[Mlir-commits] [mlir] [mlir][fold-memref-alias-ops] Add support for folding memref.expand_shape involving dynamic dims (PR #89093)

Prathamesh Tagore llvmlistbot at llvm.org
Tue May 7 21:40:25 PDT 2024


https://github.com/meshtag updated https://github.com/llvm/llvm-project/pull/89093

>From 97ade0568b16254ee1f212ac588d3a3d6c1efe54 Mon Sep 17 00:00:00 2001
From: Prathamesh Tagore <prathamesh+1 at polymagelabs.com>
Date: Wed, 8 May 2024 10:10:03 +0530
Subject: [PATCH] [mlir][fold-memref-alias-ops] Add support for folding
 memref.expand_shape involving dynamic dims

fold-memref-alias-ops pass bails out in presence of dynamic shapes which leads to unwanted propagation of alias types during other transformations. This can percolate down further and can lead to errors which should not have been created in the first place.
---
 .../mlir/Dialect/MemRef/Utils/MemRefUtils.h   | 29 +++++++
 .../MemRef/Transforms/FoldMemRefAliasOps.cpp  | 85 ++++++++++++++-----
 mlir/lib/Dialect/MemRef/Utils/MemRefUtils.cpp | 23 +++++
 .../Dialect/MemRef/fold-memref-alias-ops.mlir | 81 +++++++++++++-----
 4 files changed, 180 insertions(+), 38 deletions(-)

diff --git a/mlir/include/mlir/Dialect/MemRef/Utils/MemRefUtils.h b/mlir/include/mlir/Dialect/MemRef/Utils/MemRefUtils.h
index 7d9a5e6ca759..46003ed84686 100644
--- a/mlir/include/mlir/Dialect/MemRef/Utils/MemRefUtils.h
+++ b/mlir/include/mlir/Dialect/MemRef/Utils/MemRefUtils.h
@@ -64,6 +64,35 @@ getLinearizedMemRefOffsetAndSize(OpBuilder &builder, Location loc, int srcBits,
 // it means both the allocations and associated stores can be removed.
 void eraseDeadAllocAndStores(RewriterBase &rewriter, Operation *parentOp);
 
+/// Given a set of sizes, return the suffix product.
+///
+/// When applied to slicing, this is the calculation needed to derive the
+/// strides (i.e. the number of linear indices to skip along the (k-1) most
+/// minor dimensions to get the next k-slice).
+///
+/// This is the basis to linearize an n-D offset confined to `[0 ... sizes]`.
+///
+/// Assuming `sizes` is `[s0, .. sn]`, return the vector<Value>
+///   `[s1 * ... * sn, s2 * ... * sn, ..., sn, 1]`.
+///
+/// It is the caller's responsibility to provide valid OpFoldResult type values
+/// and construct valid IR in the end.
+///
+/// `sizes` elements are asserted to be non-negative.
+///
+/// Return an empty vector if `sizes` is empty.
+///
+/// The function emits an IR block which computes suffix product for provided
+/// sizes.
+SmallVector<OpFoldResult>
+computeSuffixProductIRBlock(Location loc, OpBuilder &builder,
+                            ArrayRef<OpFoldResult> sizes);
+inline SmallVector<OpFoldResult>
+computeStridesIRBlock(Location loc, OpBuilder &builder,
+                      ArrayRef<OpFoldResult> sizes) {
+  return computeSuffixProductIRBlock(loc, builder, sizes);
+}
+
 } // namespace memref
 } // namespace mlir
 
