing the storage returned by omp_target_alloc with any routine other than19
omp_target_free results in unspecified behavior.20

Execution Model Events21

The target-data-allocation event occurs when a thread allocates data
:::::::::::::::::::::::
target-data-allocation-begin22

::::
event

::::::
occurs

:::::
before

::
a
:::::
thread

:::::::
initiates

::
a

:::
data

:::::::::
allocation

::
on

::
a

:::::
target

::::::
device.23

:::
The

::::::::::::::::::::::
target-data-allocation-end

:::::
event

:::::
occurs

::::
after

::
a
:::::
thread

:::::::
initiates

::
a

:::
data

:::::::::
allocation on a target24

device.25

CHAPTER 3. RUNTIME LIBRARY ROUTINES 397



Tool Callbacks1

A thread invokes a registered ompt_callback_target_data_op callback for each2
occurrence of a target-data-allocation

:::::::::::::::::::::::
target-data-allocation-begin

:::
and

::::::::::::::::::::::
target-data-allocation-end3

event in that thread. The
::::
Each

:
callback occurs in the context of the target task and has type4

signature ompt_callback_target_data_op_t.
::::
Each

:::::::
callback

:::::::
receives5

:::::::::::::::::::
ompt_scope_begin

::
or

::::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

::
as

:::::::::::
appropriate.6

Cross References7

• target construct, see Section 2.13.5 on page 170.8

• omp_get_num_devices routine, see Section 3.2.36 on page 372.9

• omp_get_initial_device routine, see Section 3.2.41 on page 376.10

• omp_target_free routine, see Section 3.6.2 on page 398.11

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 492.12

3.6.2 omp_target_free13

Summary14

The omp_target_free routine frees the device memory allocated by the15
omp_target_alloc routine.16

Format17

C / C++
void omp_target_free(void *device_ptr, int device_num);18

C / C++
Fortran

subroutine omp_target_free(device_ptr, device_num) bind(c)19
use, intrinsic :: iso_c_binding, only : c_ptr, c_int20
type(c_ptr), value :: device_ptr21
integer(c_int), value :: device_num22

Fortran

Constraints on Arguments23

A program that calls omp_target_free with a non-null pointer that does not have a value24
returned from omp_target_alloc is non-conforming. The device_num must be greater than or25
equal to zero and less than the result of omp_get_num_devices() or the result of26
omp_get_initial_device().27

398 OpenMP API – DIFF



Effect1

The omp_target_free routine frees the memory in the device data environment associated2
with device_ptr. If device_ptr is NULL (or C_NULL_PTR, for Fortran), the operation is ignored.3

Synchronization must be inserted to ensure that all accesses to device_ptr are completed before the4
call to omp_target_free.5

When called from within a target region the effect of this routine is unspecified.6

Execution Model Events7

The target-data-free event occurs when a thread frees data
::::::::::::::::::
target-data-free-begin

::::
event

::::::
occurs8

:::::
before

:
a
::::::
thread

:::::::
initiates

:
a
::::
data

::::
free

::
on

:
a
:::::
target

:::::::
device.9

:::
The

:::::::::::::::::
target-data-free-end

:::::
event

:::::
occurs

::::
after

::
a
:::::
thread

:::::::
initiates

::
a

:::
data

::::
free on a target device.10

Tool Callbacks11

A thread invokes a registered ompt_callback_target_data_op callback for each12
occurrence of a target-data-free

::::::::::::::::::
target-data-free-begin

:::
and

:::::::::::::::::
target-data-free-end event in that13

thread. The
::::
Each callback occurs in the context of the target task and has type signature14

ompt_callback_target_data_op_t.
::::
Each

:::::::
callback

:::::::
receives

::::::::::::::::::::
ompt_scope_begin

::
or15

:::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

:::
as

::::::::::
appropriate.16

Cross References17

• target construct, see Section 2.13.5 on page 170.18

• omp_get_num_devices routine, see Section 3.2.36 on page 372.19

• omp_get_initial_device routine, see Section 3.2.41 on page 376.20

• omp_target_alloc routine, see Section 3.6.1 on page 396.21

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 492.22

3.6.3 omp_target_is_present23

Summary24

The omp_target_is_present routine tests whether a host pointer has corresponding storage25
on a given device.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 399



Execution Model Events1

The target-data-op event occurs when
::::::::::::::::
target-data-op-begin

:::::
event

::::::
occurs

:::::
before

::
a
:::::
thread

::::::::
transfers2

:::
data

:::
on

:
a
:::::
target

::::::
device.

