2017 1IEEE 24th International Conference on High Performance Computing (HiPC)

Efficient Fork-Join on GPUs through Warp
Specialization

Arpith C. Jacob, Alexandre E. Eichenberger, Hyojin Sung, Samuel F. Antao, Gheorghe-Teodor Bercea, Carlo
Bertolli, Alexey Bataev, Tian Jin, Tong Chen, Zehra Sura, Georgios Rokos, Kevin O’Brien
IBM T.J. Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, NY, USA
{acjacob,alexe,hsung,sfantao,Gheorghe-
Teodor.Bercea,cbertol,alexey.bataev,tjin,chentong,zsura,grokos,caomhin } @us.ibm.com

Abstract—Graphics Processing Units (GPUs) are increasingly
used to accelerate portions of general-purpose applications.
Higher level language extensions have been proposed to help non-
experts bridge the gap between a host and the GPU’s threading
model. Recent updates to the OpenMP standard allow a user
to parallelize code on a GPU using the well known fork-join
programming model for CPUs.

Mapping this model to the architecturally visible threading
model of typical GPUs has been challenging. In this work
we propose a novel approach using the technique of Warp
Specialization. We show how to specialize one warp (a unit of 32
GPU threads) to handle sequential code on a GPU. When this
master warp reaches a user-specified parallel region, it awakens
unused GPU warps to collectively execute the parallel code. Based
on this method, we have implemented a Clang-based, OpenMP
4.5 compliant, open source compiler for GPUs.

Our work achieves a 3.6x (and up to 32x) performance

threads can be requested on an as-needed basis, threads on
a GPU must be requested upfront at kernel launch time.
Moreover, all requested GPU threads are active upon executing
the first statement of the kernel.

Higher level language extensions [7], [8] have been pro-
posed to help non-experts bridge the gap between a host and
an accelerator such as a GPU. OpenMP provides an offloading
model that allows a user to parallelize code on a GPU using the
very same constructs used on a CPU. In this model, code on
a GPU can start with a sequential thread and opportunistically
recruit GPU threads as needed by the application.

Listing 1: Snippet from the Heartwall benchmark

1#pragma omp declare target

2void kernel(public_struct public, private_struct

improvement over a baseline that does not exploit fork-join paral- private) {
lelism on an NVIDIA k40m GPU across a set of 25 kernels. Com- 3.)
pared to state-of-the-art compilers (Clang-ykt, GCC-OpenMP, 4 it (public.frame_no = 0) {
GCC-OpenACC) our work is 2.1 - 7.6x faster. Our proposed : #.E[.);agma omp parallel for collapse (2)
technique is simpler to implement, robust, and performant. 7 for(col=0; col<public.in2 cols: col++)
Keywords-OpenMP, Fork-Join, GPU, Warp Specialization : for(row=0; row<public.in2_rows; row-++)
10 o
11 in_final_sum = 0;
[. INTRODUCTION 12 #pragma omp parallel for reduction (+: in_final_sum)
. 13 for(i = 0; i<public.in_mod_elem; i
Graphics Processing Units (GPUs) are increasingly used 14 irf_fina|_su<rnp = in_final_sum + d_JirrT[)i 1;
to accelerate portions of general-purpose applications in a 15
variety of domains. Their compute power, combined with their }g | /I expensive serial code.
ability to hide long memory latencies, make them suitable for 18}
accelerating highly parallel, compute-intensive algorithms with 19#pragma omp end declare target
~ : : 20
a large memory footprint. As a result, they are increasingly 2int main(...)

found in supercomputers, including Tianhe-1A, TITAN [1],

22 #pragma omp target teams distribute

Piz Daint [2], Summit [3], and Sierra [4]. 23 for(i=0; i<public.allPoints; i++)
As GPUs become more ubiquitous, programmers face the ;‘;} kernel (public, private[i]) ;

daunting challenge of tuning their kernels for GPU architec-
tures. Historically, specialized language extensions such as
CUDA [5] or OpenCL [6] have been popular. They allow
an expert programmer to extract most of the available per-
formance for their algorithms.

Exploiting parallelism on typical GPU architectures is fun-
damentally different compared to exploiting parallelism on
a traditional CPU. One dissimilarity is in the amount of
parallelism, where typical CPU parallelism ranges in the 16-
256 thread count whereas ranges on GPUs can go upward of
1M threads organized as a two-level hierarchy. A fundamental
challenge is that, unlike on the host, where additional parallel

Listing 1 shows the Heartwall benchmark from the Rodinia
suite [9] that uses OpenMP to offload code to an accelerator.
The target teams distribute directive at Line 22 offloads exe-
cution of the associated loop and distributes iterations across
one dimension of GPU threading resources. The generic fork-
Jjoin programming model is used to exploit nested parallelism
at the loops on lines 6 and 12. While the rest of the code is
executed by a team’s master thread alone, worker threads are
only activated on arriving at the parallel for directives.

The focus of this paper is on a novel approach to bridge
the gap between such a generic fork-join programming model

0-7695-6326-0/17/$31.00 ©2017 IEEE
DOI 10.1109/HiPC.2017.00048

358 IEEE
computer
® psouety

familiar to all parallel programmers and the architecturally
visible threading model of typical GPUs.

4
3.5 .
s 532]
® 2 -
8 1.5 1
(7] 1 - B
05 T—
& > >
F S
© & ©
N Ojk UO U?“
N R &

Fig. 1: Geometric mean of speedups across a set of 25 kernels
that exploits nested parallelism as compared to a baseline that
only exploits one level of parallelism.

A majority of OpenMP compilers for the GPU [10], [11],
[12], [13] only exploit one level of parallelism. In the afore-
mentioned example, they parallelize the outer loop on Line 23
across GPU threads but can only execute the inner loops
serially. In contrast, our compiler is also able to efficiently
exploit nested parallelism. Consequently, as shown in Figure 1
our work achieves a 3.6x (and up to 32x) performance
improvement on an NVIDIA k40m GPU across a benchmark
of 25 kernels over a baseline that does not exploit nested
parallelism (§ VI-B).