diff --git a/mlir/lib/Dialect/MemRef/Transforms/FoldMemRefAliasOps.cpp b/mlir/lib/Dialect/MemRef/Transforms/FoldMemRefAliasOps.cpp
index aa44455ada7f..29a5bc9a7ae5 100644
--- a/mlir/lib/Dialect/MemRef/Transforms/FoldMemRefAliasOps.cpp
+++ b/mlir/lib/Dialect/MemRef/Transforms/FoldMemRefAliasOps.cpp
@@ -19,6 +19,7 @@
 #include "mlir/Dialect/MemRef/IR/MemRef.h"
 #include "mlir/Dialect/MemRef/Transforms/Passes.h"
 #include "mlir/Dialect/MemRef/Transforms/Transforms.h"
+#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
 #include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
 #include "mlir/Dialect/Utils/IndexingUtils.h"
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
@@ -63,39 +64,85 @@ resolveSourceIndicesExpandShape(Location loc, PatternRewriter &rewriter,
                                 memref::ExpandShapeOp expandShapeOp,
                                 ValueRange indices,
                                 SmallVectorImpl<Value> &sourceIndices) {
-  // The below implementation uses computeSuffixProduct method, which only
-  // allows int64_t values (i.e., static shape). Bail out if it has dynamic
-  // shapes.
-  if (!expandShapeOp.getResultType().hasStaticShape())
+  // Record the rewriter context for constructing ops later.
+  MLIRContext *ctx = rewriter.getContext();
+
+  // Capture expand_shape's input dimensions as `SmallVector<OpFoldResult>`.
+  // This is done for the purpose of inferring the output shape via
+  // `inferExpandOutputShape` which will in turn be used for suffix product
+  // calculation later.
+  SmallVector<OpFoldResult> srcShape;
+  MemRefType srcType = expandShapeOp.getSrcType();
+
+  for (int64_t i = 0, e = srcType.getRank(); i < e; ++i) {
+    if (srcType.isDynamicDim(i)) {
+      srcShape.push_back(
+          rewriter.create<memref::DimOp>(loc, expandShapeOp.getSrc(), i)
+              .getResult());
+    } else {
+      srcShape.push_back(rewriter.getIndexAttr(srcType.getShape()[i]));
+    }
+  }
+
+  auto outputShape = inferExpandShapeOutputShape(
+      rewriter, loc, expandShapeOp.getResultType(),
+      expandShapeOp.getReassociationIndices(), srcShape);
+  if (!outputShape.has_value())
     return failure();
 
-  MLIRContext *ctx = rewriter.getContext();
+  // Traverse all reassociation groups to determine the appropriate indices
+  // corresponding to each one of them post op folding.
   for (ArrayRef<int64_t> groups : expandShapeOp.getReassociationIndices()) {
     assert(!groups.empty() && "association indices groups cannot be empty");
+    // Flag to indicate the presence of dynamic dimensions in current
+    // reassociation group.
     int64_t groupSize = groups.size();
 
-    // Construct the expression for the index value w.r.t to expand shape op
-    // source corresponding the indices wrt to expand shape op result.
-    SmallVector<int64_t> sizes(groupSize);
-    for (int64_t i = 0; i < groupSize; ++i)
-      sizes[i] = expandShapeOp.getResultType().getDimSize(groups[i]);
-    SmallVector<int64_t> suffixProduct = computeSuffixProduct(sizes);
-    SmallVector<AffineExpr> dims(groupSize);
-    bindDimsList(ctx, MutableArrayRef{dims});
-    AffineExpr srcIndexExpr = linearize(ctx, dims, suffixProduct);
+    // Group output dimensions utilized in this reassociation group for suffix
+    // product calculation.
+    SmallVector<OpFoldResult> sizesVal(groupSize);
+    for (int64_t i = 0; i < groupSize; ++i) {
+      sizesVal[i] = (*outputShape)[groups[i]];
+    }
+
+    // Calculate suffix product of relevant output dimension sizes.
+    SmallVector<OpFoldResult> suffixProduct =
+        memref::computeSuffixProductIRBlock(loc, rewriter, sizesVal);
+
+    // Create affine expression variables for dimensions and symbols in the
+    // newly constructed affine map.
+    SmallVector<AffineExpr> dims(groupSize), symbols(groupSize);
+    bindDimsList<AffineExpr>(ctx, dims);
+    bindSymbolsList<AffineExpr>(ctx, symbols);
 
-    /// Apply permutation and create AffineApplyOp.
+    // Linearize binded dimensions and symbols to construct the resultant
+    // affine expression for this indice.
+    AffineExpr srcIndexExpr = linearize(ctx, dims, symbols);
+
+    // Record the load index corresponding to each dimension in the
+    // reassociation group. These are later supplied as operands to the affine
+    // map used for calulating relevant index post op folding.
     SmallVector<OpFoldResult> dynamicIndices(groupSize);
     for (int64_t i = 0; i < groupSize; i++)
       dynamicIndices[i] = indices[groups[i]];
 