:
3

:::
The

::::::::::::::::
target-data-op-end

::::
event

::::::
occurs

::::
after

:
a thread transfers data on a target device.4

Tool Callbacks5

A thread invokes a registered ompt_callback_target_data_op callback for each6
occurrence of a target-data-op

::::::::::::::::
target-data-op-begin

::::
and

::::::::::::::::
target-data-op-end event in that thread.7

The
::::
Each callback occurs in the context of the target task and has type signature8

ompt_callback_target_data_op_t.
::::
Each

:::::::
callback

:::::::
receives

::::::::::::::::::::
ompt_scope_begin

::
or9

:::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

:::
as

::::::::::
appropriate.10

Cross References11

• target construct, see Section 2.13.5 on page 170.12

• omp_get_initial_device routine, see Section 3.2.41 on page 376.13

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 492.14

3.6.5 omp_target_memcpy_rect15

Summary16

The omp_target_memcpy_rect routine copies a rectangular subvolume from a17
multi-dimensional array to another multi-dimensional array. The omp_target_memcpy_rect18
routine performs a copy between any combination of host and device pointers.19

Format20

C / C++
int omp_target_memcpy_rect(21

void *dst,22
const void *src,23
size_t element_size,24
int num_dims,25
const size_t *volume,26
const size_t *dst_offsets,27
const size_t *src_offsets,28
const size_t *dst_dimensions,29
const size_t *src_dimensions,30
int dst_device_num,31

402 OpenMP API – DIFF



Execution Model Events1

The target-data-op event occurs when
::::::::::::::::
target-data-op-begin

:::::
event

::::::
occurs

:::::
before

::
a
:::::
thread

::::::::
transfers2

:::
data

:::
on

:
a
:::::
target

::::::
device.

:
3

:::
The

::::::::::::::::
target-data-op-end

::::
event

::::::
occurs

::::
after

:
a thread transfers data on a target device.4

Tool Callbacks5

A thread invokes a registered ompt_callback_target_data_op callback for each6
occurrence of a target-data-op

::::::::::::::::
target-data-op-begin

::::
and

::::::::::::::::
target-data-op-end event in that thread.7

The
::::
Each callback occurs in the context of the target task and has type signature8

ompt_callback_target_data_op_t.
::::
Each

:::::::
callback

:::::::
receives

::::::::::::::::::::
ompt_scope_begin

::
or9

:::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

:::
as

::::::::::
appropriate.10

Cross References11

• target construct, see Section 2.13.5 on page 170.12

• omp_get_initial_device routine, see Section 3.2.41 on page 376.13

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 492.14

3.6.6 omp_target_memcpy_async15

Summary16

The omp_target_memcpy_async routine asynchronously performs a copy between any17
combination of host and device pointers.18

Format19

int omp_target_memcpy_async(20
void *dst,21
const void *src,22
size_t length,23
size_t dst_offset,24
size_t src_offset,25
int dst_device_num,26
int src_device_num,27
int depobj_count,28
omp_depend_t *depobj_list29

);30

404 OpenMP API – DIFF



Constraints on Arguments1

Each device pointer specified must be valid for the device on the same side of the copy. The2
dst_device_num and src_device_num arguments must be greater than or equal to zero and less than3
the result of omp_get_num_devices() or equal to the result of4
omp_get_initial_device().5

Effect6

This routine performs an asynchronous memory copy where length bytes of memory at offset7
src_offset from src in the device data environment of device src_device_num are copied to dst8
starting at offset dst_offset in the device data environment of device dst_device_num. Logically the9
omp_target_memcpy_async routine generates a target task with an implicit nowait. Task10
dependecies are expressed with zero or more omp_depend_t objects. The dependencies are11
specified by passing the number of omp_depend_t objects followed by an array of12
omp_depend_t objects. The generated target task is not a dependent task if the program passes13
in a count of zero and value of NULL for depobj_count and depobj_list, respectively.14

The routine returns zero if successful. Otherwise, it returns a non-zero value. The routine contains15
a task scheduling point.16

Execution Model Events17

The target-data-op event occurs when
::::::::::::::::
target-data-op-begin

:::::
event

::::::
occurs

:::::
before

::
a
:::::
thread

::::::::
transfers18

:::
data

:::
on

:
a
:::::
target

::::::
device.