We are aware of two techniques that can exploit nested
parallelism on the GPU. Basic Block Neutering [14], [15]
introduces additional control flow that causes unused GPU
threads to bypass basic blocks in a serial region. However,
even after optimizations [14], [15], there is non-negligible
communication overhead to the unused threads to inform them
of control flow decisions taken by the serial (master) GPU
thread (§ IV-A). Another approach uses a Master-Controlled
State Machine [16], where the serial thread controls a state
machine that guides the unused threads to their next parallel
region (§ IV-B). This technique suffers performance loss when
encountering calls to functions that potentially contain parallel
code. As Figure 1 shows, these state-of-the-art compilers
achieve no more than a 1.56x speedup over the baseline,
with several exhibiting a slowdown on our benchmark suite.
In contrast to these approaches, our proposed technique is
simpler to implement, robust, and performant. On the same
benchmark our compiler is 2.1-7.6x faster than these state-of-
the-art OpenMP and OpenACC compilers (§ VI-C).

The contribution of this paper is a novel technique to handle
the fork-join programming model on GPU architectures using
a technique known as Warp Specialization [17]. We show how
to specialize one warp (a unit of 32 GPU threads on NVIDIA
architectures) to handle all sequential code on a GPU. When
this master warp reaches a parallel region, it awakens unused
GPU warps for the duration of the parallel region.

While this approach does not exhibit drawbacks of past
implementations, it required us to draw on lower-level barrier

359

constructs not available in CUDA. In addition, as the state
of the sequential thread needs to migrate to distinct GPU
threads during parallel execution, we engineered a globally
addressable stack to store shared data between sequential and
parallel parts of the application.

The remainder of the paper is organized as follows. After
background information (§ II) we elucidate the challenges in
mapping fork-join parallelism onto the CUDA programming
model (§ IIT) and how existing approaches tackle this problem
(§IV). We then describe our approach (§ V) and perform a
detailed performance evaluation (§ VI).

II. BACKGROUND
A. GPU Hardware and the CUDA Programming Model

A GPU organizes execution contexts into groups called
warps with typically 32 in each. A warp executes on a Single-
Instruction, Multiple-Thread (SIMT) unit that issues a single
instruction from the warp every cycle. One or more of the 32
SIMT threads in a warp that have the same program counter
as the issued instruction are executed in parallel. Divergent
threads in a warp serialize execution.

A group of warps are organized within a contention group
known as a Cooperative Thread Array (CTA). A GPU kernel
may consist of thousands of CTAs that are scheduled in turn
on tens of processors within a GPU. The hardware provides
primitives that allow warps within a CTA to synchronize
efficiently and communicate via low-latency shared memory.

A program written in the CUDA [5] language consists
of one or more kernels launched from a host process and
mapped onto this GPU hardware. The CUDA programming
model is a threaded, fine-grained Single Program Multiple
Data (SPMD) model [18] where a kernel launch initiates
multiple concurrent instances of the same program segment.
Each instance is executed by a distinct CUDA thread, typically
operating on different data. A CUDA kernel starts execution
with a predetermined hierarchy of CUDA threads organized
as a grid of CTAs and threads in a CTA. Threads within a
CTA synchronize using the barrier primitive __syncthreads .

The CUDA programming model allows a compiler to map
one CUDA thread to one of the 32 SIMT threads in a warp
while concealing the presence of SIMT hardware from the
programmer. However, the SPMD model forces the user to
expose all available parallelism at the kernel entry point.
Additional threads cannot be activated on demand, as required
by the fork-join model, to exploit nested parallelism.

B. The OpenMP Programming Model

OpenMP [8] is a portable, shared-memory programming
model implemented as a set of directives and runtime calls.
The fork-join model is used to exploit parallelism.

An OpenMP program begins with a single master thread on
a host device. On encountering a parallel directive, execution
forks and the code region associated with the directive is
executed in parallel by a team of threads. At the end of the
parallel region the threads in the team join at an implied barrier
and only the master thread continues execution. Worksharing

directives such as for and simd partition iterations of loops
across threads or SIMD lanes.

OpenMP includes an offload model implemented using the
target directive. When a host thread encounters this directive,
its associated code region is offloaded to an accelerator that
begins execution in a single thread. When a feams directive
is associated with a target construct, a league of teams is
launched on the accelerator (one per CTA), each with a single
thread of execution. The distribute construct allows workshar-
ing of loop iterations across teams. These two directives allow
the user to exploit one dimension of parallelism. A second
dimension can be exploited by each team master using the
Jork-join model of the parallel directive.

An accelerator’s data environment is set up using map
clauses, which may allocate storage and transfer data to
and from device storage. For a complete list of OpenMP
directives and clauses we refer the reader to the OpenMP
specifications [8].

III. CHALLENGES IN MAPPING THE FORK-JOIN MODEL
TO CUDA

The familiar fork-join model enables flexible extraction of
parallelism from kernels with serial code, greatly enhancing
productivity. However, the burden now shifts to the compiler
to efficiently map this model to GPU hardware that is tuned
for the SPMD model of CUDA. We illustrate the challenges
of this problem using two benchmarks, Heartwall and Histo,
that we ported to OpenMP 4.5.