-    // Creating maximally folded and composd affine.apply composes better with
-    // other transformations without interleaving canonicalization passes.
+    // Supply suffix product results followed by load op indices as operands
+    // to the map.
+    SmallVector<OpFoldResult> mapOperands;
+    llvm::append_range(mapOperands, suffixProduct);
+    llvm::append_range(mapOperands, dynamicIndices);
+
+    // Creating maximally folded and composed affine.apply composes better
+    // with other transformations without interleaving canonicalization
+    // passes.
     OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
         rewriter, loc,
         AffineMap::get(/*numDims=*/groupSize,
-                       /*numSymbols=*/0, srcIndexExpr),
-        dynamicIndices);
+                       /*numSymbols=*/groupSize, /*expression=*/srcIndexExpr),
+        mapOperands);
+
+    // Push index value in the op post folding corresponding to this
+    // reassociation group.
     sourceIndices.push_back(
         getValueOrCreateConstantIndexOp(rewriter, loc, ofr));
   }
diff --git a/mlir/lib/Dialect/MemRef/Utils/MemRefUtils.cpp b/mlir/lib/Dialect/MemRef/Utils/MemRefUtils.cpp
index 556a82de2166..c93e5a9dcd39 100644
--- a/mlir/lib/Dialect/MemRef/Utils/MemRefUtils.cpp
+++ b/mlir/lib/Dialect/MemRef/Utils/MemRefUtils.cpp
@@ -15,6 +15,7 @@
 #include "mlir/Dialect/Arith/Utils/Utils.h"
 #include "mlir/Dialect/MemRef/IR/MemRef.h"
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
+#include "llvm/ADT/STLExtras.h"
 
 namespace mlir {
 namespace memref {
@@ -155,5 +156,27 @@ void eraseDeadAllocAndStores(RewriterBase &rewriter, Operation *parentOp) {
     rewriter.eraseOp(op);
 }
 
+static SmallVector<OpFoldResult>
+computeSuffixProductIRBlockImpl(Location loc, OpBuilder &builder,
+                                ArrayRef<OpFoldResult> sizes,
+                                OpFoldResult unit) {
+  SmallVector<OpFoldResult> strides(sizes.size(), unit);
+  AffineExpr s0, s1;
+  bindSymbols(builder.getContext(), s0, s1);
+
+  for (int64_t r = strides.size() - 1; r > 0; --r) {
+    strides[r - 1] = affine::makeComposedFoldedAffineApply(
+        builder, loc, s0 * s1, {strides[r], sizes[r]});
+  }
+  return strides;
+}
+
+SmallVector<OpFoldResult>
+computeSuffixProductIRBlock(Location loc, OpBuilder &builder,
+                            ArrayRef<OpFoldResult> sizes) {
+  OpFoldResult unit = builder.getIndexAttr(1);
+  return computeSuffixProductIRBlockImpl(loc, builder, sizes, unit);
+}
+
 } // namespace memref
 } // namespace mlir
diff --git a/mlir/test/Dialect/MemRef/fold-memref-alias-ops.mlir b/mlir/test/Dialect/MemRef/fold-memref-alias-ops.mlir
index 254cd4015eed..99b5f78b03fb 100644
--- a/mlir/test/Dialect/MemRef/fold-memref-alias-ops.mlir
+++ b/mlir/test/Dialect/MemRef/fold-memref-alias-ops.mlir
@@ -468,23 +468,66 @@ func.func @fold_static_stride_subview_with_affine_load_store_expand_shape_3d(%ar
 