:
19

:::
The

::::::::::::::::
target-data-op-end

::::
event

::::::
occurs

::::
after

:
a thread transfers data on a target device.20

Tool Callbacks21

A thread invokes a registered ompt_callback_target_data_op callback for each22
occurrence of a target-data-op

::::::::::::::::
target-data-op-begin

::::
and

::::::::::::::::
target-data-op-end event in that thread.23

The
::::
Each callback occurs in the context of the target task and has type signature24

ompt_callback_target_data_op_t.
::::
Each

:::::::
callback

:::::::
receives

::::::::::::::::::::
ompt_scope_begin

::
or25

:::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

:::
as

::::::::::
appropriate.26

Cross References27

• target construct, see Section 2.13.5 on page 170.28

• Depend objects, see Section 2.18.10 on page 255.29

• omp_get_initial_device routine, see Section 3.2.41 on page 376.30

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 492.31

CHAPTER 3. RUNTIME LIBRARY ROUTINES 405



omp_target_memcpy_rect_async routine generates a target task with an implicit nowait.1
Task dependecies are expressed with zero or more omp_depend_t objects. The dependencies are2
specified by passing the number of omp_depend_t objects followed by an array of3
omp_depend_t objects. The generated target task is not a dependent task if the program passes4
in a count of zero and value of NULL for depobj_count and depobj_list, respectively.5

The routine returns zero if successful. Otherwise, it returns a non-zero value. The routine contains6
a task scheduling point.7

When called from within a target region the effect of this routine is unspecified.8

An application can determine the number of inclusive dimensions supported by an implementation9
by passing NULL pointers for both dst and src. The routine returns the number of dimensions10
supported by the implementation for the specified device numbers. No copy operation is performed.11

Execution Model Events12

The target-data-op event occurs when
::::::::::::::::
target-data-op-begin

:::::
event

::::::
occurs

:::::
before

::
a
:::::
thread

::::::::
transfers13

:::
data

:::
on

:
a
:::::
target

::::::
device.

:
14

:::
The

::::::::::::::::
target-data-op-end

::::
event

::::::
occurs

::::
after

:
a thread transfers data on a target device.15

Tool Callbacks16

A thread invokes a registered ompt_callback_target_data_op callback for each17
occurrence of a target-data-op

::::::::::::::::
target-data-op-begin

::::
and

::::::::::::::::
target-data-op-end event in that thread.18

The
::::
Each callback occurs in the context of the target task and has type signature19

ompt_callback_target_data_op_t.
::::
Each

:::::::
callback

:::::::
receives

::::::::::::::::::::
ompt_scope_begin

::
or20

:::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

:::
as

::::::::::
appropriate.21

Cross References22

• target construct, see Section 2.13.5 on page 170.23

• Depend objects, see Section 2.18.10 on page 255.24

• omp_get_initial_device routine, see Section 3.2.41 on page 376.25

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 492.26

3.6.8 omp_target_associate_ptr27

Summary28

The omp_target_associate_ptr routine maps a device pointer, which may be returned29
from omp_target_alloc or implementation-defined runtime routines, to a host pointer.30

CHAPTER 3. RUNTIME LIBRARY ROUTINES 407



share underlying storage will result in unspecified behavior. The omp_target_is_present1
function can be used to test whether a given host pointer has a corresponding variable in the device2
data environment.3

Execution Model Events4

The target-data-associate event occurs when a thread associates data
::::::::::::::::::::::
target-data-associate-begin5

::::
event

::::::
occurs

:::::
before

::
a
:::::
thread

:::::::
initiates

::
a

:::::
device

::::::
pointer

::::::::::
association

::
on

::
a

:::::
target

::::::
device.6

:::
The

:::::::::::::::::::::
target-data-associate-end

:::::
event

::::::
occurs

::::
after

:
a
::::::
thread

:::::::
initiates

:
a
::::::
device

::::::
pointer

:::::::::
association

:
on a7

target device.8

Tool Callbacks9

A thread invokes a registered ompt_callback_target_data_op callback for each10
occurrence of a target-data-associate