Listing 2: Image histogram benchmark

l#pragma omp target teams

2{

3 unsigned int private_histo[BINS];

4 #pragma omp parallel num_threads(BINS)
509

6 #pragma omp for
7 for (int i=0;i<BINS;i++)
8 private_histo[i] = 0;

10 int Ib = omp_get_team_num() omp_get_num_threads ()
+ omp_get_thread_num () ;
11 int st = omp_get_num_teams() = omp_get_num_threads

12 for (int i = Ib; i < size; i+=st) {
13 #pragma omp atomic
14 private_histo[(data[i] = BINS) >> 12]++;

15 }

16

17 #pragma omp barrier
18

19 #pragma omp for

20 for (int i=0;i<BINS;i++)
21 #pragma omp atomic
22 histo[i] += private_histo[i];

23} /1 parallel
24} // target teams

Consider how a compiler may map the OpenMP program in
Listing 1 to the CUDA model. A host thread that encounters
the target region at Line 22 launches a GPU kernel with a
default number of CTAs and CUDA threads (e.g., 1024 per
CTA). Recall that a GPU kernel launch initiates one instance
of the target region per CUDA thread.

a) Limitation 1: OpenMP kernels with varying degrees of
parallelism must be mapped to an SPMD model with a fixed
degree of parallelism: Many programs contain sequential code
to be executed by the team master alone that is interspersed
between parallel regions. Other kernels may have multiple
parallel regions, each with a different number of active threads.
Mapping these programs to SPMD hardware requires co-
ordination of SIMT threads through regions of varying degrees
of parallelism with only the appropriate number activated.

Since only the team master is active at Line 23 of Listing 1,
1023 threads must be deactivated. They must, however, follow
the same control flow path as the master thread through the
function kernel and arrive together at the parallel regions at
Lines 6 and 12.

b) Limitation 2: The CUDA model does not allow syn-
chronization of subsets of threads in a CTA: Consider the
OpenMP 4.5 port of the Histogram benchmark shown in
Listing 2. We again assume that the GPU kernel for this
target region is launched with the default number of 1024
threads per CTA. A user-requested number of worker threads,
as specified by the variable BINS, which may in general be
less than 1024, are activated when the master encounters the
enclosed parallel region. The user barrier on Line 17 may
erroneously be implemented with the CUDA __syncthreads
primitive. However, this can result in a program that deadlocks
since only a subset of the 1024 CUDA threads in a CTA will
ever arrive at the barrier. Indeed, OpenMP user barriers cannot
be implemented in a straightforward manner with the simple
CUDA barrier primitive since not all threads in a CTA may
participate in a parallel region.

c) Limitation 3: Only a single thread synchronization
primitive is available in the CUDA model: A general OpenMP
program requires two distinct barriers to implement a parallel
construct: one for active and inactive threads to wait on at the
end of the parallel region, and another to implement implicit
or explicit barriers within the parallel section. For the Histo
benchmark in Listing 2, inactive threads wait on a barrier at
Line 23 until all workers complete execution of the parallel
region. Workers in the parallel region may simultaneously wait
on another barrier at Line 17 or at the end of the worksharing
loops on Lines 6 and 19.

The limitations we have outlined in this section make it
challenging to map OpenMP programs onto a GPU using
the CUDA programming model. Significant effort has been
expended to bypass these limitations by developing code
transformations that enable a legal mapping onto CUDA.

IV. RELATED WORK

In this section we describe existing code transformation
techniques to map the OpenMP model onto GPUs.

A. Basic Block Neutering

This approach introduces control flow that causes workers
to bypass a basic block in a serial region [14], [19]. While
active threads execute statements in the basic block, inactive
threads simply follow the control flow path as decided by the
master thread.

360

#pragma omp target

S1: serial_work();

#pragma omp parallel \
num_threads(64)

P1: parallel_work();

#pragma omp barrier

P2: parallel_work();

Fig. 2: An OpenMP 4.5 program and the state machine
generated for its execution on a GPU by Bertolli et al. [16].

The master computes the condition expression of a branch,
writes to a common memory location, and synchronizes with
the workers. The workers read this result and branch to
the appropriate target, thus following the master. The short-
circuit evaluation rules of boolean operators in languages like
C and C++ contribute to the inefficiency of this approach.
In addition, memory synchronization primitives may inhibit
traditional compiler optimizations.

Lee [15] and others [14] present code transformation al-
gorithms that minimize the number of introduced control-
flow statements. For example, an entire single-entry single-
exit region can be skipped by worker threads if it can be
determined that there is no parallel region within it. However,
this can be challenging to conclusively prove, for example, in
the presence of function calls.

None of these published works propose a solution to the
last two limitations listed in § III.

B. Master-Controlled State Machine

Bertolli et al. [16] suggest a scheme that defines a state ma-
chine from an OpenMP target region. The master thread guides
workers through states, with periodic thread synchronization
at a well-defined barrier state SYNC.

Figure 2 shows an example, with states SI, PI, and P2
representing code sections. Before entering each of these states
a predicate activates the appropriate number of workers. After
executing a code section the master sets the next state for all
workers. All threads synchronize at the SYNC state, imple-
mented with the standard CUDA primitive, before progressing
to the next OpenMP region.

The state machine is constructed in this manner to overcome
the limitations in §III. Unfortunately, the introduction of
control flow circuits through the single SYNC state disrupts
data flow analysis, which may affect the quality of generated
code. Finally, it is challenging to handle orphaned OpenMP
directives in user functions with this scheme.

V. OPENMP CODE GENERATION

We believe the complexity of existing work arises because
they have always abstracted GPU hardware as an SPMD
execution device. Prior work models a CTA as a collection

361

of CUDA threads onto which OpenMP threads are mapped.
This mapping is challenging to do correctly on the underlying
SIMT hardware. The key idea of our work is to treat a CTA as
a collection of warps that can be specialized [17] for distinct
roles within the OpenMP execution model.

We designate one warp in a CTA as the master and all
others as workers. The master warp is solely responsible for
executing serial sections while only worker warps execute
parallel regions.

Existing work, which makes no such separation of concerns,
maps OpenMP threads to CUDA’s SPMD model and forces
all CUDA threads in a CTA to navigate through serial and
parallel regions. This leads to the complex, intertwined code
generation strategies described in the previous section. Instead,
by assigning a warp to execute either a serial or a parallel
region but not both, code generation can be tailored to each
task.