 // -----
 
-// CHECK-LABEL: fold_dynamic_subview_with_memref_load_store_expand_shape
-// CHECK-SAME: (%[[ARG0:.*]]: memref<16x?xf32, strided<[16, 1]>>, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[SZ0:.*]]: index)
-func.func @fold_dynamic_subview_with_memref_load_store_expand_shape(%arg0 : memref<16x?xf32, strided<[16, 1]>>, %arg1 : index, %arg2 : index, %sz0: index) -> f32 {
+// CHECK-LABEL: fold_dynamic_subview_with_memref_load_expand_shape
+// CHECK-SAME: (%[[ARG0:.*]]: memref<16x?xf32, strided<[16, 1]>>, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index) -> f32
+func.func @fold_dynamic_subview_with_memref_load_expand_shape(%arg0 : memref<16x?xf32, strided<[16, 1]>>, %arg1 : index, %arg2 : index, %sz0: index) -> f32 {
   %c0 = arith.constant 0 : index
   %expand_shape = memref.expand_shape %arg0 [[0, 1], [2, 3]] output_shape [1, 16, %sz0, 1] : memref<16x?xf32, strided<[16, 1]>> into memref<1x16x?x1xf32, strided<[256, 16, 1, 1]>>
   %0 = memref.load %expand_shape[%c0, %arg1, %arg2, %c0] : memref<1x16x?x1xf32, strided<[256, 16, 1, 1]>>
   return %0 : f32
 }
-// CHECK: %[[C0:.*]] = arith.constant 0 : index
-// CHECK: %[[EXPAND_SHAPE:.*]] = memref.expand_shape %[[ARG0]] {{\[\[}}0, 1], [2, 3]] output_shape [1, 16, %[[SZ0]], 1] : memref<16x?xf32, strided<[16, 1]>> into memref<1x16x?x1xf32, strided<[256, 16, 1, 1]>>
-// CHECK: %[[VAL_0:.*]] = memref.load %[[EXPAND_SHAPE]][%[[C0]], %[[ARG1]], %[[ARG2]], %[[C0]]] : memref<1x16x?x1xf32, strided<[256, 16, 1, 1]>>
-// CHECK: return %[[VAL_0]] : f32
+// CHECK-NEXT: %[[VAL1:.*]] = memref.load %[[ARG0]][%[[ARG1]], %[[ARG2]]] : memref<16x?xf32, strided<[16, 1]>>
+// CHECK-NEXT: return %[[VAL1]] : f32
 