::::::::::::::::::::::
target-data-associate-begin

::::
and

:::::::::::::::::::::
target-data-associate-end11

event in that thread. The
::::
Each

:
callback occurs in the context of the target task and has type12

signature ompt_callback_target_data_op_t.
::::
Each

:::::::
callback

:::::::
receives13

:::::::::::::::::::
ompt_scope_begin

::
or

::::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

::
as

:::::::::::
appropriate.14

Cross References15

• target construct, see Section 2.13.5 on page 170.16

• map clause, see Section 2.20.7.1 on page 317.17

• omp_target_alloc routine, see Section 3.6.1 on page 396.18

• omp_target_disassociate_ptr routine, see Section 3.6.8 on page 407.19

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 492.20

3.6.9 omp_target_disassociate_ptr21

Summary22

The omp_target_disassociate_ptr removes the associated pointer for a given device23
from a host pointer.24

CHAPTER 3. RUNTIME LIBRARY ROUTINES 409



Format1

C / C++
int omp_target_disassociate_ptr(const void *ptr, int device_num);2

C / C++
Fortran

integer(c_int) function omp_target_disassociate_ptr(ptr, &3
device_num) bind(c)4

use, intrinsic :: iso_c_binding, only : c_ptr, c_int5
type(c_ptr), value :: ptr6
integer(c_int), value :: device_num7

Fortran

Constraints on Arguments8

The device_num must be greater than or equal to zero and less than the result of9
omp_get_num_devices() or equal to the result of a call to10
omp_get_initial_device().11

Effect12

The omp_target_disassociate_ptr removes the associated device data on device13
device_num from the presence table for host pointer ptr. A call to this routine on a pointer that is14
not NULL (or C_NULL_PTR, for Fortran) and does not have associated data on the given device15
results in unspecified behavior. The reference count of the mapping is reduced to zero, regardless of16
its current value.17

When called from within a target region the effect of this routine is unspecified.18

The routine returns zero if successful. Otherwise it returns a non-zero value.19

After a call to omp_target_disassociate_ptr, the contents of the device buffer are20
invalidated.21

Execution Model Events22

The target-data-disassociate event occurs when a thread disassociates data23

::::::::::::::::::::::::
target-data-disassociate-begin

:::::
event

::::::
occurs

:::::
before

::
a
:::::
thread

:::::::
initiates

:
a
::::::
device

::::::
pointer

::::::::::::
disassociation24

::
on

:
a
:::::
target

:::::::
device.25

:::
The

::::::::::::::::::::::::
target-data-disassociate-end

::::
event

::::::
occurs

::::
after

:
a
::::::
thread

:::::::
initiates

:
a
::::::
device

::::::
pointer

:::::::::::
disassociation26

on a target device.27

410 OpenMP API – DIFF



Tool Callbacks1

A thread invokes a registered ompt_callback_target_data_op callback for each2
occurrence of a target-data-disassociate

::::::::::::::::::::::::
target-data-disassociate-begin

:::
and3

:::::::::::::::::::::::
target-data-disassociate-end event in that thread. The

::::
Each

:
callback occurs in the context of the4

target task and has type signature ompt_callback_target_data_op_t.
::::
Each

:::::::
callback5

::::::
receives

::::::::::::::::::::
ompt_scope_begin

::
or

::::::::::::::::::
ompt_scope_end

::
as

::
its

::::::::
endpoint

::::::::
argument,

::
as

:::::::::::
appropriate.6

Cross References7

• target construct, see Section 2.13.5 on page 170.8

• omp_target_associate_ptr routine, see Section 3.6.8 on page 407.9

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 492.10

3.7 Memory Management Routines11

This section describes routines that support memory management on the current device.12

Instances of memory management types must be accessed only through the routines described in13
this section; programs that otherwise access instances of these types are non-conforming.14

3.7.1 Memory Management Types15

The following type definitions are used by the memory management routines:16

C / C++
typedef enum omp_alloctrait_key_t {17

omp_atk_sync_hint = 1,18
omp_atk_alignment = 2,19
omp_atk_access = 3,20
omp_atk_pool_size = 4,21
omp_atk_fallback = 5,22
omp_atk_fb_data = 6,23
omp_atk_pinned = 7,24
omp_atk_partition = 825

} omp_alloctrait_key_t;26
27

typedef enum omp_alloctrait_value_t {28
omp_atv_false = 0,29
omp_atv_true = 1,30
omp_atv_default = 2,31

CHAPTER 3. RUNTIME LIBRARY ROUTINES 411



can manage traces associated with the device. One allocates a buffer in which the device can1
deposit trace events. The second callback processes a buffer of trace events from the device.2

• If the device requires a trace buffer, the OpenMP implementation invokes the tool-supplied3
callback function on the host device to request a new buffer.4