In the following sections we first describe a model for
programming warps in a CTA and then present our mapping
for the OpenMP fork-join model.

A. Warp Specialized Programming

Our approach exploits the fact that two different warps can
execute distinct code regions without suffering a performance
penalty as long as SIMT threads within each warp do not di-
verge. To coordinate warps we require a new barrier primitive
that can synchronize warps.

To synchronize the master and worker warps we define
the CTA-level synchronization primitive cta.sync $0, $1. The
first argument to this primitive is an integer that identifies a
barrier. The second argument indicates the number of warps
participating in the barrier. This definition permits a subset of
the total number of warps in a CTA to participate in a barrier.
Additionally, different subsets of warps in a CTA may wait on
different barriers, as determined by the identifier argument.

A warp is said to arrive at a barrier when any of its SIMT
threads execute the primitive. Different warps may arrive at the
barrier via different syntactic locations. However, for correct
operation, the SIMT threads of a warp that is participating
in a barrier must execute the primitive exactly once, i.e., the
primitive must be issued exactly once per warp. A collection
of SIMT threads arriving at a barrier is blocked until the
barrier completes. Warps are released through a barrier when
all participating warps arrive.

a) Model Implementation: Our model can be imple-
mented on modern SIMT hardware from NVIDIA and AMD
by directly using assembly-level PTX and HSA instructions
respectively. Warp-level synchronization can be achieved with
named barriers' on NVIDIA GPUs and fine-grain barriers*
on AMD GPUs.

B. A Pool-of-Warps for a Parallel Region

With our model defined, we can now introduce our approach
to exploiting fork-join parallelism. When an OpenMP target

Thttp://docs.nvidia.com/cuda/parallel-thread-execution/
#parallel-synchronization-and-communication-instructions-bar

Zhttp://www.hsafoundation.com/html_spec11/HSA_Library.htm#PRM/
Topics/09_Parallel/fine_grain_barrier.htm

master
thread
executes
serial region

Y »
master shadow master thread

—

warp pool for parallel region

launch

cta.sync #0, 4warps parallel

S

inactive workers

parallel
execution
with 64 threads

.
Yaaus®

——

O

.
‘e

‘e

idle
idle

.
user barrieryg cta.sync #1, 2warps H

.
.
.
.
.

o

cta.sync #0, 4warps : ‘=
Fig. 3: Our approach to exploiting fork-join parallelism on
GPUs for the program in Figure 2. The GPU kernel is launched
with the first three warps dedicated for parallel regions and the
last for serial execution. Time flows from top to bottom.

region is launched as a GPU kernel the last warp of a CTA
is designated as the master. All other warps are placed in a
pool. Within the master warp we deactivate all but one of its
SIMT threads®. The OpenMP master thread is mapped to the
one SIMT thread in this warp and executes serial regions.

When the master encounters a parallel region, it activates the
worker warps and suspends execution. We map one OpenMP
worker thread to each of the SIMT threads in worker warps.
This allows us to fully exploit the SIMT hardware for regular
OpenMP programs.

In the parallel region, the execution context of the master is
resurrected on the first SIMT thread of the first worker warp
as a shadow. When worker warps reach the end of the parallel
region they are suspended, the master thread is reincarnated
in the master warp, and single-threaded execution resumes.

Figure 3 illustrates this process for the OpenMP program
listed in Figure 2. Upon kernel launch worker warps imme-
diately enter a pool, awaiting work from the master. This is
implemented by waiting on barrier .

When the master thread encounters a parallel region it
arrives at barrier to release workers. One or more of
the worker warps, as controlled by an optional num_threads
clause, execute the parallel region.

An OpenMP user barrier in a parallel region is implemented
with our synchronization primitive on barrier @ Only warps
actively executing the parallel region participate in this barrier.

3This is typically done by causing the deactivated SIMT threads to
immediately return from the kernel and is required for correct operation of
our synchronization primitive.

362

At the end of the parallel region the workers wake up the
master thread (barrier can be recycled for this purpose)
and return to the pool.

Pseudocode 1 Fork-Join codegen for SIMT hardware

1: function TARGET() > Kernel launched with num_warps warps
per CTA

2: if ISMASTERWARP() then MASTERFN()

3: else WORKERFN()

4:

5: function MASTERFN() > Executed by the master warp
6: if ISNOTFIRSTSIMTTHREAD() then return

7. Serial Region S1 > Single threaded execution
8: WorkFn < PARALLELFN [> Encountered a parallel region
9: OmpThreads < user requested num_threads

10: cta.sync , NUM_Warps > Activate workers
11: > Implicit barrier at the end of a parallel region
12: cta.sync , NUM_Warps

13:

14: WorkFn < @ > Termination condition
15: cta.sync @, num_warps

16:

17: function WORKERFN() > Executed by worker warps
18: loop

19: cta.sync @, num_warps > Wait for parallel work
20: if WorkEF'n =2 then break > Termination condition
21:
22: if CUDATHREADID() < OmpThreads then
23: WorkFn() > Execute parallel region
24:

25: > Implicit barrier at the end of a parallel region
26: cta.sync , num_warps

27: end loop

28:

29: function PARALLELFN() > Outlined Parallel Region

30: Parallel Code P1 OmpThread
. . | OmpThreads
31: ActiveWarps [7Warp5ize }
32: cta.sync @, ActiveW arps > User barrier
33: Parallel Code P2

Pseudocode 1 shows the code generated by our compiler
for the OpenMP program in Figure 2. Statements 2 and 3
specialize execution by warp type. To preserve the semantics
of our synchronization primitive Statement 6 deactivates all
but the first SIMT thread in the master warp.

Our compiler outlines code regions associated with a par-
allel directive into functions (see PARALLELFN). When the
master thread encounters a parallel directive it assigns the
associated outlined function to worker warps through the com-
municator WorkFn. The requested number of active OpenMP
threads in the parallel region is also communicated to worker
warps. Only active OpenMP worker threads call the outlined
function to execute the parallel region.