 // -----
 
-// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0 * 1024 + d1)>
-// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d0 + d1)>
+// CHECK-LABEL: fold_dynamic_subview_with_memref_store_expand_shape
+// CHECK-SAME: (%[[ARG0:.*]]: memref<16x?xf32, strided<[16, 1]>>, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index)
+func.func @fold_dynamic_subview_with_memref_store_expand_shape(%arg0 : memref<16x?xf32, strided<[16, 1]>>, %arg1 : index, %arg2 : index, %sz0 : index) {
+  %c0 = arith.constant 0 : index
+  %c1f32 = arith.constant 1.0 : f32
+  %expand_shape = memref.expand_shape %arg0 [[0, 1], [2, 3]] output_shape [1, 16, %sz0, 1] : memref<16x?xf32, strided<[16, 1]>> into memref<1x16x?x1xf32, strided<[256, 16, 1, 1]>>
+  memref.store %c1f32, %expand_shape[%c0, %arg1, %arg2, %c0] : memref<1x16x?x1xf32, strided<[256, 16, 1, 1]>>
+  return
+}
+// CHECK: %[[C1F32:.*]] = arith.constant 1.000000e+00 : f32
+// CHECK-NEXT: memref.store %[[C1F32]], %[[ARG0]][%[[ARG1]], %[[ARG2]]] : memref<16x?xf32, strided<[16, 1]>>
+// CHECK-NEXT: return
+
+// -----
+
+// CHECK-DAG: #[[$MAP0:.*]] = affine_map<()[s0, s1] -> (s0 + s1)>
+// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0] -> (s0 * 3)>
+// CHECK-LABEL: fold_memref_alias_expand_shape_subview_load_store_dynamic_dim
+// CHECK-SAME: (%[[ARG0:.*]]: memref<2048x16xf32>, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index)
+func.func @fold_memref_alias_expand_shape_subview_load_store_dynamic_dim(%alloc: memref<2048x16xf32>, %c10: index, %c5: index, %c0: index, %sz0: index) {
+  %subview = memref.subview %alloc[%c5, 0] [%c10, 16] [1, 1] : memref<2048x16xf32> to memref<?x16xf32, strided<[16, 1], offset: ?>>
+  %expand_shape = memref.expand_shape %subview [[0], [1, 2, 3]] output_shape [1, 16, %sz0, 1] : memref<?x16xf32, strided<[16, 1], offset: ?>> into memref<?x1x8x2xf32, strided<[16, 16, 2, 1], offset: ?>>
+  %dim = memref.dim %expand_shape, %c0 : memref<?x1x8x2xf32, strided<[16, 16, 2, 1], offset: ?>>
+
+  affine.for %arg6 = 0 to %dim step 64 {
+    affine.for %arg7 = 0 to 16 step 16 {
+      %dummy_load = affine.load %expand_shape[%arg6, 0, %arg7, %arg7] : memref<?x1x8x2xf32, strided<[16, 16, 2, 1], offset: ?>>
+      affine.store %dummy_load, %subview[%arg6, %arg7] : memref<?x16xf32, strided<[16, 1], offset: ?>>
+    }
+  }
+  return
+}
+// CHECK-NEXT:   memref.subview
+// CHECK-NEXT:   %[[EXPAND_SHAPE:.*]] = memref.expand_shape
+// CHECK-NEXT:   %[[DIM:.*]] = memref.dim %[[EXPAND_SHAPE]], %[[ARG3]] : memref<?x1x8x2xf32, strided<[16, 16, 2, 1], offset: ?>>
+// CHECK-NEXT:   affine.for %[[ARG4:.*]] = 0 to %[[DIM]] step 64 {
+// CHECK-NEXT:   affine.for %[[ARG5:.*]] = 0 to 16 step 16 {
+// CHECK-NEXT:   %[[VAL0:.*]] = affine.apply #[[$MAP0]]()[%[[ARG2]], %[[ARG4]]]
+// CHECK-NEXT:   %[[VAL1:.*]] = affine.apply #[[$MAP1]]()[%[[ARG5]]]
+// CHECK-NEXT:   %[[VAL2:.*]] = affine.load %[[ARG0]][%[[VAL0]], %[[VAL1]]] : memref<2048x16xf32>
+// CHECK-NEXT:   %[[VAL3:.*]] = affine.apply #[[$MAP0]]()[%[[ARG2]], %[[ARG4]]]
+// CHECK-NEXT:   affine.store %[[VAL2]], %[[ARG0]][%[[VAL3]], %[[ARG5]]] : memref<2048x16xf32>
+
+// -----
+
+// CHECK-DAG: #[[$MAP0:.*]] = affine_map<()[s0, s1] -> (s0 * 1024 + s1)>
+// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0, s1] -> (s0 + s1)>
 // CHECK-LABEL: fold_static_stride_subview_with_affine_load_store_expand_shape
 // CHECK-SAME: (%[[ARG0:.*]]: memref<1024x1024xf32>, %[[ARG1:.*]]: memref<1xf32>, %[[ARG2:.*]]: index)
 func.func @fold_static_stride_subview_with_affine_load_store_expand_shape(%arg0: memref<1024x1024xf32>, %arg1: memref<1xf32>, %arg2: index) -> f32 {
@@ -506,14 +549,14 @@ func.func @fold_static_stride_subview_with_affine_load_store_expand_shape(%arg0:
 // CHECK-NEXT:  affine.for %[[ARG4:.*]] = 0 to 1024 {
 // CHECK-NEXT:   affine.for %[[ARG5:.*]] = 0 to 1020 {
 // CHECK-NEXT:    affine.for %[[ARG6:.*]] = 0 to 1 {
-// CHECK-NEXT:     %[[IDX1:.*]] = affine.apply #[[$MAP0]](%[[ARG3]], %[[ARG4]])
-// CHECK-NEXT:     %[[IDX2:.*]] = affine.apply #[[$MAP1]](%[[ARG5]], %[[ARG6]])
+// CHECK-NEXT:     %[[IDX1:.*]] = affine.apply #[[$MAP0]]()[%[[ARG3]], %[[ARG4]]]
+// CHECK-NEXT:     %[[IDX2:.*]] = affine.apply #[[$MAP1]]()[%[[ARG5]], %[[ARG6]]]
 // CHECK-NEXT:     affine.load %[[ARG0]][%[[IDX1]], %[[IDX2]]] : memref<1024x1024xf32>
 