• The OpenMP implementation monitors the execution of OpenMP constructs on the device and5
records a trace of events or activities into a trace buffer. If possible, device trace records are6
marked with a host_op_id—an identifier that associates device activities with the target7
operation that the host initiated to cause these activities. To correlate activities on the host with8
activities on a device, a tool can register a ompt_callback_target_submit callback.9
Before

:::
and

::::
after the host initiates each distinct activity

::::::
creation

:::
of

::
an

:::::
initial

::::
task

::
on

::
a
:::::
device10

associated with a structured block for a target constructon a device, the OpenMP11
implementation dispatches the ompt_callback_target_submit callback on the host in12
the thread that is executing the task that encounters the target construct. Examples of13
activities that could cause an ompt_callback_target_submit callback to be dispatched14
include an explicit data copy between a host and target device or execution of a computation.15
This callback provides the tool with a pair of identifiers: one that identifies the target region and16
a second that uniquely identifies an activity

:::
the

:::::
initial

:::
task

:
associated with that region. These17

identifiers help the tool correlate activities on the target device with their target region.18

• When appropriate, for example, when a trace buffer fills or needs to be flushed, the OpenMP19
implementation invokes the tool-supplied buffer completion callback to process a non-empty20
sequence of records in a trace buffer that is associated with the device.21

• The tool-supplied buffer completion callback may return immediately, ignoring records in the22
trace buffer, or it may iterate through them using the ompt_advance_buffer_cursor23
entry point to inspect each record. A tool may use the ompt_get_record_type runtime24
entry point to inspect the type of the record at the current cursor position. Three runtime entry25
points (ompt_get_record_ompt, ompt_get_record_native, and26
ompt_get_record_abstract) allow tools to inspect the contents of some or all records in27
a trace buffer. The ompt_get_record_native runtime entry point uses the native trace28
format of the device. The ompt_get_record_abstract runtime entry point decodes the29
contents of a native trace record and summarizes them as an ompt_record_abstract_t30
record. The ompt_get_record_ompt runtime entry point can only be used to retrieve31
records in OMPT format.32

• Once tracing has been started on a device, a tool may pause or resume tracing on the device at33
any time by invoking ompt_pause_trace with an appropriate flag value as an argument.34

• A tool may invoke the ompt_flush_trace runtime entry point for a device at any time35
between device initialization and finalization to cause the device to flush pending trace records.36

• At any time, a tool may use the ompt_start_trace runtime entry point to start tracing or the37
ompt_stop_trace runtime entry point to stop tracing on a device. When tracing is stopped38
on a device, the OpenMP implementation eventually gathers all trace records already collected39
on the device and presents them to the tool using the buffer completion callback.40

434 OpenMP API – DIFF



Description of Arguments1

The device_num argument indicates the device which the buffer contains events.2

The buffer argument is the address of a buffer that was previously allocated by a buffer request3
callback.4

The bytes argument indicates the full size of the buffer.5

The begin argument is an opaque cursor that indicates the position of the beginning of the first6
record in the buffer.7

The buffer_owned argument is 1 if the data to which the buffer points can be deleted by the callback8
and 0 otherwise. If multiple devices accumulate trace events into a single buffer, this callback may9
be invoked with a pointer to one or more trace records in a shared buffer with buffer_owned = 0. In10
this case, the callback may not delete the buffer.11

Cross References12

• ompt_buffer_t type, see Section 4.4.4.7 on page 444.13

• ompt_buffer_cursor_t type, see Section 4.4.4.8 on page 445.14

4.5.2.25 ompt_callback_target_data_op_t15

Summary16

The ompt_callback_target_data_op_t type is used for callbacks that are dispatched17
when a thread maps data to a device.18

Format19

C / C++
typedef void (*ompt_callback_target_data_op_t) (20

::::::::::::::::::::::::::::
ompt_scope_endpoint_t

::::::::
endpoint

:
,21

ompt_id_t target_id,22
ompt_id_t host_op_id,23
ompt_target_data_op_t optype,24
void *src_addr,25
int src_device_num,26
void *dest_addr,27
int dest_device_num,28
size_t bytes,29
const void *codeptr_ra30

);31

C / C++

492 OpenMP API – DIFF



Trace Record1

C / C++
typedef struct ompt_record_target_data_op_t {2

ompt_id_t host_op_id;3
ompt_target_data_op_t optype;4
void *src_addr;5
int src_device_num;6
void *dest_addr;7
int dest_device_num;8
size_t bytes;9
ompt_device_time_t end_time;10
const void *codeptr_ra;11