Note that the parallel region need not be nested in the
same lexical scope as the target directive; the master may
encounter it in a separate translation unit and the workers
execute the region by making an indirect call. However, for
efficiency reasons, we convert the indirect call to direct calls

when possible using the following pattern®:

if WorkFn = PARALLELFN1 then PARALLELFNI()

else if WorkFn = PARALLELFN2 then PARALLELFN2()

else if WorkFn =--- then ---

Our scheme implements user barriers using the synchro-
nization primitive for warps (removing Limitation 2). The
availability of two distinct barriers enables the concurrent
implementation of the implicit barrier at the end of a parallel
region and the user barrier within it (lifting Limitation 3).

C. Optimizations for High Performance

We have implemented the proposed code generator in Clang
and the LLVM toolchain. In this section we briefly summa-
rize several optimizations that are important to achieve high
performance.

a) Sharing the Master’s Stack with Workers: Modern
GPUs store the stack of a SIMT thread in a local address space
that cannot be referenced outside its context. In the OpenMP
model, variables declared on the master thread’s stack may
be live-in (live-out) to (from) a parallel region. We therefore
implement a soft stack in globally addressable memory to
permit sharing of variables with worker threads.

The stack is organized as a list of slots, with each slot
pointing to a chunk of fixed-size storage in off-chip memory.
Storage for the first slot is preallocated. Only if there is
insufficient storage (e.g. when calling an external function that
is not visible at the call site) is the slot closed and a new one
dynamically allocated on the GPU.

b) Managing OpenMP State: Internal state variables that
control the scheduling of OpenMP threads along with the soft
stack are of considerable size and must be stored off-chip.
The challenge is to manage this storage for the large number
of concurrent teams initiated on a GPU kernel launch’. It is
impractical to preallocate storage for all teams, and undesirable
for users to limit the number of concurrent teams.

We exploit the fact that only a small number of teams are
resident simultaneously on a GPU’s processors (16 to 32 per
processor). We preallocate up to 32 buffers in a per-processor
queue from which the team master checks out a buffer for
the duration of its execution®. High throughput queues for
GPUs [20] minimize overhead and contention is limited to
teams running on the same processor.

c) Inlining and Eliding the OpenMP Runtime: Our
OpenMP runtime is implemented in a library that is translated
to LLVM bitcode and fully inlined within user programs. This
avoids the overhead of function calls on the GPU.

Nevertheless, the overhead of the runtime is often evident,
particularly for simple kernels. Many offloaded kernels do not
require the entire capabilities of the OpenMP runtime. For
example, most worksharing loops are statically not dynam-
ically scheduled; SPMD constructs do not require the soft
stack; and when other constructs do require it, the stack can

“This allows the low-level GPU compiler to more accurately assess the
resource requirements of the kernel.

SGPU kernels execute with billions of concurrent teams [5].

SThe queue is guaranteed to be non-empty if its size is equal to the
maximum number of resident teams per processor.

363

often be implemented statically in the GPU’s shared memory
scratchpad.

Our compiler completely elides the runtime for many com-
monly used offload patterns. This removes the overhead of
state initialization/deinitialization and uses a simplified code
path that references special purpose registers on the GPU’
instead of off-chip memory.

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of our proposed
OpenMP code generator and compiler. We start with a detailed
description of our evaluation environment. Our first experiment
measures the overheads of common OpenMP directives used
to exploit fork-join parallelism on the GPU. Next, we focus
on the performance advantage of exploiting nested parallelism
across a diverse set of benchmarks. Finally, we compare our
work against the state-of-the-art.

a) Experimental Setup: We run our experiments on an
OpenPower node with Power 8 processors (model PowerNV
8247-42L) attached via PClIe to NVIDIA Kepler GPUs (K40m,
CC 3.5) with 12 GiB RAM each. The GPU has 15 multipro-
cessors clocked at 875 MHz and runs with ECC enabled.

We use Nvidia’s profiler to collect and report the execution
times for kernels of interest. This helps us isolate active
execution time on the GPU from data transfer time, which
is consistent regardless of the code generation technique or
compiler that is used. Each benchmark is run five times and the
average runtime is calculated with the 99% confidence interval
within 5% of the reported means. We summarize speedups
across benchmarks using the geometric mean, having ensured
that the distribution is log-normal with the Shapiro-Wilk test.

b) Benchmarks: To understand the performance limits of
our compiler we evaluate a number of micro-benchmarks and
benchmarks from standard suites.

Several of our benchmarks are part of the recently released
SPEC ACCEL suite (pomriq, pep, pcsp, pbt). These are the
C/C++ codes of the suite that contain nested parallelism.
imghisto [21] computes the N-bin histogram of a 12-bit
monochrome image. HACCmk [22] is a short-force evaluation
routine part of the CORAL benchmark suite. fginv and tnsrtrns
are respectively a batched fine-grained GJE matrix inversion
kernel and a tensor transpose kernel.

We also use several applications from the Rodinia [9] suite
that are written in OpenMP, focusing on those that contain
nested parallelism (bfs, kmeans, particlefilter, b+tree, lavamd,
streamcluster, heartwall, backprop, lud). We did not include
two benchmarks, mummergpu and leukocyte. The former uses
CUDA APIs and kernels, while the latter uses a large number
of heap allocations that cause an out-of-memory error on the
GPU. The Rodinia suite is originally written in OpenMP 3.1
for CPUs. We ported it to OpenMP 4.5 to enable offloading to
accelerators. Care was taken to remain faithful to the original
algorithm and data layout.

"For many constructs the OpenMP thread number, team number and number
of teams map directly to threadld, blockld, and blockDim.

c) Compilers: We have implemented our OpenMP 4.5
compiler and runtime in Clang/LLVM [23] based on the
4.0.0 toolchain in the mainline repository (updated January
2017). We have extended the OpenMP code generator in Clang
to implement our proposal. After an OpenMP program is
optimized by LLVM, the NVPTX backend generates PTX
assembly that is compiled and linked with ptxas and nvlink
respectively (CUDA Toolkit v8.0.61). Our contributions are
open source and we are in the process of submitting patches
to the LLVM community. The development branch of our
compiler and runtime are available on GitHub [24].