 // -----
 
-// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0 * 1025 + d1)>
-// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d0 + d1)>
+// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1)[s0] -> (d0 + d1 + s0 * 1024)>
+// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0, s1] -> (s0 + s1)>
 // CHECK-LABEL: fold_static_stride_subview_with_affine_load_store_expand_shape_when_access_index_is_an_expression
 // CHECK-SAME: (%[[ARG0:.*]]: memref<1024x1024xf32>, %[[ARG1:.*]]: memref<1xf32>, %[[ARG2:.*]]: index)
 func.func @fold_static_stride_subview_with_affine_load_store_expand_shape_when_access_index_is_an_expression(%arg0: memref<1024x1024xf32>, %arg1: memref<1xf32>, %arg2: index) -> f32 {
@@ -535,14 +578,14 @@ func.func @fold_static_stride_subview_with_affine_load_store_expand_shape_when_a
 // CHECK-NEXT:  affine.for %[[ARG4:.*]] = 0 to 1024 {
 // CHECK-NEXT:   affine.for %[[ARG5:.*]] = 0 to 1020 {
 // CHECK-NEXT:    affine.for %[[ARG6:.*]] = 0 to 1 {
-// CHECK-NEXT:      %[[TMP1:.*]] = affine.apply #[[$MAP0]](%[[ARG3]], %[[ARG4]])
-// CHECK-NEXT:      %[[TMP3:.*]] = affine.apply #[[$MAP1]](%[[ARG5]], %[[ARG6]])
+// CHECK-NEXT:      %[[TMP1:.*]] = affine.apply #[[$MAP0]](%[[ARG3]], %[[ARG4]])[%[[ARG3]]]
+// CHECK-NEXT:      %[[TMP3:.*]] = affine.apply #[[$MAP1]]()[%[[ARG5]], %[[ARG6]]]
 // CHECK-NEXT:      affine.load %[[ARG0]][%[[TMP1]], %[[TMP3]]] : memref<1024x1024xf32>
 
 // -----
 
-// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0) -> (d0 * 1024)>
-// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d0 + d1)>
+// CHECK-DAG: #[[$MAP0:.*]] = affine_map<()[s0] -> (s0 * 1024)>
+// CHECK-DAG: #[[$MAP1:.*]] = affine_map<()[s0, s1] -> (s0 + s1)>
 // CHECK-LABEL: fold_static_stride_subview_with_affine_load_store_expand_shape_with_constant_access_index
 // CHECK-SAME: (%[[ARG0:.*]]: memref<1024x1024xf32>, %[[ARG1:.*]]: memref<1xf32>, %[[ARG2:.*]]: index)
 func.func @fold_static_stride_subview_with_affine_load_store_expand_shape_with_constant_access_index(%arg0: memref<1024x1024xf32>, %arg1: memref<1xf32>, %arg2: index) -> f32 {
@@ -565,8 +608,8 @@ func.func @fold_static_stride_subview_with_affine_load_store_expand_shape_with_c
 // CHECK-NEXT:   affine.for %[[ARG4:.*]] = 0 to 1024 {
 // CHECK-NEXT:    affine.for %[[ARG5:.*]] = 0 to 1020 {
 // CHECK-NEXT:     affine.for %[[ARG6:.*]] = 0 to 1 {
-// CHECK-NEXT:      %[[TMP1:.*]] = affine.apply #[[$MAP0]](%[[ARG3]])
-// CHECK-NEXT:      %[[TMP2:.*]] = affine.apply #[[$MAP1]](%[[ARG5]], %[[ARG6]])
+// CHECK-NEXT:      %[[TMP1:.*]] = affine.apply #[[$MAP0]]()[%[[ARG3]]]
+// CHECK-NEXT:      %[[TMP2:.*]] = affine.apply #[[$MAP1]]()[%[[ARG5]], %[[ARG6]]]
 // CHECK-NEXT:      memref.load %[[ARG0]][%[[TMP1]], %[[TMP2]]] : memref<1024x1024xf32>
 
 // -----



More information about the Mlir-commits mailing list