} ompt_record_target_data_op_t;12

C / C++

Description13

A registered ompt_callback_target_data_op callback is dispatched when device memory14
is allocated or freed, as well as when data is copied to or from a device.15

16

Note – An OpenMP implementation may aggregate program variables and data operations upon17
them. For instance, an OpenMP implementation may synthesize a composite to represent multiple18
scalars and then allocate, free, or copy this composite as a whole rather than performing data19
operations on each scalar individually. Thus, callbacks may not be dispatched as separate data20
operations on each variable.21

22

Description of Arguments23

The
:::::::
endpoint

::::::::
argument

:::::::
indicates

::::
that

:::
the

:::::::
callback

::::::
signals

:::
the

::::::::
beginning

:::
of

:
a
:::::
scope

::
or

:::
the

::::
end

::
of

:
a24

:::::
scope.

:
25

:::
The

:
host_op_id argument is a unique identifier for a data operations

:::::::
operation

:
on a target device.26

The optype argument indicates the kind of data mapping
::::::::
operation.27

The src_addr argument indicates the data address before the operation, where applicable.28

The src_device_num argument indicates the source device number for the data operation, where29
applicable.30

The dest_addr argument indicates the data address after the operation.31

The dest_device_num argument indicates the destination device number for the data operation.32

CHAPTER 4. OMPT INTERFACE 493



4.5.2.28 ompt_callback_target_submit_t1

Summary2

The ompt_callback_target_submit_t type is used for callbacks that are dispatched when3

:::::
before

:::
and

:::::
after

:::
the

:::
host

:::::::
initiates

:::::::
creation

::
of

:
an initial task is created on a device.4

Format5

C / C++
typedef void (*ompt_callback_target_submit_t) (6

::::::::::::::::::::::::::::
ompt_scope_endpoint_t

::::::::
endpoint

:
,7

ompt_id_t target_id,8
ompt_id_t host_op_id,9
unsigned int requested_num_teams10

);11

C / C++

Trace Record12

C / C++
typedef struct ompt_record_target_kernel_t {13

ompt_id_t host_op_id;14
unsigned int requested_num_teams;15
unsigned int granted_num_teams;16
ompt_device_time_t end_time;17

} ompt_record_target_kernel_t;18

C / C++

Description19

A thread dispatches a registered ompt_callback_target_submit callback on the host when20

:::::
before

:::
and

:::::
after a target task creates

:::::::
initiates

::::::
creation

:::
of an initial task on a target device.21

498 OpenMP API – DIFF



Description of Arguments1

The
:::::::
endpoint

::::::::
argument

:::::::
indicates

::::
that

:::
the

:::::::
callback

::::::
signals

:::
the

::::::::
beginning

:::
of

:
a
:::::
scope

::
or

:::
the

::::
end

::
of

:
a2

:::::
scope.

:
3

:::
The

:
target_id argument is a unique identifier for the associated target region.4

The host_op_id argument is a unique identifier for the initial task on the target device.5

The requested_num_teams argument is the number of teams that the host requested to execute the6
kernel. The actual number of teams that execute the kernel may be smaller and generally will not be7
known until the kernel begins to execute on the device.8

If ompt_set_trace_ompt has configured the device to trace kernel execution then the device9
will log a ompt_record_target_kernel_t record in a trace. The fields in the record are as10
follows:11

• The host_op_id field contains a unique identifier that can be used to correlate a12
ompt_record_target_kernel_t record with its associated13
ompt_callback_target_submit callback on the host;14

• The requested_num_teams field contains the number of teams that the host requested to execute15
the kernel;16

• The granted_num_teams field contains the number of teams that the device actually used to17
execute the kernel;18

• The time when the initial task began execution on the device is recorded in the time field of an19
enclosing ompt_record_t structure; and20

• The time when the initial task completed execution on the device is recorded in the end_time21
field.22

Cross References23

• target construct, see Section 2.13.5 on page 170.24

• ompt_id_t type, see Section 4.4.4.3 on page 442
:
.25

•
:::::::::::::::::::::::::
ompt_scope_endpoint_t

:::::
type,

:::
see Section 4.4.4.11 on page 446.26

4.5.2.29 ompt_callback_control_tool_t27

Summary28

The ompt_callback_control_tool_t type is used for callbacks that dispatch tool-control29
events.30

CHAPTER 4. OMPT INTERFACE 499