To understand the quality of our implementation we also
compare our work against state-of-the-art compilers from
academia and industry. Several OpenMP 4.5 compilers for
GPUs have been published in the literature. Unfortunately we
found many of them to be unstable: several [10], [12], [13]
failed to compile or successfully run our suite. Ones that are
more robust, and which we use in our comparison, are Clang-
ykt (v3.8.0) [25] and GCC-OMP (v7.1.0) [26]. We also ported
our suite to OpenACC and tried the ACCULL [27], CAPS, and
OpenUH [28] compilers but found them to be brittle, failing on
our suite, and only succeeding with GCC-ACC (v7.1.0) [26],
[14]. Table I summarizes this information, showing the flags
used and those kernels from our suite that nevertheless failed
to compile or run successfully with each compiler.

Compiler Flags Failed Kernels
-03 -ffast-math -fip-
contract=fast -fopenmp
This work -fopenmp-targets=nvptx64- None
nvidia-cuda -fopenmp-
nonaliased-maps
-03 -ffast-math -ffp-
contract=fast -fopenmp
CLANG- -target powerpc6dle-ibm- | kmeans, pbt, btree-
YKT [25] linux-gnu -mcpu=pwr8 | nested
-omptargets=nvptx64sm_35-
nvidia-linux
imghisto, fginv-
GCC- -fopenmp -O3 -ffast-math - spmd, tnsrtrns-spmd,
OMP [26] Joffload=-Im streamcluster-spmd,
btree-nested
GCC- - kmeans, tnsrtrns-
ACC [26],];j;j’;‘l’;z;:-h;loj Sast-math - nested, btree-nested,
[14] imghisto-nested

TABLE I: Compilers studied in our experiment.

In all of our experiments we prefer to let the compiler and
offload library select the number of teams and threads for each
kernel. However, we found Clang-ykt and GCC-ACC to select
suboptimal launch parameters. For a fair comparison, we use
clauses to manually set the team size and the number of teams.
Note that these launch parameters are automatically selected
by our compiler and runtime.

d) SPMD vs. Nested Parallelism: We implement two
versions of each benchmark. The first, our baseline, places
the construct target teams distribute parallel for collapse(...)
at the outermost loop(s) of a kernel. This is a proxy for the
majority of OpenMP compilers for the GPU [10], [11], [12],
[13] that only exploits one level of parallelism. Our second
version uses the farget teams distribute directive to exploit
outer parallelism across teams and the parallel for directive
on an inner loop to exploit nested parallelism within a team.

364

OVERSUBSCRIBE —+—
BARRIER
PARALLEL —*—

FOR NOWAIT —&—
FOR
PARALLEL FOR

OpenMP Overhead (clocks)

400

OpenMP Overhead (clocks)

OpenMP Threads

(b)

Fig. 4: Overheads of various OpenMP constructs with the
runtime (top) and the runtime elision optimization (bottom).

A. Overhead of Parallelization with OpenMP

In our first experiment, we use the well-known EPCC
OpenMP micro-benchmark suite [29] to measure overhead of
OpenMP constructs. We study the quality of our implementa-
tion by porting this benchmark to OpenMP 4.5 and running it
on the GPU with our compiler.

We compare the execution time 7 of a serial code region
running on the master thread of one team to the parallel
execution time 7}, with p workers in the team of the code
section enclosed by a given directive. The overhead of the
directive is calculated as T}, — % We refer the reader to
Bull [29] for complete details of the methodology.

Figure 4 plots the overhead, measured for several directives,
as the number of workers in a parallel region scales to 992
(recall that the master warp does not participate in the parallel
region). The graph on the top shows the overhead in the worst
case, when the entire capabilities of the OpenMP runtime is
required. Overhead is measured to be thousands of cycles and
is almost entirely due to loads and stores to data structures
residing in external memory. Since GPUs have very limited
caches they expose threads to the long latency of accesses to
off-chip memory.

Figure 4b shows the overhead with our runtime elision
optimization that applies to many real-world programs. For
example, if the parallel directive does not have a num_threads
clause we can directly read the default team size from the
special-purpose register blockDim instead of referencing external
memory. Overhead is reduced to just 200-300 cycles and is
dominated by the cost of warp specialization and the signaling

Loop Itr. Ratio Inner Reduction/ Coa-
Kernel Loop . .
(Outer:Inner) Size Atomics lescing
kmeans 10,000:1 VL OR, IR F
bfs 10,000:1 L N/A P
particlefilter 100:1 L IR P
pbt:K3 20:1 G N/A F
pbt:K4 20:1 G N/A F
pbt:K5 20:1 G N/A F
pomriq 10:1 M IR P
pesp:K1 5:1 L N/A P
pesp:K2 5:1 L N/A N
b+tree 3:1 M IR F
lavamd 1:10 M N/A P
haccmk 1:20 M IR F
heartwall 1:20 VG IR P
streamcluster 1:25 L OR, IR, OA F
tnsrtrns 1:50 L N/A F
pesp:K3 1:80 M N/A F
pep:K1 1:100 L N/A F
fginv 1:100 M N/A P
pep:K2 1:150 L OR, IR N
pbt:K1 1:500 G N/A P
pbt:K2 1:500 G N/A P
lud:K1 1:500 to 500:1 VL IR P
lud:K2 1:500 to 500:1 VL IR P
backprop 1:4,000; 4,000:1 VL IR P
imghisto 1:6,000 VL OA, 1A P

TABLE II: Kernel Metrics. Key: Inner loop size is either very
low (VL), low (L), moderate (M), large (G), or very large
(VG); Reduction/Atomics are Inner Loop Reduction (IR),
Outer Loop Reduction (OR), Inner Loop Atomics (IA), and
Outer Loop Atomics (OA); Coalesced accesses are either none
(N), partial (P) or full (F).

mechanism for the pool of warps. The low overhead can be
attributed to the use of efficient hardware barriers for thread
synchronization. Similar optimizations dramatically reduce
overhead of all directives to just hundreds of cycles.
Overhead scales very well until around 200 threads and then
increases gradually. We surmise the increase is due to over-
subscription of warps from the team, as is demonstrated by the
curve marked oversubscribe, which is the reference program
running on multiple threads written so as to only include the
hardware cost of oversubscription. The for nowait directive
closely tracks the gradient of this curve; other directives, all
of which include a barrier, scale slightly worse due to the
increased cost of synchronizing a larger number of warps.

B. Exploiting Nested Parallelism

In our second experiment we quantify the advantage of
exploiting nested parallelism on the GPU. Figure 5 shows
the speedup of various OpenMP kernels exploiting nested
parallelism as compared to their SPMD versions. Except bfs,
kmeans and pomriq, all benchmarks show similar or improved
performance when exploiting nested parallelism (3.6x on
average). backprop benefits the most with a 32x speedup,
while particlefilter and heartwall performed about the same
for both versions. For bfs, kmeans and pomrig, SPMD versions
outperform the nested parallel versions by 30% to 4x.

We identified the major sources of the performance dif-
ferences between SPMD and nested parallelism versions as
follows: (1) outer-loop vs. inner-loop iteration counts, (2) the

365

amount of work in the inner loop, (3) memory coalescing, and
(4) reduction or atomic clauses in the outer/inner loop. Table II
shows measurements of these metrics for all the benchmarks.

Nested parallel versions with sufficient work within the
inner loop outperform SPMD versions as it efficiently exploits
the additional level of intra-team parallelism. The level of
intra-team parallelism is decided mainly by the iteration count
of the inner loop and the size of the loop body. Among the
benchmarks evaluated, those with an inner loop count less than
100 all performed worse with the nested parallelism version
(bfs, kmeans, particlefilter, heartwall). These benchmarks fail
to amortize the OpenMP overhead of invoking worker threads.

For benchmarks that have higher inner loop iteration counts,
the ratio between available inter-team (outer loop) and intra-
team (inner loop) parallelism is a more precise predictor
of performance. SPMD versions perform well with enough
inter-team parallelism, reducing the potential performance gain
from exploiting an additional level of parallelism. b+tree, lud,
pomriq, pcsp and pbt have outer-loop iteration counts higher
than inner loops. These benchmarks show relatively low speed-
up or even slow down compared to SPMD versions (except
for pbt which has large inner loop bodies). pomrig suffers the
most because its outer loop has 10x more iterations than the
inner loop and its inner loop has a very small loop body.

On the other hand, all benchmarks with higher inner loop

iteration count than the outer loop (ratio > 1) show better
performance when exploiting nested parallelism. Nevertheless,
the measured speedup between the two versions varies signif-
icantly across the benchmarks. Next, we identify two factors
that determine the actual speedup realized.
Atomic and Reduction Overheads: Atomic and reduction
operations within target regions add additional synchronization
or communication overheads, slowing down thread execution.
For example, streamcluster has an atomic directive in the
outer loop, causing all threads in SPMD versions to perform
the atomic operation while only team masters perform it in
the nested parallel version. The reduction operation adds a
sequential gather phase at the end of parallel execution. We
confirmed that reduction clauses slow down inner or outer loop
execution by comparing a modified version without reduction
clauses to the original version for particlefilter, b+tree, heart-
wall, streamcluster, hacckmk, backprop, lud, pomriq, and pep.
Coalesced Accesses: The GPU issues a much larger number
of memory accesses in parallel from active threads than a
CPU so coalescing memory accesses to reduce the number of
memory requests and bandwidth pressure is critical. Memory
accesses can be coalesced only when they are contiguous in
address space across threads in the same warp. We observed
in general that benchmarks with moderately higher intra-team
parallelism only exhibited a significant speedup when memory
accesses are coalesced.

C. Comparison to Related Work

In our final experiment we compare our compiler to existing
work. Figure 6a plots comparative performance of the SPMD
pattern that only exploits parallelism at the outermost level.
Speedup is measured as the execution time of a benchmark

100
10
1
0.1

BASE NESTED

Speedup

ST T VT M

0.01°
O N &
NN ﬁ\o‘sz} @ O éee’&%’%@i ‘é&. O
3

Q ({\d@\

Fig. 5: Speedup when exploiting nested parallelism with our compiler as compared to a baseline that only exploits outer

parallelism.

100 ;
10 ¢
1;

C

Speedup

GCC-OMP GCC-ACC

LANG-YKT

(oS

R e®
S
WIS

24

O

)
O‘o

<

OO0 OO
SR LR R R
O L FQ Qc Qc, Qc,

&

X

4

LR LE
SEE

X X
INENERNY

O

(a)

CLANG-YKT

GCC-OMP GCC-ACC

© OO O OO0

SR ¥
QP

OO >
QQ.Q.Q. . .\Q’.
2~ 28 (O~ (o8 (o8 L
Q QQ(/Q(/Q(/ Q

X X
RN

(b)

Fig. 6: Benchmark speedup of our compilers vs. existing work on (a) the baseline SPMD pattern and (b) the nested parallel

pattern.

when compiled with our work versus CLANG-YKT, GCC-
OMP, and GCC-ACC. Almost all benchmarks run faster with
our compiler, with an average speedup of 1.5x, 1.6x and 4.0x
respectively. These results show that our baseline is highly
performant.

Next we compared the speedup against these compilers on
the nested pattern. Our compiler is 2.1x, 7.0x and 7.6x faster
than CLANG-YKT, GCC-OMP, and GCC-ACC respectively.
None of the benchmarks are significantly slower when com-
piled with our compiler.

Across these experiments the Master-Controlled State Ma-
chine approach of CLANG-YKT performs better than the
Basic Block Neutering approaches implemented in GCC. The
latter approach shows significant performance degradation as
compared to the SPMD pattern. It is possible that this is
a quality-of-implementation issue but we believe the poor
performance is an indicator of the difficulties in forcing fork-

Jjoin parallelism onto the CUDA programming model.

Our results show that it is possible to achieve significant
performance improvement when exploiting nested parallelism
using the fork-join model but it requires going beyond the
CUDA model and using the techniques of warp specialization
and named barriers that we have proposed. Moreover every
compiler we evaluated fails to successfully compile and run
all benchmarks, which we believe is due to the brittle nature
and complexity of their mapping techniques.

VII. CONCLUSIONS

We have presented an open source OpenMP 4.5 compliant
compiler for GPUs. As part of this work we have proposed
a novel code generation technique to map the fork-join pro-
gramming model to GPUs. Compared to existing work our
approach is simpler to implement, robust, and produces high
performing GPU code. The ideas presented in this paper are

366

general and can be applied to other SIMT architectures. The
insights in this paper should also enable further research into
parallel programming models that is richer than the narrowly
focused CUDA model.

[1]
[2]
[3]
[4]

[6]

17

—

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

REFERENCES

O. R. L. C. Facility, “TITAN: Built for science,” http://www.olcf.ornl.
gov/titan/, 2013.

S. N. S. Center, “Piz Daint,” http://www.cscs.ch/computers/piz_daint/
index.html, 2016.

0. R. L. C. Facility, “SUMMIT,” https://www.olcf.ornl.gov/summit/,
2017.

L. L. N. Laboratory, “CORAL/Sierra,” https://asc.llnl.gov/coral-info,
2017.

NVIDIA, “The CUDA C programming guide,” https://docs.nvidia.com/
cuda/cuda-c-programming-guide/, 2017.

K. Group, “Open computing language,” https://www.khronos.org/
opencl/, 2017.

OpenACC.org, “The OpenACC® APL” http://www.openacc.org/sites/
default/files/OpenACC_2pt5.pdf, 2015.

0. ARB, “The OpenMP® Application Program Interface,” http:/www.
openmp.org/mp-documents/openmp-4.5.pdf, 2017.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC), 2009.

C. Shen, X. Tian, D. Khaldi, and B. Chapman, “Assessing one-to-
one parallelism levels mapping for OpenMP offloading to GPUs,” in
Proceedings of the 8th International Workshop on Programming Models
and Applications for Multicores and Manycores, 2017, pp. 68-73.

J. Kim, Y.-J. Lee, J. Park, and J. Lee, “Translating OpenMP device
constructs to OpenCL using unnecessary data transfer elimination,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16, 2016.

C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan, and B. Chapman,
“Early experiences with the openmp accelerator model,” in OpenMP in
the Era of Low Power Devices and Accelerators. ~Springer, 2013, pp.
84-98.

S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: A compiler
framework for automatic translation and optimization,” in Proceedings

of the 14th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2009.

N. Sidwell, “OpenACC implementation in GCC.” https://www.youtube.
com/watch?v=SBX6_K1AD7s, 2015.

S. Lee and J. S. Vetter, “OpenARC: Extensible openacc compiler frame-
work for directive-based accelerator programming study,” in Proceedings
of the First Workshop on Accelerator Programming Using Directives,
ser. WACCPD 14, 2014.

C. Bertolli, S. F. Antao, A. E. Eichenberger, K. O’Brien, Z. Sura,
A. C. Jacob, T. Chen, and O. Sallenave, “Coordinating GPU threads for
OpenMP 4.0 in LLVM,” in Proceedings of the 2014 LLVM Compiler
Infrastructure in HPC, ser. LLVM-HPC ’14, 2014, pp. 12-21.

M. Bauer, H. Cook, and B. Khailany, “CudaDMA: Optimizing GPU
memory bandwidth via warp specialization,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’11, 2011.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40-53, Mar. 2008.
Y. Yang and H. Zhou, “CUDA-NP: Realizing nested thread-level paral-
lelism in GPGPU applications,” in Proceedings of the 19th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP 14, 2014, pp. 93-106.

T. R. W. Scogland and W.-c. Feng, “Design and Evaluation of Scalable
Concurrent Queues for Many-Core Architectures,” in International Con-

ference on Performance Engineering (ICPE), Austin, TX, USA, January

2015.

J. Gémez-Luna, J. M. Gonzilez-Linares, J. I. Benavides, and N. Guil,
“An optimized approach to histogram computation on gpu,” Machine
Vision and Applications, vol. 24, no. 5, pp. 899-908, 2013.

C. Benchmarks, “Haccmk,” https://asc.llnl.gov/CORAL-benchmarks/
Summaries/HACCmk_Summary_v1.0.pdf, 2017.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” San Jose, CA, USA, Mar 2004,
pp. 75-88.

367

[24]
[25]
[26]
[27]

[28]

[29]

I. Research, “Clang/llvm compiler for gpus,”
clang-ykt, 2017.

, “Clang-ykt compiler for gpus,” https://github.com/clang- ykt/clang/
tree/version_01, 2016.

G. D. Community, “Gece 7.1,” https://gce.gnu.org/gec-7/, 2017.

R. Reyes, 1. Lopez-Rodriguez, J. J. Fumero, and F. de Sande, accULL:
An OpenACC Implementation with CUDA and OpenCL Support, 2012,
pp. 871-882.

X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran, and B. Chapman,
Compiling a High-Level Directive-Based Programming Model for GPG-
PUs, 2014, pp. 105-120.

J. M. Bull, “Measuring synchronisation and scheduling overheads in
OpenMP,” in In Proceedings of First European Workshop on OpenMP,
1999, pp. 99-105.

https://github.com/

